This document is an excerpt from the EUR-Lex website
Document 32009R0152
Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed (Text with EEA relevance)
Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed (Text with EEA relevance)
Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed (Text with EEA relevance)
OJ L 54, 26.2.2009, p. 1–130
(BG, ES, CS, DA, DE, ET, EL, EN, FR, IT, LV, LT, HU, MT, NL, PL, PT, RO, SK, SL, FI, SV) This document has been published in a special edition(s)
(HR)
In force: This act has been changed. Current consolidated version: 04/04/2024
26.2.2009 |
EN |
Official Journal of the European Union |
L 54/1 |
COMMISSION REGULATION (EC) No 152/2009
of 27 January 2009
laying down the methods of sampling and analysis for the official control of feed
(Text with EEA relevance)
THE COMMISSION OF THE EUROPEAN COMMUNITIES,
Having regard to the Treaty establishing the European Community,
Having regard to Regulation (EC) No 882/2004 of the European Parliament and of the Council of 29 April 2004 on official controls performed to ensure the verification of compliance with feed and food law, animal health and animal welfare rules (1), and in particular Article 11(4)(a), (b) and (c) thereof,
Whereas:
(1) |
The following acts were adopted for the implementation of Directive 70/373/EEC and remain in force in accordance with Article 61(2) of Regulation (EC) No 882/2004:
|
(2) |
Since Directive 70/373/EEC was replaced by Regulation (EC) No 882/2004 it is appropriate to replace the implementing acts to that Directive by a single Regulation. At the same time the methods should be adapted in the light of developments in scientific and technological knowledge. Methods which are no longer valid for their intended purpose should be deleted. It is foreseen to update the sampling provisions in due time to take into account the recent developments in the way feed are produced, stored, transported and marketed, nevertheless it is appropriate to maintain for the time being the existing provisions on sampling. |
(3) |
Directives 71/250/EEC, 71/393/EEC, 72/199/EEC, 73/46/EEC, 76/371/EEC, 76/372/EEC, 78/633/EEC, 81/715/EEC, 84/425/EEC, 86/174/EEC, 93/70/EEC, 93/117/EC, 98/64/EC, 1999/27/EC, 1999/76/EC, 2000/45/EC, 2002/70/EC and 2003/126/EC should therefore be repealed. |
(4) |
The measures provided for in this Regulation are in accordance with the opinion of the Standing Committee on the Food Chain and Animal Health, |
HAS ADOPTED THIS REGULATION:
Article 1
Sampling for the official control of feed, as regards the determination of constituents, additives and undesirable substances, with the exception of residues of pesticides and micro-organisms, shall be carried out in accordance with the methods set out in Annex I.
Article 2
Preparation of samples for analysis and expression of results shall be carried out in accordance with the methods set out in Annex II.
Article 3
Analysis for the official control of feed shall be carried out using the methods set out in Annex III (Methods of analysis to control the composition of feed materials and compound feed, Annex IV (Methods of analysis to control the level of authorised additives in feed), Annex V (Methods of analysis to control undesirable substances in feed) and Annex VI (Methods of analysis for the determination of constituents of animal origin for the official control of feed).
Article 4
The energy value of compound poultry feed shall be calculated in accordance with Annex VII.
Article 5
The methods of analysis to control illegal presence of no longer authorised additives in feed set out in Annex VIII shall be used for confirmatory purposes.
Article 6
Directives 71/250/EEC, 71/393/EEC, 72/199/EEC, 73/46/EEC, 76/371/EEC, 76/372/EEC, 78/633/EEC, 81/715/EEC, 84/425/EEC, 86/174/EEC, 93/70/EEC, 93/117/EC, 98/64/EC, 1999/27/EC, 1999/76/EC, 2000/45/EC, 2002/70/EC and 2003/126/EC are repealed.
References to the repealed Directives shall be construed as references to this Regulation and shall be read in accordance with the correlation tables in Annex IX.
Article 7
This Regulation shall enter into force on the twentieth day following that of 20th day following its publication in the Official Journal of the European Union.
It shall apply from 26 August 2009.
This Regulation shall be binding in its entirety and directly applicable in all Member States.
Done at Brussels, 27 January 2009.
For the Commission
Androulla VASSILIOU
Member of the Commission
(1) OJ L 165, 30.4.2004, p. 1, corrected by OJ L 191, 28.5.2004, p. 1.
(2) OJ L 155, 12.7.1971, p. 13.
(3) OJ L 279, 20.12.1971, p. 7.
(4) OJ L 123, 29.5.1972, p. 6.
(5) OJ L 83, 30.3.1973, p. 21.
(6) OJ L 102, 15.4.1976, p. 1.
(7) OJ L 102, 15.4.1976, p. 8.
(8) OJ L 206, 29.7.1978, p. 43.
(9) OJ L 257, 10.9.1981, p. 38.
(10) OJ L 238, 6.9.1984, p. 34.
(11) OJ L 130, 16.5.1986, p. 53.
(12) OJ L 234, 17.9.1993, p. 17.
(13) OJ L 329, 30.12.1993, p. 54.
(14) OJ L 257, 19.9.1998, p. 14.
(15) OJ L 118, 6.5.1999, p. 36.
(16) OJ L 207, 6.8.1999, p. 13.
(17) OJ L 174, 13.7.2000, p. 32.
ANNEX I
METHODS OF SAMPLING
1. PURPOSE AND SCOPE
Samples intended for the official control of feed shall be taken according to the methods described below. Samples thus obtained shall be considered as representative of the sampled portions.
2. SAMPLING PERSONNEL
The samples shall be taken by persons authorised for that purpose by the Member States.
3. DEFINITIONS
Sampled portion: A quantity of product constituting a unit, and having characteristics presumed to be uniform.
Incremental sample: A quantity taken from one point in the sampled portion.
Aggregate sample: An aggregate of incremental samples taken from the same sampled portion.
Reduced sample: A representative part of the aggregate sample, obtained from the latter by a process of reduction.
Final sample: A part of the reduced sample or of the homogenised aggregate sample.
4. APPARATUS
4.1. |
The sampling apparatus must be made of materials which cannot contaminate the products to be sampled. Such apparatus may be officially approved by the Member States. |
4.2. Apparatus recommended for the sampling of solid feed.
4.2.1. Manual sampling
4.2.1.1. |
Flat-bottomed shovel with vertical sides. |
4.2.1.2. |
Sampling spear with a long split or compartments. The dimensions of the sampling spear must be appropriate to the characteristics of the sampled portion (depth of container, dimensions of sack, etc.) and to the particle size of the feed. |
4.2.2. Mechanical sampling
Approved mechanical apparatus may be used for the sampling of moving feed.
4.2.3. Divider
Apparatus designed to divide the sample into approximately equal parts may be used for taking incremental samples and for the preparation of reduced and final samples.
5. QUANTITATIVE REQUIREMENTS
5.A. |
In relation to the control of substances or products uniformly distributed throughout the feed |
|
5.A.1. |
Sampled portion The size of the sampled portion must be such that each of its constituent parts can be sampled |
|
5.A.2. |
Incremental samples |
|
5.A.2.1. |
Loose feed: |
Minimum number of incremental samples: |
5.A.2.1.1. |
sampled portions not exceeding 2,5 metric tons |
seven |
5.A.2.1.2. |
sampled portions exceeding 2,5 metric tons |
√ 20 times the number of metric tons making up the sampled portion (*1), up to a maximum of 40 incremental samples |
5.A.2.2. |
Packaged feed: |
Minimum number of packages to be sampled (*2): |
5.A.2.2.1. |
Packages of more than 1 kg: |
|
5.A.2.2.1.1. |
sampled portions of one to four packages |
all packages |
5.A.2.2.1.2. |
sampled portions of 5 to 16 packages |
four |
5.A.2.2.1.3. |
sampled portions of more than 16 packages |
√ number of packages making up the sampled portion (*1), up to maximum of 20 packages |
5.A.2.2.2. |
Packages not exceeding 1 kg |
four |
5.A.2.3. |
Liquid or semi-liquid feed: |
Minimum number of containers to be sampled (*2): |
5.A.2.3.1. |
Containers of more than one litre: |
|
5.A.2.3.1.1. |
sampled portions of one to four containers |
all containers |
5.A.2.3.1.2. |
sampled portions of 5 to 16 containers |
four |
5.A.2.3.1.3. |
sampled portions of more than 16 containers |
√ number of containers making up the sampled portion (*1), up to a maximum of 20 containers |
5.A.2.3.2. |
Containers not exceeding one litre |
four |
5.A.2.4. |
Feed blocks and mineral licks |
Minimum number of blocks or licks to be sampled (*2): one block or lick per sampled portion of 25 units, up to a maximum of four blocks or licks |
5.A.3. |
Aggregate sample A single aggregate sample per sampled portion is required. The total amount in the incremental samples making up the aggregate sample shall be not less than the following: |
|
5.A.3.1. |
Loose feed |
4 kg |
5.A.3.2. |
Packaged feed: |
|
5.A.3.2.1. |
packages of more than 1 kg |
4 kg |
5.A.3.2.2. |
packages not exceeding 1 kg |
weight of the contents of four original packages |
5.A.3.3. |
Liquid or semi-liquid feed: |
|
5.A.3.3.1. |
containers of more than one litre |
four litres |
5.A.3.3.2. |
containers not exceeding one litre |
volume of the contents of four original containers |
5.A.3.4. |
Feed blocks or mineral licks: |
|
5.A.3.4.1. |
each weighing more than 1 kg |
4 kg |
5.A.3.4.2. |
each weighing not more than 1 kg |
weight of four original blocks or licks |
5.A.4. |
Final samples The aggregate sample gives the final samples on reduction when necessary. Analysis of at least one final sample is required. The amount in the final sample for analysis shall be not less than the following: |
|
|
Solid feed |
500 g |
|
Liquid or semi-liquid feed |
500 ml |
5.B. |
In relation to the control of undesirable substances or products likely to be distributed non-uniformly throughout the feed, such as aflatoxins, rye ergot, castor-oil plant and crotalaria in feed materials (*3) |
|
5.B.1. |
Sampled portion: see 5.A.1. |
|
5.B.2. |
Incremental samples |
|
5.B.2.1. |
Loose feed: see 5.A.2.1. |
|
5.B.2.2. |
Packaged feed: |
Minimum number of packages to be sampled: |
5.B.2.2.1. |
sampled portions consisting of one to four packages |
all packages |
5.B.2.2.2. |
sampled portions consisting of 5 to 16 packages |
four |
5.B.2.2.3. |
sampled portions consisting of more than 16 packages |
√ number of packages making up the sampled portion (*1), up to a maximum of 40 packages |
5.B.3. |
Aggregate samples The number of aggregate samples will vary with the size of the sampled portion. The minimum number of aggregate samples per sampled portion is given below. The total weight of the incremental samples making up each aggregate sample shall be not less than 4 kg |
|
5.B.3.1. |
Loose feed |
|
|
Weight of the sampled portion in metric tons: |
Minimum number of aggregate samples per sampled portion: |
|
up to 1 |
1 |
|
more than 1 and up to 10 |
2 |
|
more than 10 and up to 40 |
3 |
|
more than 40 |
4 |
5.B.3.2. |
Packaged feed |
|
|
Size of the sampled portion in number of packages: |
Minimum number of aggregate samples per sampled portion: |
|
1 to 16 |
1 |
|
17 to 200 |
2 |
|
201 to 800 |
3 |
|
more than 800 |
4 |
5.B.4. |
Final samples Each aggregate sample gives the final samples on reduction. Analysis of at least one final sample per aggregate sample is required. The weight of the final sample for analysis may not be less than 500 g |
6. INSTRUCTIONS FOR TAKING, PREPARING AND PACKAGING THE SAMPLES
6.1. General
The samples must be taken and prepared as quickly as possible bearing in mind the precautions necessary to ensure that the product is neither changed nor contaminated. Instruments and also surfaces and containers intended to receive samples must be clean and dry.
6.2. Incremental samples
6.2.A. In relation to the control of substances or products uniformly distributed throughout the feed
Incremental samples must be taken at random throughout the whole sampled portion and they must be of approximately equal sizes.
6.2.A.1.
An imaginary division shall be made of the sampled portion into a number of approximately equal parts. A number of parts corresponding to the number of incremental samples required in accordance with 5.A.2 shall be selected at random and at least one sample taken from each of these parts.
Where appropriate, sampling may be carried out when the sampled portion is being moved (loading or unloading).
6.2.A.2.
Having selected the required number of packages for sampling as indicated in 5.A.2, part of the contents of each package shall be removed using a spear or shovel. Where necessary, the samples shall be taken after emptying the packages separately. Any lumps shall be broken up, if necessary, by separating them out and returning into the sample, in each aggregate sample separately.
6.2.A.3.
Having selected the required number of containers for sampling as indicated in 5.A.2, the contents shall be homogenised if necessary and an amount taken from each container.
The incremental samples may be taken when the contents are being discharged.
6.2.A.4.
Having selected the required number of containers for sampling as indicated in 5.A.2, samples shall be taken from different levels.
Samples may also be taken when the contents are being discharged but the first fractions shall be discarded.
In either case the total volume taken must not be less than 10 litres.
6.2.A.5.
Having selected the required number of blocks or licks for sampling as indicated in 5.A.2, a part of each block or lick shall be taken.
6.2.B. In relation to the control of undesirable substances or products likely to be distributed non-uniformly throughout the feed, such as aflatoxins, rye ergot, castor-oil plant and crotalaria in feed materials
An imaginary division shall be made of the sampled portion into a number of approximately equal parts, corresponding to the number of aggregate samples provided for in 5.B.3. 1f this number is greater than one, the total number of incremental samples provided for in 5.B.2 shall be distributed approximately equally over the different parts. Then take samples of approximately equal sizes (1) and such that the total amount in the samples from each part is not less than the minimum 4 kg quantity required for each aggregate sample. Incremental samples taken from different parts shall not be aggregated.
6.3. Preparation of aggregate samples
6.3.A. In relation to the control of substances or products distributed uniformly throughout the feed
The incremental samples shall be mixed to form a single aggregate sample.
6.3.B. In relation to the control of undesirable substances or products likely to be distributed non-uniformly throughout the feed, such as aflatoxins, rye ergot, castor-oil plant and crotalaria in feed materials
The incremental samples from each part of the sampled portion shall be mixed and the number of aggregate samples provided for in 5.B.3, made up taking care to note the origin of each aggregate sample.
6.4. Preparation of final samples
The material in each aggregate sample shall be carefully mixed to obtain an homogenised sample (2). If necessary the aggregate sample shall first be reduced to at least 2 kg or two litres (reduced sample) either by using a mechanical or automatic divider or by the quartering method.
At least three final samples shall then be prepared, of approximately the same amount and conforming to the quantitative requirements of 5.A.4 or 5.B.4. Each sample shall be put into an appropriate container. All necessary precautions shall be taken to avoid any change of composition of the sample, contamination or adulteration which might arise during transportation or storage.
6.5. Packaging of final samples
The containers or packages shall be sealed and labelled (the total label must be incorporated in the seal) in such a manner that they cannot be opened without damaging the seal.
7. SAMPLING RECORD
A record must be kept of each sampling, permitting each sampled portion to be identified unambiguously.
8. DESTINATION OF SAMPLES
For each aggregate sample, at least one final sample shall be sent as quickly as possible to the authorised analytical laboratory, together with the information necessary for the analyst.
(*1) Where the number obtained is a fraction, it shall be rounded up to the next whole number.
(*2) For packages or containers whose contents do not exceed 1 kg or one litre and for blocks or licks weighing not more than 1 kg each, an incremental sample shall be the contents of one original package or container, one block or one lick.
(*3) The methods provided for in 5.A are for use in the control of aflatoxins, rye ergot, castor-oil plant and crotalaria in complete and complementary feed.
(1) For packaged feed, a part of the contents of the packages to be sampled shall be removed, using a spear or shovel, after having, if necessary, emptied the packages separately.
(2) Any lumps shall be broken up (if necessary by separating them out and returning them to the sample) in each aggregate sample separately.
ANNEX II
GENERAL PROVISIONS ON METHODS OF ANALYSIS FOR FEED
A. PREPARATION OF SAMPLES FOR ANALYSIS
1. Purpose
The procedures described below concern the preparation for analysis of final samples, sent to the control laboratories after sampling in accordance with the provisions laid down in Annex I.
These samples must be prepared in such a way that the amounts weighed out, as provided for in the methods of analysis, are homogeneous and representative of the final samples.
2. Precautions to be taken
The sample preparation procedure to be followed is dependent on the methods of analysis used. It is therefore of major importance that it is ensured that the followed sample preparation procedure is appropriate for the used method of analysis.
All the necessary operations must be performed in such a way as to avoid as far as possible contamination of the sample and changes of its composition.
Grinding, mixing and sieving shall be carried out as quickly as possible with minimal exposure of the sample to the air and light. Mills and grinders likely to appreciably heat the sample shall not be used.
Manual grinding is recommended for feed which are particularly sensitive to heat. Care shall also be taken to ensure that the apparatus itself is not a source of contamination of trace elements.
If the preparation cannot be carried out without significant changes in the moisture content of the sample, determine the moisture content before and after preparation according to the method laid down in Part A of Annex III.
3. Procedure
Divide the sample into adequate subsamples for analysis and for reference by using adequate splitting techniques like alternate shovelling, stationary or rotary riffling. Coning and quartering is not recommended because this might provide subsamples with high splitting error. Keep the sample for reference in a suitable clean, dry container, fitted with an air-tight stopper, and prepare the subsamples for analysis of at least 100 g as indicated below.
3.1. Feed which can be ground as such
Unless otherwise specified in the methods of analysis, sieve the whole sample through a sieve with a square mesh of 1 mm side (in accordance with recommendation ISO R565) after grinding, if necessary. Avoid any over grinding.
Mix the sieved sample and collect it in a suitable clean, dry container fitted with an air-tight stopper. Mix again, immediately before weighing out the amount for analysis.
3.2. Feed which can be ground after drying
Unless otherwise specified in the methods of analysis, dry the sample to bring its moisture content down to a level of 8 % to 12 %, according to the preliminary drying procedure described under point 4.3 of the method of determination of moisture mentioned in Part A of Annex III. Then proceed as indicated in section 3.1.
3.3. Liquid or semi-liquid feed
Collect the sample in a suitable clean, dry container, fitted with an air-tight stopper. Mix thoroughly immediately before weighing out the amount for analysis.
3.4. Other feed
Samples which cannot be prepared according to one of the above procedures shall be treated by any other procedure which ensures that the amounts weighed out for the analysis are homogeneous and representative of the final samples.
4. Storage of samples
Samples must be stored at a temperature that will not alter their composition. Samples intended for the analysis of vitamins or substances which are particularly sensitive to light shall be stored in brown glass containers.
B. PROVISIONS RELATING TO REAGENTS AND APPARATUS USED IN METHODS OF ANALYSIS
1. |
Unless otherwise specified in the methods of analysis, all analytical reagents must be analytically pure (a.p.). When trace analysis is carried out, the purity of the reagents must be checked by a blank test. Depending upon the results obtained, further purification of the reagents may be required. |
2. |
Any operation involving preparation of solutions, dilution, rinsing or washing, mentioned in the methods of analysis without indication as to the nature of the solvent or diluent employed, implies that water must be used. As a general rule, water shall be demineralised or distilled. In particular cases, which are indicated in the methods of analysis, it must be submitted to special procedures of purification. |
3. |
In view of the equipment normally found in control laboratories, only those instruments and apparatus which are special or require specific usage are referred to in the methods of analysis. They must be clean, especially when very small amounts of substances have to be determined. |
C. APPLICATION OF METHODS OF ANALYSIS AND EXPRESSION OF THE RESULTS
1. Extraction procedure
Several methods determine a specific extraction procedure. As a general rule, other extraction procedures than the procedure referred to in the method can be applied on the condition that the used extraction procedure has been proven to have the equivalent extraction efficiency for the matrix analysed as the procedure mentioned in the method.
2. Clean-up procedure
Several methods determine a specific clean-up procedure. As a general rule, other clean-up procedures than the procedure referred to in the method can be applied on the condition that the used clean-up procedure has been proven to result in equivalent analytical results for the matrix analysed as the procedure mentioned in the method.
3. Reporting of the method of analysis used
In general a single method of analysis is established for the determination of each substance in feed. Where several methods are given, the particular method used by the control laboratory must be indicated on the analysis report.
4. Number of determinations
The result given in the analysis report shall be the average value obtained from at least two determinations, carried out on separate portions of the sample, and of satisfactory repeatability.
However, in case of the analysis of undesirable substances, if the result of the first determination is significantly (> 50 %) lower than the specification to be controlled, no additional determinations are necessary, on the condition that the appropriate quality procedures are applied.
In case of the control of the declared content of a substance or ingredient, if the result of the first determination confirms the declared content, i.e. the analytical result falls within the acceptable range of variation of the declared content, no additional determinations are necessary, on the condition that the appropriate quality procedures are applied.
In some cases this acceptable range of variation is defined in legislation such as in Council Directive 79/373/EEC (1).
5. Reporting of the analytical result
The analytical result shall be expressed in the manner laid down in the method of analysis to an appropriate number of significant figures and shall be corrected, if necessary, to the moisture content of the final sample prior to preparation.
6. Measurement uncertainty and recovery rate in case of analysis of undesirable substances
As regards undesirable substances within the meaning of Directive 2002/32/EC, including dioxins and dioxin-like PCBs, a product intended for animal feed shall be considered as non-compliant with the established maximum content, if the analytical result is deemed to exceed the maximum content taking into account expanded measurement uncertainty and correction for recovery. In order to assess compliance, the analysed concentration is used after being corrected for recovery and after deduction of the expanded measurement uncertainty. This procedure is only applicable in cases where the method of analysis enables the estimation of measurement uncertainty and correction for recovery (e.g. not possible in case of microscopic analysis).
The analytical result shall be reported as follows (in so far the used method of analysis enables to estimate the measurement uncertainty and recovery rate):
(a) |
corrected for recovery, the level of recovery being indicated. The correction for recovery is not necessary in case the recovery rate is between 90 % and 110 %; |
(b) |
as ‘x +/- U’, whereby x is the analytical result and U is the expanded measurement uncertainty, using a coverage factor of 2 which gives a level of confidence of approximately 95 %. |
However, if the result of the analysis is significantly (> 50 %) lower than the specification to be controlled, and on the condition that the appropriate quality procedures are applied and the analysis serves only the purpose of checking compliance with legal provisions, the analytical result might be reported without correction for recovery and the reporting of the recovery rate and measurement uncertainty might be omitted in these cases.
ANNEX III
METHODS OF ANALYSIS TO CONTROL THE COMPOSITION OF FEED MATERIALS AND COMPOUND FEED
A. DETERMINATION OF MOISTURE
1. Purpose and Scope
This method makes it possible to determine the moisture content of feed. In case of feed containing volatile substances, such as organic acids, it is to be observed that also significant amount of volatile substances are determined together with the moisture content.
It does not cover the analysis of milk products as feed materials, the analysis of mineral substances and mixtures composed predominantly of mineral substances, the analysis of animal and vegetable fats and oils or the analysis of the oil seeds and oleaginous fruit.
2. Principle
The sample is desiccated under specified conditions which vary according to the nature of the feed. The loss in weight is determined by weighing. It is necessary to carry out preliminary drying when dealing with solid feed which has high moisture content.
3. Apparatus
3.1. |
Crusher of non-moisture-absorbing material which is easy to clean, allows rapid, even crushing without producing any appreciable heating, prevents contact with the outside air as far as possible and meets the requirements laid down in 4.1.1 and 4.1.2 (e.g. hammer or water cooled micro-crushers, collapsible cone mills, slow motion or cog wheeled crushers). |
3.2. |
Analytical balance, accurate to 1 mg. |
3.3. |
Dry containers of non-corrodible metal or of glass with lids ensuring airtight closure; working surface allowing the test sample to be spread at about 0,3 g/cm2. |
3.4. |
Electrically heated isothermal oven (± 2 oC) properly ventilated and ensuring rapid temperature regulation (1). |
3.5. |
Adjustable electrically heated vacuum oven fitted with an oil pump and either a mechanism for introducing hot dried air or a drying agent (e.g. calcium oxide). |
3.6. |
Desiccator with a thick perforated metal or porcelain plate, containing an efficient drying agent. |
4. Procedure
N.B. |
The operations described in this section must be carried out immediately after opening the packages of samples. Analysis must be carried out at least in duplicate. |
4.1. Preparation
4.1.1.
Take at least 50 g of the sample. If necessary, crush or divide in such a way as to avoid any variation in moisture content (see 6).
4.1.2.
Take at least 50 g of the sample. Grind into particles of which at least 50 % will pass through a 0,5 mm mesh sieve and will leave no more than 10 % reject on a 1 mm round-meshed sieve.
4.1.3.
Take about 25 g of the sample, weigh to the nearest 10 mg, add an appropriate quantity of anhydrous sand weighed to the nearest 10 mg and mix until a homogeneous product is obtained.
4.2. Drying
4.2.1.
Weigh a container (3.3) with its lid to the nearest 1 mg. Weigh into the weighed container, to the nearest 1 mg, about 5 g of the sample and spread evenly. Place the container, without its lid, in the oven preheated to 103 oC. To prevent the oven temperature from falling unduly, introduce the container as rapidly as possible. Leave to dry for four hours reckoned from the time when the oven temperature returns to 103 oC. Replace the lid on the container, remove the latter from the oven, leave to cool for 30 to 45 minutes in the desiccator (3.6) and weigh to the nearest 1 mg.
For feed composed predominantly of oils and fats, dry in the oven for an additional 30 minutes at 130 oC. The difference between the two weighings must not exceed 0,1 % of moisture.
4.2.2.
Weigh a container (3.3) with its lid to the nearest 0,5 mg. Weigh into the weighed container, to the nearest 1 mg, about 5 g of the crushed sample and spread evenly. Place the container, without its lid, in the oven preheated to 130 oC. To prevent the oven temperature from falling unduly, introduce the container as rapidly as possible. Leave to dry for two hours reckoned from the time when the oven temperature returns to 130 oC. Replace the lid on the container, remove the latter from the oven, leave to cool for 30 to 45 minutes in the desiccator (3.6) and weigh to the nearest 1 mg.
4.2.3. |
Compound feed containing more than 4 % of sucrose or lactose: feed materials such as locust beans, hydrolysed cereal products, malt seeds, dried beet chips, fish and sugar solubles; compound feed containing more than 25 % of mineral salts including water of crystallisation.
Weigh a container (3.3) with its lid to the nearest 0,5 mg. Weigh into the weighed container, to the nearest 1 mg, about 5 g of the sample and spread evenly. Place the container, without its lid, in the vacuum oven (3.5) preheated to between 80 oC and 85 oC. To prevent the oven temperature from falling unduly, introduce the container as rapidly as possible. Bring the pressure up to 100 Torr and leave to dry for four hours at this pressure, either in a current of hot, dry air or using a drying agent (about 300 g for 20 samples). In the latter instance, disconnect the vacuum pump when the prescribed pressure has been reached. Reckon drying time from the moment when the oven temperature returns to 80 oC to 85 oC. Carefully bring the oven back to atmospheric pressure. Open the oven, place the lid on the container immediately, remove the container from the oven, leave to cool for 30 to 45 minutes in the desiccator (3.6) and weigh to the nearest 1 mg. Dry for an additional 30 minutes in the vacuum oven at 80 oC to 85 oC and reweigh. The difference between the two weighings must not exceed 0,1 % of moisture. |
4.3. Preliminary drying
4.3.1.
Solid feed with a high moisture content which makes crushing difficult must be subjected to preliminary drying as follows:
Weigh 50 g of uncrushed sample to the nearest 10 mg (compressed or agglomerated feed may be roughly divided if necessary) in a suitable container (e.g. a 20 × 12 cm aluminium plate with a 0,5 cm rim). Leave to dry in an oven from 60 oC to 70 oC until the moisture content has been reduced to between 8 % and 12 %. Remove from the oven, leave to cool uncovered in the laboratory for one hour and weigh to the nearest 10 mg. Crush immediately as indicated in 4.1.1 and dry as indicated in 4.2.1 or 4.2.3 according to the nature of the feed.
4.3.2.
Grain with a moisture content of over 17 % must be subjected to preliminary drying as follows:
Weigh 50 g of unground grain to the nearest 10 mg in a suitable container (e.g. a 20 × 12 cm aluminium plate with a 0,5 cm rim). Leave to dry for 5 to 7 minutes in an oven at 130 oC. Remove from the oven, leave to cool uncovered in the laboratory for two hours and weigh to the nearest 10 mg. Grind immediately as indicated in 4.1.2 and dry as indicated in 4.2.2.
5. Calculation of results
The moisture content (X), as a percentage of the sample, is calculated by using the following formulae:
5.1. Drying without preliminary drying
where:
m |
= |
initial weight, in grammes, of the test sample, |
m0 |
= |
weight, in grammes, of the dry test sample. |
5.2. Drying with preliminary drying
where:
m |
= |
initial weight, in grammes, of the test sample, |
m1 |
= |
weight, in grammes, of the test sample after preliminary drying, |
m2 |
= |
weight, in grammes, of the test sample after crushing or grinding, |
m0 |
= |
weight, in grammes, of the dry test sample. |
5.3. Repeatability
The difference between the results of two parallel determinations carried out on the same sample shall not exceed 0,2 % of the absolute value of moisture.
6. Observation
If crushing proves necessary and if this is seen to alter the moisture content of the product, the results of the analysis of the components of the feed must be corrected on the basis of the moisture content of the sample in its initial state.
B. DETERMINATION OF MOISTURE IN ANIMAL AND VEGETABLE FATS AND OILS
1. Purpose and scope
This method makes it possible to determine the water and volatile substances content of animal and vegetable fats and oils.
2. Principle
The sample is dried to constant weight (loss in weight between two successive weighings must be less than or equal to 1 mg) at 103 oC. The loss in weight is determined by weighing.
3. Apparatus
3.1. |
Flat-bottomed dish, of a corrosion-resistant material, 8 to 9 cm in diameter and approximately 3 cm high. |
3.2. |
Thermometer with a strengthened bulb and expansion tube at the top end, graduated from approximately 80 oC to at least 110 oC, and approximately 10 cm in length. |
3.3. |
Sand bath or electric hot-plate. |
3.4. |
Desiccator, containing an efficient drying agent. |
3.5. |
Analytical balance. |
4. Procedure
Weigh out to the nearest mg approximately 20 g of the homogenised sample into the dry, weighed dish (3.1) containing the thermometer (3.2). Heat on the sand bath or hot-plate (3.3), stirring continuously with the thermometer, so that the temperature reaches 90 oC in about 7 minutes.
Reduce the heat, watching the frequency with which bubbles rise from the bottom of the dish. The temperature must not exceed 105 oC. Continue to stir, scraping the bottom of the dish, until bubbles stop forming.
In order to ensure complete elimination of moisture, reheat several times to 103 oC ± 2 oC, cooling to 93 oC between successive heatings. Then leave to cool to room temperature in the desiccator (3.4) and weigh. Repeat this operation until the loss in weight between two successive weighings no longer exceeds 2 mg.
N.B |
: |
An increase in the weight of the sample after repeated heating indicates an oxidation of the fat, in which case calculate the result from the weighing carried out immediately before the weight began to increase. |
5. Calculation of results
The moisture content (X), as a percentage of the sample, is given by the following formula:
where:
m |
= |
weight, in grammes, of the test sample, |
m1 |
= |
weight, in grammes, of the dish with its contents before heating, |
m2 |
= |
weight, in grammes, of the dish with its contents after heating. |
Results lower than 0,05 % must be recorded as ‘lower than 0,05 %’.
Repeatability
The difference in moisture between the results of two parallel determinations carried out on the same sample must not exceed 0,05 %, in absolute value.
C. DETERMINATION OF THE CONTENT OF CRUDE PROTEIN
1. Purpose and scope
This method makes it possible to determine the crude protein content of feed on the basis of the nitrogen content, determined according to the Kjeldahl method.
2. Principle
The sample is digested by sulphuric acid in the presence of a catalyst. The acid solution is made alkaline with sodium hydroxide solution. The ammonia is distilled and collected in a measured quantity of sulphuric acid, the excess of which is titrated with a standard solution of sodium hydroxide.
Alternatively, the liberated ammonia is distilled into an excess of boric acid solution, followed by titration with hydrochloric acid or sulphuric acid solution.
3. Reagents
3.1. |
Potassium sulphate. |
3.2. |
Catalyst: copper (II) oxide CuO or copper (II) sulphate pentahydrate, CuSO4 5H2O. |
3.3. |
Granulated zinc. |
3.4. |
Sulphuric acid, ρ20 = 1,84 g/ml. |
3.5. |
Sulphuric acid, standard volumetric solution, c(H2SO4) = 0,25 mol/l. |
3.6. |
Sulphuric acid, standard volumetric solution, c(H2SO4) = 0,10 mol/l. |
3.7. |
Sulphuric acid, standard volumetric solution, c(H2SO4) = 0,05 mol/l. |
3.8. |
Methyl red indicator; dissolve 300 mg of methyl red in 100 ml of ethanol, σ = 95 %-96 % (v/v). |
3.9. |
Sodium hydroxide solution (Technical grade may be used) β = 40 g/100 ml (m/v: 40 %). |
3.10. |
Sodium hydroxide, standard volumetric solution c(NaOH) = 0,25 mol/l. |
3.11. |
Sodium hydroxide, standard volumetric solution c(NaOH) = 0,10 mol/l. |
3.12. |
Granulated pumice stone, washed in hydrochloric acid and ignited. |
3.13. |
Acetanilide (m.p. = 114 oC, N-content = 10,36 %). |
3.14. |
Sucrose (nitrogen free). |
3.15. |
Boric acid (H3BO3). |
3.16. |
Methyl red indicator solution: dissolve 100 mg methyl red in 100 ml ethanol or methanol. |
3.17. |
Bromocresol green solution: dissolve 100 mg bromocresol green in 100 ml ethanol or methanol. |
3.18. |
Boric acid solution (10 g/l to 40 g/l depending on the apparatus used).
When colorimetric end-point detection is applied, methyl red and bromocresol indicators must be added to the boric acid solutions. If 1 litre of the boric acid solution is prepared, before adjusting to volume, 7 ml methyl red indicator solution (3.16) and 10 ml bromocresol green solution (3.17) shall be added. Dependent on the water used, the pH of the boric acid solution might differ from batch to batch. Often an adjustment with a small volume of alkali is necessary to obtain a positive blank.
|
3.19. |
Hydrochloric acid standard volumetric solution c(HCl) = 0,10 mol/l.
|
4. Apparatus
Apparatus suitable for performing digestion, distillation and titration according to the Kjeldahl procedure.
5. Procedure
5.1. Digestion
Weigh 1 g of the sample to the nearest 0,001 g and transfer the sample to the flask of the digestion apparatus. Add 15 g of potassium sulphate (3.1), an appropriate quantity of catalyst (3.2) (0,3 to 0,4 g of copper (II) oxide or 0,9 to 1,2 g of copper (II) sulphate pentahydrate), 25 ml of sulphuric acid (3.4) and if required, a few granules of pumice stone (3.12) and mix.
Heat the flask moderately at first, swirling from time to time if necessary until the mass has carbonised and the foam has disappeared; then heat more intensively until the liquid is boiling steadily. Heating is adequate if the boiling acid condenses on the wall of the flask. Prevent the sides from becoming overheated and organic particles from sticking to them.
When the solution becomes clear and light green continue to boil for another two hours, then leave to cool.
5.2. Distillation
Add carefully enough water to ensure complete dissolution of the sulphates. Allow to cool and then add a few granules of zinc (3.3), if required. Proceed according to 5.2.1 or 5.2.2.
5.2.1.
Place in the collecting flask of the distillation apparatus an exactly measured quantity of 25 ml of sulphuric acid (3.5) or (3.7) depending on the presumed nitrogen content. Add a few drops of methyl red indicator (3.8).
Connect the digestion flask to the condenser of the distillation apparatus and immerse the end of the condenser in the liquid contained in the collecting flask to a depth of at least 1 cm (see observation 8.3). Slowly pour 100 ml of sodium hydroxide solution (3.9) into the digestion flask without loss of ammonia (see observation 8.1). Heat the flask until the ammonia has distilled over.
5.2.2.
Where titration of the ammonia content of the distillate is performed manually, the procedure mentioned below applies. Where the distillation unit is fully automated to include titration of the ammonia content of the distillate, follow the manufacturer's instructions for operation of the distillation unit.
Place a collecting flask containing 25 ml to 30 ml of the boric acid solution (3.18) under the outlet of the condenser in such a way that the delivery tube is below the surface of the excess boric acid solution. Adjust the distillation unit to dispense 50 ml of sodium hydroxide solution (3.9). Operate the distillation unit in accordance with the manufacturer's instructions and distil off the ammonia liberated by the addition of the sodium hydroxide solution. Collect distillate in the boric acid receiving solution. The amount of distillate (time of steam distillation) depends on the amount of nitrogen in the sample. Follow the instructions of the manufacturer.
Note: |
In a semi-automatic distillation unit, the addition of excess sodium hydroxide and the steam distillation are performed automatically. |
5.3. Titration
Proceed according to 5.3.1 or 5.3.2.
5.3.1.
Titrate the excess sulphuric acid in the collecting flask with sodium hydroxide solution (3.10 or 3.11) depending on the concentration of the sulphuric acid used, until the end-point is reached.
5.3.2.
Titrate the contents of the collecting flask with the hydrochloric acid standard volumetric solution (3.19) or with the sulphuric acid standard volumetric solution (3.6) using a burette and read the amount of titrant used.
When colorimetric end-point detection is applied, the end-point is reached at the first trace of pink colour in the contents. Estimate the burette reading to the nearest 0,05 ml. An illuminated magnetic stirrer plate or a photometric detector may aid visualisation of the end-point.
This can be done automatically using a steam distiller with automatic titration.
Follow the manufacturers' instructions for operation of the specific distiller or distiller/titrator.
Note |
: |
When an automatic titration system is used, titration begins immediately after distillation starts and the 1 % boric acid solution (3.18) is used. Where a fully automatic distillation unit is employed, the automatic titration of the ammonia can also be carried out with end-point detection using a potentiometric pH system. In this case an automatic titrator, with a pH-meter is used. The pH-meter shall be calibrated properly in the range of pH 4 to pH 7 following normal laboratory pH-calibration procedures. The pH end-point of the titration is reached at pH 4,6, being the steepest point in the titration curve (inflection point). |
5.4. Blank test
To confirm that the reagents are free from nitrogen, carry out a blank test (digestion, distillation and titration) using 1 g of sucrose (3.14) in place of the sample.
6. Calculation of results
Calculations are performed according to 6.1 or 6.2.
6.1. Calculation for titration according to 5.3.1
The content of crude protein, expressed as a percentage by weight, is calculated according to the following formula:
where:
Vo |
= |
is the volume (ml) of NaOH (3.10 or 3.11) used in the blank test, |
V1 |
= |
is the volume (ml) of NaOH (3.10 or 3.11) used in the sample titration, |
c |
= |
is the concentration (mol/l) of sodium hydroxide (3.10 or 3.11), |
m |
= |
is the weight (g) of sample. |
6.2. Calculation for titration according to 5.3.2
6.2.1.
The content of crude protein, expressed as a percentage by weight, is calculated according to the following formula:
where:
m |
= |
is the weight (g) of the test portion, |
c |
= |
is the concentration (mol/l) of the standard volumetric solution of the hydrochloric acid (3.19), |
V0 |
= |
is the volume (in ml) of hydrochloric acid used for the blank test, |
V1 |
= |
is the volume (in ml) of hydrochloric acid used for the test portion. |
6.2.2.
The content of crude protein, expressed as a percentage by weight, is calculated according to the following formula:
where:
m |
= |
is the weight (g) of the test portion, |
c |
= |
is the concentration (mol/l) of the standard volumetric solution of sulphuric acid (3.6), |
V0 |
= |
is the volume (in ml) of sulphuric acid (3.6) used for the blank test, |
V1 |
= |
is the volume (in ml) of sulphuric acid (3.6) used for test portion. |
7. Verification of the method
7.1. Repeatability
The difference between the results of two parallel determinations carried out on the same sample must not exceed:
— |
0,2 % in absolute value, for crude protein contents of less than 20 %, |
— |
1,0 % relative to the higher value, for crude protein contents from 20 % to 40 %, |
— |
0,4 % in absolute value, for crude protein contents of more than 40 %. |
7.2. Accuracy
Carry out the analysis (digestion, distillation and titration) on 1,5 to 2,0 g of acetanilide (3.13) in the presence of 1 g of sucrose (3.14); 1 g acetanilide consumes 14,80 ml of sulphuric acid (3.5). Recovery must be at least 99 %.
8. Observations
8.1. |
Apparatus may be of the manual, semi-automatic or automatic type. If the apparatus requires transference between the digestion and distillation steps, this transfer must be carried out without loss. If the flask of the distillation apparatus is not fitted with a dropping funnel, add the sodium hydroxide immediately before connecting the flask to the condenser, pouring the liquid slowly down the side. |
8.2. |
If the digest solidifies, recommence the determination using a larger amount of sulphuric acid (3.4) than that specified above. |
8.3. |
For products with a low nitrogen content, the volume of sulphuric acid (3.7) to be placed in the collecting flask may be reduced, if necessary, to 10 or 15 ml and made up to 25 ml with water. |
8.4. |
For routine analysis, alternative methods of analysis can be applied for the determination of crude protein but the Kjeldahl method described in this Part C is the reference method. The equivalence of the results obtained with the alternative method (e.g. DUMAS) compared to the reference method must be demonstrated for each matrix individually. As the results obtained with an alternative method, even after having verified the equivalency, might deviate slightly from the results obtained with the reference method, it is necessary to mention in the analytical report the method of analysis used for the determination of crude protein. |
D. DETERMINATION OF UREA
1. Purpose and scope
This method makes it possible to determine the level of urea in feed.
2. Principle
The sample is suspended in water with a clarifying agent. The suspension is filtered. The urea content of the filtrate is determined after the addition of 4-dimethylaminobenzaldehyde (4-DMAB) by measuring the optical density at a wavelength of 420 nm.
3. Reagents
3.1. |
Solution of 4-dimethylaminobenzaldehyde: dissolve 1,6 g of 4-DMAB in 100 ml of 96 % ethanol and add 10 ml of hydrochloric acid (ρ201,19 g/ml). This reagent keeps for a maximum period of two weeks. |
3.2. |
Carrez solution I: dissolve in water 21,9 g of zinc acetate, Zn(CH3COO)2 2H2O and 3 g of glacial acetic acid. Make up to 100 ml with water. |
3.3. |
Carrez solution II: dissolve in water 10,6 g of potassium ferrocyanide, K4 Fe (CN)6 3H2O. Make up to 100 ml with water. |
3.4. |
Active carbon which does not absorb urea (to be checked). |
3.5. |
Urea, 0,1 % solution (w/v). |
4. Apparatus
4.1. |
Mixer (tumbler): approximately 35 to 40 r.p.m. |
4.2. |
Test tubes: 160 × 16 mm with ground-glass stoppers. |
4.3. |
Spectrophotometer. |
5. Procedure
5.1. Analysis of sample
Weigh out 2 g of the sample to the nearest mg and place with 1 g of active carbon (3.4) in a 500 ml volumetric flask. Add 400 ml of water and 5 ml of Carrez solution I (3.2), mix for approximately 30 seconds and add 5 ml of Carrez solution II (3.3). Mix for 30 minutes in the tumbler. Make up to volume with water, shake and filter.
Remove 5 ml of the transparent colourless filtrates, place in test tubes with ground-glass stoppers, add 5 ml of 4-DMAB solution (3.1) and mix. Place the tubes in a water bath at 20 oC (+/- 4 oC). After 15 minutes measure the optical density of the sample solution with the spectrophotometer at 420 nm. Compare with the blank test solution of the reagents.
5.2. Calibration curve
Remove volumes of 1, 2, 4, 5 and 10 ml of the urea solution (3.5), place in 100 ml volumetric flasks and make up the volume with water. Remove 5 ml from each solution, add 5 ml of 4-DMAB solution (3.1) to each of them, homogenise and measure the optical density as shown above in comparison with a control solution containing 5 ml of 4-DMAB and 5 ml of water free from urea. Plot the calibration curve.
6. Calculation of results
Determine the amount of urea in the sample using the calibration curve.
Express the result as a percentage of the sample.
7. Observations
7.1. |
In the case of contents of urea exceeding 3 %, reduce the sample to 1 g or dilute the original solution so that there are not more than 50 mg of urea in 500 ml. |
7.2. |
In the case of low contents of urea, increase the sample as long as the filtrate remains transparent and colourless. |
7.3. |
If the sample contains simple nitrogenous compounds such as amino acids, the optical density shall be measured at 435 nm. |
E. DETERMINATION OF VOLATILE NITROGENOUS BASES
I. BY MICRODIFFUSION
1. Purpose and scope
This method makes it possible to determine the content of volatile nitrogenous bases, expressed as ammonia, in feed.
2. Principle
The sample is extracted with water and the solution clarified and filtered. The volatile nitrogenous bases are displaced by microdiffusion using a solution of potassium carbonate, collected in a solution of boric acid and titrated with sulphuric acid.
3. Reagents
3.1. |
Trichloroacetic acid, solution 20 % (w/v). |
3.2. |
Indicator: dissolve 33 mg of bromocresol green and 65 mg of methyl red in 100 ml of 95 %-96 % (v/v) of ethanol. |
3.3. |
Boric acid solution: in a 1 litre graduated flask dissolve 10 g of boric acid in 200 ml of 95 %-96 % (v/v) ethanol and 700 ml of water. Add 10 ml of indicator (3.2). Mix and, if necessary, adjust the colour of the solution to light red by adding a solution of sodium hydroxide. 1 ml of this solution will fix a maximum of 300 μg of NH3. |
3.4. |
Saturated potassium carbonate solution: dissolve 100 g of potassium carbonate in 100 ml of boiling water. Leave to cool, filter. |
3.5. |
Sulphuric acid 0,01 mol/litre. |
4. Apparatus
4.1. |
Mixer (tumbler): approximately 35 to 40 r.p.m. |
4.2. |
Glass or plastic Conway cells (see diagram). |
4.3. |
Microburettes graduated in 1/100 ml. |
5. Procedure
Weigh 10 g of sample to the nearest 1 mg and place with 100 ml of water in a 200 ml graduated flask. Mix or stir in the tumbler for 30 minutes. Add 50 ml of trichloroacetic acid solution (3.1), make up to volume with water, shake vigorously and filter through a pleated filter.
Using a pipette, introduce 1 ml of boric acid solution (3.3) into the central part of the Conway cell and 1 ml of the sample filtrate into the crown of the cell. Cover partially with the greased lid. Drop 1 ml of saturated potassium carbonate solution (3.4) quickly into the crown and close the lid so that the cell is airtight. Turn the cell carefully rotating it in a horizontal plane so that the two reagents are mixed. Leave to incubate either for at least four hours at room temperature or for one hour at 40 oC.
Using a microburette (4.3), titrate the volatile bases in the boric acid solution with sulphuric acid (3.5).
Carry out a blank test using the same procedure but without a sample to be analysed.
6. Calculation of results
1 ml of H2SO4 0,01 mol/litre corresponds to 0,34 mg of ammonia.
Express the result as a percentage of the sample.
Repeatability
The difference between the results of two parallel determinations carried out on the same sample shall not exceed:
— |
10 %, in relative value, for ammonia contents of less than 1,0 %, |
— |
0,1 %, in absolute value, for ammonia contents of 1,0 % or more. |
7. Observation
If the ammonia content of the sample exceeds 0,6 %, dilute the initial filtrate.
CONWAY CELL
Scale 1/1
Cross-section of the lid S2 S3
Cross-section of the cell S S1
Plan view of the cell
Plan view of the ground-glass lid
II. BY DISTILLATION
1. Purpose and Scope
This method makes it possible to determine the content of volatile nitrogenous bases, expressed as ammonia, in fish-meal containing practically no urea. It is applicable only to ammonia contents of less than 0,25 %.
2. Principle
The sample is extracted with water and the solution clarified and filtered. The volatile nitrogenous bases are displaced at boiling point by adding magnesium oxide and collected in a specific quantity of sulphuric acid, the excess of which is back-titrated with a solution of sodium hydroxide.
3. Reagents
3.1. |
Trichloroacetic acid, solution 20 % (w/v). |
3.2. |
Magnesium oxide. |
3.3. |
Anti-foaming emulsion (e.g. silicone). |
3.4. |
Sulphuric acid 0,05 mol/litre. |
3.5. |
Sodium hydroxide solution 0,1 mol/litre. |
3.6. |
Methyl red solution 0,3 % in 95 %-96 % (v/v) ethanol. |
4. Apparatus
4.1. |
Mixer (tumbler): approximately 35 to 40 r.p.m. |
4.2. |
Distilling apparatus of the Kjeldahl type. |
5. Procedure
Weigh 10 g of the sample to the nearest 1 mg and place with 100 ml of water in a 200 ml graduated flask. Mix or stir in the tumbler for 30 minutes. Add 50 ml of trichloroacetic acid solution (3.1), make up to volume with water, shake vigorously and filter through a pleated filter.
Take a quantity of clear filtrate appropriate for the presumed content of volatile nitrogenous bases (100 ml is usually suitable). Dilute to 200 ml and add 2 g of magnesium oxide (3.2) and a few drops of anti-foaming emulsion (3.3). The solution must be alkaline to litmus paper; otherwise add some magnesium oxide (3.2). Proceed according to 5.2 and 5.3 of the method of analysis for the determination of the crude protein content (Part C of this Annex).
Carry out a blank test using the same procedure but without a sample to be analysed.
6. Calculation of results
1 ml of H2SO4 0,05 mol/litre corresponds to 1,7 mg of ammonia.
Express the result as a percentage of the sample.
Repeatability
The difference between the results of two parallel determinations carried out on the same sample shall not exceed, in relative value, 10 % of ammonia.
F. DETERMINATION OF AMINO ACIDS (EXCEPT TRYPTOPHANE)
1. Purpose and scope
This method makes the determination possible of free (synthetic and natural) and total (peptide bound and free) amino acids in feed, using an amino acid analyser. It is applicable to the following amino acids: cyst(e)ine, methionine, lysine, threonine, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, leucine, phenylalanine, proline, serine, tyrosine and valine.
The method does not distinguish between the salts of amino acids and it cannot differentiate between D and L forms of amino acids. It is not valid for the determination of tryptophan or hydroxy analogues of amino acids.
2. Principle
2.1. Free amino acids
The free amino acids are extracted with diluted hydrochloric acid. Co-extracted nitrogenous macromolecules are precipitated with sulfosalicylic acid and removed by filtration. The filtered solution is adjusted to pH 2,20. The amino acids are separated by ion exchange chromatography and determined by reaction with ninhydrin with photometric detection at 570 nm.
2.2. Total amino acids
The procedure chosen depends on the amino acids under investigation. Cyst(e)ine and methionine must be oxidised to cysteic acid and methionine sulphone respectively prior to hydrolysis. Tyrosine must be determined in hydrolysates of unoxidised samples. All the other amino acids listed in paragraph 1 can be determined in either the oxidised or unoxidised sample.
Oxidation is performed at 0 oC with a performic acid/phenol mixture. Excess oxidation reagent is decomposed with sodium disulphite. The oxidised or unoxidised sample is hydrolysed with hydrochloric acid (3.20) for 23 hours. The hydrolysate is adjusted to pH 2,20. The amino acids are separated by ion exchange chromatography and determined by reaction with ninhydrin using photometric detection at 570 nm (440 nm for proline).
3. Reagents
Double distilled water or water of equivalent quality must be used (conductivity < 10 μS).
3.1. |
Hydrogen peroxide, w (w/w) = 30 %. |
3.2. |
Formic acid, w (w/w) = 98 %-100 %. |
3.3. |
Phenol. |
3.4. |
Sodium disulphite. |
3.5. |
Sodium hydroxide. |
3.6. |
5-Sulfosalicylic acid dihydrate. |
3.7. |
Hydrochloric acid, density approximately 1,18 g/ml. |
3.8. |
tri-Sodium citrate dihydrate. |
3.9. |
2,2'-Thiodiethanol (thiodiglycol). |
3.10. |
Sodium chloride. |
3.11. |
Ninhydrin. |
3.12. |
Light petroleum, boiling range 40-60 oC. |
3.13. |
Norleucine, or other compound suitable for use as internal standard. |
3.14. |
Nitrogen gas (< 10 ppm oxygen). |
3.15. |
1-Octanol. |
3.16. |
Amino acids. |
3.16.1. |
Standard substances listed under paragraph 1. Pure compounds containing no water of crystallisation. Dry under vacuum over P2O5 or H2SO4 for 1 week prior to use. |
3.16.2. |
Cysteic acid. |
3.16.3. |
Methionine sulphone. |
3.17. |
Sodium hydroxide solution, c = 7,5 mol/l:
Dissolve 300 g NaOH (3.5) in water and make up to 1 litre. |
3.18. |
Sodium hydroxide solution, c = 1 mol/l:
Dissolve 40 g NaOH (3.5) in water and make up to 1 litre. |
3.19. |
Formic acid — phenol solution:
Mix 889 g formic acid (3.2) with 111 g water and add 4,73 g phenol (3.3). |
3.20. |
Hydrolysis mixture, c = 6 mol HCl/l containing 1 g phenol/l:
Add 1 g phenol (3.3) to 492 ml HCl (3.7) and make up to 1 litre with water. |
3.21. |
Extraction mixture, c = 0,1 mol HCl/l containing 2 % thiodiglycol: Take 8,2 ml HCl (3.7), dilute with approximately 900 ml water, add 20 ml thiodiglycol (3.9) and make up to 1 litre with water, (do not mix 3.7 and 3.9 directly). |
3.22. |
5-Sulfosalicylic acid, ß = 6 %:
Dissolve 60 g 5-sulfosalicylic acid (3.6) in water and make up to 1 l with water. |
3.23. |
Oxidation mixture (Performic acid — phenol):
Mix 0,5 ml hydrogen peroxide (3.1) with 4,5 ml formic acid-phenol solution (3.19) in a small beaker. Incubate at 20-30 oC for 1 hour in order to form performic acid, then cool on an ice-water bath (15 min.) before adding to the sample. Caution: Avoid contact with skin and wear protective clothing. |
3.24. |
Citrate buffer, c = 0,2 mol Na+/l, pH 2,20:
Dissolve 19,61 g sodium citrate (3.8), 5 ml thiodiglycol (3.9), 1 g phenol (3.3) and 16,50 ml HCl (3.7) in approximately 800 ml water. Adjust pH to 2,20. Make up to 1 litre with water. |
3.25. |
Elution buffers, prepared according to conditions for the analyser used (4.9). |
3.26. |
Ninhydrin reagent, prepared according to conditions for the analyser used (4.9). |
3.27. |
Standard solutions of amino acids. These solutions shall be stored below 5 oC. |
3.27.1. |
Stock standard solution of amino acids (3.16.1).
c = 2,5 μmol/ml of each in hydrochloric acid. May be obtained commercially. |
3.27.2. |
Stock standard solution of cysteic acid and methionine sulphone, c = 1,25 μmol/ml.
Dissolve 0,2115 g cysteic acid (3.16.2) and 0,2265 g methionine sulphone (3.16.3) in citrate buffer (3.24) in a 1 litre graduated flask and make up to mark with citrate buffer. Store below 5 oC for not more than 12 months. This solution is not used if the stock standard solution (3.27.1) contains cysteic acid and methionine sulphone. |
3.27.3. |
Stock standard solution of the internal standard e.g. norleucine, c = 20 μmol/ml.
Dissolve 0,6560 g norleucine (3.13) in citrate buffer (3.24) in a graduated flask and make up to 250 ml with citrate buffer. Store below 5 oC for no more than 6 months. |
3.27.4. |
Calibration solution of standard amino acids for use with hydrolysates, c = 5 nmol/50 μl of cysteic acid and methionine sulphone and c = 10 nmol/50 μl of the other amino acids. Dissolve 2,2 g sodium chloride (3.10) in 100 ml beaker with 30 ml citrate buffer (3.24). Add 4,00 ml stock standard solution of amino acids (3.27.1), 4,00 ml stock standard solution of cysteic acid and methionine sulphone (3.27.2) and 0,50 ml stock standard solution of internal standard (3.27.3) if used. Adjust pH to 2,20 with sodium hydroxide (3.18).
Transfer quantitatively to a 50 ml graduated flask and make up to the mark with citrate buffer (3.24) and mix. Store below 5 oC for not more than 3 months. See also observation 9.1. |
3.27.5. |
Calibration solution of standard amino acids for use with hydrolysates prepared according to paragraph 5.3.3.1 and for use with extracts (5.2). The calibration solution is prepared according to 3.27.4 but omitting sodium chloride.
Store below 5 oC for not more than 3 months. |
4. Apparatus
4.1. |
100 or 250 ml round bottomed flask fitted with a reflux condenser. |
4.2. |
100 ml borosilicate glass bottle with screw cap with rubber/teflon liner (e.g. Duran, Schott) for use in the oven. |
4.3. |
Oven with forced ventilation and a temperature regulator with an accuracy better than ± 2 oC. |
4.4. |
pH-meter (three decimal places). |
4.5. |
Membrane filter (0,22 μm). |
4.6. |
Centrifuge. |
4.7. |
Rotary vacuum evaporator. |
4.8. |
Mechanical shaker or magnetic stirrer. |
4.9. |
Amino acid analyser or HPLC equipment with ion exchange column, device for ninhydrin, post column derivatisation and photometric detector.
The column is filled with sulfonated polystyrene resins capable of separating the amino acids from each other and from other ninhydrin-positive materials. The flow in the buffer and ninhydrin lines is provided by pumps having a flow stability of ±0,5 % in the period covering both the standard calibration run and the analysis of the sample. With some amino acid analysers hydrolysis procedures can be used in which the hydrolysate has a sodium concentration of c = 0,8 mol/l and contains all the residual formic acid from the oxidation step. Others do not give a satisfactory separation of certain amino acids if the hydrolysate contains excess formic acid and/or high sodium ion concentrations. In this case the volume of acid is reduced by evaporation to approx. 5 ml after the hydrolysis and prior to pH adjustment. The evaporation shall be performed under vacuum at 40 o C maximum. |
5. Procedure
5.1. Preparation of the sample
The sample is ground to pass through a 0,5 mm sieve. Samples high in moisture must be either air-dried at a temperature not exceeding 50 oC or freeze dried prior to grinding. Samples with a high fat content shall be extracted with light petroleum (3.12) prior to grinding.
5.2. Determination of free amino acids in feed and premixtures
Weigh to the nearest 0,2 mg an appropriate amount (1-5 g) of the prepared sample (5.1), into a conical flask and add 100,0 ml of extraction mixture (3.21). Shake the mixture for 60 min. using a mechanical shaker or a magnetic stirrer (4.8). Allow the sediment to settle and pipette 10,0 ml of the supernatant solution into a 100 ml beaker.
Add 5,0 ml of sulfosalicylic acid solution (3.22), with stirring and continue to stir with the aid of magnetic stirrer for 5 min. Filter or centrifuge the supernatant in order to remove any precipitate. Place 10,0 ml of the resulting solution into a 100 ml beaker and adjust the pH to 2,20 using sodium hydroxide solution (3.18), transfer to a volumetric flask of appropriate volume using citrate buffer (3.24), and make up to the mark with the buffer solution (3.24).
If an internal standard is being used add 1,00 ml of internal standard (3.27.3) for each 100 ml final solution and make up to the mark with the buffer solution (3.24).
Proceed to the chromatography step according to paragraph 5.4.
If the extracts are not being examined the same day, they must be stored below 5 oC.
5.3. Determination of total amino acids
5.3.1.
Weigh to the nearest 0,2 mg from 0,1 to 1 g of the prepared sample (5.1) into:
— |
a 100 ml round-bottomed flask (4.1) for open hydrolysis (5.3.2.3) or, |
— |
a 250 ml round-bottomed flask (4.1) if a low sodium concentration is required (5.3.3.1) or, |
— |
a 100 ml bottle fitted with a screw cap (4.2), for closed hydrolysis (5.3.2.4). |
The weighed sample portion must have a nitrogen content of about 10 mg and a moisture content not exceeding 100 mg.
Place the flask/bottle in an ice-water bath and cool to 0 oC, add 5 ml of oxidation mixture (3.23) and mix using a glass spatula with a bent tip. Seal the flask/bottle containing the spatula with an air-tight film, place the ice-water bath containing the sealed container in a refrigerator at 0 oC and leave for 16 hours. After 16 hours remove from the refrigerator and decompose the excess oxidation reagent by the addition of 0,84 g of sodium disulphite (3.4).
Proceed to 5.3.2.1.
5.3.2.
5.3.2.1.
To the oxidised sample prepared according to 5.3.1 add 25 ml of hydrolysis mixture (3.20) taking care to wash down any sample residue adhering to the sides of the vessel and the spatula.
Depending on the hydrolysis procedure being used, proceed according to 5.3.2.3 or 5.3.2.4.
5.3.2.2.
Weigh into either a 100 ml or a 250 ml round-bottom flask (4.1) or a 100 ml bottle fitted with a screw cap (4.2), to the nearest 0,2 mg, from 0,1 to 1 g of the prepared sample (5.1). The weighed sample portion must have a nitrogen content of about 10 mg. Add carefully 25 ml of hydrolysis mixture (3.20) and mix with the sample. Proceed according to either 5.3.2.3 or 5.3.2.4.
5.3.2.3.
Add 3 glass beads to the mixture in the flask (prepared in accordance with 5.3.2.1 or 5.3.2.2) and boil with continuous bubbling under reflux for 23 hours. On completion of hydrolysis, wash the condenser down with 5 ml of citrate buffer (3.24). Disconnect the flask and cool it in an ice bath.
Proceed according to 5.3.3.
5.3.2.4.
Place the bottle containing the mixture prepared in accordance with 5.3.2.1 or 5.3.2.2 in an oven (4.3) at 110 oC. During the first hour in order to prevent a build up of pressure (due to the evolution of gaseous substances) and to avoid explosion, place the screw cap over the top of the vessel. Do not close the vessel with the cap. After one hour close the vessel with the cap and leave in the oven (4.3) for 23 hours. On completion of hydrolysis, remove the bottle from the oven, carefully open the cap of the bottle and place the bottle in an ice-water bath. Leave to cool.
Depending on the procedure for pH adjustment (5.3.3), quantitatively transfer the contents of the bottle to a 250 ml beaker or a 250 ml round-bottom flask, using citrate buffer (3.24).
Proceed according to 5.3.3.
5.3.3.
Depending on the sodium tolerance of the amino acid analyser (4.9) proceed according to 5.3.3.1 or 5.3.3.2 for the pH adjustment.
5.3.3.1.
It is advisable to use an internal stock standard solution (3.27.3) when amino acid analysers requiring a low sodium concentration are employed (when the acid volume has to be reduced).
In this case add 2,00 ml of the internal stock standard solution (3.27.3) to the hydrolysate before the evaporation.
Add 2 drops of 1-octanol (3.15) to the hydrolysate obtained in accordance with paragraph 5.3.2.3 or 5.3.2.4.
Using a rotary evaporator (4.7) reduce the volume to 5-10 ml under vacuum at 40 oC. If the volume is accidentally reduced to less than 5 ml the hydrolysate must be discarded and the analysis recommenced.
Adjust the pH to 2,20 with sodium hydroxide solution (3.18) and proceed to paragraph 5.3.4.
5.3.3.2.
Take the hydrolysates obtained in accordance with 5.3.2.3 or 5.3.2.4 and partly neutralise them by carefully adding with stirring, 17 ml of sodium hydroxide solution (3.17), ensuring that the temperature is kept below 40 oC.
Adjust the pH to 2,20 at room temperature using sodium hydroxide solution (3.17) and finally sodium hydroxide solution (3.18). Proceed to 5.3.4.
5.3.4.
Quantitatively transfer the pH adjusted hydrolysate (5.3.3.1 or 5.3.3.2) with citrate buffer (3.24) to a 200 ml graduated flask, and make up to the mark with buffer (3.24).
If an internal standard has not already been used, add 2,00 ml of internal standard (3.27.3) and make up to the mark with citrate buffer (3.24). Mix thoroughly.
Proceed to the chromatography step (5.4).
If the sample solutions are not being examined the same day they must be stored below 5 oC.
5.4. Chromatography
Before chromatography bring the extract (5.2) or hydrolysate (5.3.4) to room temperature. Shake the mixture and filter a suitable amount through a 0,22 μm membrane filter (4.5). The resulting clear solution is subjected to ion exchange chromatography, using an amino acid analyser (4.9).
The injection may be performed manually or automatically. It is important that the same quantity of solution ±0,5 % is added to the column for the analysis of standards and samples except when an internal standard is used, and that the sodium:amino acid ratios in the standard and sample solutions are as similar as is practicable.
In general the frequency of calibration runs depends on the stability of the ninhydrin reagent and the analytical system. The standard or sample is diluted with citrate buffer (3.24) to give a peak area of the standard of 30 %-200 % of the sample amino acid peak area.
The chromatography of amino acids will vary slightly according to the type of analyser employed and resin used. The chosen system must be capable of separating the amino acids from each other and from the ninhydrin-positive materials. In the range of operation the chromatographic system must give a linear response to changes in the amounts of amino acids added to the column.
During the chromatography step the valley:peak height ratios mentioned below apply, when an equimolar solution (of the amino acids being determined) is analysed. This equimolar solution must contain at least 30 % of the maximum load of each amino acid which can be accurately measured with the amino acid analyser system (4.9).
For separation of threonine-serine the valley:peak height ratio of the lower of the two overlapping amino acids on the chromatogram must not exceed 2:10. (if only cyst(e)ine, methionine, threonine and lysine are determined, insufficient separation from adjoining peaks will adversely influence the determination). For all other amino acids the separation must be better than 1:10.
The system must ensure that lysine is separated from ‘lysine artifacts’ and ornithine.
6. Calculation of results
The area of the sample and standard peaks is measured for each individual amino acid and the amount (X), in g amino acid per kg sample, is calculated as follows:
If an internal standard is used multiply by:
A |
= |
peak area, hydrolysate or extract |
B |
= |
peak area, calibration standard solution |
C |
= |
peak area, internal standard in hydrolysate or extract |
D |
= |
peak area, internal standard, calibration standard solution |
M |
= |
molar weight of the amino acid being determined |
c |
= |
concentration of standard in μmol/ml |
m |
= |
sample weight (g) (corrected to original weight if dried or defatted) |
V |
= |
ml total hydrolysate (5.3.4) or ml calculated total dilution volume of extract (6.1) |
Cystine and cysteine are both determined as cysteic acid in hydrolysates of oxidised sample, but calculated as cystine (C6H12N2O4S2, M 240,30 g/mol) by using M 120,15 g/mol (= 0,5 x 240,30 g/mol).
Methionine is determined as methionine sulphone in hydrolysates of oxidised sample, but calculated as methionine by using M of methionine: 149,21 g/mol.
Added free methionine is determined after extraction as methionine, for the calculation the same M is used.
6.1. |
The total dilution volume of extracts (F) for determination of free amino acids (5.2) is calculated as follows:
|
7. Evaluation of the method
The method has been tested in an intercomparison made at international level in 1990 using four different feed (mixed pig feed, broiler compound, protein concentrate, premixture). The results, after elimination of outliers, of mean and standard deviation are given in the tables in this point:
Means in g/kg
Reference material |
Amino Acid |
||||||
Threonine |
Cyst(e)ine |
Methionine |
Lysine |
||||
Mixed Pig Feed |
6,94 n = 15 |
3,01 n = 17 |
3,27 n = 17 |
9,55 n = 13 |
|||
Broiler Compound |
9,31 n = 16 |
3,92 n = 18 |
5,08 n = 18 |
13,93 n = 16 |
|||
Protein Concentrate |
22,32 n = 16 |
5,06 n = 17 |
12,01 n = 17 |
47,74 n = 15 |
|||
Premixture |
58,42 N = 16 |
— |
90,21 n = 16 |
98,03 n = 16 |
|||
|
7.1. Repeatability
The repeatability expressed as ‘within laboratory standard deviation’ of the abovementioned intercomparison is given in the tables below:
Within Laboratory Standard Deviation (Sr) in g/kg
Reference material |
Amino Acid |
||||||
Threonine |
Cyst(e)ine |
Methionine |
Lysine |
||||
Mixed Pig Feed |
0,13 n = 15 |
0,10 n = 17 |
0,11 n = 17 |
0,26 n = 13 |
|||
Broiler Compound |
0,20 n = 16 |
0,11 n = 18 |
0,16 n = 18 |
0,28 n = 16 |
|||
Protein Concentrate |
0,48 n = 16 |
0,13 n = 17 |
0,27 n = 17 |
0,99 n = 15 |
|||
Premixture |
1,30 N = 16 |
— |
2,19 n = 16 |
2,06 n = 16 |
|||
|
Coefficient of Variation (%) for Within Laboratory Standard Deviation (Sr)
Reference material |
Amino Acid |
||||||
Threonine |
Cyst(e)ine |
Methionine |
Lysine |
||||
Mixed Pig Feed |
1,9 n = 15 |
3,3 n = 17 |
3,4 n = 17 |
2,8 n = 13 |
|||
Broiler Compound |
2,1 n = 16 |
2,8 n = 18 |
3,1 n = 18 |
2,1 n = 16 |
|||
Protein Concentrate |
2,7 n = 16 |
2,6 n = 17 |
2,2 n = 17 |
2,4 n = 15 |
|||
Premixture |
2,2 n = 16 |
— |
2,4 n = 16 |
2,1 n = 16 |
|||
|
7.2 Reproducibility
The results for between laboratory standard deviation by the abovementioned intercomparison are given in the table below:
Between Laboratory Standard Deviation (SR) in g/kg
Reference material |
Amino Acid |
||||||
Threonine |
Cyst(e)ine |
Methionine |
Lysine |
||||
Mixed Pig Feed |
0,28 n = 15 |
0,30 n = 17 |
0,23 n = 17 |
0,30 n = 13 |
|||
Broiler Compound |
0,48 n = 16 |
0,34 n = 18 |
0,55 n = 18 |
0,75 n = 16 |
|||
Protein Concentrate |
0,85 n = 16 |
0,62 n = 17 |
1,57 n = 17 |
1,24 n = 15 |
|||
Premixture |
2,49 n = 16 |
— |
6,20 n = 16 |
6,62 n = 16 |
|||
|
Coefficient of Variation (%) for Between Laboratory Standard Deviation (SR)
Reference material |
Amino Acid |
||||||
Threonine |
Cyst(e)ine |
Methionine |
Lysine |
||||
Mixed Pig Feed |
4,1 n = 15 |
9,9 n = 17 |
7,0 n = 17 |
3,2 n = 13 |
|||
Broiler Compound |
5,2 n = 16 |
8,8 n = 18 |
10,9 n = 18 |
5,4 n = 16 |
|||
Protein Concentrate |
3,8 n = 16 |
12,3 n = 17 |
13,0 n = 17 |
3,0 n = 15 |
|||
Premixture |
4,3 n = 16 |
— |
6,9 n = 16 |
6,7 n = 16 |
|||
|
8. Use of reference materials
The correct application of the method shall be verified by making replicate measurements of certified reference materials when available. Calibration with certified amino acid calibration solution is recommended.
9. Observations
9.1. |
Because of differences between amino acid analysers the final concentrations of the calibration solutions of standard amino acids (see 3.27.4 and 3.27.5) and of the hydrolysate (see 5.3.4) shall be taken as a guideline.
The range of linear response of the apparatus has to be checked for all amino acids. The standard solution is diluted with citrate buffer to give peak areas in the middle of the range. |
9.2. |
Where high performance liquid chromatographic equipment is used to analyse the hydrolysates, the experimental conditions must be optimised in accordance with the manufacturer's recommendations. |
9.3. |
By applying the method to feed containing more than 1 % chloride (concentrate, mineral feeds, supplementary feeds) underestimation of methionine could occur and special treatment has to be done. |
G. DETERMINATION OF TRYPTOPHAN
1. Purpose and scope
The method makes the determination possible of the total and free tryptophan in feed. It does not distinguish between D- and L- forms.
2. Principle
For the determination of the total tryptophan, the sample is hydrolysed under alkaline conditions with saturated barium hydroxide solution and heated to 110 oC for 20 hours. After hydrolysis internal standard is added.
For the determination of free tryptophan, the sample is extracted under mild acidic conditions in the presence of internal standard.
The tryptophan and the internal standard in the hydrolysate or in the extract are determined by HPLC with fluorescence detection.
3. Reagents
3.1. |
Double distilled water or water of equivalent quality must be used (conductivity < 10 μS/cm). |
3.2. |
Standard substance: tryptophan (purity/content ≥ 99 %) dried under vacuum over phosphorous pentoxide. |
3.3. |
Internal standard substance: α-methyl-tryptophan (purity/content ≥ 99 %), dried under vacuum over phosphorous pentoxide. |
3.4. |
Barium hydroxide octa-hydrate (care shall be taken not to expose the Ba(OH)2 .8 H2O excessively to air in order to avoid formation of BaCO3, which could disturb the determination) (see observation 9.3). |
3.5. |
Sodium hydroxide. |
3.6. |
Ortho-phosphoric acid, w (w/w) = 85 %. |
3.7. |
Hydrochloric acid, ρ201,19 g/ml. |
3.8. |
Methanol, equivalent to HPLC grade. |
3.9. |
Light petroleum, boiling range 40-60 oC. |
3.10. |
Sodium hydroxide solution, c = 1 mol/l:
Dissolve 40,0 g NaOH (3.5) in water and make up to 1 litre with water (3.1). |
3.11. |
Hydrochloric acid, c = 6 mol/l:
Take 492 ml HCl (3.7) and make up to 1 litre with water. |
3.12. |
Hydrochloric acid, c = 1 mol/l:
Take 82 ml HCl (3.7) and make up to 1 litre with water. |
3.13. |
Hydrochloric acid, c = 0,1 mol/l:
Take 8,2 ml HCl (3.7) and make up to 1 litre with water. |
3.14. |
Ortho-phosphoric acid, c = 0,5 mol/l:
Take 34 ml ortho-phosphoric acid (3.6) and make up to 1 litre with water (3.1). |
3.15. |
Concentrated solution of tryptophan (3.2), c = 2,50 μmol/ml:
In a 500 ml volumetric flask dissolve 0,2553 g tryptophan (3.2) in hydrochloric acid (3.13) and make up to the mark with hydrochloric acid (3.13). Store at - 18 oC for a maximum of 4 weeks. |
3.16. |
Concentrated internal standard solution, c = 2,50 μmol/ml:
In a 500 ml volumetric flask dissolve 0,2728 g α-methyl-tryptophan (3.3) in hydrochloric acid (3.13) and make up to the mark with hydrochloric acid (3.13). Store at - 18 oC for a maximum of 4 weeks. |
3.17. |
Calibration standard solution of tryptophan and internal standard:
Take 2,00 ml concentrated solution of tryptophan (3.15), and 2,00 ml of concentrated internal standard (α-methyl-tryptophan) solution (3.16). Dilute with water (3.1) and methanol (3.8) to approximately the same volume and to approximately the same concentration of methanol (10 %-30 %) as the finished hydrolysate. This solution must be prepared freshly before use. Protect from direct sunlight during preparation. |
3.18. |
Acetic acid |
3.19. |
1,1,1-trichloro-2-methyl-2-propanol. |
3.20. |
Ethanolamine w (w/w) > 98 %. |
3.21. |
Solution of 1 g 1,1,1-trichloro-2-methyl-2-propanol (3.19) in 100 ml methanol (3.8). |
3.22. |
Mobile phase for HPLC: 3,00 g acetic acid (3.18) + 900 ml water (3.1) +50,0 ml solution (3.21) of 1,1,1-trichloro-2-methyl-2-propanol (3.19) in methanol (3.8) (1g/100ml). Adjust pH to 5,00 using ethanolamine (3.20). Make up to 1 000 ml with water (3.1). |
4. Apparatus
4.1. |
HPLC equipment with a spectrofluorometric detector. |
4.2. |
Liquid chromatographic column, 125 mm x 4 mm, C18, 3 μm packing, or equivalent. |
4.3. |
pH-meter. |
4.4. |
Polypropylene flask, capacity 125 ml, with wide neck and screw cap. |
4.5. |
Membrane filter, 0,45 μm. |
4.6. |
Autoclave, 110 (± 2) oC, 1,4 (±0,1) bar. |
4.7. |
Mechanical shaker or magnetic stirrer. |
4.8. |
Vortex mixer. |
5. Procedure
5.1. Preparation of samples
The sample is ground to pass through a 0,5 mm sieve. Samples high in moisture must be either air-dried at a temperature not exceeding 50 oC or freeze dried prior to grinding. Samples with high fat content shall be extracted with light petroleum (3.9) prior to grinding.
5.2. Determination of free tryptophan (extract)
Weigh to the nearest 1 mg an appropriate amount (1-5 g) of the prepared sample (5.1), into a conical flask. Add 100,0 ml hydrochloric acid, (3.13) and 5,00 ml concentrated internal standard solution (3.16). Shake or mix for 60 min. using a mechanical shaker or a magnetic stirrer (4.7). Allow the sediment to settle and pipette 10,0 ml of the supernatant solution into a beaker. Add 5 ml ortho-phosphoric acid (3.14). Adjust the pH to 3 using sodium hydroxide (3.10). Add sufficient methanol (3.8) to give a concentration of between 10 % and 30 % of methanol in the final volume. Transfer to a volumetric flask of appropriate volume and dilute with water to a volume necessary for the chromatography (approx. the same volume as the calibration standard solution (3.17)).
Filter a few ml of the solution through a 0,45 μm membrane filter (4.5) before injection on the HPLC column. Proceed to the chromatography step according to paragraph 5.4.
Protect standard solution and extracts against direct sunlight. If it is not possible to analyse the extracts the same day, the extracts may be stored at 5 oC for a maximum of 3 days.
5.3. Determination of total tryptophan (hydrolysate)
Weigh to the nearest 0,2 mg from 0,1 to 1 g of the prepared sample (5.1) into the polypropylene flask (4.4). The weighed sample portion shall have a nitrogen content of about 10 mg. Add 8,4 g barium hydroxide octa-hydrate (3.4) and 10 ml water. Mix on a vortex mixer (4.8) or magnetic stirrer (4.7). Leave the teflon coated magnet in the mixture. Wash down the walls of the vessel with 4 ml water. Put on the screw cap and close the flask loosely. Transfer to an autoclave (4.6) with boiling water and steam for 30-60 minutes. Close the autoclave and autoclave at 110 (± 2) oC for 20 hours.
Before opening the autoclave reduce the temperature to just under 100 oC. In order to avoid crystallisation of Ba(OH)2 · 8 H2O, add to the warm mixture 30 ml water which is at room temperature. Shake or stir gently. Add 2,00 ml concentrated internal standard (α-methyl-tryptophan) solution (3.16). Cool the vessels on water/ice bath for 15 minutes.
Then, add 5 ml ortho-phosphoric acid (3.14). Keep the vessel in the cooling bath and neutralise with HCl (3.11) whilst stirring and adjust the pH to 3,0 using HCl (3.12). Add sufficient methanol to give a concentration of between 10 % and 30 % of methanol in the final volume. Transfer to a volumetric flask of appropriate volume and dilute with water to the defined volume necessary for the chromatography (for example 100 ml). The addition of methanol shall not cause precipitation.
Filter a few ml of the solution through a 0,45 μm membrane filter (4.5) before injection on the HPLC column. Proceed to the chromatography step according to paragraph 5.4.
Protect standard solution and hydrolysates against direct sunlight. If it is not possible to analyse the hydrolysates the same day, they may be stored at 5 oC for a maximum of 3 days.
5.4. HPLC determination
The following conditions for isocratic elution are offered for guidance; other conditions may be used, provided they yield equivalent results (see also observations 9.1 and 9.2):
Liquid chromatographic column (4.2): |
125 mm x 4 mm, C18, 3 μm packing or equivalent |
Column temperature: |
Room temperature |
Mobile phase (3.22): |
3,00 g acetic acid (3.18) + 900 ml water (3.1) +50,0 ml solution (3.21) of 1,1,1-trichloro-2- methyl-2-propanol (3.19) in methanol (3.8) (1 g/100 ml). Adjust pH to 5,00 using ethanolamine (3.20). Make up to 1 000 ml with water (3.1) |
Flow rate: |
1 ml/min. |
Total run time: |
approx. 34 min. |
Detection wavelength: |
excitation: 280 nm, emission: 356 nm. |
Injection volume |
20 μl |
6. Calculation of results
The amount of tryptophane (X), in g per 100g sample, is calculated as follows:
A |
= |
peak area of internal standard, calibration standard solution (3.17) |
B |
= |
peak area of tryptophan, extract (5.2) or hydrolysate (5.3) |
V1 |
= |
volume in ml (2 ml) of concentrated tryptophan solution (3.15) added to the calibration solution (3.17) |
c |
= |
concentration in μmol/ml (= 2,50) of concentrated tryptophan solution (3.15) added to calibration solution (3.17) |
V2 |
= |
volume in ml of concentrated internal standard solution (3.16) added at the extraction (5.2) (= 5,00 ml) or to the hydrolysate (5.3) (= 2,00 ml) |
C |
= |
peak area of internal standard, extract (5.2) or hydrolysate (5.3) |
D |
= |
peak area of tryptophan, calibration standard solution (3.17) |
V3 |
= |
volume in ml (= 2,00 ml) of concentrated internal standard solution (3.16) added to calibration standard solution (3.17) |
m |
= |
sample weight in g (corrected to original weight if dried and/or defatted) |
M |
= |
molar weight of tryptophan (= 204,23 g/mol) |
7. Repeatability
The difference between the results of two parallel determinations carried out on the same sample must not exceed 10 % relative to the highest result.
8. Results of a collaborative study
An EC collaborative study (4th intercomparison) was arranged in which three samples were analysed by up to 12 laboratories to certify the method for hydrolysis. Replicate (5) analyses were performed on each sample. The results are given in the following table:
|
Sample 1 Pig feed |
Sample 2 Pig feed supplemented with L-tryptophan |
Sample 3 Feed concentrate for pigs |
L |
12 |
12 |
12 |
n |
50 |
55 |
50 |
Mean [g/kg] |
2,42 |
3,40 |
4,22 |
sr [g/kg] |
0,05 |
0,05 |
0,08 |
r [g/kg] |
0,14 |
0,14 |
0,22 |
CVr [%] |
1,9 |
1,6 |
1,9 |
SR [g/kg] |
0,15 |
0,20 |
0,09 |
R [g/kg] |
0,42 |
0,56 |
0,25 |
CVR [%] |
6,3 |
6,0 |
2,2 |
L |
= |
number of laboratories submitting results |
n |
= |
number of single results retained eliminating outliers (identified by Cochran, Dixon outlier test) |
sr |
= |
standard deviation of repeatability |
SR |
= |
standard deviation of reproducibility |
r |
= |
repeatability |
R |
= |
reproducibility |
CVr |
= |
coefficient of variation of repeatability, % |
CVR |
= |
coefficient of variation of reproducibility, % |
Another EC collaborative study (3rd intercomparison) was arranged in which two samples were analysed by up to 13 laboratories to certify the method for extraction of free tryptophan. Replicate (5) analyses were performed on each sample. The results are given in the following table:
|
Sample 4 Wheat and soya mixture |
Sample 5 Wheat and soya mixture (= sample 4) with added tryptophan (0,457 g/kg1) |
L |
12 |
12 |
n |
55 |
60 |
Mean [g/kg] |
0,391 |
0,931 |
sr [g/kg] |
0,005 |
0,012 |
r [g/kg] |
0,014 |
0,034 |
CVr [%] |
1,34 |
1,34 |
SR [g/kg] |
0,018 |
0,048 |
R [g/kg] |
0,050 |
0,134 |
CVR [%] |
4,71 |
5,11 |
L |
= |
number of laboratories submitting results |
n |
= |
number of single results retained after eliminating outliers (identified by Cochran, Dixon outlier test) |
sr |
= |
standard deviation of repeatability |
SR |
= |
standard deviation of reproducibility |
r |
= |
repeatability |
R |
= |
reproducibility |
CVr |
= |
coefficient of variation of repeatability, % |
CVR |
= |
coefficient of variation of reproducibility, % |
Another EC intercomparison study was arranged in which four samples were analysed by up to 7 laboratories with the aim of a tryptophan certification for hydrolysis. The results are given below. Replicate (5) analyses were performed on each sample.
|
Sample 1 Mixed pig feed (CRM 117) |
Sample 2 Low fat fish meal (CRM 118) |
Sample 3 Soybean meal (CRM 119) |
Sample 4 Skimmed milk powder (CRM 120) |
L |
7 |
7 |
7 |
7 |
n |
25 |
30 |
30 |
30 |
Mean [g/kg] |
2,064 |
8,801 |
6,882 |
5,236 |
sr [g/kg] |
0,021 |
0,101 |
0,089 |
0,040 |
r [g/kg] |
0,059 |
0,283 |
0,249 |
0,112 |
CVr [%] |
1,04 |
1,15 |
1,30 |
0,76 |
SR [g/kg] |
0,031 |
0,413 |
0,283 |
0,221 |
R [g/kg] |
0,087 |
1,156 |
0,792 |
0,619 |
CVR [%] |
1,48 |
4,69 |
4,11 |
4,22 |
L |
= |
number of laboratories submitting results |
n |
= |
number of single results retained after eliminating outliers (identified by Cochran, Dixon outlier test) |
sr |
= |
standard deviation of repeatability |
SR |
= |
standard deviation of reproducibility |
r |
= |
repeatability |
R |
= |
reproducibility |
CVr |
= |
coefficient of variation of repeatability, % |
CVR |
= |
coefficient of variation of reproducibility, % |
9. Observations
9.1. |
Following special chromatographic conditions may give better separation between tryptophan and α-methyl-tryptophan.
Isocratic elution followed by gradient column cleaning:
|
9.2. |
The chromatography will vary according to the type of HPLC and column packing material used. The chosen system must be capable of giving baseline separation between the tryptophan and the internal standard. Moreover it is important that degradation products are well separated from the tryptophan and the internal standard. Hydrolysates without internal standard shall be run in order to check the base line under the internal standard for impurities. It is important that the run time is sufficiently long for the elution of all the degradation products, otherwise late eluting peaks may interfere with subsequent chromatographic runs.
In the range of operation, the chromatographic system shall give linear response. The linear response shall be measured with a constant (the normal) concentration of the internal standard and varying concentrations of tryptophan. It is of importance that the size of both the tryptophan and internal standard peaks are within the linear range of the HPLC/fluorescence system. If either the tryptophan and/or the internal standard peak(s) is (are) too small or too high the analysis shall be repeated with another sample size and/or a changed final volume. |
9.3. |
Barium hydroxide
With age barium hydroxide becomes more difficult to dissolve. This results in an unclear solution for the HPLC determination, which may produce low results for tryptophan. |
H. DETERMINATION OF CRUDE OILS AND FATS
1. Purpose and scope
This method is for the determination of crude oils and fats in feed. It does not cover the analysis of oil seeds and oleaginous fruit.
The use of the two procedures described below depends on the nature and composition of the feed and the reason for carrying out the analysis.
1.1. Procedure A — Directly extractable crude oils and fats
This method is applicable to feed materials of plant origin, except those included within the scope of Procedure B.
1.2. Procedure B — Total crude oils and fats
This method is applicable to feed materials of animal origin and to all compound feeds. It is to be used for all materials from which the oils and fats cannot be completely extracted without prior hydrolysis (e.g. glutens, yeast, potato proteins and products subjected to processes such as extrusion, flaking and heating).
1.3. Interpretation of results
In all cases where a higher result is obtained by using Procedure B than by Procedure A, the result obtained by Procedure B shall be accepted as the true value.
2. Principle
2.1. Procedure A
The sample is extracted with light petroleum. The solvent is distilled off and the residue dried and weighed.
2.2. Procedure B
The sample is treated under heating with hydrochloric acid. The mixture is cooled and filtered. The residue is washed and dried and submitted to the determination according to Procedure A.
3. Reagents
3.1. |
Light petroleum, boiling range: 40 to 60 oC. The bromine value must be less than 1 and the residue on evaporation less than 2 mg/100 ml. |
3.2. |
Sodium sulfate, anhydrous. |
3.3. |
Hydrochloric acid, c = 3 mol/l |
3.4. |
Filtration aid, e.g. Kieselguhr, Hyflo-supercel. |
4. Apparatus
4.1. |
Extraction apparatus. If fitted with a siphon (Soxhlet apparatus), the reflux rate shall be such as to produce about 10 cycles per hour; if of the non-siphoning type, the reflux rate shall be about 10 ml per minute. |
4.2. |
Extraction thimbles, free of matter soluble in light petroleum and having a porosity consistent with the requirements of point 4.1. |
4.3. |
Drying oven, either a vacuum oven set at 75 ± 3 oC or an air-oven set at 100 ± 3 oC. |
5. Procedure
5.1. Procedure A (see point 8.1)
Weigh 5 g of the sample to the nearest 1 mg, transfer it to an extraction thimble (4.2) and cover with a fat-free wad of cotton wool.
Place the thimble in an extractor (4.1) and extract for six hours with light petroleum (3.1). Collect the light petroleum extract in a dry, weighed flask containing fragments of pumice stone (2).
Distil off the solvent. Dry the residue maintaining the flask for one and a half hours in the drying oven (4.3). Leave to cool in a desiccator and weigh. Dry again for 30 minutes to ensure that the weight of the oils and fats remains constant (loss in weight between two successive weighings must be less than or equal to 1 mg).
5.2. Procedure B
Weigh 2,5 g of the sample to the nearest 1 mg (see point 8.2), place in a 400 ml beaker or a 300 ml conical flask and add 100 ml of hydrochloric acid (3.3) and fragments of pumice stone. Cover the beaker with a watch glass or fit the conical flask with a reflux condenser. Bring the mixture to a gentle boil over a low flame or a hot-plate and keep it there for one hour. Do not allow the product to stick to the sides of the container.
Cool and add a quantity of filtration aid (3.4) sufficient to prevent any loss of oil and fat during filtration. Filter through a moistened, fat-free, double filter paper. Wash the residue in cold water until a neutral filtrate is obtained. Check that the filtrate does not contain any oil or fats. Their presence indicates that the sample must be extracted with light petroleum, using Procedure A, before hydrolysis.
Place the double filter paper containing the residue on a watch glass and dry for one and a half hours in the air oven (4.3) at 100 ± 3 oC.
Place the double filter paper containing the dry residue in an extraction thimble (4.2) and cover with a fat-free wad of cotton wool. Place the thimble in an extractor (4.1) and proceed as indicated in the second and third paragraphs of point 5.1.
6. Expression of result
Express the weight of the residue as a percentage of the sample.
7. Repeatability
The difference between the results of two parallel determinations carried out on the same sample by the same analyst shall not exceed:
— |
0,2 %, in absolute value, for contents of crude oils and fats lower than 5 %, |
— |
4,0 % relative to the highest result for contents of 5 % to 10 %, |
— |
0,4 %, in absolute value, for contents above 10 %. |
8. Observations
8.1. |
For products with a high content of oils and fats, which are difficult to crush or unsuitable for drawing a homogeneous reduced test sample, proceed as follows.
Weigh 20 g of the sample to the nearest 1 mg and mix with 10 g or more of anhydrous sodium sulfate (3.2). Extract with light petroleum (3.1) as indicated in point 5.1. Make up the extract obtained to 500 ml with light petroleum (3.1) and mix. Take 50 ml of the solution and place in a small, dry, weighed flask containing fragments of pumice stone. Distil off the solvent, dry and proceed as indicated in the last paragraph of point 5.1. Eliminate the solvent from the extraction residue left in the thimble, crush the residue to a fineness of 1 mm, return it to the extraction thimble (do not add sodium sulfate) and proceed as indicated in the second and third paragraphs of point 5.1. Calculate the content of oils and fats as a percentage of the sample by using the following formula: (10m1 + m2) × 5 where:
|
8.2. |
For products low in oils and fats the test sample may be increased to 5 g. |
8.3. |
Pet foods containing a high content of water may need to be mixed with anhydrous sodium sulfate prior to hydrolysis and extraction as per Procedure B. |
8.4. |
In paragraph 5.2 it may be more effective to use hot water in place of cold water to wash the residue after filtration. |
8.5. |
The drying time of 1,5 h may need to be extended for some feed. Excessive drying shall be avoided as this can lead to low results. A microwave oven can also be used. |
8.6. |
Pre-extraction by Procedure A prior to hydrolysis and re-extraction by Procedure B is recommended if the crude oil/fat content is greater than 15 %. To some extent this depends on the nature of the feed and the nature of the oil/fat in the feed. |
I. DETERMINATION OF CRUDE FIBRE
1. Purpose and scope
This method makes it possible to determine fat-free organic substances in feed which are insoluble in acid and alkaline media and are conventionally described as crude fibre.
2. Principle
The sample, defatted where necessary, is treated successively with boiling solutions of sulphuric acid and potassium hydroxide of specified concentrations. The residue is separated by filtration on a sintered-glass filter washed, dried, weighed and ashed within a range of 475 to 500 oC. The loss of weight resulting from ashing corresponds to the crude fibre present in the test sample.
3. Reagents
3.1. |
Sulphuric acid, c = 0,13 mol/l. |
3.2. |
Anti-foaming agent (e.g. n-octanol). |
3.3. |
Filter aid (Celite 545 or equivalent), heated at 500 oC for four hours (8.6). |
3.4. |
Acetone. |
3.5. |
Light petroleum boiling-range 40 to 60 oC. |
3.6. |
Hydrochloric acid, c = 0,5 mol/l. |
3.7. |
Potassium hydroxide solution, c = 0,23 mol/l. |
4. Apparatus
4.1. |
Heating unit for digestion with sulphuric acid and potassium hydroxide solution, equipped with a support for the filter crucible (4.2) and provided with an outlet tube with a tap to the liquid outlet and vacuum, possibly with compressed air. Before use each day preheat the unit with boiling water for five minutes. |
4.2. |
Glass filter crucible with fused sintered glass filter plate pore size 40-90 μm. Before first use, heat to 500 oC for a few minutes and cool (8.6). |
4.3. |
Cylinder of at least 270 ml with a reflux condenser, suitable for boiling. |
4.4. |
Drying oven with thermostat. |
4.5. |
Muffle furnace with thermostat. |
4.6. |
Extraction unit consisting of a support plate for the filter crucible (4.2) and with a discharge pipe with a tap to the vacuum and liquid outlet. |
4.7. |
Connecting rings to assemble the heating unit (4.1), crucible (4.2) and cylinder (4.3) and to connect the cold extraction unit (4.6) and crucible. |
5. Procedure
Weigh out 1 g of the prepared sample to the nearest 1 mg and place it in the crucible (4.2), (see observations 8.1, 8.2 and 8.3) and add 1 g of filter aid (3.3).
Assemble the heating unit (4.1) and the filter crucible (4.2), then attach the cylinder (4.3) to the crucible. Pour 150 ml of boiling sulphuric acid (3.1) into the assembled cylinder and crucible and if necessary add a few drops of anti-foaming agent (3.2).
Bring the liquid to the boil within 5 ± 2 minutes and boil vigorously for exactly 30 minutes.
Open the tap to the discharge pipe (4.1) and, under vacuum, filter the sulphuric acid through the filter crucible and wash the residue with three consecutive 30 ml portions of boiling water, ensuring that the residue is filtered dry after each washing.
Close the outlet tap and pour 150 ml boiling potassium hydroxide solution (3.7) to the assembled cylinder and crucible and add a few drops of anti-foaming agent (3.2). Bring the liquid to boiling point within 5 ± 2 minutes and boil vigorously for exactly 30 minutes. Filter and repeat the washing procedure used for the sulphuric acid step.
After the final washing and drying, disconnect the crucible and its contents and reconnect it to the cold extraction unit (4.6). Apply the vacuum and wash the residue in the crucible with three consecutive 25 ml portions of acetone (3.4) ensuring that the residue is filtered dry after each washing.
Dry the crucible to constant weight in the oven at 130 oC. After each drying cool in the desiccator and weigh rapidly. Place the crucible in a muffle furnace and ash to constant weight (loss in weight between two successive weightings must be less than or equal to 2 mg) at 475 oC to 500 oC for at least 30 minutes.
After each heating cool first in the furnace and then in the desiccator before weighing.
Carry out a blank test without the sample. Loss of weight resulting from ashing must not exceed 4 mg.
6. Calculation of results
The crude fibre content as a percentage of the sample is given by the expression:
where:
m |
= |
weight of sample in g, |
m0 |
= |
loss of weight after ashing during the determination, in g, |
m1 |
= |
loss of weight after ashing during the blank test, in g. |
7. Repeatability
The difference between two parallel determinations carried out on the same sample must not exceed:
— |
0,6 % in absolute value for crude fibre contents lower than 10 %, |
— |
6 % relative to the higher result, for crude fibre contents equal to or greater than 10 %. |
8. Observations
8.1. |
Feed containing more than 10 % crude fat must be defatted prior to analysis with light petroleum (3.5). Connect the filter crucible (4.2) and its contents to the cold extraction unit (4.6) and apply vacuum and wash the residue with three consecutive 30 ml portions of light petroleum, ensuring that the residue is dry. Connect the crucible and its contents to the heating unit (4.1) and continue as described under 5. |
8.2. |
Feed containing fats which cannot be extracted directly with light petroleum (3.5) must be defatted as shown in 8.1 and defatted once more after boiling with acid. After boiling with acid and the subsequent washing connect the crucible and its contents to the cold extraction unit (4.6) and wash three times with 30 ml acetone followed by three further washings with 30 ml portions of light petroleum. Filter under vacuum until dry and continue the analysis as described under 5, beginning with potassium hydroxide treatment. |
8.3. |
If the feed contains over 5 % of carbonates, expressed as calcium carbonate, connect the crucible (4.2) with the weighed sample to the heating unit (4.1). Wash the sample three times with 30 ml hydrochloric acid (3.6). After each addition let the sample stand for about one minute before filtering. Wash once with 30 ml water and then continue as described under 5. |
8.4. |
If an apparatus in the form of a stand is used (several crucibles attached to the same heating unit) no two individual determinations on the same sample for analysis may be carried out in the same series. |
8.5. |
If after boiling it is difficult to filter the acidic and basic solutions, use compressed air through the discharge pipe of the heating unit and then continue filtering. |
8.6. |
The temperature for ashing shall not be higher than 500 oC in order to extend the lifetime of the glass filter crucibles. Care must be taken to avoid excessive thermal shock during heating and cooling cycles. |
J. DETERMINATION OF SUGAR
1. Purpose and scope
This method makes it possible to determine the amount of reducing sugars and total sugars after inversion, expressed as glucose or where appropriate as sucrose, converting by the factor 0,95. It is applicable to compound feed. Special methods are provided for other feed. Where necessary, lactose shall be measured separately and taken into account when calculating the results.
2. Principle
The sugars are extracted in dilute ethanol; the solution is clarified with Carrez solutions I and II. After eliminating the ethanol, the quantities before and after inversion are determined by the Luff-Schoorl method.
3. Reagents
3.1. |
Ethanol solution 40 % (v/v) density: 0,948 g/ml at 20 oC, neutralised to phenolphthalein. |
3.2. |
Carrez solution I: dissolve in water 21,9 g of zinc acetate Zn (CH3COO)2 2H2O and 3 g of glacial acetic acid. Make up to 100 ml with water. |
3.3. |
Carrez solution II: dissolve in water 10,6 g of potassium ferrocyanide K4Fe (CN)6 3H2O. Make up to 100 ml with water. |
3.4. |
Methyl orange, solution 0,1 % (w/v). |
3.5. |
Hydrochloric acid 4 mol/litre. |
3.6. |
Hydrochloric acid 0,1 mol/litre. |
3.7. |
Sodium hydroxide solution 0,1 mol/litre. |
3.8. |
Luff-Schoorl reagent:
Stirring carefully, pour the citric acid solution (3.8.2) into the sodium carbonate solution (3.8.3). Add the copper sulphate solution (3.8.1) and make up to 1 litre with water. Leave to settle overnight and filter. Check the concentration of the reagent thus obtained (Cu 0,05 mol/litre; Na2 CO3 1 mol/litre), see (5.4) last paragraph. The solution's pH shall be approximately 9,4. |
3.8.1. |
Copper sulphate solution: dissolve 25 g of copper sulphate, Cu SO4 5H2O, free from iron, in 100 ml of water. |
3.8.2. |
Citric acid solution: dissolve 50 g of citric acid, C6H8O7·H2O in 50 ml of water. |
3.8.3. |
Sodium carbonate solution: dissolve 143,8 g of anhydrous sodium carbonate in approximately 300 ml of warm water. Leave to cool. |
3.9. |
Sodium thiosulphate solution 0,1 mol/litre. |
3.10. |
Starch solution: add a mixture of 5 g of soluble starch in 30 ml of water to 1 litre of boiling water. Boil for three minutes, leave to cool and if necessary add 10 mg of mercuric iodide as a preservative. |
3.11. |
Sulphuric acid 3 mol/litre. |
3.12. |
Potassium iodide, solution 30 % (w/v). |
3.13. |
Granulated pumice stone boiled in hydrochloric acid, washed in water and dried. |
3.14. |
3-methylbutan-l-ol. |
4. Apparatus
Mixer (tumbler): approximately 35 to 40 r.p.m.
5. Procedure
5.1. Extraction of sample
Weigh 2,5 g of the sample to the nearest mg and place in a 250 ml volumetric flask. Add 200 ml of ethanol (3.1) and mix in the tumbler for one hour. Add 5 ml of Carrez solution I (3.2) and stir for approximately 30 seconds. Add 5 ml of Carrez solution II (3.3) and again stir for one minute. Make up to volume with ethanol (3.1), homogenise and filter. Remove 200 ml of the filtrate and evaporate to approximately half volume in order to eliminate most of the ethanol. Transfer the evaporation residue quantitatively to a 200 ml volumetric flask using warm water, cool, bring up to volume with water, homogenise and filter if necessary. This solution will be used to determine the amount of reducing sugars and, after inversion, of total sugars.
5.2. Determination of reducing sugars
Using a pipette, remove not more than 25 ml of the solution containing less than 60 mg of reducing sugars expressed as glucose. If necessary, make up to 25 ml with distilled water and determine the content of reducing sugars by the Luff-Schoorl method. The result is expressed as the percentage content of glucose in the sample.
5.3. Determination of total sugars after inversion
Using a pipette take 50 ml of the solution and transfer to a 100 ml volumetric flask. Add a few drops of methyl orange solution (3.4) then, carefully and stirring continuously, add hydrochloric acid (3.5) until the liquid turns a definite red. Add 15 ml of hydrochloric acid (3.6), immerse the flask in a fast boiling water bath and keep there for 30 minutes. Cool rapidly to approximately 20 oC and add 15 ml of sodium hydroxide solution (3.7). Make up to 100 ml with water and homogenise. Remove not more than 25 ml containing less than 60 mg of reducing sugars expressed as glucose. If necessary, make up to 25 ml with distilled water and determine the content of reducing sugars by the Luff-Schoorl method. The result is expressed as the percentage of glucose or, where appropriate, sucrose, by multiplying by the factor 0,95.
5.4. Titration by the Luff-Schoorl method
Using a pipette, take 25 ml of Luff-Schoorl reagent (3.8) and transfer to a 300 ml Erlenmeyer flask; add exactly 25 ml of the clarified sugar solution. Add 2 granules of pumice stone (3.13), heat, stirring by hand, over a free flame of medium height and bring the liquid to the boil in approximately two minutes. Place the Erlenmeyer immediately on an asbestos-coated wire gauze with a hole approximately 6 cm in diameter under which a flame has been lit. The flame shall be regulated in such a way that only the base of the Erlenmeyer is heated. Fit a reflux condenser to the Erlenmeyer flask. Boil for exactly 10 minutes. Cool immediately in cold water and after approximately five minutes titrate as follows:
Add 10 ml of potassium iodide solution (3.12) and immediately afterwards (carefully, because of the risk of abundant foaming), add 25 ml of sulphuric acid (3.11). Titrate with sodium thiosulphate solution (3.9) until a dull yellow colour appears, add the starch indicator (3.10) and complete titration.
Carry out the same titration on an accurately measured mixture of 25 ml of Luff-Schoorl reagent (3.8) and 25 ml of water, after adding 10 ml of potassium iodide solution (3.12) and 25 ml of sulphuric acid (3.11) without boiling.
6. Calculation of results
Using the table establish the amount of glucose in mg which corresponds to the difference between the values of the two titrations, expressed in mg of sodium thiosulphate 0,1 mol/litre. Express the result as a percentage of the sample.
7. Special procedures
7.1. |
In the case of feed which are rich in molasses and other feed which are not particularly homogeneous, weigh out 20 g and place with 500 ml of water in a 1 litre volumetric flask. Mix for one hour in the tumbler. Clarify using Carrez 1 (3.2) and II (3.3) reagents as described under 5.1, this time however using four times the quantities of each reagent. Bring up to volume with 80 % ethanol (v/v).
Homogenise and filter. Eliminate the ethanol as described under 5.1. If there is no dextrinised starch, bring up to volume with distilled water. |
7.2. |
In the case of molasses and feed materials which are rich in sugar and almost starch-free (carobs, dried beetroot cossettes etc.), weigh out 5 g, place in a 250 ml volumetric flask, add 200 ml of distilled water and mix in the tumbler for one hour, or more if necessary. Clarify using Carrez I (3.2) and II (3.3) reagents as described under 5.1. Bring up to volume with cold water, homogenise and filter. In order to determine the amount of total sugars, continue as described under 5.3. |
8. Observations
8.1. |
In order to prevent foaming it is advisable to add (irrespective of the volume) approximately 1 ml of 3-methylbutan-l-ol (3.14) before boiling with Luff-Schoorl reagent. |
8.2. |
The difference between the content of total sugars after inversion, expressed as glucose, and the content of reducing sugars, expressed as glucose, multiplied by 0,95, gives the percentage content of sucrose. |
8.3. |
In order to determine the content of reducing sugars, excluding lactose, two methods may be adopted: |
8.3.1. |
For an approximate calculation, multiply by 0,675 the lactose content established by a different method of analysis and subtract the result obtained from the content of reducing sugars. |
8.3.2. |
For an accurate calculation of reducing sugars, excluding lactose, the same sample must be used for the two final determinations. One of the analyses is carried out on part of the solution obtained under 5.1, the other on part of the solution obtained during the determination of lactose by the method laid down for that purpose (after fermenting the other types of sugar and clarifying).
In both cases the amount of sugar present is determined by the Luff-Schoorl method and calculated in mg of glucose. One of the values is subtracted from the other and the difference is expressed as a percentage of the sample. Example: The two volumes taken correspond, for each determination, to a sample of 250 mg. In the first case 17 ml of sodium thiosulphate solution 0,1 mol/litre corresponding to 44,2 mg of glucose is consumed; in the second, 11 ml, corresponding to 27,6 mg of glucose. The difference is 16,6 mg of glucose. The content of reducing sugars (excluding lactose), calculated as glucose, is therefore:
|
Table of values for 25 ml of Luff-Schoorl reagent
ml of Na2 S2 O30,1 mol/litre, two minutes' heating, 10 minutes' boiling
Na2 S2 O3 0,1 mol/litre |
Glucose, fructose invert sugars C6 H12 O6 |
Lactose C12 H22 O11 |
Maltose C12 H22 O11 |
Na2 S2 O3 0,1 mol/litre |
|||
ml |
mg |
difference |
mg |
difference |
mg |
difference |
ml |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
2,4 4,8 7,2 9,7 12,2 14,7 17,2 19,8 22,4 25,0 27,6 30,3 33,0 35,7 38,5 41,3 44,2 47,1 50,0 53,0 56,0 59,1 62,2 |
2,4 2,4 2,5 2,5 2,5 2,5 2,6 2,6 2,6 2,6 2,7 2,7 2,7 2,8 2,8 2,9 2,9 2,9 3,0 3,0 3,1 3,1 |
3,6 7,3 11,0 14,7 18,4 22,1 25,8 29,5 33,2 37,0 40,8 44,6 48,4 52,2 56,0 59,9 63,8 67,7 71,7 75,7 79,8 83,9 88,0 |
3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,8 3,8 3,8 3,8 3,8 3,8 3,9 3,9 3,9 4,0 4,0 4,1 4,1 4,1 |
3,9 7,8 11,7 15,6 19,6 23,5 27,5 31,5 35,5 39,5 43,5 47,5 51,6 55,7 59,8 63,9 68,0 72,2 76,5 80,9 85,4 90,0 94,6 |
3,9 3,9 3,9 4,0 3,9 4,0 4,0 4,0 4,0 4,0 4,0 4,1 4,1 4,1 4,1 4,1 4,2 4,3 4,4 4,5 4,6 4,6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
K. DETERMINATION OF LACTOSE
1. Purpose and scope
This method makes it possible to determine the level of lactose in feed containing more than 0,5 % of lactose.
2. Principle
The sugars are dissolved in water. The solution is subjected to fermentation by the yeast Saccharomyces cerevisiae which leaves the lactose intact. After clarification and filtration the lactose content of the filtrate is determined by the Luff-Schoorl method.
3. Reagents
3.1. |
Suspension of Saccharomyces cerevisiae: suspend 25 g of fresh yeast in 100 ml of water. The suspension will keep for a maximum period of one week in a refrigerator. |
3.2. |
Carrez solution I: dissolve in water 21,9 g of zinc acetate, Zn (CH3 COO)2 2H2O and 3 g of glacial acetic acid. Make up to 100 ml with water. |
3.3. |
Carrez solution II: dissolve in water 10,6 g of potassium ferrocyanide K4Fe (CN)6 3H2O. Make up to 100 ml with water. |
3.4. |
Luff-Schoorl reagent:
Stirring carefully, pour the citric acid solution (3.4.2) into the sodium carbonate solution (3.4.3). Add the copper sulphate solution (3.4.1) and make up to 1 litre with water. Leave to settle overnight and filter. Check the concentration of the reagent thus obtained (Cu 0,05 mol/litre; Na2 CO3 1 mol/litre). The solution's pH shall be approximately 9,4. |
3.4.1. |
Copper sulphate solution: dissolve 25 g of copper sulphate Cu SO4 5H2O, free from iron, in 100 ml of water. |
3.4.2. |
Citric acid solution: dissolve 50 g of citric acid C6H8O7·H2O in 50 ml of water. |
3.4.3. |
Sodium carbonate solution: dissolve 143,8 g of anhydrous sodium carbonate in approximately 300 ml of warm water. Leave to cool. |
3.5. |
Granulated pumice stone boiled in hydrochloric acid, washed in water and dried. |
3.6. |
Potassium iodide, solution 30 % (w/v). |
3.7. |
Sulphuric acid 3 mol/litre. |
3.8. |
Solution of sodium thiosulphate 0,1 mol/litre. |
3.9. |
Starch solution: add a mixture of 5 g of soluble starch in 30 ml of water to 1 litre of boiling water. Boil for three minutes, leave to cool, and if necessary add 10 mg of mercuric iodide as a preservative. |
4. Apparatus
Water bath with thermostat set at 38-40 oC.
5. Procedure
Weigh 1 g of the sample to the nearest mg and place this portion of the sample in a 100 ml volumetric flask. Add 25 to 30 ml of water. Place the flask in a boiling water bath for 30 minutes and then cool to approximately 35 oC. Add 5 ml of yeast suspension (3.1) and homogenise. Leave the flask to stand for two hours in a water bath, at a temperature of 38-40o C. Cool to approximately 20 oC.
Add 2,5 ml of Carrez solution I (3.2) and stir for 30 seconds, then add 2,5 ml of Carrez solution II (3.3) and again stir for 30 seconds. Make up to 100 ml with water, mix and filter. Using a pipette, remove an amount of filtrate which does not exceed 25 ml and which preferably contains from 40 to 80 mg of lactose and transfer it to a 300 ml Erlenmeyer flask. If necessary, make up to 25 ml with water.
Carry out a blank test in the same way with 5 ml of yeast suspension (3.1). Determine the lactose content according to Luff-Schoorl, as follows: add exactly 25 ml of Luff-Schoorl reagent (3.4) and two granules of pumice stone (3.5). Stir by hand-while heating over a free flame of medium height and bring the liquid to the boil in approximately two minutes. Place the Erlenmeyer immediately on an asbestos-coated wire gauze with a hole approximately 6 cm in diameter under which a flame has been lit. The flame shall be regulated in such a way that only the base of the Erlenmeyer is heated. Fit a reflux condenser to the Erlenmeyer flask. Boil for exactly 10 minutes. Cool immediately in cold water and after approximately five minutes titrate as follows:
Add 10 ml of potassium iodide solution (3.6) and immediately afterwards (carefully, because of the risk of abundant foaming) add 25 ml of sulphuric acid (3.7). Titrate with sodium thiosulphate solution (3.8) until a dull yellow colour appears, add the starch indicator (3.9) and complete titration.
Carry out the same titration on an accurately measured mixture of 25 ml of Luff-Schoorl reagent (3.4) and 25 ml of water, after adding 10 ml of potassium iodide solution (3.6) and 25 ml of sulphuric acid (3.7) without boiling.
6. Calculation of results
Using the attached table, establish the amount of lactose in mg which corresponds to the difference between the results of the two titrations, expressed in ml of sodium thiosulphate 0,1 mol/litre.
Express the result of anhydrous lactose as a percentage of the sample.
7. Observation
For products containing more than 40 % of fermentable sugar, use more than 5 ml of yeast suspension (3.1).
Table of values for 25 ml of Luff-Schoorl reagent
ml of Na2 S2 O30,1 mol/litre, two minutes' heating, 10 minutes' boiling
Na2 S2 O3 0,1 mol/litre |
Glucose, fructose invert sugars C6 H12 O6 |
Lactose C12 H22 O11 |
Maltose C12 H22 O11 |
Na2 S2 O3 0,1 mol/litre |
|||
ml |
mg |
difference |
mg |
difference |
mg |
difference |
ml |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
2,4 4,8 7,2 9,7 12,2 14,7 17,2 19,8 22,4 25,0 27,6 30,3 33,0 35,7 38,5 41,3 44,2 47,1 50,0 53,0 56,0 59,1 62,2 |
2,4 2,4 2,5 2,5 2,5 2,5 2,6 2,6 2,6 2,6 2,7 2,7 2,7 2,8 2,8 2,9 2,9 2,9 3,0 3,0 3,1 3,1 |
3,6 7,3 11,0 14,7 18,4 22,1 25,8 29,5 33,2 37,0 40,8 44,6 48,4 52,2 56,0 59,9 63,8 67,7 71,7 75,7 79,8 83,9 88,0 |
3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,7 3,8 3,8 3,8 3,8 3,8 3,8 3,9 3,9 3,9 4,0 4,0 4,1 4,1 4,1 |
3,9 7,8 11,7 15,6 19,6 23,5 27,5 31,5 35,5 39,5 43,5 47,5 51,6 55,7 59,8 63,9 68,0 72,2 76,5 80,9 85,4 90,0 94,6 |
3,9 3,9 3,9 4,0 3,9 4,0 4,0 4,0 4,0 4,0 4,0 4,1 4,1 4,1 4,1 4,1 4,2 4,3 4,4 4,5 4,6 4,6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
L. DETERMINATION OF STARCH
POLARIMETRIC METHOD
1. Purpose and scope
This method makes it possible to determine the levels of starch and of high molecular weight starch degradation products in feed for the purpose of checking compliance with the declared energy value (provisions in Annex VII) and Council Directive 96/25/EC (3).
2. Principle
The method comprises two determinations. In the first, the sample is treated with dilute hydrochloric acid. After clarification and filtration the optical rotation of the solution is measured by polarimetry.
In the second, the sample is extracted with 40 % ethanol. After acidifying the filtrate with hydrochloric acid, clarifying and filtering, the optical rotation is measured as in the first determination.
The difference between the two measurements, multiplied by a known factor, gives the starch content of the sample.
3. Reagents
3.1. |
Hydrochloric acid, solution 25 % (w/w) density: 1,126 g/ml. |
3.2. |
Hydrochloric acid. solution 1,13 % (w/v)
The concentration must be checked by titration using a sodium hydroxide solution 0,1 mol/litre in the presence of 0,1 % (w/v) methyl red in 94 % (v/v) ethanol. For the neutralisation of 10 ml, 30,94 ml of NaOH 0,1 mol/litre is needed. |
3.3. |
Carrez solution I: dissolve 21,9 g of zinc acetate Zn(CH3COO)2 2H2O and 3 g of glacial acetic acid in water. Make up to 100 ml with water. |
3.4. |
Carrez solution II: dissolve 10,6 g of potassium ferrocyanide K4 Fe(CN)6 3H2O in water. Make up to 100 ml with water. |
3.5. |
Ethanol, solution 40 % (v/v), density: 0,948 g/ml at 20 oC. |
4. Apparatus
4.1. |
250 ml Erlenmeyer flask with standard ground-glass joint and with reflux condenser. |
4.2. |
Polarimeter or saccharimeter. |
5. Procedure
5.1. Preparation of the sample
Crush the sample until it is fine enough for all of it to pass through a 0,5 mm round-meshed sieve.
5.2. Determination of the total optical rotation (P or S) (see observation 7.1)
Weigh 2,5 g of the crushed sample to the nearest mg and place in a 100 ml graduated flask. Add 25 ml of hydrochloric acid (3.2), shake to obtain even distribution of the test sample and add a further 25 ml of hydrochloric acid (3.2). Immerse the flask in a boiling water bath shaking vigorously and steadily for the first three minutes to prevent the formation of agglomerates. The quantity of water in the water bath must be sufficient for the bath to remain at boiling point when the flask is introduced into it. The flask must not be taken out of the bath whilst being shaken. After exactly 15 minutes, remove from the bath, add 30 ml of cold water and cool immediately to 20 oC.
Add 5 ml of Carrez solution I (3.3) and shake for approximately 30 seconds. Then add 5 ml of Carrez solution II (3.4) and shake again for approximately 30 seconds. Make up to volume with water, mix and filter. If the filtrate is not perfectly clear (which is rare), repeat the determination using a larger quantity of Carrez solutions I and II, for example 10 ml.
Measure the optical rotation of the solution in a 200 mm tube with the polarimeter or saccharimeter.
5.3. Determination of the optical rotation (P' or S') of substances soluble in 40 % ethanol
Weigh 5 g of the sample to the nearest mg, place in a 100 ml graduated flask and add about 80 ml of ethanol (3.5) (see observation 7.2). Leave the flask to stand for 1 hour at room temperature; during this time, shake vigorously on six occasions so that the test sample is thoroughly mixed with the ethanol. Make up to volume with ethanol (3.5), mix and filter.
Pipette 50 ml of the filtrate (corresponds to 2,5 g of the sample) into a 250 ml Erlenmeyer flask, add 2,1 ml of hydrochloric acid (3.1) and shake vigorously. Fit a reflux condenser to the Erlenmeyer flask and immerse the latter in a boiling water bath. After exactly 15 minutes, remove the Erlenmeyer flask from the bath, transfer the contents to a 100 ml graduated flask, rinsing with a little cold water, and cool to 20 oC.
Clarify using Carrez solutions I (3.3) and II (3.4), make up to volume with water, mix, filter and measure the optical rotation as indicated in the 2nd and 3rd paragraphs of 5.2.
6. Calculation of results
The starch content (%) is calculated as follows:
6.1. Measurement by polarimeter
P |
= |
Total optical rotation in angle degrees |
||||||||||||||
P' |
= |
Optical rotation in angle degrees of the substances soluble in 40 % (V/V) ethanol |
||||||||||||||
|
= |
Specific optical rotation of pure starch. The numerical values conventionally accepted for this factor are the following:
|
6.2. Measurement by saccharimeter
S |
= |
Total optical rotation in saccharimeter degrees |
S' |
= |
Optical rotation in saccharimeter degrees of the substances soluble in 40 % (v/v) ethanol |
N |
= |
weight (g) of saccharose in 100 ml of water yielding an optical rotation of 100 saccharimeter degrees when measured using a 200 mm tube 16,29 g for the French saccharimeters 26,00 g for the German saccharimeters 20,00 g for mixed saccharimeters. |
|
= |
Specific optical rotation of pure starch (see 6.1) |
6.3. Repeatability
The difference between the results of two parallel determinations carried out on the same sample must not exceed 0,4 in absolute value for a starch content lower than 40 % and 1 % relative for starch contents equal to or greater than 40 %.
7. Observations
7.1. |
If the sample contains more than 6 % of carbonates, calculated in terms of calcium carbonate, they must be destroyed by treatment with an exactly appropriate quantity of dilute sulphuric acid before determination of the total optical rotation. |
7.2. |
In the case of products with a high lactose content, such as powdered milk serum or skimmed milk powder, proceed as follows after adding 80 ml of ethanol (3.5). Fit a reflux condenser to the flask and immerse the latter in a water bath at 50 oC for 30 minutes. Leave to cool and continue the analysis as indicated in 5.3. |
7.3. |
The following feed materials, where they are present in significant amounts in feed, are known to give rise to interferences when determining the starch content by the polarimetric method and thereby incorrect results could be yielded:
|
M. DETERMINATION OF CRUDE ASH
1. Purpose and Scope
This method makes it possible to determine the crude ash content of feed.
2. Principle
The sample is ashed at 550 oC; the residue is weighed.
3. Reagents
Ammonium nitrate, solution 20 % (w/v).
4. Apparatus
4.1. |
Hot-plate. |
4.2. |
Electric muffle-furnace with thermostat. |
4.3. |
Crucibles for ashing made of silica, porcelain or platinum either rectangular (approx. 60 × 40 × 25 mm) or circular (diameter: 60 to 75 mm, height: 20 to 40 mm). |
5. Procedure
Weigh out to the nearest mg approximately 5 g of the sample (2,5 in the case of products which have a tendency to swell) and place in a crucible for ashing which has first been heated at 550 oC, cooled down and tared. Place the crucible on the hot-plate and heat gradually until the substance carbonises. Ash according to 5.1 or 5.2.
5.1. |
Put the crucible into the calibrated muffle furnace set at 550 oC. Keep at this temperature until white, light grey or reddish ash is obtained which appears to be free from carbonaceous particles. Place the crucible in a desiccator, leave to cool and weigh immediately. |
5.2. |
Put the crucible into the calibrated muffle-furnace set at 550 oC. Ash for 3 hours. Place the crucible in a desiccator, leave to cool and weigh immediately. Ash again for 30 minutes to ensure that the weight of the ash remains constant (loss in weight between two successive weightings must be less than or equal to 1 mg). |
6. Calculation of results
Calculate the weight of the residue by deducting the tare.
Express the result as a percentage of the sample.
7. Observations
7.1. |
The ash of substances which are difficult to ash must be subjected to an initial ashing of at least three hours, cooled and then a few drops of 20 % solution of ammonium nitrate or water added to it (carefully, to avoid dispersal of the ash or the formation of lumps). Continue calcining after drying in the oven. Repeat the operation as necessary until ashing is complete. |
7.2. |
In the case of substances resistant to the treatment described under 7.1, proceed as follows: after ashing for three hours, place the ash in warm water and filter through a small, ash-free filter. Ash the filter and its contents in the original crucible. Place the filtrate in the cooled crucible, evaporate until dry, ash and weigh. |
7.3. |
In the case of oils and fats, weigh accurately a sample of 25 g in a suitably sized crucible. Carbonise by setting light to the substance with a strip of ash-free filter paper. After combustion, moisten with as little water as possible. Dry and ash as described under 5. |
N. DETERMINATION OF ASH WHICH IS INSOLUBLE IN HYDROCHLORIC ACID
1. Purpose and Scope
This method makes it possible to determine the level in feed of mineral substances which are insoluble in hydrochloric acid. Two methods can be used, depending on the nature of the sample.
1.1. |
Method A: applicable to organic feed materials and to most compound feed. |
1.2. |
Method B: applicable to mineral compounds and mixtures and to compound feed, whose content in substances insoluble in hydrochloric acid, as determined by Method A, is greater than 1 %. |
2. Principle
2.1. |
Method A: the sample is ashed, the ash boiled in hydrochloric acid and the insoluble residue filtered and weighed. |
2.2. |
Method B: the sample is treated with hydrochloric acid. The solution is filtered, the residue ashed and the ash thus obtained treated in accordance with Method A. |
3. Reagents
3.1. |
Hydrochloric acid 3 mol/litre. |
3.2. |
Trichloroacetic acid, solution 20 % solution (w/v). |
3.3. |
Trichloroacetic acid, solution 1 % (w/v). |
4. Apparatus
4.1. |
Hot plate. |
4.2. |
Electric muffle-furnace with thermostat. |
4.3. |
Crucibles for ashing made of silica, porcelain or platinum, either rectangular (approx. 60 × 40 × 25 mm) or circular (diameter: 60 to 75 mm, height: 20 to 40 mm). |
5. Procedure
5.1. Method A
Ash the sample using the method described for the determination of crude ash. Ash obtained from that analysis may also be used.
Place the ash in a 250 to 400 ml beaker using 75 ml of hydrochloric acid (3.1). Bring slowly to the boil and boil gently for 15 minutes. Filter the warm solution through an ash-free filter paper and wash the residue with warm water until the acid reaction is no longer visible. Dry the filter containing the residue and ash in a tared crucible at a temperature of not less than 550 oC and not more than 700 oC. Cool in a desiccator and weigh.
5.2. Method B
Weigh 5 g of the sample to the nearest mg and place in a 250 to 400 ml beaker. Add 25 ml of water and 25 ml of hydrochloric acid (3.1) successively, mix and wait for effervescence to cease. Add a further 50 ml of hydrochloric acid (3.1). Wait for any release of gas to cease then place the beaker in a boiling water bath and keep it there for 30 minutes or longer, if necessary, in order to hydrolyse thoroughly any starch which may be present. Filter while warm through an ash-free filter and wash the filter in 50 ml of warm water (see observation 7). Place the filter containing the residue in a crucible for ashing, dry and ash at a temperature of not less than 550 oC and not more than 700 oC. Place the ash in a 250 to 400 ml beaker using 75 ml of hydrochloric acid (3.1); continue as described in the second subparagraph of 5.1.
6. Calculation of results
Calculate the weight of the residue by deducting the tare. Express the result as a percentage of the sample.
7. Observation
If filtration proves difficult recommence the analysis, replacing the 50 ml of hydrochloric acid (3.1) by 50 ml of 20 % trichloroacetic acid (3.2) and washing the filter in a warm solution of 1 % trichloroacetic acid (3.3).
O. DETERMINATION OF CARBONATES
1. Purpose and Scope
This method makes it possible to determine the amount of carbonates, conventionally expressed as calcium carbonate, in most feed.
However in certain cases (for example, with iron carbonate) a special method must be used.
2. Principle
The carbonates are decomposed in hydrochloric acid; the carbon dioxide released is collected in a graduated tube, and its volume compared with that released under the same conditions by a known quantity of calcium carbonate.
3. Reagents
3.1. |
Hydrochloric acid, density 1,10 g/ml. |
3.2. |
Calcium carbonate. |
3.3. |
Sulphuric acid, approximately 0,05 mol/litre, coloured with methyl red. |
4. Apparatus
Scheibler-Dietrich apparatus (see diagram) or equivalent apparatus.
5. Procedure
According to the sample's carbonate content, weigh a portion of the sample as shown below:
— |
0,5 g for products containing from 50 % to 100 % of carbonates, expressed as calcium carbonate, |
— |
1 g for products containing from 40 % to 50 % of carbonates, expressed as calcium carbonate, |
— |
2 to 3 g for other products. |
Place the portion of the sample in the special flask (4) of the apparatus, fitted with a small tube of unbreakable material containing 10 ml of hydrochloric acid (3.1), and connect the flask to the apparatus. Turn the three-way cock (5) so that the tube (1) connects with the outside. Using the mobile tube (2), which is filled with coloured sulphuric acid (3.3) and connected to the graduated tube (1), bring the level of the liquid up to the zero mark. Turn the cock (5) in order to connect up tubes (1) and (3) and check that the level is at zero.
Run the hydrochloric acid (3.1) slowly over the portion of the sample, tilting the flask (4). Make the pressure equal by lowering the tube (2). Shake the flask (4) until the release of carbon dioxide has stopped completely.
Restore pressure by bringing the liquid back to the same level in tubes (1) and (2). After a few minutes, when the volume of gas has become constant, take the reading.
Carry out a control test in the same conditions on 0,5 g of calcium carbonate (3.2).
6. Calculation of results
The content of carbonates, expressed as calcium carbonate, is calculated by using the formula:
where:
X |
= |
% (w/w) of carbonates in the sample, expressed as calcium carbonate |
V |
= |
ml of CO2 released by the portion of the sample. |
V1 |
= |
ml of CO2 released by 0,5 g of CaCO3. |
m |
= |
weight, in grammes, of the portion of the sample. |
7. Observations
7.1. |
When the portion of the sample weighs more than 2 g, first place 15 ml of distilled water in the flask (4) and mix before beginning the test. Use the same volume of water for the control test. |
7.2. |
If the apparatus used has a different volume from that of the Scheibler-Dietrich apparatus, the portions taken from the sample and from the control substance and the calculation of the results must be adapted accordingly. |