This document is an excerpt from the EUR-Lex website
Document 32020R1749
Commission Delegated Regulation (EU) 2020/1749 of 7 October 2020 amending Council Regulation (EC) No 428/2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items
Commission Delegated Regulation (EU) 2020/1749 of 7 October 2020 amending Council Regulation (EC) No 428/2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items
Commission Delegated Regulation (EU) 2020/1749 of 7 October 2020 amending Council Regulation (EC) No 428/2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items
OJ L 421, 14.12.2020, p. 1–280
(BG, ES, CS, DA, DE, ET, EL, EN, FR, HR, IT, LV, LT, HU, MT, NL, PL, PT, RO, SK, SL, FI, SV)
No longer in force, Date of end of validity: 08/09/2021; Repealed by 32021R0821
14.12.2020 |
EN |
Official Journal of the European Union |
L 421/1 |
COMMISSION DELEGATED REGULATION (EU) 2020/1749
of 7 October 2020
amending Council Regulation (EC) No 428/2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items
THE EUROPEAN COMMISSION,
Having regard to the Treaty on the Functioning of the European Union,
Having regard to Council Regulation (EC) No 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items (1), and in particular Article 15(3) thereof,
Whereas:
(1) |
Regulation (EC) No 428/2009 requires dual-use items to be subject to effective control when they are exported from or in transit through the Union, or are delivered to a third country as a result of brokering services provided by a broker resident or established in the Union. |
(2) |
Annex I to Regulation (EC) No 428/2009 establishes the common list of dual-use items that are subject to controls in the Union. Decisions on the items subject to controls are taken within the framework of internationally agreed dual-use controls including the Australia Group (2), the Missile Technology Control Regime (3), the Nuclear Suppliers Group (4), the Wassenaar Arrangement (5) and the Chemical Weapons Convention (6). |
(3) |
The list of dual-use items set out in Annex I to Regulation (EC) No 428/2009 needs to be updated regularly in order to ensure full compliance with international security obligations, to guarantee transparency, and to maintain the competitiveness of economic operators. The control lists adopted by the international non-proliferation regimes and export control arrangements has been changed during 2019 and until end of February 2020, and therefore Annex I to Regulation (EC) No 428/2009 should be amended accordingly. In order to facilitate references for export control authorities and economic operators, Annex I to that Regulation should be replaced. |
(4) |
Annexes IIa to IIf to Regulation (EC) No 428/2009 establishes Union General Export Authorisations. |
(5) |
Annex IIg to Regulation (EC) No 428/2009 establishes a list of dual-use items that are to be excluded from the scope of national general export authorisations and Union General Export Authorisaitions. |
(6) |
Annex IV to Regulation (EC) No 428/2009 establishes authorisation requirements for certain intra-Community transfers. |
(7) |
The amendments to the list of dual-use items set out in Annex I necessitate consequential amendments to Annexes IIa to IIg and Annex IV for dual-use items which are also listed in Annexes IIa to IIg and Annex IV. |
(8) |
Regulation (EC) No 428/2009 empowers the Commission to update the list of dual-use items set out in Annex I as well as Annexes IIa to IIg and Annex IV by means of delegated acts, in conformity with the relevant obligations and commitments, and any modifications thereto, that Member States have accepted as members of the international non-proliferation regimes and export control arrangements, or by ratification of relevant international treaties. |
(9) |
Considering the importance of ensuring full compliance with international security obligations as soon as practically possible, this Regulation should enter into force on the day following that of its publication. |
(10) |
Regulation (EC) No 428/2009 should therefore be amended accordingly, |
HAS ADOPTED THIS REGULATION:
Article 1
Council Regulation (EC) No 428/2009 is amended as follows:
(1) |
Annex I is replaced by the text set out in Annex I to this Regulation. |
(2) |
Annexes IIa to IIg are replaced by the text set out in Annex II to this Regulation. |
(3) |
Annex IV is replaced by the text set out in Annex III to this Regulation. |
Article 2
This Regulation shall enter into force on the day following that of its publication in the Official Journal of the European Union.
This Regulation shall be binding in its entirety and directly applicable in all Member States.
Done at Brussels, 7 October 2020.
For the Commission
The President
Ursula VON DER LEYEN
(1) Council Regulation (EC) No 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items (OJ L 134, 29.5.2009, p. 1).
(2) The Australia Group (AG) is an informal forum of countries which, through the harmonisation of export controls, seeks to ensure that exports do not contribute to the development of chemical or biological weapons. Further information is available at: http://www.australiagroup.net/
(3) The Missile Technology Control Regime (MTCR) is an informal political understanding among states that seek to limit the proliferation of missiles, complete rocket systems, unmanned air vehicles. and related technology. Further information is available at: http://mtcr.info/
(4) The Nuclear Suppliers Group (NSG) is a group of nuclear supplier countries that seeks to contribute to the non-proliferation of nuclear weapons through the implementation of two sets of Guidelines for nuclear exports and nuclear-related exports. Further information is available at: http://www.nuclearsuppliersgroup.org/
(5) The Wassenaar Arrangement (WA) has been established in order to contribute to regional and international security and stability, by promoting transparency and greater responsibility in transfers of conventional arms and dual-use goods and technologies, thus preventing destabilising accumulations. Further information is available at: https://www.wassenaar.org/
(6) The Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons and on their Destruction (the Chemical Weapons Convention or CWC) aims to eliminate an entire category of weapons of mass destruction by prohibiting the development, production, acquisition, stockpiling, retention, transfer or use of chemical weapons by States Parties. Further information is available at: https://www.opcw.org/chemical-weapons-convention
ANNEX I
LIST OF DUAL-USE ITEMS
(referred to in Article 3 of this Regulation)
This list implements internationally agreed dual-use controls including the Australia Group (1), the Missile Technology Control Regime (MTCR) (2), the Nuclear Suppliers Group (NSG) (3), the Wassenaar Arrangement (4) and the Chemical Weapons Convention (CWC) (5).
CONTENTS
Notes
Acronyms and abbreviations
Definitions
Category 0 |
Nuclear materials, facilities and equipment |
Category 1 |
Special materials and related equipment |
Category 2 |
Materials processing |
Category 3 |
Electronics |
Category 4 |
Computers |
Category 5 |
Telecommunications and "information security" |
Category 6 |
Sensors and lasers |
Category 7 |
Navigation and avionics |
Category 8 |
Marine |
Category 9 |
Aerospace and propulsion |
GENERAL NOTES TO ANNEX I
1. |
For control of goods which are designed or modified for military use, see the relevant list(s) of controls on military goods maintained by individual EU Member States. References in this Annex that state "SEE ALSO MILITARY GOODS CONTROLS" refer to the same lists. |
2. |
The object of the controls contained in this Annex should not be defeated by the export of any non-controlled goods (including plant) containing one or more controlled components when the controlled component or components are the principal element of the goods and can feasibly be removed or used for other purposes.
|
3. |
Goods specified in this Annex include both new and used goods. |
4. |
In some instances chemicals are listed by name and CAS number. The list applies to chemicals of the same structural formula (including hydrates) regardless of name or CAS number. CAS numbers are shown to assist in identifying a particular chemical or mixture, irrespective of nomenclature. CAS numbers cannot be used as unique identifiers because some forms of the listed chemical have different CAS numbers, and mixtures containing a listed chemical may also have different CAS numbers. |
NUCLEAR TECHNOLOGY NOTE (NTN)
(To be read in conjunction with section E of Category 0.)
The "technology" directly associated with any goods controlled in Category 0 is controlled according to the provisions of Category 0.
"Technology" for the "development", "production" or "use" of goods under control remains under control even when applicable to non-controlled goods.
The approval of goods for export also authorizes the export to the same end-user of the minimum "technology" required for the installation, operation, maintenance and repair of the goods.
Controls on "technology" transfer do not apply to information "in the public domain" or to "basic scientific research".
GENERAL TECHNOLOGY NOTE (GTN)
(To be read in conjunction with section E of Categories 1 to 9.)
The export of "technology" which is "required" for the "development", "production" or "use" of goods controlled in Categories 1 to 9, is controlled according to the provisions of Categories 1 to 9.
"Technology" "required" for the "development", "production" or "use" of goods under control remains under control even when applicable to non-controlled goods.
Controls do not apply to that "technology" which is the minimum necessary for the installation, operation, maintenance (checking) or repair of those goods which are not controlled or whose export has been authorised.
Note: |
This does not release such "technology" specified in 1E002.e., 1E002.f., 8E002.a. and 8E002.b. |
Controls on "technology" transfers do not apply to information "in the public domain", to "basic scientific research" or to the minimum necessary information for patent applications.
NUCLEAR SOFTWARE NOTE (NSN)
(This note overrides any control within section D of Category 0)
Section D of Category 0 of this list does not control "software" which is the minimum necessary "object code" for the installation, operation, maintenance (checking) or repair of those items whose export has been authorised.
The approval of goods for export also authorises the export to the same end-user of the minimum necessary "object code" for the installation, operation, maintenance (checking) or repair of the goods
Note: |
The Nuclear Software Note does not release "software" specified in Category 5 – Part 2 ("Information Security"). |
GENERAL SOFTWARE NOTE (GSN)
(This note overrides any control within section D of Categories 1 to 9.)
Categories 1 to 9 of this list do not control "software" which is any of the following:
a. |
Generally available to the public by being:
|
b. |
"In the public domain"; or |
c. |
The minimum necessary "object code" for the installation, operation, maintenance (checking) or repair of those items whose export has been authorised.
|
GENERAL "INFORMATION SECURITY" NOTE (GISN)
"Information security" items or functions should be considered against the provisions in Category 5 – Part 2, even if they are components, "software" or functions of other items.
EDITORIAL PRACTICES IN THE OFFICIAL JOURNAL OF THE EUROPEAN UNION
In accordance with the rules set out in paragraph 6.5 on page 108 of the Interinstitutional style guide (2015 edition), for texts in English published in the Official Journal of the European Union:
— |
a comma is used to separate the whole number from decimals, |
— |
whole numbers are presented in series of three, each series being separated by a thin space. |
The text reproduced in this annex follows the above-described practice.
ACRONYMS AND ABBREVIATIONS USED IN THIS ANNEX
An acronym or abbreviation, when used as a defined term, are found in ‘Definitions of Terms used in this Annex’.
Acronym or meaning abbreviation |
|
ABEC |
Annular Bearing Engineers Committee |
ABMA |
American Bearing Manufacturers Association |
ADC |
Analogue-to-Digital Converter |
AGMA |
American Gear Manufacturers’ Association |
AHRS |
Attitude and Heading Reference Systems |
AISI |
American Iron and Steel Institute |
ALE |
Atomic Layer Epitaxy |
ALU |
Arithmetic Logic Unit |
ANSI |
American National Standards Institute |
APP |
Adjusted Peak Performance |
APU |
Auxiliary Power Unit |
ASTM |
American Society for Testing and Materials |
ATC |
Air Traffic Control |
BJT |
Bipolar Junction Transistors |
BPP |
Beam Parameter Product |
BSC |
Base Station Controller |
CAD |
Computer-Aided-Design |
CAS |
Chemical Abstracts Service |
CCD |
Charge Coupled Device |
CDU |
Control and Display Unit |
CEP |
Circular Error Probable |
CMM |
Coordinate Measuring Machine |
CMOS |
Complementary Metal Oxide Semiconductor |
CNTD |
Controlled Nucleation Thermal Deposition |
CPLD |
Complex Programmable Logic Device |
CPU |
Central Processing Unit |
CVD |
Chemical Vapour Deposition |
CW |
Chemical Warfare |
CW (for lasers) |
Continuous Wave |
DAC |
Digital-to-Analogue Converter |
DANL |
Displayed Average Noise Level |
DBRN |
Data-Base Referenced Navigation |
DDS |
Direct Digital Synthesizer |
DMA |
Dynamic Mechanical Analysis |
DME |
Distance Measuring Equipment |
DMOSFET |
Diffused Metal Oxide Semiconductor Field Effect Transistor |
DS |
Directionally Solidified |
EB |
Exploding Bridge |
EB-PVD |
Electron Beam Physical Vapour Deposition |
EBW |
Exploding Bridge Wire |
ECM |
Electro-Chemical Machining |
EDM |
Electrical Discharge Machines |
EFI |
Exploding Foil Initiators |
EIRP |
Effective Isotropic Radiated Power |
EMP |
Electromagnetic Pulse |
ENOB |
Effective Number of Bits |
ERF |
Electrorheological Finishing |
ERP |
Effective Radiated Power |
ESD |
Electrostatic Discharge |
ETO |
Emitter Turn-Off Thyristor |
ETT |
Electrical Triggering Thyristor |
EU |
European Union |
EUV |
Extreme Ultraviolet |
FADEC |
Full Authority Digital Engine Control |
FFT |
Fast Fourier Transform |
FPGA |
Field Programmable Gate Array |
FPIC |
Field Programmable Interconnect |
FPLA |
Field Programmable Logic Array |
FPO |
Floating Point Operation |
FWHM |
Full-Width Half-Maximum |
GLONASS |
Global Navigation Satellite System |
GNSS |
Global Navigation Satellite System |
GPS |
Global Positioning System |
GSM |
Global System for Mobile Communications |
GTO |
Gate Turn-off Thyristor |
HBT |
Hetero-Bipolar Transistors |
HDMI |
High-Definition Multimedia Interface |
HEMT |
High Electron Mobility Transistor |
ICAO |
International Civil Aviation Organization |
IEC |
International Electro-technical Commission |
IED |
Improvised Explosive Device |
IEEE |
Institute of Electrical and Electronic Engineers |
IFOV |
Instantaneous-Field-Of-View |
IGBT |
Insulated Gate Bipolar Transistor |
IGCT |
Integrated Gate Commutated Thyristor |
IHO |
International Hydrographic Organization |
ILS |
Instrument Landing System |
IMU |
Inertial Measurement Unit |
INS |
Inertial Navigation System |
IP |
Internet Protocol |
IRS |
Inertial Reference System |
IRU |
Inertial Reference Unit |
ISA |
International Standard Atmosphere |
ISAR |
Inverse Synthetic Aperture Radar |
ISO |
International Organization for Standardization |
ITU |
International Telecommunication Union |
JT |
Joule-Thomson |
LIDAR |
Light Detection and Ranging |
LIDT |
Laser Induced Damage Threshold |
LOA |
Length Overall |
LRU |
Line Replaceable Unit |
LTT |
Light Triggering Thyristor |
MLS |
Microwave Landing Systems |
MMIC |
Monolithic Microwave Integrated Circuit |
MOCVD |
Metal Organic Chemical Vapour Deposition |
MOSFET |
Metal-Oxide-Semiconductor Field Effect Transistor |
MPM |
Microwave Power Module |
MRF |
Magnetorheological Finishing |
MRF |
Minimum Resolvable Feature size |
MRI |
Magnetic Resonance Imaging |
MTBF |
Mean-Time-Between-Failures |
MTTF |
Mean-Time-To-Failure |
NA |
Numerical Aperture |
NDT |
Non-Destructive Test |
NEQ |
Net Explosive Quantity |
NIJ |
National Institute of Justice |
OAM |
Operations, Administration or Maintenance |
OSI |
Open Systems Interconnection |
PAI |
Polyamide-imides |
PAR |
Precision Approach Radar |
PCL |
Passive Coherent Location |
PDK |
Process Design Kit |
PIN |
Personal Identification Number |
PMR |
Private Mobile Radio |
PVD |
Physical Vapour Deposition |
ppm |
parts per million |
QAM |
Quadrature-Amplitude-Modulation |
QE |
Quantum Efficiency |
RAP |
Reactive Atom Plasmas |
RF |
Radio Frequency |
rms |
Root Mean Square |
RNC |
Radio Network Controller |
RNSS |
Regional Navigation Satellite System |
ROIC |
Read-out Integrated Circuit |
S-FIL |
Step and Flash Imprint Lithography |
SAR |
Synthetic Aperture Radar |
SAS |
Synthetic Aperture Sonar |
SC |
Single Crystal |
SCR |
Silicon Controlled Rectifier |
SFDR |
Spurious Free Dynamic Range |
SHPL |
Super High Powered Laser |
SLAR |
Sidelooking Airborne Radar |
SOI |
Silicon-on-Insulator |
SQUID |
Superconducting Quantum Interference Device |
SRA |
Shop Replaceable Assembly |
SRAM |
Static Random Access Memory |
SSB |
Single Sideband |
SSR |
Secondary Surveillance Radar |
SSS |
Side Scan Sonar |
TIR |
Total Indicated Reading |
TVR |
Transmitting Voltage Response |
u |
Atomic Mass Unit |
UPR |
Unidirectional Positioning Repeatability |
UV |
Ultraviolet |
UTS |
Ultimate Tensile Strength |
VJFET |
Vertical Junction Field Effect Transistor |
VOR |
Very High Frequency Omni-directional Range |
WHO |
World Health Organization |
WLAN |
Wireless Local Area Network |
DEFINITIONS OF TERMS USED IN THIS ANNEX
Definitions of terms between ‘single quotation marks’ are given in a Technical Note to the relevant item.
Definitions of terms between "double quotation marks" are as follows:
NB: |
Category references are given in brackets after the defined term. |
"Accuracy" (2 3 6 7 8), usually measured in terms of inaccuracy, means the maximum deviation, positive or negative, of an indicated value from an accepted standard or true value.
"Active flight control systems" (7) are systems that function to prevent undesirable "aircraft" and missile motions or structural loads by autonomously processing outputs from multiple sensors and then providing necessary preventive commands to effect automatic control.
"Active pixel" (6) is a minimum (single) element of the solid state array which has a photoelectric transfer function when exposed to light (electromagnetic) radiation.
"Adjusted Peak Performance" (4) is an adjusted peak rate at which "digital computers" perform 64-bit or larger floating point additions and multiplications, and is expressed in Weighted TeraFLOPS (WT) with units of 1012 adjusted floating point operations per second.
NB: |
See Category 4, Technical Note. |
"Aircraft" (1 6 7 9) means a fixed wing, swivel wing, rotary wing (helicopter), tilt rotor or tilt-wing airborne vehicle.
NB: |
See also "civil aircraft". |
"Airship" (9) means a power-driven airborne vehicle that is kept buoyant by a body of gas (usually helium, formerly hydrogen) which is lighter than air.
"All compensations available" (2) means after all feasible measures available to the manufacturer to minimise all systematic positioning errors for the particular machine-tool model or measuring errors for the particular coordinate measuring machine are considered.
"Allocated by the ITU" (3 5) means the allocation of frequency bands according to the current edition of the ITU Radio Regulations for primary, permitted and secondary services.
NB: |
Additional and alternative allocations are not included. |
"Angular position deviation" (2) means the maximum difference between angular position and the actual, very accurately measured angular position after the workpiece mount of the table has been turned out of its initial position.
"Angle random walk" (7) means the angular error build up with time that is due to white noise in angular rate (IEEE STD 528-2001).
"APP" (4) is equivalent to "Adjusted Peak Performance".
"Asymmetric algorithm" (5) means a cryptographic algorithm using different, mathematically-related keys for encryption and decryption.
NB: |
A common use of "asymmetric algorithms" is key management. |
"Authentication" (5) means verifying the identity of a user, process or device, often as a prerequisite to allowing access to resources in an information system. This includes verifying the origin or content of a message or other information, and all aspects of access control where there is no encryption of files or text except as directly related to the protection of passwords, Personal Identification Numbers (PINs) or similar data to prevent unauthorized access.
"Average output power" (6) means the total "laser" output energy, in joules, divided by the period over which a series of consecutive pulses is emitted, in seconds. For a series of uniformly spaced pulses it is equal to the total "laser" output energy in a single pulse, in joules, multiplied by the pulse frequency of the "laser", in Hertz.
"Basic gate propagation delay time" (3) means the propagation delay time value corresponding to the basic gate used in a "monolithic integrated circuit". For a ‘family’ of "monolithic integrated circuits", this may be specified either as the propagation delay time per typical gate within the given ‘family’ or as the typical propagation delay time per gate within the given ‘family’.
N.B.1. |
"Basic gate propagation delay time" is not to be confused with the input/output delay time of a complex "monolithic integrated circuit". |
N.B.2. |
‘Family’ consists of all integrated circuits to which all of the following are applied as their manufacturing methodology and specifications except their respective functions:
|
"Basic scientific research" (GTN NTN) means experimental or theoretical work undertaken principally to acquire new knowledge of the fundamental principles of phenomena or observable facts, not primarily directed towards a specific practical aim or objective.
"Bias" (accelerometer) (7) means the average over a specified time of accelerometer output, measured at specified operating conditions, that has no correlation with input acceleration or rotation. "Bias" is expressed in g or in metres per second squared (g or m/s2). (IEEE Std 528-2001) (Micro g equals 1x10–6 g).
"Bias" (gyro) (7) means the average over a specified time of gyro output measured at specified operating conditions that has no correlation with input rotation or acceleration. "Bias" is typically expressed in degrees per hour (deg/hr). (IEEE Std 528-2001).
"Biological agents" (1) are pathogens or toxins, selected or modified (such as altering purity, shelf life, virulence, dissemination characteristics, or resistance to UV radiation) to produce casualties in humans or animals, degrade equipment or damage crops or the environment.
"Camming" (2) means axial displacement in one revolution of the main spindle measured in a plane perpendicular to the spindle faceplate, at a point next to the circumference of the spindle faceplate (Reference: ISO 230-1:1986, paragraph 5.63).
"CEP" (7) means "Circular Error Probable" – In a circular normal distribution, the radius of the circle containing 50 % of the individual measurements being made, or the radius of the circle within which there is a 50 % probability of being located.
"Chemical laser" (6) means a "laser" in which the excited species is produced by the output energy from a chemical reaction.
"Chemical mixture" (1) means a solid, liquid or gaseous product made up of two or more components which do not react together under the conditions under which the mixture is stored.
"Circulation-controlled anti-torque or circulation controlled direction control systems" (7) are systems that use air blown over aerodynamic surfaces to increase or control the forces generated by the surfaces.
"Civil aircraft" (1 3 4 7) means those "aircraft" listed by designation in published airworthiness certification lists by the civil aviation authorities of one or more EU Member States or Wassenaar Arrangement Participating States to fly commercial civil internal and external routes or for legitimate civil, private or business use.
NB: |
See also "aircraft". |
"Communications channel controller" (4) means the physical interface which controls the flow of synchronous or asynchronous digital information. It is an assembly that can be integrated into computer or telecommunications equipment to provide communications access.
"Compensation systems" (6) consist of the primary scalar sensor, one or more reference sensors (e.g., vector "magnetometers") together with software that permit reduction of rigid body rotation noise of the platform.
"Composite" (1 2 6 8 9) means a "matrix" and an additional phase or additional phases consisting of particles, whiskers, fibres or any combination thereof, present for a specific purpose or purposes.
"III/V compounds" (3 6) means polycrystalline or binary or complex monocrystalline products consisting of elements of groups IIIA and VA of Mendeleyev’s periodic classification table (e.g., gallium arsenide, gallium-aluminium arsenide, indium phosphide).
"Contouring control" (2) means two or more "numerically controlled" motions operating in accordance with instructions that specify the next required position and the required feed rates to that position. These feed rates are varied in relation to each other so that a desired contour is generated. (ref. ISO/DIS 2806 – 1980).
"Critical temperature" (1 3 5) (sometimes referred to as the transition temperature) of a specific "superconductive" material means the temperature at which the material loses all resistance to the flow of direct electrical current.
"Cryptographic activation" (5) means any technique that specifically activates or enables cryptographic capability of an item, by means of a mechanism implemented by the manufacturer of the item, where this mechanism is uniquely bound to any of the following:
1. |
A single instance of the item; or |
2. |
One customer, for multiple instances of the item. |
Technical Notes:
1. |
"Cryptographic activation" techniques and mechanisms may be implemented as hardware, "software" or "technology". |
2. |
Mechanisms for "cryptographic activation" can, for example, be serial number-based licence keys or authentication instruments such as digitally signed certificates. |
"Cryptography" (5) means the discipline which embodies principles, means and methods for the transformation of data in order to hide its information content, prevent its undetected modification or prevent its unauthorized use. "Cryptography" is limited to the transformation of information using one or more ‘secret parameters’ (e.g., crypto variables) or associated key management.
Notes:
1. |
"Cryptography" does not include ‘fixed’ data compression or coding techniques. |
2. |
"Cryptography" includes decryption. |
Technical Notes:
1. |
‘Secret parameter’: a constant or key kept from the knowledge of others or shared only within a group. |
2. |
‘Fixed’: the coding or compression algorithm cannot accept externally supplied parameters (e.g., cryptographic or key variables) and cannot be modified by the user. |
"CW laser" (6) means a "laser" that produces a nominally constant output energy for greater than 0,25 seconds.
"Cyber incident response" (4) means the process of exchanging necessary information on a cybersecurity incident with individuals or organisations responsible for conducting or coordinating remediation to address the cybersecurity incident.
"Data-Based Referenced Navigation" ("DBRN") (7) Systems means systems which use various sources of previously measured geo-mapping data integrated to provide accurate navigation information under dynamic conditions. Data sources include bathymetric maps, stellar maps, gravity maps, magnetic maps or 3-D digital terrain maps.
"Depleted uranium" (0) means uranium depleted in the isotope 235 below that occurring in nature.
"Development" (GTN NTN All) is related to all phases prior to serial production, such as: design, design research, design analyses, design concepts, assembly and testing of prototypes, pilot production schemes, design data, process of transforming design data into a product, configuration design, integration design, layouts.
"Diffusion bonding" (1 2 9) means a solid state joining of at least two separate pieces of metals into a single piece with a joint strength equivalent to that of the weakest material, wherein the principal mechanism is interdiffusion of atoms across the interface.
"Digital computer" (4 5) means equipment which can, in the form of one or more discrete variables, perform all of the following:
a. |
Accept data; |
b. |
Store data or instructions in fixed or alterable (writable) storage devices; |
c. |
Process data by means of a stored sequence of instructions which is modifiable; and |
d. |
Provide output of data. |
NB: |
Modifications of a stored sequence of instructions include replacement of fixed storage devices, but not a physical change in wiring or interconnections. |
"Digital transfer rate" (def) means the total bit rate of the information that is directly transferred on any type of medium.
NB: |
See also "total digital transfer rate". |
"Drift rate" (gyro) (7) means the component of gyro output that is functionally independent of input rotation. It is expressed as an angular rate. (IEEE STD 528-2001).
"Effective gramme" (0 1) of "special fissile material" means:
a. |
For plutonium isotopes and uranium-233, the isotope weight in grammes; |
b. |
For uranium enriched 1 per cent or greater in the isotope uranium-235, the element weight in grammes multiplied by the square of its enrichment expressed as a decimal weight fraction; |
c. |
For uranium enriched below 1 per cent in the isotope uranium-235, the element weight in grammes multiplied by 0,0001; |
"Electronic assembly" (2 3 4) means a number of electronic components (i.e., ‘circuit elements’, ‘discrete components’, integrated circuits, etc.) connected together to perform (a) specific function(s), replaceable as an entity and normally capable of being disassembled.
N.B.1. |
‘Circuit element’: a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc. |
N.B.2. |
‘Discrete component’: a separately packaged ‘circuit element’ with its own external connections. |
"Energetic materials" (1) means substances or mixtures that react chemically to release energy required for their intended application. "Explosives", "pyrotechnics" and "propellants" are subclasses of energetic materials.
"End-effectors" (2) means grippers, ‘active tooling units’ and any other tooling that is attached to the baseplate on the end of a "robot" manipulator arm.
NB: |
‘Active tooling unit’ means a device for applying motive power, process energy or sensing to the workpiece. |
"Equivalent density" (6) means the mass of an optic per unit optical area projected onto the optical surface.
"Equivalent standards" (1) means comparable national or international standards recognised by one or more EU Member States or Wassenaar Arrangement Participating States and applicable to the relevant entry.
"Explosives" (1) means solid, liquid or gaseous substances or mixtures of substances which, in their application as primary, booster, or main charges in warheads, demolition and other applications, are required to detonate.
"FADEC Systems" (9) means Full Authority Digital Engine Control Systems – A digital electronic control system for a gas turbine engine that is able to autonomously control the engine throughout its whole operating range from demanded engine start until demanded engine shut-down, in both normal and fault conditions.
"Fibrous or filamentary materials" (0 1 8 9) include:
a. |
Continuous "monofilaments"; |
b. |
Continuous "yarns" and "rovings"; |
c. |
"Tapes", fabrics, random mats and braids; |
d. |
Chopped fibres, staple fibres and coherent fibre blankets; |
e. |
Whiskers, either monocrystalline or polycrystalline, of any length; |
f. |
Aromatic polyamide pulp. |
"Film type integrated circuit" (3) means an array of ‘circuit elements’ and metallic interconnections formed by deposition of a thick or thin film on an insulating "substrate".
NB: |
‘Circuit element’ is a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc. |
"Fly-by-light system" (7) means a primary digital flight control system employing feedback to control the "aircraft" during flight, where the commands to the effectors/actuators are optical signals.
"Fly-by-wire system" (7) means a primary digital flight control system employing feedback to control the "aircraft" during flight, where the commands to the effectors/actuators are electrical signals.
"Focal plane array" (6 8) means a linear or two-dimensional planar layer, or combination of planar layers, of individual detector elements, with or without readout electronics, which work in the focal plane.
NB: |
This is not intended to include a stack of single detector elements or any two, three or four element detectors provided time delay and integration is not performed within the element. |
"Fractional bandwidth" (3 5) means the "instantaneous bandwidth" divided by the centre frequency, expressed as a percentage.
"Frequency hopping" (5 6) means a form of "spread spectrum" in which the transmission frequency of a single communication channel is made to change by a random or pseudo-random sequence of discrete steps.
"Frequency switching time" (3) means the time (i.e., delay) taken by a signal when switched from an initial specified output frequency, to arrive at or within any of the following:
a. |
±100 Hz of a final specified output frequency of less than 1 GHz; or |
b. |
±0,1 part per million of a final specified output frequency equal to or greater than 1 GHz. |
"Fuel cell" (8) is an electrochemical device that converts chemical energy directly into Direct Current (DC) electricity by consuming fuel from an external source.
"Fusible" (1) means capable of being cross-linked or polymerized further (cured) by the use of heat, radiation, catalysts, etc., or that can be melted without pyrolysis (charring).
"Hard selectors" (5) means data or set of data, related to an individual (e.g., family name, given name, email, street address, phone number or group affiliations).
"Guidance set" (7) means systems that integrate the process of measuring and computing a vehicles position and velocity (i.e., navigation) with that of computing and sending commands to the vehicles flight control systems to correct the trajectory.
"Hybrid integrated circuit" (3) means any combination of integrated circuit(s), or integrated circuit with ‘circuit elements’ or ‘discrete components’ connected together to perform (a) specific function(s), and having all of the following characteristics:
a. |
Containing at least one unencapsulated device; |
b. |
Connected together using typical IC production methods; |
c. |
Replaceable as an entity; and |
d. |
Not normally capable of being disassembled. |
N.B.1. |
‘Circuit element’: a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc. |
N.B.2. |
‘Discrete component’: a separately packaged ‘circuit element’ with its own external connections. |
"Image enhancement" (4) means the processing of externally derived information-bearing images by algorithms such as time compression, filtering, extraction, selection, correlation, convolution or transformations between domains (e.g., fast Fourier transform or Walsh transform). This does not include algorithms using only linear or rotational transformation of a single image, such as translation, feature extraction, registration or false coloration.
"Immunotoxin" (1) is a conjugate of one cell specific monoclonal antibody and a "toxin" or "sub-unit of toxin", that selectively affects diseased cells.
"In the public domain" (GTN NTN GSN), as it applies herein, means "technology" or "software" which has been made available without restrictions upon its further dissemination (copyright restrictions do not remove "technology" or "software" from being "in the public domain").
"Information security" (GSN GISN 5) is all the means and functions ensuring the accessibility, confidentiality or integrity of information or communications, excluding the means and functions intended to safeguard against malfunctions. This includes "cryptography", "cryptographic activation", ‘cryptanalysis’, protection against compromising emanations and computer security.
Technical Note:
‘Cryptanalysis’: analysis of a cryptographic system or its inputs and outputs to derive confidential variables or sensitive data, including clear text.
"Instantaneous bandwidth" (3 5 7) means the bandwidth over which output power remains constant within 3 dB without adjustment of other operating parameters.
"Insulation" (9) is applied to the components of a rocket motor, i.e., the case, nozzle, inlets, case closures, and includes cured or semi-cured compounded rubber sheet stock containing an insulating or refractory material. It may also be incorporated as stress relief boots or flaps.
"Interior lining" (9) is suited for the bond interface between the solid propellant and the case or insulating liner. Usually a liquid polymer based dispersion of refractory or insulating materials, e.g. carbon filled hydroxyl terminated polybutadiene (HTPB) or other polymer with added curing agents sprayed or screeded over a case interior.
"Interleaved Analogue-to-Digital Converter (ADC)" (3) means devices that have multiple ADC units that sample the same analogue input at different times such that when the outputs are aggregated, the analogue input has been effectively sampled and converted at a higher sampling rate.
"Intrinsic Magnetic Gradiometer" (6) is a single magnetic field gradient sensing element and associated electronics the output of which is a measure of magnetic field gradient.
NB: |
See also "magnetic gradiometer". |
"Intrusion software" (4 5) means "software" specially designed or modified to avoid detection by ‘monitoring tools’, or to defeat ‘protective countermeasures’, of a computer or network-capable device, and performing any of the following:
a. |
The extraction of data or information, from a computer or network-capable device, or the modification of system or user data; or |
b. |
The modification of the standard execution path of a program or process in order to allow the execution of externally provided instructions. |
Notes:
1. |
"Intrusion software" does not include any of the following:
|
2. |
Network-capable devices include mobile devices and smart meters. |
Technical Notes:
1. |
‘Monitoring tools’: "software" or hardware devices, that monitor system behaviours or processes running on a device. This includes antivirus (AV) products, end point security products, Personal Security Products (PSP), Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS) or firewalls. |
2. |
‘Protective countermeasures’: techniques designed to ensure the safe execution of code, such as Data Execution Prevention (DEP), Address Space Layout Randomisation (ASLR) or sandboxing. |
"Isolated live cultures" (1) includes live cultures in dormant form and in dried preparations.
"Isostatic presses" (2) mean equipment capable of pressurising a closed cavity through various media (gas, liquid, solid particles, etc.) to create equal pressure in all directions within the cavity upon a workpiece or material.
"Laser" (0 1 2 3 5 6 7 8 9) is an item that produces spatially and temporally coherent light through amplification by stimulated emission of radiation.
NB: |
|
"Library" (1) (parametric technical database) means a collection of technical information, reference to which may enhance the performance of relevant systems, equipment or components.
"Lighter-than-air vehicles" (9) means balloons and "airships" that rely on hot air or other lighter-than-air gases such as helium or hydrogen for their lift.
"Linearity" (2) (Usually measured in terms of non-linearity) means the maximum deviation of the actual characteristic (average of upscale and downscale readings), positive or negative, from a straight line so positioned as to equalise and minimise the maximum deviations.
"Local area network" (4 5) is a data communication system having all of the following characteristics:
a. |
Allows an arbitrary number of independent ‘data devices’ to communicate directly with each other; and |
b. |
Is confined to a geographical area of moderate size (e.g., office building, plant, campus, warehouse). |
NB: |
‘Data device’ means equipment capable of transmitting or receiving sequences of digital information. |
"Magnetic Gradiometers" (6) are instruments designed to detect the spatial variation of magnetic fields from sources external to the instrument. They consist of multiple "magnetometers" and associated electronics the output of which is a measure of magnetic field gradient.
NB: |
See also "intrinsic magnetic gradiometer". |
"Magnetometers" (6) are instruments designed to detect magnetic fields from sources external to the instrument. They consist of a single magnetic field sensing element and associated electronics the output of which is a measure of the magnetic field.
"Materials resistant to corrosion by UF6 " (0) include copper, copper alloys, stainless steel, aluminium, aluminium oxide, aluminium alloys, nickel or alloys containing 60 % or more nickel by weight and fluorinated hydrocarbon polymers.
"Matrix" (1 2 8 9) means a substantially continuous phase that fills the space between particles, whiskers or fibres.
"Measurement uncertainty" (2) is the characteristic parameter which specifies in what range around the output value the correct value of the measurable variable lies with a confidence level of 95 %. It includes the uncorrected systematic deviations, the uncorrected backlash and the random deviations (ref. ISO 10360-2).
"Microcomputer microcircuit" (3) means a "monolithic integrated circuit" or "multichip integrated circuit" containing an arithmetic logic unit (ALU) capable of executing general purpose instructions from an internal storage, on data contained in the internal storage.
NB: |
The internal storage may be augmented by an external storage. |
"Microprocessor microcircuit" (3) means a "monolithic integrated circuit" or "multichip integrated circuit" containing an arithmetic logic unit (ALU) capable of executing a series of general purpose instructions from an external storage.
N.B.1. |
The "microprocessor microcircuit" normally does not contain integral user-accessible storage, although storage present on-the-chip may be used in performing its logic function. |
N.B.2. |
This includes chip sets which are designed to operate together to provide the function of a "microprocessor microcircuit". |
"Microorganisms" (1 2) means bacteria, viruses, mycoplasms, rickettsiae, chlamydiae or fungi, whether natural, enhanced or modified, either in the form of "isolated live cultures" or as material including living material which has been deliberately inoculated or contaminated with such cultures.
"Missiles" (1 3 6 7 9) means complete rocket systems and unmanned aerial vehicle systems, capable of delivering at least 500 kg payload to a range of at least 300 km.
"Monofilament" (1) or filament is the smallest increment of fibre, usually several micrometres in diameter.
"Monolithic integrated circuit" (3) means a combination of passive or active ‘circuit elements’ or both which:
a. |
Are formed by means of diffusion processes, implantation processes or deposition processes in or on a single semiconducting piece of material, a so-called ‘chip’; |
b. |
Can be considered as indivisibly associated; and |
c. |
Perform the function(s) of a circuit. |
NB: |
‘Circuit element’ is a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc. |
"Monolithic Microwave Integrated Circuit" ("MMIC") (3 5) means a "monolithic integrated circuit" that operates at microwave or millimeter wave frequencies.
"Monospectral imaging sensors" (6) are capable of acquisition of imaging data from one discrete spectral band.
"Multichip integrated circuit" (3) means two or more "monolithic integrated circuits" bonded to a common "substrate".
"Multiple channel Analogue-to-Digital Converter (ADC)" (3) means devices that integrate more than one ADC, designed so that each ADC has a separate analogue input.
"Multispectral imaging sensors" (6) are capable of simultaneous or serial acquisition of imaging data from two or more discrete spectral bands. Sensors having more than twenty discrete spectral bands are sometimes referred to as hyperspectral imaging sensors.
"Natural uranium" (0) means uranium containing the mixtures of isotopes occurring in nature.
"Network access controller" (4) means a physical interface to a distributed switching network. It uses a common medium which operates throughout at the same "digital transfer rate" using arbitration (e.g., token or carrier sense) for transmission. Independently from any other, it selects data packets or data groups (e.g., IEEE 802) addressed to it. It is an assembly that can be integrated into computer or telecommunications equipment to provide communications access.
"Nuclear reactor" (0) means a complete reactor capable of operation so as to maintain a controlled self-sustaining fission chain reaction. A "nuclear reactor" includes all the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the components which normally contain, come into direct contact with or control the primary coolant of the reactor core.
"Numerical control" (2) means the automatic control of a process performed by a device that makes use of numeric data usually introduced as the operation is in progress (ref. ISO 2382:2015).
"Object code" (GSN) means an equipment executable form of a convenient expression of one or more processes ("source code" (source language)) which has been compiled by programming system.
"Operations, Administration or Maintenance" ("OAM") (5) means performing one or more of the following tasks:
a. |
Establishing or managing any of the following:
|
b. |
Monitoring or managing the operating condition or performance of an item; or |
c. |
Managing logs or audit data in support of any of the tasks described in paragraphs a. or b. |
Note: |
"OAM" does not include any of the following tasks or their associated key management functions:
|
"Optical integrated circuit" (3) means a "monolithic integrated circuit" or a "hybrid integrated circuit", containing one or more parts designed to function as a photosensor or photoemitter or to perform (an) optical or (an) electro-optical function(s).
"Optical switching" (5) means the routing of or switching of signals in optical form without conversion to electrical signals.
"Overall current density" (3) means the total number of ampere-turns in the coil (i.e., the sum of the number of turns multiplied by the maximum current carried by each turn) divided by the total cross-section of the coil (comprising the superconducting filaments, the metallic matrix in which the superconducting filaments are embedded, the encapsulating material, any cooling channels, etc.).
"Participating state" (7 9) is a state participating in the Wassenaar Arrangement. (See www.wassenaar.org)
"Peak power" (6) means the highest power attained in the "pulse duration".
"Personal area network" (5) means a data communication system having all of the following characteristics:
a. |
Allows an arbitrary number of independent or interconnected ‘data devices’ to communicate directly with each other; and |
b. |
Is confined to the communication between devices within the immediate physical vicinity of an individual person or device controller (e.g., single room, office, or automobile). |
Technical Notes:
1. |
‘Data device’ means equipment capable of transmitting or receiving sequences of digital information. |
2. |
The "local area network" extends beyond the geographical area of the "personal area network". |
"Previously separated" (1) is the application of any process intended to increase the concentration of the controlled isotope.
"Principal element" (4), as it applies in Category 4, is a "principal element" when its replacement value is more than 35 % of the total value of the system of which it is an element. Element value is the price paid for the element by the manufacturer of the system, or by the system integrator. Total value is the normal international selling price to unrelated parties at the point of manufacture or consolidation of shipment.
"Production" (GTN NTN All) means all production phases, such as: construction, production engineering, manufacture, integration, assembly (mounting), inspection, testing, quality assurance.
"Production equipment" (1 7 9) means tooling, templates, jigs, mandrels, moulds, dies, fixtures, alignment mechanisms, test equipment, other machinery and components therefor, limited to those specially designed or modified for "development" or for one or more phases of "production".
"Production facilities" (7 9) means "production equipment" and specially designed software therefor integrated into installations for "development" or for one or more phases of "production".
"Program" (2 6) means a sequence of instructions to carry out a process in, or convertible into, a form executable by an electronic computer.
"Pulse compression" (6) means the coding and processing of a radar signal pulse of long time duration to one of short time duration, while maintaining the benefits of high pulse energy.
"Pulse duration" (6) is the duration of a "laser" pulse and means the time between the half-power points on the leading edge and trailing edge of an individual pulse.
"Pulsed laser" (6) means a "laser" having a "pulse duration" that is less than or equal to 0,25 seconds.
"Quantum cryptography" (5) means a family of techniques for the establishment of shared key for "cryptography" by measuring the quantum-mechanical properties of a physical system (including those physical properties explicitly governed by quantum optics, quantum field theory or quantum electrodynamics).
"Radar frequency agility" (6) means any technique which changes, in a pseudo-random sequence, the carrier frequency of a pulsed radar transmitter between pulses or between groups of pulses by an amount equal to or larger than the pulse bandwidth.
"Radar spread spectrum" (6) means any modulation technique for spreading energy originating from a signal with a relatively narrow frequency band, over a much wider band of frequencies, by using random or pseudo-random coding.
"Radiant sensitivity" (6) is Radiant sensitivity (mA/W) = 0,807 × (wavelength in nm) × Quantum Efficiency (QE).
Technical Note:
QE is usually expressed as a percentage; however, for the purposes of this formula QE is expressed as a decimal number less than one, e.g., 78 % is 0,78.
"Real-time processing" (6) means the processing of data by a computer system providing a required level of service, as a function of available resources, within a guaranteed response time, regardless of the load of the system, when stimulated by an external event.
"Repeatability" (7) means the closeness of agreement among repeated measurements of the same variable under the same operating conditions when changes in conditions or non-operating periods occur between measurements. (Reference: IEEE STD 528-2001 (one sigma standard deviation))
"Required" (GTN 3 5 6 7 9), as applied to "technology", refers to only that portion of "technology" which is peculiarly responsible for achieving or extending the controlled performance levels, characteristics or functions. Such "required" "technology" may be shared by different goods.
"Riot control agent" (1) means substances which, under the expected conditions of use for riot control purposes, produce rapidly in humans sensory irritation or disabling physical effects which disappear within a short time following termination of exposure.
Technical Note:
Tear gases are a subset of "riot control agents".
"Robot" (2 8) means a manipulation mechanism, which may be of the continuous path or of the point-to-point variety, may use sensors, and has all the following characteristics:
a. |
Is multifunctional; |
b. |
Is capable of positioning or orienting material, parts, tools or special devices through variable movements in three dimensional space; |
c. |
Incorporates three or more closed or open loop servo-devices which may include stepping motors; and |
d. |
Has "user accessible programmability" by means of teach/playback method or by means of an electronic computer which may be a programmable logic controller, i.e., without mechanical intervention. |
NB: |
The above definition does not include the following devices:
|
"Roving" (1) is a bundle (typically 12-120) of approximately parallel ‘strands’.
NB: |
‘Strand’ is a bundle of "monofilaments" (typically over 200) arranged approximately parallel. |
"Run-out" (2) (out-of-true running) means radial displacement in one revolution of the main spindle measured in a plane perpendicular to the spindle axis at a point on the external or internal revolving surface to be tested (Reference: ISO 230-1:1986, paragraph 5.61).
"Sample rate" (3) for an Analogue-to-Digital Converter (ADC) means the maximum number of samples that are measured at the analogue input over a period of one second, except for oversampling ADCs. For oversampling ADCs the "sample rate" is taken to be its output word rate. "Sample rate" may also be referred to as sampling rate, usually specified in Mega Samples Per Second (MSPS) or Giga Samples Per Second (GSPS), or conversion rate, usually specified in Hertz (Hz).
"Satellite navigation system" (5 7) means a system consisting of ground stations, a constellation of satellites, and receivers, that enables receiver locations to be calculated on the basis of signals received from the satellites. It includes Global Navigation Satellite Systems (GNSS) and Regional Navigation Satellite Systems (RNSS).
"Scale factor" (gyro or accelerometer) (7) means the ratio of change in output to a change in the input intended to be measured. Scale factor is generally evaluated as the slope of the straight line that can be fitted by the method of least squares to input-output data obtained by varying the input cyclically over the input range.
"Signal analysers" (3) means apparatus capable of measuring and displaying basic properties of the single-frequency components of multi-frequency signals.
"Signal processing" (3 4 5 6) means the processing of externally derived information-bearing signals by algorithms such as time compression, filtering, extraction, selection, correlation, convolution or transformations between domains (e.g., fast Fourier transform or Walsh transform).
"Software" (GSN All) means a collection of one or more "programs" or ‘microprograms’ fixed in any tangible medium of expression.
NB: |
‘Microprogram’ means a sequence of elementary instructions, maintained in a special storage, the execution of which is initiated by the introduction of its reference instruction into an instruction register. |
"Source code" (or source language) (6 7 9) is a convenient expression of one or more processes which may be turned by a programming system into equipment executable form ("object code" (or object language)).
"Spacecraft" (9) means active and passive satellites and space probes.
"Spacecraft bus" (9) means equipment that provides the support infrastructure of the "spacecraft" and location for the "spacecraft payload".
"Spacecraft payload" (9) means equipment, attached to the "spacecraft bus", designed to perform a mission in space (e.g., communications, observation, science).
"Space-qualified" (3 6 7) means designed, manufactured or qualified through successful testing, for operation at altitudes greater than 100 km above the surface of the Earth.
NB: |
A determination that a specific item is "Space-qualified" by virtue of testing does not mean that other items in the same production run or model series are "Space-qualified" if not individually tested. |
"Special fissile material" (0) means plutonium-239, uranium-233, "uranium enriched in the isotopes 235 or 233", and any material containing the foregoing.
"Specific modulus" (0 1 9) is Young’s modulus in pascals, equivalent to N/m2 divided by specific weight in N/m3, measured at a temperature of (296 ± 2) K ((23 ± 2)°C) and a relative humidity of (50 ± 5)%.
"Specific tensile strength" (0 1 9) is ultimate tensile strength in pascals, equivalent to N/m2 divided by specific weight in N/m3, measured at a temperature of (296 ± 2) K ((23 ± 2)°C) and a relative humidity of (50 ± 5)%.
"Spinning mass gyros" (7) means gyros which use a continually rotating mass to sense angular motion.
"Spread spectrum" (5) means the technique whereby energy in a relatively narrow-band communication channel is spread over a much wider energy spectrum.
"Spread spectrum" radar (6) – see "Radar spread spectrum".
"Stability" (7) means the standard deviation (1 sigma) of the variation of a particular parameter from its calibrated value measured under stable temperature conditions. This can be expressed as a function of time.
"States (not) Party to the Chemical Weapon Convention" (1) are those states for which the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons has (not) entered into force. (See www.opcw.org)
"Steady State Mode" (9) defines engine operation conditions, where the engine parameters, such as thrust/power, rpm and others, have no appreciable fluctuations, when the ambient air temperature and pressure at the engine inlet are constant.
"Sub-orbital craft" (9) means a craft having an enclosure designed for the transport of people or cargo which is designed to:
a. |
Operate above the stratosphere; |
b. |
Perform a non-orbital trajectory; and |
c. |
Land back on Earth with the people or cargo intact. |
"Substrate" (3) means a sheet of base material with or without an interconnection pattern and on which or within which ‘discrete components’ or integrated circuits or both can be located.
N.B.1. |
‘Discrete component’: a separately packaged ‘circuit element’ with its own external connections. |
N.B.2. |
‘Circuit element’: a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc. |
"Substrate blanks" (3 6) means monolithic compounds with dimensions suitable for the production of optical elements such as mirrors or optical windows.
"Sub-unit of toxin" (1) is a structurally and functionally discrete component of a whole "toxin".
"Superalloys" (2 9) means nickel-, cobalt- or iron-base alloys having a stress rupture life greater than 1 000 hours at 400 MPa at 922 K (649°C) or higher.
"Superconductive" (1 3 5 6 8) means materials, i.e., metals, alloys or compounds, which can lose all electrical resistance, i.e., which can attain infinite electrical conductivity and carry very large electrical currents without Joule heating.
NB: |
The "superconductive" state of a material is individually characterised by a "critical temperature", a critical magnetic field, which is a function of temperature, and a critical current density which is, however, a function of both magnetic field and temperature. |
"Super High Power Laser" ("SHPL") (6) means a "laser" capable of delivering (the total or any portion of) the output energy exceeding 1 kJ within 50 ms or having an average or CW power exceeding 20 kW.
"Superplastic forming" (1 2) means a deformation process using heat for metals that are normally characterised by low values of elongation (less than 20 %) at the breaking point as determined at room temperature by conventional tensile strength testing, in order to achieve elongations during processing which are at least 2 times those values.
"Symmetric algorithm" (5) means a cryptographic algorithm using an identical key for both encryption and decryption.
NB: |
A common use of "symmetric algorithms" is confidentiality of data. |
"Tape" (1) is a material constructed of interlaced or unidirectional "monofilaments", ‘strands’, "rovings", "tows", or "yarns", etc., usually pre-impregnated with resin.
NB: |
‘Strand’ is a bundle of "monofilaments" (typically over 200) arranged approximately parallel. |
"Technology" (GTN NTN All) means specific information necessary for the "development", "production" or "use" of goods. This information takes the form of ‘technical data’ or ‘technical assistance’.
N.B.1. |
‘Technical assistance’ may take forms such as instructions, skills, training, working knowledge and consulting services and may involve the transfer of ‘technical data’. |
N.B.2. |
‘Technical data’ may take forms such as blueprints, plans, diagrams, models, formulae, tables, engineering designs and specifications, manuals and instructions written or recorded on other media or devices such as disk, tape, read-only memories. |
"Three dimensional integrated circuit" (3) means a collection of semiconductor dies or active device layers, integrated together, and having through semiconductor via connections passing completely through an interposer, substrate, die or layer to establish interconnections between the device layers. An interposer is an interface that enables electrical connections.
"Tilting spindle" (2) means a tool-holding spindle which alters, during the machining process, the angular position of its centre line with respect to any other axis.
"Time constant" (6) is the time taken from the application of a light stimulus for the current increment to reach a value of 1-1/e times the final value (i.e., 63 % of the final value).
"Time-to-steady-state registration" (6) (also referred to as the gravimeter’s response time) is the time over which the disturbing effects of platform induced accelerations (high frequency noise) are reduced.
"Tip shroud" (9) means a stationary ring component (solid or segmented) attached to the inner surface of the engine turbine casing or a feature at the outer tip of the turbine blade, which primarily provides a gas seal between the stationary and rotating components.
"Total control of flight" (7) means an automated control of "aircraft" state variables and flight path to meet mission objectives responding to real time changes in data regarding objectives, hazards or other "aircraft".
"Total digital transfer rate" (5) means the number of bits, including line coding, overhead and so forth per unit time passing between corresponding equipment in a digital transmission system.
NB: |
See also "digital transfer rate". |
"Tow" (1) is a bundle of "monofilaments", usually approximately parallel.
"Toxins" (1 2) means toxins in the form of deliberately isolated preparations or mixtures, no matter how produced, other than toxins present as contaminants of other materials such as pathological specimens, crops, foodstuffs or seed stocks of "microorganisms".
"Tunable" (6) means the ability of a "laser" to produce a continuous output at all wavelengths over a range of several "laser" transitions. A line selectable "laser" produces discrete wavelengths within one "laser" transition and is not considered "tunable".
"Unidirectional positioning repeatability" (2) means the smaller of values R↑ and R↓ (forward and backward), as defined by 3.21 of ISO 230-2:2014 or national equivalents, of an individual machine tool axis.
"Unmanned Aerial Vehicle" ("UAV") (9) means any aircraft capable of initiating flight and sustaining controlled flight and navigation without any human presence on board.
"Uranium enriched in the isotopes 235 or 233" (0) means uranium containing the isotopes 235 or 233, or both, in an amount such that the abundance ratio of the sum of these isotopes to the isotope 238 is more than the ratio of the isotope 235 to the isotope 238 occurring in nature (isotopic ratio 0,71 per cent).
"Use" (GTN NTN All) means operation, installation (including on-site installation), maintenance (checking), repair, overhaul and refurbishing.
"User-accessible programmability" (6) means the facility allowing a user to insert, modify or replace "programs" by means other than:
a. |
A physical change in wiring or interconnections; or |
b. |
The setting of function controls including entry of parameters. |
"Vaccine" (1) is a medicinal product in a pharmaceutical formulation licensed by, or having marketing or clinical trial authorisation from, the regulatory authorities of either the country of manufacture or of use, which is intended to stimulate a protective immunological response in humans or animals in order to prevent disease in those to whom or to which it is administered.
"Vacuum electronic devices" (3) means electronic devices based on the interaction of an electron beam with an electromagnetic wave propagating in a vacuum circuit or interacting with radio-frequency vacuum cavity resonators. "Vacuum electronic devices" include klystrons, travelling-wave tubes, and their derivatives.
"Vulnerability disclosure" (4) means the process of identifying, reporting or communicating a vulnerability to, or analysing a vulnerability with, individuals or organisations responsible for conducting or coordinating remediation for the purpose of resolving the vulnerability.
"Yarn" (1) is a bundle of twisted ‘strands’.
NB: |
‘Strand’ is a bundle of "monofilaments" (typically over 200) arranged approximately parallel.’ |
CATEGORY 0 – NUCLEAR MATERIALS, FACILITIES, AND EQUIPMENT
0A
Systems, Equipment and Components
0A001
"Nuclear reactors" and specially designed or prepared equipment and components therefor, as follows:
a. |
"Nuclear reactors"; |
b. |
Metal vessels, or major shop-fabricated parts therefor, including the reactor vessel head for a reactor pressure vessel, specially designed or prepared to contain the core of a "nuclear reactor"; |
c. |
Manipulative equipment specially designed or prepared for inserting or removing fuel in a "nuclear reactor"; |
d. |
Control rods specially designed or prepared for the control of the fission process in a "nuclear reactor", support or suspension structures therefor, rod drive mechanisms and rod guide tubes; |
e. |
Pressure tubes specially designed or prepared to contain both fuel elements and the primary coolant in a "nuclear reactor"; |
f. |
Zirconium metal tubes or zirconium alloy tubes (or assembles of tubes) specially designed or prepared for use as fuel cladding in a "nuclear reactor", and in quantities exceeding 10 kg;
|
g. |
Coolant pumps or circulators specially designed or prepared for circulating the primary coolant of "nuclear reactors"; |
h. |
‘Nuclear reactor internals’ specially designed or prepared for use in a "nuclear reactor", including support columns for the core, fuel channels, calandria tubes, thermal shields, baffles, core grid plates, and diffuser plates; Technical Note: In 0A001.h. ‘nuclear reactor internals’ means any major structure within a reactor vessel which has one or more functions such as supporting the core, maintaining fuel alignment, directing primary coolant flow, providing radiation shields for the reactor vessel, and guiding in-core instrumentation. |
i. |
Heat exchangers as follows:
|
j. |
Neutron detectors specially designed or prepared for determining neutron flux levels within the core of a "nuclear reactor"; |
k. |
‘External thermal shields’ specially designed or prepared for use in a "nuclear reactor" for the reduction of heat loss and also for the containment vessel protection. Technical Note: In 0A001.k. ‘external thermal shields’ means major structures placed over the reactor vessel which reduce heat loss from the reactor and reduce temperature within the containment vessel. |
0B
Test, Inspection and Production Equipment
0B001
Plant for the separation of isotopes of "natural uranium", "depleted uranium" or"special fissile materials", and specially designed or prepared equipment and components therefor, as follows:
a. |
Plant specially designed for separating isotopes of "natural uranium", "depleted uranium", or "special fissile materials", as follows:
|
b. |
Gas centrifuges and assemblies and components, specially designed or prepared for gas centrifuge separation process, as follows: Technical Note: In 0B001.b. ‘high strength-to-density ratio material’ means any of the following:
|
c. |
Equipment and components, specially designed or prepared for gaseous diffusion separation process, as follows:
|
d. |
Equipment and components, specially designed or prepared for aerodynamic separation process, as follows:
|
e. |
Equipment and components, specially designed or prepared for chemical exchange separation process, as follows:
|
f. |
Equipment and components, specially designed or prepared for ion-exchange separation process, as follows:
|
g. |
Equipment and components, specially designed or prepared for laser-based separation processes using atomic vapour laser isotope separation, as follows:
|
h. |
Equipment and components, specially designed or prepared for laser-based separation processes using molecular laser isotope separation, as follows:
|
i. |
Equipment and components, specially designed or prepared for plasma separation process, as follows:
|
j. |
Equipment and components, specially designed or prepared for electromagnetic separation process, as follows:
|
0B002
Specially designed or prepared auxiliary systems, equipment and components as follows, for isotope separation plant specified in 0B001, made of or protected by "materials resistant to corrosion by UF6
":
a. |
Feed autoclaves, ovens or systems used for passing UF6 to the enrichment process; |
b. |
Desublimers or cold traps, used to remove UF6 from the enrichment process for subsequent transfer upon heating; |
c. |
Product and tails stations for transferring UF6 into containers; |
d. |
Liquefaction or solidification stations used to remove UF6 from the enrichment process by compressing, cooling and converting UF6 to a liquid or solid form; |
e. |
Piping systems and header systems specially designed or prepared for handling UF6 within gaseous diffusion, centrifuge or aerodynamic cascades; |
f. |
Vacuum systems and pumps as follows:
|
g. |
UF6 mass spectrometers/ion sources capable of taking on-line samples from UF6 gas streams and having all of the following characteristics:
|
0B003
Plant for the conversion of uranium and equipment specially designed or prepared therefor, as follows:
a. |
Systems for the conversion of uranium ore concentrates to UO3; |
b. |
Systems for the conversion of UO3 to UF6; |
c. |
Systems for the conversion of UO3 to UO2; |
d. |
Systems for the conversion of UO2 to UF4; |
e. |
Systems for the conversion of UF4 to UF6; |
f. |
Systems for the conversion of UF4 to uranium metal; |
g. |
Systems for the conversion of UF6 to UO2; |
h. |
Systems for the conversion of UF6 to UF4; |
i. |
Systems for the conversion of UO2 to UCl4. |
0B004
Plant for the production or concentration of heavy water, deuterium and deuterium compounds and specially designed or prepared equipment and components therefor, as follows:
a. |
Plant for the production of heavy water, deuterium or deuterium compounds, as follows:
|
b. |
Equipment and components, as follows:
|
0B005
Plant specially designed for the fabrication of "nuclear reactor" fuel elements and specially designed or prepared equipment therefor.
Technical Note:
Specially designed or prepared equipment for the fabrication of "nuclear reactor" fuel elements includes equipment which:
1. |
Normally comes into direct contact with or directly processes or controls the production flow of nuclear materials; |
2. |
Seals the nuclear materials within the cladding; |
3. |
Checks the integrity of the cladding or the seal; |
4. |
Checks the finish treatment of the sealed fuel; or |
5. |
Is used for assembling reactor elements. |
0B006
Plant for the reprocessing of irradiated "nuclear reactor" fuel elements, and specially designed or prepared equipment and components therefor.
Note: |
0B006 includes:
|
0B007
Plant for the conversion of plutonium and equipment specially designed or prepared therefor, as follows:
a. |
Systems for the conversion of plutonium nitrate to oxide; |
b. |
Systems for plutonium metal production. |
0C
Materials
0C001
"Natural uranium" or "depleted uranium" or thorium in the form of metal, alloy, chemical compound or concentrate and any other material containing one or more of the foregoing;
Note: |
0C001 does not control the following:
|
0C002
"Special fissile materials"
Note: |
0C002 does not control four "effective grammes" or less when contained in a sensing component in instruments. |
0C003
Deuterium, heavy water (deuterium oxide) and other compounds of deuterium, and mixtures and solutions containing deuterium, in which the isotopic ratio of deuterium to hydrogen exceeds 1:5 000.
0C004
Graphite having a purity level better than 5 parts per million ‘boron equivalent’ and with a density greater than 1,50 g/cm3 for use in a "nuclear reactor", in quantities exceeding 1 kg.
NB: |
SEE ALSO 1C107. |
Note 1: |
For the purpose of export control, the competent authorities of the EU Member State in which the exporter is established will determine whether or not the exports of graphite meeting the above specifications are for "nuclear reactor" use. 0C004 does not control graphite having a purity level better than 5 ppm (parts per million) boron equivalent and with a density greater than 1,50 g/cm3 not for use in a "nuclear reactor". |
Note 2: |
In 0C004, ‘boron equivalent’ (BE) is defined as the sum of BEz for impurities (excluding BEcarbon since carbon is not considered an impurity) including boron, where:
BEZ (ppm) = CF × concentration of element Z in ppm;
and σΒ and σΖ are the thermal neutron capture cross sections (in barns) for naturally occurring boron and element Z respectively; and AB and AZ are the atomic masses of naturally occurring boron and element Z respectively. |
0C005
Specially prepared compounds or powders for the manufacture of gaseous diffusion barriers, resistant to corrosion by UF6 (e.g. nickel or alloys containing 60 % by weight or more nickel, aluminium oxide and fully fluorinated hydrocarbon polymers), having a purity of 99,9 % by weight or more and a particle size less than 10 μm measured by ASTM B330 standard and a high degree of particle size uniformity.
0D
Software
0D001
"Software" specially designed or modified for the "development", "production" or "use" of goods specified in this Category.
0E
Technology
0E001
"Technology" according to the Nuclear Technology Note for the "development", "production" or "use" of goods specified in this Category.
CATEGORY 1 – SPECIAL MATERIALS AND RELATED EQUIPMENT
1A
Systems, Equipment and Components
1A001
Components made from fluorinated compounds, as follows:
a. |
Seals, gaskets, sealants or fuel bladders, specially designed for "aircraft" or aerospace use, made from more than 50 % by weight of any of the materials specified in 1C009.b. or 1C009.c.; |
b. |
Not used; |
c. |
Not used. |
1A002
"Composite" structures or laminates, as follows:
NB: |
SEE ALSO 1A202, 9A010 and 9A110. |
a. |
Made from any of the following:
|
b. |
Made from a metal or carbon "matrix", and any of the following:
|
Note 1: |
1A002 does not control "composite" structures or laminates made from epoxy resin impregnated carbon "fibrous or filamentary materials" for the repair of "civil aircraft" structures or laminates, having all of the following:
|
Note 2: |
1A002 does not control semi-finished items, specially designed for purely civilian applications as follows:
|
Note 3: |
1A002.b.1. does not control semi-finished items containing a maximum of two dimensions of interwoven filaments and specially designed for applications as follows:
|
Note 4: |
1A002 does not control finished items specially designed for a specific application. |
Note 5: |
1A002.b.1. does not control mechanically chopped, milled, or cut carbon "fibrous or filamentary materials" 25,0 mm or less in length. |
1A003
Manufactures of non-"fusible" aromatic polyimides in film, sheet, tape or ribbon form having any of the following:
a. |
A thickness exceeding 0,254 mm; or |
b. |
Coated or laminated with carbon, graphite, metals or magnetic substances. |
Note: |
1A003 does not control manufactures when coated or laminated with copper and designed for the production of electronic printed circuit boards. |
NB: |
For "fusible" aromatic polyimides in any form, see 1C008.a.3. |
1A004
Protective and detection equipment and components not specially designed for military use, as follows:
NB: |
SEE ALSO MILITARY GOODS CONTROLS, 2B351 AND 2B352. |
a. |
Full face masks, filter canisters and decontamination equipment therefor, designed or modified for defence against any of the following, and specially designed components therefor:
Technical Note: For the purposes of 1A004.a.:
|
b. |
Protective suits, gloves and shoes, specially designed or modified for defence against any of the following:
|
c. |
Detection systems, specially designed or modified for detection or identification of any of the following, and specially designed components therefor:
|
d. |
Electronic equipment designed for automatically detecting or identifying the presence of "explosives" residues and utilising ‘trace detection’ techniques (e.g., surface acoustic wave, ion mobility spectrometry, differential mobility spectrometry, mass spectrometry). Technical Note: ‘Trace detection’ is defined as the capability to detect less than 1 ppm vapour, or 1 mg solid or liquid.
|
Technical Notes:
1. |
1A004 includes equipment and components that have been identified, successfully tested to national standards or otherwise proven effective, for the detection of or defence against ‘radioactive materials’, "biological agents", chemical warfare agents, ‘simulants’ or "riot control agents", even if such equipment or components are used in civil industries such as mining, quarrying, agriculture, pharmaceuticals, medical, veterinary, environmental, waste management, or the food industry. |
2. |
‘Simulant’ is a substance or material that is used in place of toxic agent (chemical or biological) in training, research, testing or evaluation. |
3. |
For the purposes of 1A004, ‘radioactive materials’ are those selected or modified to increase their effectiveness in producing casualties in humans or animals, degrading equipment or damaging crops or the environment. |
1A005
Body armour and components therefor, as follows:
NB: |
SEE ALSO MILITARY GOODS CONTROLS. |
a. |
Soft body armour not manufactured to military standards or specifications, or to their equivalents, and specially designed components therefor; |
b. |
Hard body armour plates providing ballistic protection equal to or less than level IIIA (NIJ 0101.06, July 2008), or "equivalent standards". |
NB: |
For "fibrous or filamentary materials" used in the manufacture of body armour, see 1C010. |
Note 1: |
1A005 does not control body armour when accompanying its user for the user’s own personal protection. |
Note 2: |
1A005 does not control body armour designed to provide frontal protection only from both fragment and blast from non-military explosive devices. |
Note 3: |
1A005 does not control body armour designed to provide protection only from knife, spike, needle or blunt trauma. |
1A006
Equipment, specially designed or modified for the disposal of Improvised Explosive Devices (IEDs), as follows, and specially designed components and accessories therefor:
NB: |
SEE ALSO MILITARY GOODS CONTROLS. |
a. |
Remotely operated vehicles; |
b. |
‘Disruptors’. |
Technical Note:
For the purposes of 1A006.b. ‘disruptors’ are devices specially designed for the purpose of preventing the operation of an explosive device by projecting a liquid, solid or frangible projectile.
Note: |
1A006 does not control equipment when accompanying its operator. |
1A007
Equipment and devices, specially designed to initiate charges and devices containing "energetic materials", by electrical means, as follows:
NB: |
SEE ALSO MILITARY GOODS CONTROLS, 3A229 AND 3A232. |
a. |
Explosive detonator firing sets designed to drive explosive detonators specified in 1A007.b.; |
b. |
Electrically driven explosive detonators as follows:
|
Technical Notes:
1. |
The word initiator or igniter is sometimes used in place of the word detonator. |
2. |
For the purpose of 1A007.b. the detonators of concern all utilise a small electrical conductor (bridge, bridge wire, or foil) that explosively vaporises when a fast, high-current electrical pulse is passed through it. In non-slapper types, the exploding conductor starts a chemical detonation in a contacting high explosive material such as PETN (pentaerythritoltetranitrate). In slapper detonators, the explosive vaporization of the electrical conductor drives a flyer or slapper across a gap, and the impact of the slapper on an explosive starts a chemical detonation. The slapper in some designs is driven by magnetic force. The term exploding foil detonator may refer to either an EB or a slapper-type detonator. |
1A008
Charges, devices and components, as follows:
a. |
‘Shaped charges’ having all of the following:
|
b. |
Linear shaped cutting charges having all of the following, and specially designed components therefor:
|
c. |
Detonating cord with explosive core load greater than 64 g/m; |
d. |
Cutters, other than those specified in 1A008.b., and severing tools, having a Net Explosive Quantity (NEQ) greater than 3,5 kg. |
Technical Note:
‘Shaped charges’ are explosive charges shaped to focus the effects of the explosive blast.
1A102
Resaturated pyrolized carbon-carbon components designed for space launch vehicles specified in 9A004 or sounding rockets specified in 9A104.
1A202
Composite structures, other than those specified in 1A002, in the form of tubes and having both of the following characteristics:
NB: |
SEE ALSO 9A010 AND 9A110. |
a. |
An inside diameter of between 75 mm and 400 mm; and |
b. |
Made with any of the "fibrous or filamentary materials" specified in 1C010.a. or b. or 1C210.a. or with carbon prepreg materials specified in 1C210.c. |
1A225
Platinized catalysts specially designed or prepared for promoting the hydrogen isotope exchange reaction between hydrogen and water for the recovery of tritium from heavy water or for the production of heavy water.
1A226
Specialized packings which may be used in separating heavy water from ordinary water, having both of the following characteristics:
a. |
Made of phosphor bronze mesh chemically treated to improve wettability; and |
b. |
Designed to be used in vacuum distillation towers. |
1A227
High-density (lead glass or other) radiation shielding windows, having all of the following characteristics, and specially designed frames therefor:
a. |
A ‘cold area’ greater than 0,09 m2; |
b. |
A density greater than 3 g/cm3; and |
c. |
A thickness of 100 mm or greater. |
Technical Note:
In 1A227 the term ‘cold area’ means the viewing area of the window exposed to the lowest level of radiation in the design application.
1B
Test, Inspection and Production Equipment
1B001
Equipment for the production or inspection of "composite" structures or laminates specified in 1A002 or "fibrous or filamentary materials" specified in 1C010, as follows, and specially designed components and accessories therefor:
NB: |
SEE ALSO 1B101 AND 1B201. |
a. |
Filament winding machines, of which the motions for positioning, wrapping and winding fibres are coordinated and programmed in three or more ‘primary servo positioning’ axes, specially designed for the manufacture of "composite" structures or laminates, from "fibrous or filamentary materials"; |
b. |
‘Tape-laying machines’, of which the motions for positioning and laying tape are coordinated and programmed in five or more ‘primary servo positioning’ axes, specially designed for the manufacture of "composite" airframe or ‘missile’ structures;
Technical Note: For the purposes of 1B001.b., ‘tape-laying machines’ have the ability to lay one or more ‘filament bands’ limited to widths greater than 25,4 mm and less than or equal to 304,8 mm, and to cut and restart individual ‘filament band’ courses during the laying process. |
c. |
Multidirectional, multidimensional weaving machines or interlacing machines, including adapters and modification kits, specially designed or modified for weaving, interlacing or braiding fibres, for "composite" structures; Technical Note: For the purposes of 1B001.c., the technique of interlacing includes knitting. |
d. |
Equipment specially designed or adapted for the production of reinforcement fibres, as follows:
|
e. |
Equipment for producing prepregs specified in 1C010.e. by the hot melt method; |
f. |
Non-destructive inspection equipment specially designed for "composite" materials, as follows:
|
g. |
‘Tow-placement machines’, of which the motions for positioning and laying tows are coordinated and programmed in two or more ‘primary servo positioning’ axes, specially designed for the manufacture of "composite" airframe or ‘missile’ structures. Technical Note: For the purposes of 1B001.g., ‘tow-placement machines’ have the ability to place one or more ‘filament bands’ having widths less than or equal to 25,4 mm, and to cut and restart individual ‘filament band’ courses during the placement process. |
Technical Notes:
1. |
For the purpose of 1B001, ‘primary servo positioning’ axes control, under computer program direction, the position of the end effector (i.e., head) in space relative to the work piece at the correct orientation and direction to achieve the desired process. |
2. |
For the purposes of 1B001, a ‘filament band’ is a single continuous width of fully or partially resin-impregnated tape, tow or fibre. Fully or partially resin-impregnated ‘filament bands’ include those coated with dry powder that tacks upon heating. |
1B002
Equipment designed to produce metal alloy powder or particulate materials, and having all of the following:
a. |
Specially designed to avoid contamination; and |
b. |
Specially designed for use in one of the processes specified in 1C002.c.2. |
NB: |
SEE ALSO 1B102. |
1B003
Tools, dies, moulds or fixtures, for "superplastic forming" or "diffusion bonding" titanium, aluminium or their alloys, specially designed for the manufacture of any of the following:
a. |
Airframe or aerospace structures; |
b. |
"Aircraft" or aerospace engines; or |
c. |
Specially designed components for structures specified in 1B003.a. or for engines specified in 1B003.b. |
1B101
Equipment, other than that specified in 1B001, for the "production" of structural composites as follows; and specially designed components and accessories therefor:
NB: |
SEE ALSO 1B201. |
Note: |
Components and accessories specified in 1B101 include moulds, mandrels, dies, fixtures and tooling for the preform pressing, curing, casting, sintering or bonding of composite structures, laminates and manufactures thereof. |
a. |
Filament winding machines or fibre placement machines, of which the motions for positioning, wrapping and winding fibres can be coordinated and programmed in three or more axes, designed to fabricate composite structures or laminates from "fibrous or filamentary materials", and coordinating and programming controls; |
b. |
Tape-laying machines of which the motions for positioning and laying tape and sheets can be coordinated and programmed in two or more axes, designed for the manufacture of composite airframe and "missile" structures; |
c. |
Equipment designed or modified for the "production" of "fibrous or filamentary materials" as follows:
|
d. |
Equipment designed or modified for special fibre surface treatment or for producing prepregs and preforms specified in entry 9C110.
|
1B102
Metal powder "production equipment", other than that specified in 1B002, and components as follows:
NB: |
SEE ALSO 1B115.b. |
a. |
Metal powder "production equipment" usable for the "production", in a controlled environment, of spherical, spheroidal or atomised materials specified in 1C011.a., 1C011.b., 1C111.a.1., 1C111.a.2. or in the Military Goods Controls. |
b. |
Specially designed components for "production equipment" specified in 1B002 or 1B102.a. |
Note: |
1B102 includes:
|
1B115
Equipment, other than that specified in 1B002 or 1B102, for the production of propellant and propellant constituents, as follows, and specially designed components therefor:
a. |
"Production equipment" for the "production", handling or acceptance testing of liquid propellants or propellant constituents specified in 1C011.a., 1C011.b., 1C111 or in the Military Goods Controls; |
b. |
"Production equipment" for the "production", handling, mixing, curing, casting, pressing, machining, extruding or acceptance testing of solid propellants or propellant constituents specified in 1C011.a., 1C011.b., 1C111 or in the Military Goods Controls.
|
Note 1: |
For equipment specially designed for the production of military goods, see the Military Goods Controls. |
Note 2: |
1B115 does not control equipment for the "production", handling and acceptance testing of boron carbide. |
1B116
Specially designed nozzles for producing pyrolitically derived materials formed on a mould, mandrel or other substrate from precursor gases which decompose in the 1 573 K (1 300°C) to 3 173 K (2 900°C) temperature range at pressures of 130 Pa to 20 kPa.
1B117
Batch mixers having all of the following, and specially designed components therefor:
a. |
Designed or modified for mixing under vacuum in the range of zero to 13,326 kPa: |
b. |
Capable of controlling the temperature of the mixing chamber; |
c. |
A total volumetric capacity of 110 litres or more; and |
d. |
At least one ‘mixing/kneading shaft’ mounted off centre. |
Note: |
In 1B117.d. the term ‘mixing/kneading shaft’ does not refer to deagglomerators or knife-spindles. |
1B118
Continuous mixers having all of the following, and specially designed components therefor:
a. |
Designed or modified for mixing under vacuum in the range of zero to 13,326 kPa; |
b. |
Capable of controlling the temperature of the mixing chamber; |
c. |
any of the following,:
|
1B119
Fluid energy mills usable for grinding or milling substances specified in 1C011.a., 1C011.b., 1C111 or in the Military Goods Controls, and specially designed components therefor.
1B201
Filament winding machines, other than those specified in 1B001 or 1B101, and related equipment, as follows:
a. |
Filament winding machines having all of the following characteristics:
|
b. |
Coordinating and programming controls for the filament winding machines specified in 1B201.a.; |
c. |
Precision mandrels for the filament winding machines specified in 1B201.a. |
1B225
Electrolytic cells for fluorine production with an output capacity greater than 250 g of fluorine per hour.
1B226
Electromagnetic isotope separators designed for, or equipped with, single or multiple ion sources capable of providing a total ion beam current of 50 mA or greater.
Note: |
1B226 includes separators:
|
1B228
Hydrogen-cryogenic distillation columns having all of the following characteristics:
a. |
Designed for operation with internal temperatures of 35 K (– 238 °C) or less; |
b. |
Designed for operation at an internal pressure of 0,5 to 5 MPa; |
c. |
Constructed of either:
|
d. |
With internal diameters of 30 cm or greater and ‘effective lengths’ of 4 m or greater. |
Technical Note:
In 1B228 ‘effective length’ means the active height of packing material in a packed-type column, or the active height of internal contactor plates in a plate-type column.
1B230
Pumps capable of circulating solutions of concentrated or dilute potassium amide catalyst in liquid ammonia (KNH2/NH3), having all of the following characteristics:
a. |
Airtight (i.e., hermetically sealed); |
b. |
A capacity greater than 8,5 m3/h; and |
c. |
Either of the following characteristics:
|
1B231
Tritium facilities or plants, and equipment therefor, as follows:
a. |
Facilities or plants for the production, recovery, extraction, concentration, or handling of tritium; |
b. |
Equipment for tritium facilities or plants, as follows:
|
1B232
Turboexpanders or turboexpander-compressor sets having both of the following characteristics:
a. |
Designed for operation with an outlet temperature of 35 K (– 238 °C) or less; and |
b. |
Designed for a throughput of hydrogen gas of 1 000 kg/h or greater. |
1B233
Lithium isotope separation facilities or plants, and systems and equipment therefor, as follows:
a. |
Facilities or plants for the separation of lithium isotopes; |
b. |
Equipment for the separation of lithium isotopes based on the lithium-mercury amalgam process, as follows:
|
c. |
Ion exchange systems specially designed for lithium isotope separation, and specially designed components therefor; |
d. |
Chemical exchange systems (employing crown ethers, cryptands, or lariat ethers), specially designed for lithium isotope separation, and specially designed components therefor. |
1B234
High explosive containment vessels, chambers, containers and other similar containment devices designed for the testing of high explosives or explosive devices and having both of the following characteristics:
NB: |
SEE ALSO MILITARY GOODS CONTROLS. |
a. |
Designed to fully contain an explosion equivalent to 2 kg of trinitrotoluene (TNT) or greater; and |
b. |
Having design elements or features enabling real time or delayed transfer of diagnostic or measurement information. |
1B235
Target assemblies and components for the production of tritium as follows:
a. |
Target assemblies made of or containing lithium enriched in the lithium-6 isotope specially designed for the production of tritium through irradiation, including insertion in a nuclear reactor; |
b. |
Components specially designed for the target assemblies specified in 1B235.a. |
Technical Note:
Components specially designed for target assemblies for the production of tritium may include lithium pellets, tritium getters, and specially-coated cladding.
1C
Materials
Technical Note:
|
Metals and alloys: Unless provision to the contrary is made, the words ‘metals’ and ‘alloys’ in 1C001 to 1C012 cover crude and semi-fabricated forms, as follows: |
|
Crude forms: Anodes, balls, bars (including notched bars and wire bars), billets, blocks, blooms, brickets, cakes, cathodes, crystals, cubes, dice, grains, granules, ingots, lumps, pellets, pigs, powder, rondelles, shot, slabs, slugs, sponge, sticks; |
|
Semi-fabricated forms (whether or not coated, plated, drilled or punched):
The object of the control should not be defeated by the export of non-listed forms alleged to be finished products but representing in reality crude forms or semi-fabricated forms. |
1C001
Materials specially designed for absorbing electromagnetic radiation, or intrinsically conductive polymers, as follows:
NB: |
SEE ALSO 1C101. |
a. |
Materials for absorbing frequencies exceeding 2 × 108 Hz but less than 3 × 1012 Hz;
|
b. |
Materials not transparent to visible light and specially designed for absorbing near-infrared radiation having a wavelength exceeding 810 nm but less than 2 000 nm (frequencies exceeding 150 THz but less than 370 THz);
|
c. |
Intrinsically conductive polymeric materials with a ‘bulk electrical conductivity’ exceeding 10 000 S/m (Siemens per metre) or a ‘sheet (surface) resistivity’ of less than 100 ohms/square, based on any of the following polymers:
Technical Note: ‘Bulk electrical conductivity’ and ‘sheet (surface) resistivity’ should be determined using ASTM D-257 or national equivalents. |
1C002
Metal alloys, metal alloy powder and alloyed materials, as follows:
NB: |
SEE ALSO 1C202. |
Note: |
1C002 does not control metal alloys, metal alloy powder and alloyed materials, specially formulated for coating purposes. |
Technical Notes:
1. |
The metal alloys in 1C002 are those containing a higher percentage by weight of the stated metal than of any other element. |
2. |
‘Stress-rupture life’ should be measured in accordance with ASTM standard E-139 or national equivalents. |
3. |
‘Low cycle fatigue life’ should be measured in accordance with ASTM standard E-606 ‘Recommended Practice for Constant-Amplitude Low-Cycle Fatigue Testing’ or national equivalents. Testing should be axial with an average stress ratio equal to 1 and a stress-concentration factor (Kt) equal to 1. The average stress ratio is defined as maximum stress minus minimum stress divided by maximum stress. |
a. |
Aluminides, as follows:
|
b. |
Metal alloys, as follows, made from the powder or particulate material specified in 1C002.c.:
|
c. |
Metal alloy powder or particulate material, having all of the following:
|
d. |
Alloyed materials having all of the following:
Technical Notes:
|
1C003
Magnetic metals, of all types and of whatever form, having any of the following:
a. |
Initial relative permeability of 120 000 or more and a thickness of 0,05 mm or less; Technical Note: Measurement of initial relative permeability must be performed on fully annealed materials. |
b. |
Magnetostrictive alloys having any of the following:
|
c. |
Amorphous or ‘nanocrystalline’ alloy strips, having all of the following:
Technical Note: ‘Nanocrystalline’ materials in 1C003.c. are those materials having a crystal grain size of 50 nm or less, as determined by X-ray diffraction. |
1C004
Uranium titanium alloys or tungsten alloys with a "matrix" based on iron, nickel or copper, having all of the following:
a. |
A density exceeding 17,5 g/cm3; |
b. |
An elastic limit exceeding 880 MPa; |
c. |
An ultimate tensile strength exceeding 1 270 MPa; and |
d. |
An elongation exceeding 8 %. |
1C005
"Superconductive"
"composite" conductors in lengths exceeding 100 m or with a mass exceeding 100 g, as follows:
a. |
"Superconductive""composite" conductors containing one or more niobium-titanium ‘filaments’, having all of the following:
|
b. |
"Superconductive""composite" conductors consisting of one or more "superconductive"‘filaments’ other than niobium-titanium, having all of the following:
|
c. |
"Superconductive""composite" conductors consisting of one or more "superconductive"‘filaments’ which remain "superconductive" above 115 K (– 158,16 °C). |
Technical Note:
For the purpose of 1C005 ‘filaments’ may be in wire, cylinder, film, tape or ribbon form.
1C006
Fluids and lubricating materials, as follows:
a. |
Not used; |
b. |
Lubricating materials containing, as their principal ingredients, any of the following:
|
c. |
Damping or flotation fluids having all of the following:
|
d. |
Fluorocarbon fluids designed for electronic cooling and having all of the following:
|
1C007
Ceramic powders, ceramic-"matrix"
"composite" materials and ‘precursor materials’, as follows:
NB: |
SEE ALSO 1C107. |
a. |
Ceramic powders of titanium diboride (TiB2) (CAS 12045-63-5) having total metallic impurities, excluding intentional additions, of less than 5 000 ppm, an average particle size equal to or less than 5 μm and no more than 10 % of the particles larger than 10 μm; |
b. |
Not used; |
c. |
Ceramic-"matrix""composite" materials as follows:
|
d. |
Not used; |
e. |
‘Precursor materials’ specially designed for the "production" of materials specified in 1C007.c., as follows:
Technical Note: For the purposes of 1C007, ‘precursor materials’ are special purpose polymeric or metallo-organic materials used for the "production" of silicon carbide, silicon nitride, or ceramics with silicon, carbon and nitrogen. |
f. |
Not used. |
1C008
Non-fluorinated polymeric substances as follows:
a. |
Imides, as follows:
|
b. |
Not used; |
c. |
Not used; |
d. |
Polyarylene ketones; |
e. |
Polyarylene sulphides, where the arylene group is biphenylene, triphenylene or combinations thereof; |
f. |
Polybiphenylenethersulphone having a ‘glass transition temperature (Tg)’ exceeding 563 K (290 °C). |
Technical Notes:
1. |
The ‘glass transition temperature (Tg)’ for 1C008.a.2. thermoplastic materials, 1C008.a.4. materials and 1C008.f. materials is determined using the method described in ISO 11357-2:1999 or national equivalents |
2. |
The ‘glass transition temperature (Tg)’ for 1C008.a.2. thermosetting materials and 1C008.a.3. materials is determined using the 3-point bend method described in ASTM D 7028-07 or equivalent national standard. The test is to be performed using a dry test specimen which has attained a minimum of 90 % degree of cure as specified by ASTM E 2160-04 or equivalent national standard, and was cured using the combination of standard- and post-cure processes that yield the highest Tg. |
1C009
Unprocessed fluorinated compounds as follows:
a. |
Not used; |
b. |
Fluorinated polyimides containing 10 % by weight or more of combined fluorine; |
c. |
Fluorinated phosphazene elastomers containing 30 % by weight or more of combined fluorine. |
1C010
"Fibrous or filamentary materials", as follows:
NB: |
SEE ALSO 1C210 AND 9C110. |
Technical Notes:
1. |
For the purpose of calculating "specific tensile strength", "specific modulus" or specific weight of "fibrous or filamentary materials" in 1C010.a., 1C010.b., 1C010.c. or 1C010.e.1.b., the tensile strength and modulus should be determined by using Method A described in ISO 10618:2004 or national equivalents. |
2. |
Assessing the "specific tensile strength", "specific modulus" or specific weight of non-unidirectional "fibrous or filamentary materials" (e.g., fabrics, random mats or braids) in 1C010 is to be based on the mechanical properties of the constituent unidirectional monofilaments (e.g., monofilaments, yarns, rovings or tows) prior to processing into the non-unidirectional "fibrous or filamentary materials". |
a. |
Organic "fibrous or filamentary materials", having all of the following:
|
b. |
Carbon "fibrous or filamentary materials", having all of the following:
|
c. |
Inorganic "fibrous or filamentary materials", having all of the following:
|
d. |
"Fibrous or filamentary materials", having any of the following:
Technical Note: ‘Commingled’ is filament to filament blending of thermoplastic fibres and reinforcement fibres in order to produce a fibre reinforcement "matrix" mix in total fibre form. |
e. |
Fully or partially resin-impregnated or pitch-impregnated "fibrous or filamentary materials" (prepregs), metal or carbon-coated "fibrous or filamentary materials" (preforms) or ‘carbon fibre preforms’, having all of the following:
Technical Notes:
|
1C011
Metals and compounds, as follows:
NB: |
SEE ALSO MILITARY GOODS CONTROLS and 1C111. |
a. |
Metals in particle sizes of less than 60 μm whether spherical, atomised, spheroidal, flaked or ground, manufactured from material consisting of 99 % or more of zirconium, magnesium and alloys thereof; Technical Note: The natural content of hafnium in the zirconium (typically 2 % to 7 %) is counted with the zirconium.
|
b. |
Boron or boron alloys, with a particle size of 60 μm or less, as follows:
|
c. |
Guanidine nitrate (CAS 506-93-4); |
d. |
Nitroguanidine (NQ) (CAS 556-88-7). |
NB: |
See also Military Goods Controls for metal powders mixed with other substances to form a mixture formulated for military purposes. |
1C012
Materials as follows:
Technical Note:
These materials are typically used for nuclear heat sources.
a. |
Plutonium in any form with a plutonium isotopic assay of plutonium-238 of more than 50 % by weight;
|
b. |
"Previously separated" neptunium-237 in any form.
|
1C101
Materials and devices for reduced observables such as radar reflectivity, ultraviolet/infrared signatures and acoustic signatures, other than those specified in 1C001, usable in ‘missiles’, "missile" subsystems or unmanned aerial vehicles specified in 9A012 or 9A112.a.
Note 1: |
1C101 includes:
|
Note 2: |
1C101 does not include coatings when specially used for the thermal control of satellites. |
Technical Note:
In 1C101 ‘missile’ means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km.
1C102
Resaturated pyrolized carbon-carbon materials designed for space launch vehicles specified in 9A004 or sounding rockets specified in 9A104.
1C107
Graphite and ceramic materials, other than those specified in 1C007, as follows:
a. |
Fine grain graphites with a bulk density of 1,72 g/cm3 or greater, measured at 288 K (15 °C), and having a grain size of 100 μm or less, usable for rocket nozzles and re-entry vehicle nose tips, which can be machined to any of the following products:
|
b. |
Pyrolytic or fibrous reinforced graphites, usable for rocket nozzles and reentry vehicle nose tips usable in "missiles", space launch vehicles specified in 9A004 or sounding rockets specified in 9A104;
|
c. |
Ceramic composite materials (dielectric constant less than 6 at any frequency from 100 MHz to 100 GHz) for use in radomes usable in "missiles", space launch vehicles specified in 9A004 or sounding rockets specified in 9A104; |
d. |
Bulk machinable silicon-carbide reinforced unfired ceramic, usable for nose tips usable in "missiles", space launch vehicles specified in 9A004 or sounding rockets specified in 9A104; |
e. |
Reinforced silicon-carbide ceramic composites, usable for nose tips, reentry vehicles and nozzle flaps usable in "missiles", space launch vehicles specified in 9A004 or sounding rockets specified in 9A104; |
f. |
Bulk machinable ceramic composite materials consisting of an ‘Ultra High Temperature Ceramic (UHTC)’ matrix with a melting point equal to or greater than 3 000 °C and reinforced with fibres or filaments, usable for missile components (such as nose-tips, re-entry vehicles, leading edges, jet vanes, control surfaces or rocket motor throat inserts) in "missiles", space launch vehicles specified in 9A004, sounding rockets specified in 9A104 or ‘missiles’.
Technical Note 1: In 1C107.f. ‘missile’ means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km. < |