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Executive Summary

Information on the acute mammalian toxicity of chemicals, referring to the adverse effects caused
by either a single exposure to a chemical substance or multiple exposures within 24 hours, is
required under multiple pieces of EU legislation aimed at protecting consumers and workers.
Presently all regulatory methods for determining acute oral toxicity are based on animal tests. In
these tests, the acute lethal dose to 50% of the treated animals (LDsg value) is typically used as the
basis for hazard assessment and regulatory classification. The most widely used classification
scheme is the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
system managed by the United Nations.

Due to animal welfare and cost considerations, alternatives to animal experiments are being sought,
and regulatory frameworks are increasing providing an opportunity or obligation to use such
methods. Most of these alternatives are based on in vitro test methods or computational models
such as Quantitative Structure-Activity Relationships (QSARs). To date, most studies have
focussed on the abilities of individual in vitro tests or QSAR models to predict reference data from
acute toxicity tests in rodents, with relatively few attempts to explore the combined use of in vitro
and computational methods.

In this study, we used a reference dataset of 180 compounds for which in vitro and in vivo data
were already available from international validation studies in order to assess the abilities of five
alternative approaches to predict acute oral toxicity. The in vitro data are considered to be of high
quality, having been generated and quality controlled as part of the previous validation studies. The
in vivo data showed considerable variability for some compounds, with about 20% of the
compounds crossing two or three toxic classes. We included four QSAR models (ToxSuite,
TOPKAT, TEST and ADMET Predictor), which were available in-house, and one in vitro method,
the Neutral Red Uptake (NRU) basal cytotoxicity assay performed in a rodent cell line (BALB/3T3)
and using the in vitro prediction model of Halle. We characterised the predictive performance of
each alternative method when used alone (both for LDs prediction and acute toxicity classification
into three categories), as well as multiple test combinations (batteries) and stepwise testing
strategies (for acute toxicity classification into three categories).

When used individually, the alternative methods showed an ability to predict LDs, with correlation
coefficients in the range from 49% to 84%, and to classify into three toxicity groups with accuracies
in the range from 41% to 72%. Among the QSAR models, the best performing models were
ToxSuite and TEST, with correlation coefficients of approximately 80% in LDsy prediction, and
accuracies of approximately 70% in acute toxicity classification. The in vitro 3T3 NRU method,
based on the use of the Halle prediction model, had a correlation coefficient with LDsy of
approximately 50%, and a classification accuracy of approximately 41%.

When the QSAR models were combined in batteries, the overall accuracies were between 62% and
74%. While these figures are not much higher than the individual QSAR models alone, the
sensitivities for the different toxic classes were considerably higher. On the other hand, the
differences between the specificities for the different toxic classes were relatively small.


http://en.wikipedia.org/wiki/United_Nations

When the alternative methods were used in a stepwise testing strategy the overall accuracy could
reach 76%. Different test combinations could be used to optimise overall accuracy, sensitivity or
specificity, according to the end-user's requirements.

On the basis of our results, we conclude that:

a) the variability in LDs, values has an impact on classification, which means that the use of
average LDsg values as a reference standard has to be used with care.

b) The 3T3 NRU in vitro test, used with the prediction model of Halle, has a lower predictive
performance than the QSAR models. It is possible, however, that the in vitro test has a
broader domain of applicability compared to the QSARs. It would be useful to explore
whether the predictive performance of the in vitro system could also be increased by using
an alternative prediction model.

c) the overall accuracies for the test combinations (model batteries) or testing strategies are not
much higher than the AMs used alone, but may be optimised in terms of overall predictivity,
sensitivity and specificity according to the end-user’s requirements.

Further studies, based on more extensive and high quality datasets (e.g. as generated by High
Throughput Screening), would be valuable in the search for optimal strategies for assessing acute
toxicity.
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1 Background and objective of study

1.1  Animal testsfor acute oral toxicity

Acute toxicity describes the adverse effects caused by either a single exposure to a chemical
substance or multiple exposures within 24 hours. The acute lethal dose to 50% of the treated
animals (LDs value) is the basis for the hazard assessment and classification of chemicals and is
widely used for regulatory purposes. Presently all accepted methods for regulatory requirements for
determining acute oral toxicity are based on animal (in vivo) tests. There are three approved in vivo
tests which are modifications of the classical median lethal dose, LDs test (the Organisation for
Economic Cooperation and Development (OECD) Test Guideline (TG) 401 (OECD, 1987), which
was deleted in 2002. The three modified tests defined in the OECD TGs: 420 Fixed Dose Procedure
(FDP), 423 Acute Toxic Class Method (ATC), and 425 Up and Down Procedure (UDP) (OECD,
2001a,b,c) are utilizing the principles of reduction and refinement. These tests are sequential tests
where the outcome of the previous step/dose determines the next dose to be tested and the number
of animals used per test can then be considerably reduced (from 25 to a minimum of 5 animals per
test). The FDP and the ATC identifies a lowest fixed dose causing evident toxicity and they provide
estimated LDsq intervals whereas the UDP estimates a LDs, value.

There are requirements of acute oral toxicity testing for agrochemicals, biocides and also for
industrial chemicals. The acute toxicity testing in animals of cosmetic ingredients and products has
been banned in the EU since 2009 (EC, 2003). For food additives, flavourings, food-contact
materials, pharmaceuticals, and veterinary medical products there are no obligations for oral
toxicity testing in EU (Seidle et al., 2010).

1.2  TheGlobally Harmonised System of Classification and L abelling (GHS)

The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is an
internationally established system, implemented by the United Nations (UN, 2007). It is designed to
replace the various classification and labelling standards used in different countries by using
consistent criteria for classification and labelling on a global level. Two of the main purposes of the
GHS have been to reduce the need for testing and evaluation of chemicals and to facilitate
international trade in chemicals whose hazards have been properly assessed and identified on an
international basis.

The Classification, Labelling and Packaging (CLP) Regulation (EC No 1272/2008; EC, 2008) is the
European Union regulation which aligns, since 2009, the European Union system of classification,
labelling and packaging of chemical substances and mixtures to the GHS. It complements the
Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation (EC No
1907/2006; EC, 2006) and replaces the system contained in the Dangerous Substances Directive
(67/548/EEC; EC, 1967) and the Dangerous Preparations Directive (1999/45/EC; EC, 1999). For
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Table 3.1.1

oral acute toxicity, chemicals are classified in one of four toxicity categories based on their oral
acute toxicity estimates, as illustrated in Figure 1.

Acute toxicity hazard categories and acute toxicity estimates (ATE) defining the respective categories

Exposure Route Category 1 Category 2 Category 3 Category 4
Oral (mg/kg body- ATE < 5 5 < ATE = 50 50 < ATE =< 300 300 < ATE =
weight) 2 000
See Note (a)
Table 3.1.3
Acute toxicity label elements
Classification Category 1 Category 2 Category 3 Category 4
GHS Pictograms
Signal Word Danger Danger Danger Warning
Hazard Statement: H300: H300: H301: H302:
—  Ora Fatal if swal- Fatal if swal- Toxic if swal- Harmful if swal-
lowed lowed lowed lowed

Figure 1. The CLP Regulation (EC No 1272/2008) for oral acute toxicity and the
four acute toxicity hazard categories.

1.3  Alternativesto animal testing and Integrated Testing Strategies

Due to animal welfare and cost considerations, alternatives to animal experiments are being sought,
and regulatory frameworks are providing an increasing opportunity or obligation to use such
methods. The modified LDsy tests are still debated among toxicologists, animal welfare
organizations, legislators and the public primarily due to the ethics of using animals for
experimental purposes and evaluating mortality as an endpoint. The two major alternatives to in
vivo animal testing are the in silico and the in vitro methods.

According to the REACH chemicals legislation, Quantitative Structure-Activity Relationships
(QSARs) can be used as alternatives to animal testing. QSAR models may identify chemical
hazards and improve the safe use of chemicals. Laboratory testing may be avoided by using QSAR
models to predict chemical effects directly from chemical structure and simulating adverse effects
in cells, tissues, laboratory animals and the environment. Estimation of LDsy values presents some
drawbacks when used for QSAR modelling. First, acute toxicity effects may result from a wide
spectrum of biokinetic, cellular and molecular events. Converting the complex, whole-body
phenomena related to acute toxicity into a simple number necessarily leads to a loss of information.
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Second, available data are highly variable, having been generated by different laboratories,
protocols, animal species and strains. This undermines the reliability and repeatability of acute
toxicity measurements. These facts complicate the modelling process and may explain why there
are relatively few QSAR models and expert systems for predicting oral acute toxicity, in
comparison with other endpoints. An overview of the different QSAR models used in the
assessment of acute systemic toxicity is given by Lapenna et al. (2010).

In vitro cytotoxicity methods have been evaluated as alternatives to the use of animals in toxicity
testing over the past four decades. Many international projects have evaluated the relationship
between in vitro cytotoxicity and acute in vivo toxicity. The results of three major projects; MEIC
(Multicentre Evaluation of In Vitro Cytotoxicity, Clemedson et al., 1996), the Halle RC (Registry
of Cytotoxicity, Halle, 2003) and the NICEATM/ECVAM  international validation study
(NICEATM-ICCVAM, 2006) have all shown a linear correlation of around 60-70% between in
vitro 1Csy cytotoxicity data and oral rat LDsy values. For an overview of the use of in vitro
cytotoxicity assays to predict acute oral toxicity see (NICEATM-ICCVAM, 2006). The OECD has
established a Guidance Document (GD No 129; OECD, 2010) based on the outcome from the
NICEATM/ECVAM validation study that describes how to estimate starting doses for acute oral
systemic toxicity tests by first conducting cytotoxicity tests.

In principle, QSARSs or in vitro methods can be used as replacements for in vivo acute toxicity,
tests, provided they are sufficiently validated. In practice, due to current limitations in predictive
methods, both in silico and in vitro approaches are likely to be used in combination in the context of
Integrated Testing Strategies (ITS), in order to replace, reduce or refine animal testing. The concept
of ITS and its application to regulatory toxicology is discussed elsewhere (van Leeuwen et al.,
2007; Bassan et al., 2008). More generally, there is a trend in predictive toxicology to develop a
new paradigm of toxicological assessment (“Toxicology in the 21st Century”) based on the
integrated use of multiple methodologies, including computer-based modelling, high-throughput
and high-content screening technologies (NRC, 2007; Collins et al., 2008; Dix et al., 2007).

1.4  Objective of study

In this study we investigate the predictive performances of five alternative approaches for the
assessment of acute oral toxicity. We consider the ability of four QSAR models (ToxSuite,
TOPKAT, TEST and ADMET Predictor) and one in vitro method (3T3 NRU using the prediction
model of Halle) for prediction of LDsy values. The predictive performance of each method when
used alone (both for LDs, prediction and acute toxicity classification into three categories), as well
as multiple test combinations (batteries) and stepwise testing strategies (for acute toxicity
classification into three categories are being calculated and compared. To assess the predictive
performances of the alternative methods, a test set containing in vitro and in vivo data for 180
compounds is being considered.



2 Materials and methods

2.1  Acute Systemic Toxicity data set

The data set in this study originates from three large alternative method studies. The studies are the
following:

(1) NICEATM/ECVAM international validation study (NICEATM-ICCVAM, 2006)
(2) ACuteTox project (Acutetox, 2010)
(3) ECVAM follow-up study (Kinsner-Ovaskainen et al., 2009)

In the first study, the National Toxcicology Program Interagency Centre for the Evaluation of
Alternative Toxicological Methods (NICEATM) and the European Centre for the Validation of
Alternative Methods (ECVAM) conducted a joint validation study during 2002-2005 of the Neutral
Red Uptake (NRU) basal cytotoxicity assay performed in two standard cell systems: a human cell
system (normal human keratinocytes, NHK), and a rodent cell system (BALB/3T3 cell line). The
study involved 72 chemicals, 12 chemicals from each GHS toxicity category, including non-
classified chemicals. Most of the chemicals were pharmaceuticals (35%), pesticides (22%), solvents
(10%) or consumer/industrial products (5%). The results of this study showed that the overall
accuracy of the 3T3 NRU test method for correctly predicting each of the GHS acute oral toxicity
classification categories was only about 30%.

The second study, “An In Vitro Test Strategy for Predicting Human Acute Toxicity” (Acutetox),
was an integrated project within the sixth framework programme during 2005-2010. The main
objective was to develop an in vitro test strategy sufficiently robust and powerful to replace in vivo
testing of acute toxicity. The study involved 97 chemicals tested in diverse in vitro assays. Also in
this study most of the chemicals were pharmaceuticals (52%), industrial products (31 %) or
pesticides (12%). The study showed that by using a Random Forests model with seven in vitro
assays and nine endpoints the classification rate was 69% (of classifying the chemicals classified
into the official acute toxicity categories).

The aim the third study was to assess the predictive capacity of a cytotoxicity test to determine if a
test chemical correctly falls into one of the two categories, non-classified (LDso > 2 000 mg/kg), or
classified (LDsyp < 2000 mg/kg). The study involved 56 industrial chemicals tested with the NRU
basal cytotoxicity assay performed in the rodent cell system (BALB/3T3 cell line) tested in three
laboratories. The results (accuracy 64-67%, sensitivity 92-96% and specificity 40-44%) of this
validation study showed that the 3T3 NRU test method can be regarded as a valuable test method to
screen-out the negative test chemicals (unclassified) when the method is used as a first step in a
tiered approach for acute oral toxicity testing.

Forty five chemicals are duplicates in studies (1) and (2), so the total number of chemicals is 180 in
the complete data set (see Annex). 26 chemicals in the complete data set are inorganic compounds
or salts. Inorganic and organometallic compounds, salts, and compound mixtures are often removed
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prior to QSAR analysis because many software tools for calculating chemical descriptors are not
suitable for these molecules, because molecular graphs for these substances are not defined.

In vivo data databases containing LDs, values had been produced for each study, so no new animal
in vivo tests were performed. The chemicals selected in the studies were chosen to represent the
complete range of in vivo acute oral toxicity ranges and are relevant with regard to human exposure
potential. Principal sources of LDs, data, supported by original references, were internet databases,
e.g. ChemIDplus and the Hazardous Substances Data Bank (HSDB). For our study only rodent (for
175 of 180 chemicals rat and for the other mouse) data was considered with the oral administration
route (administration by gavage (stomach tube) was regarded as equivalent to oral). The data set is
very heterogeneous when it comes to sample size for the compounds, as can be seen in Figure 2.
The sample size varies from one to 28 observations per compound. About one fifth of the
compounds (40 compounds) have only one observation. The majority of the compounds have three
or fewer observations.

Number of compounds

123456 78 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of observations

Figure 2. Sample size for Acute Systemic Toxicity data set.

2.2  Analysisbased on average L Dsp values

Figure 3 shows a scatter plot of the LDsy values for the 180 compounds. The compounds are
ordered according to average LDsg (blue dots), starting with the most toxic (lowest LDsy) compound
to the left to the least toxic (highest LDsp) compound to the right. The GHS category borders have
also been inserted in the figure. More than one third of the compounds are crossing two GHS
categories or even three GHS categories.
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Figure 3. Scatter plot of the LDs, values for the 180 compounds.
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The number of compounds based on average LDsy which fall in the different GHS categories is

shown in Figure 4 below.

AST 180 compounds GHS catgories

21 27

GHS1 GHS2 GHS3 GHS4 GHSNC

Figure 4. The number of compounds based on average LDsy which fall in the different GHS
categories. GHS NC (non-classified) means compounds which have an LDs above 2000 mg/kg.

2.3  Comparison of CLP and average L D5, classifications

67 of the 180 chemicals have official classifications for acute oral toxicity in Table 3.1, Annex VI
to Regulation EC 1272/2008 CLP Regulation (EC, 2008). Another 27 chemicals are classified in
the table according to acute dermal, acute inhalation toxicity, reproductive toxicity, aquatic toxicity

or carcinogenicity.



Figure 5 shows how the 67 compounds are actually classified in the CLP Regulation compared with
average LDs classifications according to the GHS system. NC in the table stands for “non-
classified” and refers to compounds which have an average LDs, > 2000 mg/kg.
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Figure 5. Comparison of actual CLP, blue bars and average LDs
classifications (red bars) for 67 chemicals.

43 of 67 compounds are classified in the same category. In 8 cases the average LDs, category is
lower than the CLP Regulation classification. In 16 cases the average LDs, category is higher than
the CLP Regulation classification. In these cases the difference in category is one, apart from two
cases. Table I lists these two extreme cases.

Tablel. Compounds where the CLP and average LDs classifications in
the GHS diverge with more than one category.

Chemical JRC CAS CLP Average LDs
number number GHS classification GHS classification
Methanol JRC-000019 67-56-1 3 NC
Carbon JRC-000257 56-23-5 3 NC
tetrachloride

Methanol (JRC-000019, CAS number 67-56-1) is classified in the GHS category 3 in the CLP
Regulation and in the NC (not classified) category for the average LDsy method. The sample of
methanol LDsy values has 15 observations, with an average of 9591 mg/kg and a standard deviation
of 2566 mg/kg. Also carbon tetrachloride (JRC-000257, CAS number 56-23-5) is classified in the
GHS category 3 in the CLP Regulation and NC (not classified) category for the average LDs. The
sample of LDsy values contains 17 observations, with an average of 4219 mg/kg and a standard
deviation of 2099 mg/kg. These average LDs values differ greatly from the cut-off in GHS
category 3, 300 mg/kg. Differences for these two compounds could be due to volatility.
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Definition of Toxic Classes

We introduce our definition of Toxic Classes (TC), namely a grouping of the GHS categories 1 to 3
into TC1, GHS category 4 into TC2 and taking the compounds which are not classified in the GHS
system (that are compounds which have LDsy, above 2000 mg/kg) into TC3. The three classes
contain roughly the same number of chemicals. 55 chemicals fall in the first class, 60 in the second

and 65 chemicals in the third class (Figure 6).

AST 180 compounds Toxic Classes

o5 60 65
TC1 TC 2 TC3

Figure 6. The number of compounds based on average LDso which fall in the different TCs.

About 20% of the compounds cross two or three (in two cases) toxic classes. The compounds that
cross three toxic classes are malathion (JRC-000012, CAS number 121-75-5, with 17 LDs
observations in the range from 200 to 5800 mg/kg bodyweight) and phenytoin (JRC-000028, CAS
number 57-41-0, with 3 LDso observations in the range from 250 to 2200 mg/kg bodyweight).
Figure 7 shows a scatter plot of the LDs, values for the 180 compounds with the TC borders.
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Figure 7. Scatter plot of the LDs( values for the 180 compounds with the TC borders.



25  Distribution of log L Dsg

The distribution of log LDsy values is not symmetric but negatively (or left) skewed and the
Generalised Extreme Value (GEV) distribution fits the data reasonably well. Figure 8§ illustrates
this, the empirical and the fitted GEV probability density functions to the left and the GEV
probability plot to the right. The probability density function for the GEV distribution with location
parameter i, scale parameter o, and shape parameter k # 0 is

— R (=) '% (x=a) '1";
y=fllkpa)=a 1”“‘1‘[‘ 1+ 6522 ]["”‘T] (Eq. 1)
For
kTSm0 (q.2)
™ ‘ lggioeti?esz\e\ﬂluedist /‘ﬁ il 2222:
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Data Data

Figure 8. (a) left, shows the empirical and the fitted GEV probability density functions. (b)
right, illustrates the GEV probability plot.

26  QSAR software modelsfor predicting rodent oral acutetoxicity

We have used four QSAR software tools to predict rat oral LDs, three commercial solutions and
one freely available solution. The four QSAR tools are:

ACD/Tox Suite, version 2.95

Accelrys/TOPKAT (Toxicity Prediction by Komputer Assisted Technology), version 6.2
U.S. EPA/ T.E.S.T. (Toxicity Estimation Software Tool), version 4.0

ADMET Predictor, version 5.5

=

The first software, ACD/Tox Suite (TOXS), predicts potential toxicity (LDsp) in two species
(mouse and rat) for various administration routes (intraperitoneal, intravenous, subcutaneous, and
oral administrations). The module “Acute Toxicity (LDso, Rat/Oral)” has been used. Predictions are
based on a combination of expert knowledge of various basal and extra-cellular effects (e.g.,
inhibition of cholinesterase and ATP synthesis, CNS and PNS disruption), and SAR/QSAR analysis
of more than 100,000 compounds. Predictions are provided with reliability estimations (reliability
index). Compounds are classified into one of 5 toxicity categories (corresponding to the GHS
categories).



The second software, Accelrys/TOPKAT (TOPK), assesses the toxicity of chemicals solely from
their 2D molecular structures and uses a range of robust, cross-validated Quantitative Structure-
Toxicity Relationship (QSTR) models for assessing specific toxicological endpoints. The model
“Rat Oral LDs(” has been used.

The freely available software U.S. EPA/ T.E.S.T. (TEST) includes models for estimating toxicity
for several endpoints using different QSAR methodologies. The model “Oral rat 50% lethal dose”
was applied for this comparison study.

The fourth software, the ADMET (Absorption, Distribution, Metabolism, Elimination and Toxicity)
Predictor (ADMET) can be used for predictive modeling of ADMET properties. The toxicity
module “Acute toxicity in rats” has been applied. These software tools are further described in
Lapenna et al. (2010).

2.7 Aninvitroassay for predicting rodent oral acutetoxicity

From the three alternative method studies (Section 2.1 above), in vitro data have been generated
from the Neutral Red Uptake (NRU) cytotoxicity assay. It is a cell survival/viability
chemosensitivity test based on the ability of viable cells to incorporate and bind the supravital dye
neutral red (NICEATM-ICCVAM, 2006). One of the cell models used in the studies was the CCL-
163, 3T3 BALB/c immortalised mouse fibroblast, cell line, clone 31 from the American Type
Culture Collection (ATCC, Manassas, VA., USA). The in vitro assay and cell model will be
referred to the 3T3 NRU test method.

For 7 out of the 180 chemicals the 3T3 NRU test method did not yield the result of an ICs value,
mainly because of solubility problems. The problematic chemicals were the inorganic compound
ferrous sulfate (JRC-000018, CAS number 7720-78-7), pentobarbital sodium (JRC-000030, CAS
number 57-33-0), diphenhydramine (JRC-000033, CAS number 58-73-1), 1,3,5-trioxane, 2,4,6-
trimethyl-, paraldehyde (JRC-000038, CAS number 123-63-7), acrylamide (JRC-000040, CAS
number 79-06-1 ), acetaldehyde (JRC-000042, CAS number 75-07-0) and carbon tetrachloride
(JRC-000257, CAS number 56-23-5).

From Study 1 (NICEATM-ICCVAM, 2006) the in vitro data originate from three laboratories: the
U.S. Army Edgewood Chemical Biological Center (ECBC, USA), the Institute for In Vitro
Sciences (IIVS, USA) and the FRAME Alternatives Laboratory (FAL, UK). The in vitro data in
Study 2 (Acutetox, 2010) come from three laboratories: FAL, the Advanced In Vitro Cell
Technologies, (Advancell, Spain) and from our robotic HTS laboratory (IHCP, JRC, Italy). From
Study 3 (Kinsner-Ovaskainen et al., 2009) the in vitro data come from the Health and Safety
Laboratory (HSL, UK), the ITVS and from the JRC-IHCP HTS laboratory.

Figure 9 shows a scatter plot of the ICsy values for the 173 compounds from the three studies. The

compounds are ordered according to average ICsy (blue dots), starting with the most cytotoxic
(lowest ICsp) chemical to the left to the least cytotoxic (highest ICsy) compound to the right.
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Figure 9. Scatter plot of ICsq values for the 173 compounds.

The conclusion from the NICEATM/ECVAM Validation Study was that the 3T3 NRU test method
was not good enough for classifying the test compounds in the different hazard categories but could
be used to aid in setting the starting dose for sequential rodent acute oral toxicity test methods.

2.8  Evaluation of the predictive capacity of an alter native methods

The predictive capacity of an alternative method (a QSAR software prediction or an in vitro assay)
is frequently expressed by comparing the results obtained with the alternative method being tested
on a sample of chemicals with the results of reference values on the same chemicals where the
reference test results are taken as the true values. We assume that our true reference values are the
rodent oral acute toxicity data, the average LDs, values.

In the simple case when the test method being evaluated and reference values are expressed with a
binary outcome (positive or negative), the result of the test method study can be displayed ina 2 x 2
contingency table whose columns represent the reference results and whose rows represent the test
method results. The 2 x 2 contingency table displaying the results of test method studies are often
summarised by various characteristics of the test method and the population of chemicals. In
medical and toxicological applications they are sometimes referred to as “Cooper statistics”
(Cooper et. al, 1979). In our case, we have an extension of the binary classification since we have
three toxic classes (TC1, TC2 and TC3) and hence 3 x 3 contingency tables, see Table II and Table
IIT for the definitions of three main Cooper statistics.
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Tablell. A 3 x 3 contingency table

In vivo Ref Class Row
TC1 TC2 TC3 Totals
Predicted TC1 |a b o nR1
Class TC2 |d e f nR2
TC3 |g h i nR3
Column Totals nCl nC2 nC3 n
Grand
Total

Tablelll. Definitions of three main Cooper statistics for 3 x 3 contingency tables

Statistic Definition Calculation
Accuracy The proportion of chemicals that the test .

. (a+e+i)/n
(concordance) method classifies correctly

The proportion of chemicals that are
classed in TC1 in vivo which the a/nC1

alternative method predicts to be in TC1

Sensitivity for TC1
chemicals

The proportion of chemicals that are

Specificity for TC1 | classed in TC2 or T 3 in vivo which the
b . Y . . . (e+h+f+i)/(nC2+nC3)
chemicals alternative method predicts to be in TC2

orTC3

For TC2 and TC3 chemicals the calculations are made in corresponding way

Sensitivity and specificity can also be easily calculated with Bayes’ theorem (also called the inverse
probability law). The sensitivity for TC1 chemicals is the probability that the test method predicts
chemicals to be in TC1 given that the chemicals are really in that class.

FIToL BEF|TCL AMIRITCL AN

P(TC1AMITCLREF) = F(TC1EEF)

(Eq. 3)

where AM stands for alternative method class and REF stands for reference class. The specificity
for TC1 chemicals is the probability that the software program predicts chemicals to be in TC2 or
TC3 given that the chemicals are really in those classes.
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P(TCZAMNTC3AM [TCZREFNTC3REF) =...

PITCL REFNTER BEF|TEL AMNTCS AMIBITCIAM nTEIAM
PUFCI REFNTCY BREFS

For TC2 and TC3 chemicals the calculations are made in corresponding way.

(Eq. 4)
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3 Results

3.1 QSAR software prediction results

In the subsequent analysis the 26 inorganic compounds and salts have been removed from the
complete data set. The total number of compounds in the remaining data set is thus 180-26=154.
Figure 10 illustrates the scatter plots of the LDsy values in the data set and the results from the
QSAR software predictions. There seems to be a trend for all four QSAR software that, for more
toxic chemicals (for TC1 chemicals) the programs overestimate the LDs (hence underestimate the
toxicity) and for less toxic chemicals (for TC3 chemicals) the programs underestimate the LDs
(overestimate the toxicity). For the compounds in between there is no trend.
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LD50 log10

TOPK (green pred.)

154 compounds
T T
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154 compounds 154 compounds

Figure 10. Scatter plots of LDs, values and the QSAR software predictions.

A nonparametric statistical method is applied to look at these differences. Few assumptions about
the form of the distributions are made. The three TCs will be tested separately and the sample sizes
are 43 compounds in TCI, 53 compounds in TC2 and 58 compounds in TC3 taken from the
reference LDsy data set. We assume that the data from the ith QSAR software form a random
sample from a continuous cumulative distribution function Fi, i = 1, ..., 5 (including the reference
LDs, data set) and the random samples are mutually independent. Therefore, the following null and
alternative hypotheses to be tested are:

Ho: F1=F>=...=Fsvs. Hi: Fi< Fj for some i #j. (Eq. 5)
The ranking test called Kruskal-Wallis is applied for each of the three TCs and show the difference

between the methods is significant for 1 and TC3 but not for TC2. This fact can also be seen in
Figure 11, which depicts the boxplots of the LDs distributions for the reference data and the four
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QSAR software programs for each toxic class. For the distributions of TC1 and TC3, all pairwise
differences between the reference LDsy and the 4 QSAR software are significant (using a method to
control Type I family wise error (FWE) rate) but not between all QSAR-methods.
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Figure 11. Boxplots of the LDs distributions for the reference data (REF) and the 4 QSAR

software programs (TOXS, TOPK, TEST, ADMET) for each TC (1, 3 and 2). The difference
between the methods (REF and QSAR software) is significant for TC1 and TC3 but not for TC2.

w
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Figure 12 illustrates scatter plots of the reference LDsy values versus the 4 QSAR software
predictions on a 10-log scale. The strongest linear relationship (the Pearson correlation coefficient
is p = 0.84) between the predictions of the TOXS software and the reference LDsy values. The
predictions of TOPK and the reference LDs values have the lowest correlation (p=0.49).
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Figure 12. Scatter plots of the predicted LDs, values from the 4 QSAR software tools versus the
reference LDs values on a 10-log scale.
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3.2 Invitroassay prediction results

To obtain the predicted LDsg values from the 1Csy values (ug/ml) from the in vitro test experiments,
the regression models from the Halle RC (RC reg) were used:

Millimole regression model: log LDso (mmol/kg) = 0.439- log ICsp (mM) + 0.621 (Eq. 6)
Weight regression model: log LDsy (mg/kg) = 0.372 -log ICso (ug/mL) + 2.024 (Eq. 7)
Figure 13 illustrates a scatter plot of the predicted LDs values from the weight regression model
(Eq. 7) versus the reference LDsy values on a 10-log scale. Most compounds in the regression

model are classified in the middle toxic class and few compounds are classified in the most and
least toxic classes. The correlation coefficient is 0.53.

RC Regression

Ref LD50

Pred LD50

Figure 13. Scatter plots of the predicted LDs, values versus the
reference LDsg values on a 10-log scale.

3.3  Evaluation of the predictive capacity of an alter native test method

The heat map in Figure 14 gives a graphical representation of the five alternative test method
predictions, in columns 2 - 6, compared to the reference LDsy values, in column 1. The compounds
are ordered in decreasing toxicity of the reference values. The compounds that are classified in TC1
are in red, TC2 compounds in yellow and TC3 compounds in green. The software TOPK (column
3) was not able to predict a LDsy value for the compound fentin hydroxide (JRC-000241, CAS
number 76-87-9) and this compound is therefore grey coloured. For the RC reg predictions (column
6) there are six grey compounds corresponding to the six inorganic problematic chemicals listed in
Section 2.7. From an overview of these results we make some observations:

- the worst classification error of predicting TC1 chemicals in the TC3 is made by the TOPK
software six times and by the TEST software twice,

- the TOXS and TEST software tools seem to yield similar and the best results (apart from the
two TC1 errors),

- the ADMET software and the RC reg tend to predict chemicals in class TC2.
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Figure 14. Heat map of the alternative method predictions (columns 2-6)
compared to the reference LDs values (column 1).
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We also calculated the accuracy, sensitivity and specificity for the five alternative test methods.
Table IV and Table V go through the calculations of these statistics for one of the methods, the
TOXS software (column 2). The accuracy is relatively high, 72%. The sensitivity for TC2 is higher
that the sensitivities for TC1 and TC3 which are almost the same (81% compared to 67% in the
other two cases). As a consequence, the specificities for TC1 and TC3 are almost the same and very
high (95% and 94%) and larger than the specificity for TC2 (69%).

TablelV. The 3 x 3 contingency table with the results from the TOXS software compared to the
reference LDs, values.

Software TOXS
In vivo Ref Class Row
TC1 TC2 TC3 Totals
Predicted TC1 |29 4 2 35
Class TC2 |14 43 17 74
TC3 |0 6 39 45
Column Totals 43 53 58 154
Grand
Total

Table V. Calculations of the accuracy, sensitivity and specificity for the TOXS software.

Accuracy (29+43+39)/154 =72.1%
TC1|29/43=67.4%

Sensitivity for TC2|43/53 =81.1%
TC3|39/58=67.2%
TC1| (43+6+17+39)/(53+58) ~ 94.6%

Specificity for TC2 | (29+0+2+39)/(43+58) = 69.3%
TC3 | (29+14+4+43)/(43+53) = 93.8%

Table VI gives an overview of the predictive capacities of the five alternative methods. TOXS has
the highest accuracy, which can also be seen in the heat map in Figure 14. It also had the highest
correlation coefficient for the individual predicted values, as can be seen in section 3.1. TEST has
the second highest accuracy (68%), followed by TOPK (63%) and ADMET (57%). The RC reg
model has the lowest accuracy, only 41%.
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Table VI. Overview of the predictive capacity for the five alternative methods.

Alternative
TOXS | TOPK | TEST |ADMET |RCreg

Test Method
Accuracy 72.1% | 63.4% | 68.2% | 56.5% |40.5%

TC1|67.4%|55.8% | 67.4% |41.9% |22.0%
Sensitivity for TC2|81.1% [ 69.2%|79.2% | 75.5% |72.0%
TC3|67.2%|63.8% | 58.6% | 50.0% |26.3%
TC1|94.6%|88.2% |93.7% | 89.2% | 85.0%
Specificity for TC2|69.3% |70.3% | 65.3% | 50.5% |26.5%
TC3|93.8%|86.3% |92.7% | 94.8% |100.0%

Figure 15 illustrates the sensitivities and specificities for the five alternative test methods:

- for all methods the sensitivities for TC2 are higher than for TC1 and TC3. Thus the
specificities for TC2 for all methods are lower than for TC1 and TC3,

- the Cooper statistics for TOXS and TEST are similar,

- for the RC reg the specificity for TC3 is 100%, meaning that there are no misclassified TC3
chemicals in the groups TC1 and TC2, but the sensitivity for TC3 is only 26%.
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Figure 15. Sensitivity and specificity for the five alternative test methods.
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34  Combination of QSAR predictions

In this section we combine the predictions from the different QSAR models and use the information
to draw conclusions from a combined testing scheme. Ten different test batteries were chosen, as
described in Table VII.

Table VII. Descriptions of the different ways of combining QSAR predictions (test combinations)

Abbr | Description

C1 | The most conservative classification (TC) was picked among the
four software tools.

C2 | The most conservative classification (TC) was picked among the
three software; TOXS, TOPK and TEST.
C3 | The most common classification (TC) was picked among the

four software tools. When the result is ambiguous (two
classifications in two TC), the result is left blank.

C4 |The most common classification (TC) was picked among the
four software tools. When the result is ambiguous (two
classifications in two TC), the most conservative classification
(TC) was chosen.

cs The most common classification (TC) was picked among the
three software tools; TOXS, TOPK and TEST. When the result is
ambiguous (one classification in each TC), the result is left
blank.

C6 |The most common classification (TC) was picked among the
three software tools; TOXS, TOPK and TEST. When the result is
ambiguous (one classification in the each TC), the most

conservative classification (TC) was chosen.

Cc7 For TOXS, TOPK and TEST, an average LDsy was calculated and
the TC assigned thereafter.

C8 For TOXS and TEST, an average LDsq was calculated and the TC
assigned thereafter.

C9 | The most conservative classification (TC) was picked among the
two software TOXS and TEST.
C10 |The least conservative classification (TC) was picked among the
two software TOXS and TEST.

Figure 16. Accuracy, sensitivity and specificity for ten different test combinations (C1-C10).

A heat map of the results is given in Figure 17.
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Figure 17. Heat map of the test combinations (C1-C10) compared to the reference LDs, values
(REF). For the test combinations C3 and C5, 25 and 8 ambiguous (inconclusive) results were found
(white compounds), thus the adjusted number of chemicals in these test sets is 131 and 148.
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Figure 18 depicts a scatter plot of the accuracy, sensitivity and specificity for the ten combinations
of alternative methods. The complete list of statistics are given in Table VII. The accuracy lies
between 62-74%. The test combinations C1 and C2 are good at identifying TC1 chemicals (the
sensitivities for TC1 chemicals are 93% in both cases), since they are conservative methods. The
trade-off is that they are bad at identifying low toxicity chemicals (the sensitivities for TC3
chemicals are only 35% and 40%). A comfort is that when these test batteries pick out TC3
chemicals we can be sure they really are low toxicity chemicals (the specificities for TC3 chemicals
are 100% and 99%, respectively). The test combinations C7 and C8 are good at identifying TC2
chemicals (the sensitivities are in both cases 87%). The test combination C10 is good at identifying
TC3 chemicals with a sensitivity and specificity of 78% and 89%, respectively.
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Figure 18. Accuracy, sensitivity and specificity for ten different test combinations (C1-C10).

22



Table VIII. Predictive performance statistics for the ten test combinations (C1-C10).

Alternative
Method

C1

Cc2

Cc3

c4

c5

Accuracy

62.3%

66.2%

72.1%

68.2%

73.5%

TC1
Sensitivity for TC2
TC3

93.0%
67.9%
34.5%

93.0%
73.6%
39.7%

64.7%
85.4%
63.8%

72.1%
83.0%
51.7%

70.0%
82.4%
67.9%

TC1
Specificity for TC2
TC3

77.5%
67.3%
100.0%

83.8%
67.3%
99.0%

93.7%
65.4%
97.6%

91.9%
62.4%
97.9%

93.5%
70.8%
95.6%

Alternative
Method

Cc6

Cc7

c8

9

C10

Accuracy

72.1%

72.7%

73.4%

69.5%

70.8%

TC1
Sensitivity for TC2
TC3

72.1%
79.2%
65.5%

51.2%
86.8%
75.9%

60.5%
86.8%
70.7%

83.7%
81.1%
48.3%

51.2%
79.2%
77.6%

TC1
Specificity for TC2
TC3

90.1%
72.3%
95.8%

95.5%
71.3%
91.7%

96.4%
68.3%
94.8%

91.0%
65.3%
97.9%

97.3%
69.3%
88.5%
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3.5 Integrated testing strategies

By using the methodology of ITS, we combine both the in silico and in vitro approaches presented
in this report. In total, ten different ITS were investigated, as described in Table IX and illustrated
by the heat map in Figure 20. The main predictive performance statistics are illustrated in Figure
21, and detailed in full in Table X.

Table I X. Description of ten different ITS. An explanation of the structure in the table, for ITS1,
first the test combination C2 is applied to identify TC1 chemicals. Then the RC reg model is used to
identify TC2 chemicals and finally the chemicals which are left are classified as TC3 chemicals.

Abbr. | Description Abbr. | Description
1. C2 (TC1 chemicals) 1. C10 (TC3 chemicals)
ITS1 |2.RCreg (TC2 chemicals) ITS6 |2.C9 (TC2 chemicals)
3. TC3 chemicals 3 TC1 chemicals
1. C2 (TC1 chemicals) 1. C8 (TC2 chemicals)
ITS2 |2.C9 (TC2 chemicals) ITS7 |2.C2 (TC1 chemicals)
3. TC3 chemicals. 3 TC3 chemicals
1. C2 (TC1 chemicals) 1. C9 (TC2 chemicals)
ITS3 | 2. C8(TC2 chemicals) ITS8 |2.C8 (TC3 chemicals)
3. TC3 chemicals. 3 TC1 chemicals
1. C8 (TC3 chemicals) 1. C2 (TC1 chemicals)
ITS4 |2.C9 (TC2 chemicals) ITS9 |2.C10 (TC3 chemicals)
3. TC1 chemicals 3 TC2 chemicals
1. C10 (TC3 chemicals) 1. C10 (TC3 chemicals)
ITS5 |2.C8 (TC2 chemicals) ITS10 | 2. C2 (TC2 chemicals)
3 TC1 chemicals 3 TC1 chemicals

24



357573,
6819
103855
57476
298044
302272
51183
54626
56382
57245

TC1

3926623
s2433

TC2

57410
o1532
90722
59865133
o17-613
50.782
123637
150213
77182822

TC3

19005645
26761200

Figure 20. Heat map of ten ITS (ITS1-ITS10) compared to the reference LDs, values (REF).
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Figure 21. Scatter plots of accuracy, sensitivity and specificity for ten ITS.

Table X. Overview of the predictive capacity for ten ITS (ITS1-ITS10).

Alternative
Method ITS1 | ITS2 | ITS3 | ITS4 | ITS5
Accuracy 58.0% | 68.8% | 76.0% | 76.0% | 72.7%
TC1|93.0%(93.0% | 93.0% | 81.4% | 60.5%
Sensitivity for TC2|62.0%|71.7%|69.8% | 77.4% | 77.4%

TC3|28.1%|48.3%|69.0% | 70.7% | 77.6%
TC1|83.2%|83.8%|83.8%|91.0% | 96.4%
Specificity for TC2|61.0%|72.3%|84.2%|78.2%|73.3%
TC3|93.5%|97.9%|96.9% | 94.8% | 88.5%

Alternative
Method ITS6 | ITS7 | ITS8 | ITS9 | ITS10
Accuracy 76.0%|73.4% | 68.8% | 75.3% | 76.0%
TC1|81.4%|62.8%|81.4%|93.0% [ 90.7%
Sensitivity for TC2|69.8%|86.8%|81.1%|62.3% | 62.3%

TC3|77.6%)69.0% | 48.3% | 74.1% | 77.6%
TC1|91.9%|94.6%|91.0% | 83.8% | 87.4%
Specificity for TC2|83.2%|68.3% | 65.3% | 88.1% | 88.1%
TC3|88.5%196.9% | 969% | 91.7% | 88.5%




For illustrative purposes, we present in details just two of the 10 ITS. Figure 22 illustrates the work
flow of the first ITS. The test combination C2, presented in the previous section, is used in the first
step, since it was shown to be good at picking out toxic chemicals (TCI). The sensitivity and
specificity for this test combination for TC1 chemicals were 96% and 84%, respectively. We use
this property and begin by identifying TC1 chemicals using the test combination C2. For the
remaining chemicals, predicted either as TC2 or TC3 chemicals, we use the in vitro method RC reg
to identify TC2 chemicals. For this method the sensitivity was 72% for TC2 chemicals. The
remaining chemicals in the set are predicted to be low toxic chemicals, in TC3. The total number of
chemicals is reduced to 152 since the in vitro method did not produce experimental results for all
chemicals. The overall accuracy for ITS1 is 58%, considerably higher than the accuracy of the in
vitro test alone (41%) but lower than the individual QSAR tests (63-72%). The high sensitivity and
specificity for TC1 chemicals is preserved from the combined test C2 (93% and 83%), the statistics
for TC2 chemicals are lower (62% and 61%). For TC3 chemicals the sensitivity is only 28% while
the specificity is 93%.

TC 1
Test
combination C2

| V
Sensitivity 93%
@TC 2andTC3
TC 2
RC reg | :>
Sensitivity 72%

=)

Figure 22. Work flow for ITS1; first the test combination C2 is applied to identify
TC1 chemicals, then the RC reg model is used to identify TC2 chemicals and finally
the chemicals which are left are predicted to be TC3 chemicals.
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For ITS3, which is illustrated in Figure 23, the test combination C2 is first applied to identify TCI
chemicals. Then the test combination C8 is used to identify TC2 chemicals and the chemicals which
are left are predicted as TC3 chemicals. For this combination the overall accuracy is relatively high
(76%). The Cooper statistics for TC2 and TC3 chemicals are higher than for ITS1 (the sensitivity is
70% in both cases and the specificity is 84%, and 97%, respectively).

TC 1
Test
o | >
combination C2
Sensitivity 93%
@TC 2and TC3
TC 2

Test
combination C8

| V
Sensitivity 87%

Figure 23. Work flow for ITS3; first the test combination C2 is applied to identify
TCI chemicals, then the test combination C8 is used to identify TC2 chemicals and finally
the chemicals which are left are predicted to be TC3 chemicals.
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4 Discussion and conclusions

In this study, we have investigated the predictive performances of five alternative approaches for
the assessment of acute oral toxicity, a toxicological endpoint required in multiple pieces of
legislation on chemicals and consumer products. In particular, we investigated the ability of four
QSAR models (ToxSuite, TOPKAT, TEST and ADMET Predictor) and one in vitro method (3T3
NRU using the prediction model of Halle, RC reg). We characterised the predictive performance of
each method when used alone (both for LDs, prediction and acute toxicity classification into three
categories), as well as multiple test combinations (batteries) and stepwise testing strategies (for
acute toxicity classification into three categories). To assess the predictive performances of the
alternative methods, we compiled a test set containing in vitro and in vivo data for 180 compounds.
The in vitro data are considered to be of high quality, being derived from international validation
studies on in vitro tests.

In the assessment of QSAR model performance, it should be noted that the statistics for predictivity
do not reflect full external predictivity, since the test chemicals had been included to some extent in
the training sets of one or more of the models. For consistency in the model comparisons, it was
decided not to exclude any training set chemicals, since this is only partially known for the QSAR
models. Similarly, the in vitro prediction model had been calibrated by using data for some of the
test chemicals, but these were not excluded when assessing the performance of the in vitro
prediction model (RC reg).

The in vivo data showed considerable variability for some compounds. About 20% of the
compounds cross two or three (in two cases) toxic classes. The compounds that cross three toxic
classes are malathion (JRC-000012, CAS number 121-75-5) and phenytoin (JRC-000028, CAS
number 57-41-0). Sixty seven of the 180 chemicals have official classifications for acute oral
toxicity in Table 3.1, Annex VI to Regulation EC 1272/2008 CLP Regulation (EC, 2008). When
comparing the actual CLP classification with classifications derived from the average LDs, values
according to the GHS system, we found that in 43 cases the chemicals are classified in the same
category, in 8 cases the average LDsy category was lower than the CLP Regulation classification
and in 16 cases the average LDsy category was higher than the CLP Regulation classification. In
these cases the difference in category was one, apart from two cases, for methanol (JRC-000019,
CAS number 67-56-1) and for carbon tetrachloride (JRC-000257, CAS number 56-23-5).
According to the CLP classification, these chemicals should be classified in category 3 while with
according to their average LDs values, they would not be classified, with average LDsy > 2000
mg/kg bodyweight. A probable reason for these differences could be due to volatility and loss of the
test chemicals.

Overall, the alternative methods, when used individually, showed an ability to predict LDsy with
correlation coefficients in the range of 49% to 84%, and to classify into three toxicity groups with
accuracies in the range 41% to 72%. Among the QSAR models, the best performing models were
ToxSuite and TEST, with correlation coefficients of approximately 80% in LDsy prediction, and
accuracies of approximately 70% in acute toxicity classification. The in vitro 3T3 NRU method,
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based on the use of the Halle prediction model, had a correlation coefficient with LDsy of
approximately 50%, and a classification accuracy of approximately 41%.

When the QSAR models are combined in batteries, the overall accuracies were between 62% and
74%. While these figures are not much higher than the individual QSAR models alone, the
sensitivities for the different toxic classes are considerably higher. For example, the highest
sensitivity for the most toxic class was 93% in one test combination compared to 67% for an
individual QSAR model. The corresponding sensitivity figures for the other toxic classes are 87%
compared to 81% (TC2) and 78% compared to 67% (TC3). On the other hand, the differences
between the specificities for the different toxic classes are relatively small. The highest specificity
for the most toxic class is 97% for a test combination compared to 95% for an individual QSAR
model. The highest specificities in other toxic classes are 72% compared to 70% (TC2) and 100%
compared to 95% (TC3)

When the alternative methods are used in a stepwise testing strategy the overall accuracy could
reach 76%. Different test combinations can be optimised according to the end-users requirements:
for example, to maximise overall accuracy, a suitable choice would be ITS3 (or ITS4, ITS10
described in the Annex); to maximise sensitivity for toxic chemicals (at the expense of a higher
false positive rate), a suitable choice would be ITS1 (or ITS2, ITS3, ITS9); whereas to maximise
specificity for non-toxic chemicals (at the expense of a higher false negative rate), a suitable choice
would be ITSS.

On the basis of these results, it can be concluded that:

d) the variability in LDs, values has an impact on classification, which means that the use of
average LDs( values as a reference standard has to be used with care. A detailed analysis of
the reference in vivo (LDs) data, to characterise the variability in these data and the impact
on the ability to predict in vivo toxicity, is given elsewhere (Norlén et al., 2012).

e) the in vitro test, 3T3 NRU used with the prediction model of Halle, has a lower predictive
performance than the QSAR models. It is possible, however, that the in vitro test has a
broader domain of applicability compared to the QSARs. It would be useful to explore
whether the predictive performance of the in vitro system could also be increased by using
an alternative prediction model.

f) the overall accuracies for the test combinations or testing strategies are not much higher than
the AMs used alone, but may be optimised in terms of overall predictivity, sensitivity and
specificity according to the end-user’s requirements.

A similar comparison study of acute toxicity classification into three categories by four QSAR
models (ToxSuite, TOPKAT, TEST and ADMET Predictor) and one in vitro method (3T3 NRU
using the prediction model of Halle) has to our knowledge not been done before. Sedykh and
coworkers (Sedykh et al., 2011) adopted the same toxicity classification scheme with three
categories when evaluating their own QSAR and hybrid models. In contrast to our study, Sedykh
and coworkers made the simplification to exclude the “marginal” compounds (corresponding to
TC2 chemicals) and hence made a clear binary classification of “toxic” and “nontoxic” chemicals.
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They used k nearest neighbor classification and random forest QSAR methods to model LDs, data
using chemicals descriptors alone or combined with biological descriptors derived from
concentration-response quantitative high-throughput screening (qHTS) data. The performance of
their hybrid models were shown to be superior to TOPKAT.

In another study, Zhu et al. (2009a) divided the ZEBET (database on alternatives to animal
experiments on the Internet) dataset into two groups, i.e. compounds with a good or a bad ICs¢/LDsg
correlation. The LDsy prediction accuracy of the resulting models proved superior to TOPKAT
models applied to the same external test set of rodent acute toxicity data (RTECS chemicals). In
addition to these local models, a number of QSAR models for rat oral acute toxicity have been
developed using large datasets (global models) have been reported by Zhu and coworkers (Zhu et
al., 2009b). These models were built by using a combinatorial QSAR modelling approach,
including several sets of descriptors and employing several statistical modelling methods (e.g.
nearest neighbour methods, the random forest method, and the FDA MDL QSAR method).
Ultimately, consensus models were developed by averaging the predicted LDs, for every compound
using all five models, which afforded higher prediction accuracy as compared to individual models.
However, as a result of using a large number of descriptors, which are often sparsely populated, the
multidimensional space defined by each of these models is complex and fragmented. As a result of
the high complexity of the modelling procedure, these models are difficult to reproduce, even by a
specialist, and thus they are not easily transferable and practically useful.

A study by Raevsky and coworkers (Raevsky et al., 2010) proposed the so-called Arithmetic Mean
Toxicity (AMT) modelling approach, which produces local models based on a k-nearest neighbors
approach. The authors showed that LDsy values could be predicted with % values up to 0.78,
depending on the selection of nearest neighbours (analogues), which is significantly better than the
statistics associated with in vitro-in vivo correlation (typically r* values less than 0.5). The approach
is transparent and reproducible, but would need to be implemented in a software tool for ease of
application. It can be thought of as an automated read-across approach.

The results obtained in this study could be used as the basis for further investigations. For example,
the Cooper statistics obtained for the AMs could be used as input parameters to explore Bayesian
approaches for combining the results obtained by different methods. The results could also be used
in the context of cost-benefit analyses in which the cost relates to the time, expense and difficulty of
applying a method, and is compared with the benefit in terms of predictive ability and reduction in
animal testing.

Further studies, based on more extensive and high quality datasets (e.g. as generated by High

Throughput Screening), would also be valuable in the search for optimal strategies for assessing
acute toxicity.
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6 Annex. List of 180 chemicals used in the study.

Nr JRC nr CAS Chemical name SMILES®

1 JRC-000002 103-90-2 acetaminophen CC(=0)Nclccc(ccl)o

2 JRC-000003 50-78-2 acetylsalicylic acid CC(=0)OclccceclC(=0)0

3 JRC-000004 5908-99-6 atropine sulfate C3C(CC2CCC3N2C)OC(C(clceecel)CO)=0
monohydrate

4 JRC-000005 58-08-2 caffeine Cnlcnc2clc(=0)n(C)c(=0)n2C

5 JRC-000006 298-46-4 carbamazepine NC(=0)N1c3cccce3C=Cc2clccec2

6 JRC-000007 64-86-8 colchicine COc3¢(0C)cc2c(c30C)c1cec(c(=0)cc1C(CC2)NC(=0)C)0C

7 JRC-000008 66-81-9 cycloheximide CC2CC(C)C(=0)C(C2)c(CcC1CC(=0)NC(=0)C1)0

8 JRC-000009 439-14-5 diazepam Clc3ccc2c¢(c3)C(=NCC(=0)N2C)clcccecl

9 JRC-000010 20830-75-5 | digoxin 0=C30CC(=C3)C4CCC8(C4(C)C(0)ccse8ccc2e5(c)cee(c2)oc

6CC(0)C(C(06)C)OC7CC(0)C(C(07)C)0C1CC(0)C(C(01)C)0)0

10 JRC-000011 67-63-0 propan-2-ol CC(0)C

11 JRC-000012 121-75-5 malathion CCOC(=0)CC(C(=0)OCC)SP(=S)(0C)OC

12 JRC-000013 7487-94-7 mercury dichloride -

13 JRC-000014 87-86-5 pentachlorophenol Clc1c(O)c(Cl)c(c(c1chcl)cl

14 JRC-000015 50-06-6 phenobarbital CCC2(C(=0)NC(=0)NC2=0)c1cccccl

15 JRC-000016 151-21-3 sodium lauryl sulfate CCCCCCCCCCCCOos(=0)(=0)O0[Na]

16 JRC-000017 1069-66-5 sodium valproate -

17 JRC-000018 7720-78-7 ferrous sulfate -

18 JRC-000019 67-56-1 methanol Cco

19 JRC-000020 10377-48-7 | lithium salt -

20 JRC-000021 58-55-9 theophylline Cnlc(=0)n(C)c2c(c1=0)ncn2

21 JRC-000022 130-61-0 thioridazine hydrochloride | N4(c2c(Sc3cdccec3)cce(c2)SC)CCCIN(CCCCL)C

22 JRC-000023 81-81-2 warfarin CC(=0)CC(c3c(=0)oc2c(c30)ccec2)clececcl

23 JRC-000024 67-66-3 chloroform cic(cncl

24 JRC-000025 54-85-3 isoniazid NNC(=0)clcenecl

25 JRC-000026 75-09-2 dichloromethane cical

26 | JRC-000027 50-63-5 d_ﬂomqume ¢12¢(ncccINC(CCCN(CC)CC)C)ee(Cl)ec2
bis(phosphate)

27 JRC-000028 57-41-0 phen\./toin, . 0=C2NC(=0)NC2(c3ccccc3)clcecccl
5,5-diphenylhydantoin

28 JRC-000029 94-75-7 z,czil(;dichIorophenoxyacetic 0OC(=0)COclcec(cclCl)Cl

29 JRC-000030 57-33-0 pentobarbital sodium C1(C(=0)NC(=0)NC1=0)(Cc(ccc)c)cc

30 JRC-000031 10262-69-8 | maprotiline CNCCCC42CCC(c3c4ccce3)clc2ceccl

31 JRC-000032 3737-09-5 disopyramide CC(N(C(C)C)CCC(c2cecen2)(clcececl)C(=0)N)C

32 JRC-000033 58-73-1 diphenhydramine CN(CCOC(c2ceccce2)clcececl)C

33 JRC-000034 533-45-9 clomethiazole CclncsclCCCl

34 JRC-000035 6591-63-5 quinidine sulfate ¢12¢(C(C3N4CC(C(C3)CC4)C=C)0)ccnclecc(c2)0C

35 JRC-000036 76-57-3 codeine COc5ccc2c3c50C1C43CCN(C(C2)cac=CC10)C

'"The SMILES used in the fourth column describes the structure of chemical molecules used in the computational form
for the QSAR software programs. The SMILES for inorganic compounds are omitted.
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Nr JRC nr CAS Chemical name SMILES
36 JRC-000037 69-09-0 chIorproma.\zine N1(c2c(Sc3clccce3)cec(c2)Cl)CCCN(C)C
hydrochloride
37 JRC-000038 123-63-7 paraldehyde CC10c(c)oc(o1)c
38 JRC-000039 144-55-8 sodium bicarbonate 0=C(0)O
39 JRC-000040 79-06-1 acrylamide NC(=0)C=C
40 JRC-000041 50-00-0 formaldehyde C=0
41 JRC-000042 75-07-0 acetaldehyde CC=0
42 JRC-000043 107-02-8 acrolein C=CC=0
43 JRC-000044 19774-82-4 amiodaronfe c3(c2c(0c3CCCC)cccc2)C(=0)clec(c(c(c1)I)OCCN(CC)CO)l
hydrochloride
44 JRC-000045 51-63-8 dexamphetamine c1(cceec1)CC(C)N
sulphate
45 JRC-000046 71-43-2 benzene clcececl
46 JRC-000047 56-55-3 benz[a]anthracene c3cccde(c3)cclc(cd)ccc2clcccc2
CC=CCC(C(C1C(=0)NC(CC)C(=0)N(C)CC(=0)N(C)C(CC(C)C)C(=0
47 |JRC-000048 | 59865-13-3 | cyclosporine INCICICICIC=OIN(CICICCICICICI=0INCICI=OINCICI=O)N(CLC(=
O)N(C(C(=0)N(C(C(=0)N1C)C(C)C)C)CC(C)C)C)CC(C)C)C)C)C)0)
¢
48 JRC-000049 57-63-6 ethinylestradiol C#CC3(0)CCC4C3(C)CCC1CACCc2clccc(c2)0
49 JRC-000050 1095-90-5 methadone hydrochloride | CCC(=0)C(c2ccccc2)(clececccl)CC(N(C)C)C
. ) C1C2C(C(=C3C(c4c(cceccaC(C13)(C)0)0)=0)0)(C(C(C(N)=0)=C(C
50 JRC-000051 64-75-5 tetracycline hydrochloride
2N(C)C)0)=0)0
51 JRC-000052 341-69-5 ethanamine c1(C(c2ccececc2)OCCN(C)C)c(ccecl)C
52 JRC-000053 152-11-4 verapamil hydrochloride c1(C(CCCN(CCc2cc(c(0C)cc2)0C)C)(C(C)C)C#N)cc(c(OC)ecl)OC
COC1C=COC5(C)0Oc3c(C5=0)c2c(0)c(C=NN4ACCN(CC4)C)c(c(c2c
53 JRC-000054 13292-46-1 | rifamycin (c3C)0)O)NC(=0)C(=CC=CC(C(C(C(C(C(C1C)OC(=0)C)C)0)C)O)C
)C
54 JRC-000055 111-46-6 ethanol 0Ccocco
55 JRC-000056 15663-27-1 | platinum -
56 JRC-000057 85-00-7 diquat dibromide BrN13CCCCC3C2N(CC1)(Br)cccc2
57 JRC-000058 303-47-9 ochratoxin A CC30C(=0)c2c(C3)c(Cl)cc(c20)C(=0)NC(C(=0)0)Cclceccecl
58 JRC-000059 608-93-5 pentachlorobenzene Clclcc(Cl)e(c(c1Cl)Ch)Cl
59 JRC-000060 85-01-8 phenanthrene c3ccc2c(c3)clecceclec2
60 JRC-000061 129-00-0 pyrene clcc2cec3cdc2c(cl)cccdeec3
61 | JRC-000062 118-74-1 benzene, 1,2,3,4,5,6- Clele(Cl)e(Cl)e(c(c1cl)Cl)Cl
hexachloro-
62 JRC-000063 77182-82-2 | glufosinate-ammonium P(=0)(CCC(C(=0)0)N)(C)O
63 JRC-000064 51-21-8 5-fluorouracil Fclenc(=0)ncl=0
64 JRC-000065 75-91-2 tert-butyl hydroperoxide | OOC(C)(C)C
65 JRC-000066 10108-64-2 | cadmium chloride -
66 JRC-000067 634-66-2 1,234 Clc1c(Cl)cee(c1cl)Cl
tetrachlorobenzene
67 JRC-000068 54-11-5 nicotine CN2CCCC2clccencl
68 JRC-000069 58-89-9 cyclohexane clcac(cne(cnc(c(cicnccl
69 JRC-000070 64-17-5 ethanol cco
70 JRC-000071 56-38-2 parathion CCOP(=S)(Oclccc(cc1)N(=0)=0)0CC
71 JRC-000072 62-73-7 dichlorvos COP(=0)(0C=C(cl)cl)oC
72 JRC-000073 57-47-6 physostigmine CNC(=0)0Oc3cec2c(c3)C1(C)CCN(CIN2C)C
73 JRC-000074 7681-49-4 sodium fluoride -
74 JRC-000075 1910-42-5 paraquat dichloride c1(c2cen(H)(cc2)C)ecen(H)(ccl1)C
75 | JRC-000076 56-81-5 glycerol 0CC(CO)o
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76 JRC-000077 68-12-2 N,N-dimethylformamide 0=CN(C)C
amitriptyline
77 | JRC-000078 549-18-8 . C1(c2c(CCc3clccee3)cecc2)=CCCN(C)C
hydrochloride
78 JRC-000079 107-21-1 ethylene glycol 0OCcco
79 JRC-000080 108-95-2 phenol Oclcceccl
80 JRC-000081 7647-14-5 sodium chloride -
benzene, dimethyl-,
81 JRC-000082 1330-20-7 -
xylene
82 JRC-000083 151-50-8 potassium cyanide (K(CN)) | -
83 JRC-000084 52-86-8 haloperidol Fc2ccc(cc2)C(=0)CCCN3CCC(CC3)(0)clcec(ccl)Cl
84 JRC-000085 318-98-9 2-propanol €12¢(OCC(CNC(C)C)O)cceclecec2
85 JRC-000086 1327-53-3 arsenic oxide (As,03) -
86 JRC-000087 7446-18-6 dithallium sulphate -
87 JRC-000088 70-30-4 hexachlorophene Clc2cc(Cl)c(c(c20)Cclc(O)c(Cl)cc(c1Cl)Cl)Cl
88 JRC-000089 56-75-7 chloramphenicol OCC(C(clccc(ccl)N(=0)=0)0)NC(=0)C(CI)CI
89 JRC-000090 7447-40-7 potassium chloride -
90 JRC-000091 302-17-0 chloral hydrate oc(c(cl(cncno
91 JRC-000092 57-53-4 meprobamate CCCC(COC(=0)N)(COC(=0)N)C
92 JRC-000093 57-24-9 strychnine 0=C5CC70CC=C3C4C7C2N5c6ccccc6C12CCN(C1C4)C3
93 JRC-000094 77-21-4 glutethimide CCC2(CCC(=0)NC2=0)clcccecl
procainamide
94 JRC-000095 614-39-1 . c1(C(NCCN(CC)CC)=0)ccc(N)ccl
hydrochloride
95 JRC-000096 13410-01-0 | selenic acid -
96 JRC-000097 75-05-8 acetonitrile CC#N
epinephrine hydrogen
97 | JRC-000098  |51-42:3 pinep veros c1(cc(c(0)ee1)0)C(CNC)O
tartrate
98 JRC-000099 99-66-1 valproic acid CCCC(c(=0)o)ccc
2,4,6-
99 JRC-000106 90-72-2 tris(dimethylaminomethyl | CN(Cclcc(CN(C)C)c(c(c1)CN(C)C)O)C
Jphenol
100 | JRC-000107 98-86-2 acetophenone CC(=0)clcccecl
101 | JRC-000108 141-97-9 butanoic acid CCOC(=0)cc(=0)C
1,3,5,7-
102 JRC-000109 100-97-0 Tetraazatricyclo[3.3.1.13, | CIN2CN3CN1CN(C2)C3
7]decane
ethanol, 2-(2-
103 | JRC-000110 112-34-5 cccecoccocco
butoxyethoxy)-
2,5-cyclohexadiene-1,4-
104 JRC-000111 106-51-4 ) 0=C1C=CC(=0)C=C1
dione
7-
105 | JRC-000112 2386-87-0 oxabicyclo[4.1.0]heptane- | O=C(C3CCC4C(C3)04)0CC1CCC2C(C1)02
3-carboxylic acid
0OCCOC(C10C(CC10CCO)0CCo)Ccoccoc(=0)cceeccecc=cece
106 JRC-000113 9005-64-5 polysorbate 20
ccccce
acetic acid, 2-chloro-,
107 | JRC-000114 105-39-5 CCOocC(=0)ccl
ethyl ester
4'-tert-butyl-2',6'-
108 | JRC-000115 81-14-1 dimethyl-3',5'- 0=N(=0)c1c(C)c(C(=0)C)c(c(c1C(C)(C)C)N(=0)=0)C
dinitroacetophenone
109 | JRC-000116 91-53-2 ethoxyquin CCOclcec2c(c1)C(=CC(N2)(C)C)C
110 | JRC-000117 110-97-4 2-propanol CC(CNCC(0)C)0
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acetic acid, 2-chloro-,
111 | JRC-000118 3926-62-3 ) c(ccl(o)=0
sodium salt (1:1)
112 | JRC-000119 917-61-3 sodium cyanate [Na]OC#N
1,2-benzenedicarboxylic
113 | JRC-000120 68515-48-0 acid CCCCCCCCCOC(=0)clececclC(=0)0cceeeccece
114 | JRC-000121 101-72-4 1,4-benzenediamine CC(Nc2cec(cc2)Ncleeceel)C
115 | JRC-000122 7778-80-5 potassium sulfate -
116 | JRC-000123 92-43-3 1-phenyl-3-pyrazolidone 0=C2CCN(N2)clcccecl
117 | JRC-000124 1338-39-2 sorbitan CCCCCCCCCCec(=0)occe(c1occ(c1o)o)o
118 | JRC-000125 60-00-4 edetic acid 0C(=0)CN(CC(=0)0)CCN(CC(=0)0)CC(=0)0
strychnidin-10-one,  2,3-
119 | JRC-000126 357-57-3 . COc5ccbc(cc50C)N1C3C76CCN2C7CCAC3C(CC1=0)0CC=C4C2
dimethoxy-
120 | JRC-000127 120-82-1 benzene, 1,2,4-trichloro- | Clclccc(c(c1)Cl)Cl
tetramethylthiuram
121 | JRC-000128 97-74-5 ) CN(C(=S)SC(=S)N(C)C)C
monosulphide
122 | JRC-000129 95-50-1 1,2-dichlorobenzene ClclccecclCl
123 | JRC-000130 1034-01-1 | octyl ester CCCCCCCCOC(=0)clcc(0)c(c(c1)0)0
124 | JRC-000131 108-46-3 1,3-benzenediol Oclccec(cl)0
125 | JRC-000132 25646-77-9 | ethanol OCCN(clcec(c(c1)C)N)CC
126 | JRC-000133 1314-13-2 zinc oxide (ZnO) -
127 | JRC-000134 109-16-0 2-propenoic acid 0=C(C(=C)C)OCCOCCOCCOC(=0)C(=C)C
128 JRC-000135 107-64-2 1-octadecanaminium CCCCCCCCCCCCCCCCCLN(H)(ccecccceccccccccccc)(c)e
129 | JRC-000136 85-44-9 phthalic anhydride 0=C10C(=0)c2clcccc2
2,2',6,6'-tetrabromo-4,4'-
130 | JRC-000137 79-94-7 . . K CC(c2cc(Br)c(c(c2)Br)O)(clcc(Br)c(c(c1)Br)0)C
isopropylidenediphenol
phenol, nonyl-, 1,1',1"- | CCCCCCCCCc2ccc(cc2)OP(0c3ccc(cc3)CCCCCCCCC)Oclecc(ccl)
131 | JRC-000138 26523-78-4 .
phosphite ccccececcecc
ethanol, 2-butoxy-, 1-
132 JRC-000139 112-07-2 CCCCOoccoc(=0)c
acetate
benzenamine, 2-chloro-4-
133 | JRC-000140 121-87-9 nitro 0O=N(=0)clccc(c(c1)Cl)N
134 | JRC-000141 124-07-2 octanoic acid CCcccececc(=0)o
benzoic acid,
135 | JRC-000142 120-51-4 0=C(c2ccccc2)OCclcceccl
phenylmethyl ester
1,2-benzenedicarboxylic
136 | JRC-000143 131-17-9 acid C=CCOC(=0)clccceclC(=0)0CC=C
1,2-benzenedicarboxylic
137 | JRC-000144 26761-40-0 | " CC(CCCCCCCOC(=0)clecccclC(=0)0CCCCCCCC(C)C)C
i
138 | JRC-000145 122-99-6 ethanol, 2-phenoxy- OCCOclcceccl
139 | JRC-000146 102-71-6 ethanol, 2,2',2"-nitrilotris- | OCCN(CCO)CCO
140 | JRC-000147 134-32-7 1-naphthalenamine Nclcccec2clceec2
141 | JRC-000148 110-16-7 2-butenedioic acid (22)- 0C(=0)C=CC(=0)0
142 JRC-000149 10361-37-2 barium chloride (BaCl2) -
143 | JRC-000150 579-66-8 2,6-diethylaniline CCclcccc(cIN)CC
aconitane-3,8,13,14,15- COCC15CN(CC)C6C4(C5C(0C)CH6L2(C7CACC(C7OC(=0)c3ccccc3
144 JRC-000151 302-27-2
pentol )(C(C20)0C)0)0C(=0)C)Cc(Cc10)oC
ammonium chloride
145 | JRC-000152 12125-02-9 -
((NH4)CI)
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146 | JRC-000153 7758-98-7 copper sulphate -
. . CCCCCCCCeeeeceecec(=0)0o[zn]oc(=0)cceececcecccccecce
147 JRC-000154 557-05-1 zinc distearate c
1,2,3-propanetriol, 1,2,3-
148 | JRC-000155 102-76-1 . CC(=0)0C(COC(=0)C)COC(=0)C
triacetate
2-propenoic  acid,  2-
149 | JRC-000156 103-11-7 CCCCC(COC(=0)Cc=C)cC
ethylhexyl ester
150 | JRC-000157 100-52-7 benzaldehyde 0O=Cclcccccl
151 | JRC-000158 7779-90-0 trizinc
bis(orthophosphate)
152 | JRC-000159 109-77-3 propanedinitrile N#CCCHN
153 | JRC-000160 866-84-2 tripotassium citrate C(CC(0)=0)(CC(0)=0)(C(0)=0)0
154 | JRC-000161 57-13-6 urea NC(=O)N
155 | JRC-000189 84-74-2 dibutyl phthalate CCCCOC(=0)clcceccclC(=0)0ccce
156 | JRC-000235 71-55-6 1,1,1-trichloroethane cc(an(cnel
157 | JRC-000236 89-57-6 benzoic acid Nclccc(c(c1)C(=0)0)0
. 0OC(=0)CCC(C(=0)0O)NC(=0)c3ccc(cc3)NCclenc2e(nl)c(N)nc(n2
158 | JRC-000237 54-62-6 L-glutamic acid N
159 | JRC-000238 10043-35-3 | boric acid -
160 | JRC-000239 55-98-1 busulfan CS(=0)(=0)0CCCCos(=0)(=0)C
161 | JRC-000240 77-92-9 citric acid 0C(=0)C(CC(=0)0)(CC(=0)0)0
162 | JRC-000241 76-87-9 fentin O[Sn](c2cccec2)(c3cecee3)cleccecl
163 | JRC-000242 84-66-2 diethyl phthalate CCOC(=0)clcecceclC(=0)ocC
164 | JRC-000243 298-04-4 phosphorodithioic acid CCSCCSP(=S)(0cc)occ
165 | JRC-000244 115-29-7 endosulfan 0=530CC2¢(Cco3)c1(c(c2(clc(=c1chcly(clclcl
cyclopropanecarboxylic
166 | JRC-000245 39515-41-8 aZid prop Y N#CC(c2cccc(c2)0c3ccccc3)0C(=0)C1C(CL(C)C)(C)C
0C(=0)C1C2C3(C4C51CC(=C)C(C5)(0)Ccca)c=CC(C2(C)Cc(=0)03
167 | JRC-000246 77-06-5 gibberellic acid 0 (=0) ( (Fac(esyoces) (c2(C)c(=0)
168 | JRC-000247 50-21-5 lactic acid 0C(=0)c(0)C
169 | JRC-000248 554-13-2 lithium carbonate -
170 | JRC-000249 103-85-5 phenyl-2-thiourea NC(=S)Nclcceecl
171 | JRC-000250 94-13-3 benzoic acid CCCOC(=0)clccc(ccl)0
arsenenous acid, sodium | -
172 | JRC-000251 7784-46-5
salt (1:1)
173 JRC-000252 7789-12-0 chromic acid (H2Cr207) -
174 | JRC-000253 7681-52-9 sodium hypochlorite -
ethanedioic acid, sodium
175 | JRC-000254 62-76-0 [Na]OC(=0)C(=0)O[Na]
salt (1:2)
176 | JRC-000255 76-03-9 trichloroacetic acid OC(=0)c(cl)(cncl
tretamine,
177 | JRC-000256 51-18-3 ) . C2CN2c3nc(nc(n3)N4CC4)N1CCL
triethylenemelamine
178 | JRC-000257 56-23-5 carbon tetrachloride clc(cy(cncl
179 | JRC-000258 7758-99-8 cupric sulfate -
dipyrido[1,2-a:2',1'-
180 | JRC-000259 6385-62-2 c3cen2(H)c(c3)clcccen1(H)CC2

c]pyrazinium
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Abstract

We have assessed the abilities of five alternative (non-animal) approaches to predict acute oral toxicity, a toxicological endpoint
relevant to multiple pieces of legislation on chemicals and consumer products. In particular, we have investigated four QSAR
models (ToxSuite, TOPKAT, TEST and ADMET Predictor) and one in vitro method (3T3 NRU). Based on a test set of in vitro and
in vivo data for 180 compounds, we have characterized the predictive performance of each method when used alone (both for LD50
prediction and acute toxicity classification into three categories), as well as multiple test combinations (batteries) and stepwise
testing strategies (for acute toxicity classification into three categories). When used individually, the alternative methods showed an
ability to predict LDs, with correlation coefficients in the range from 49% to 84%, and to classify into three toxicity groups with
accuracies in the range from 41% to 72%. When the alternative methods were combined into batteries or testing strategies, the
overall accuracy of prediction could reach 76%. We also illustrate how different combinations of methods can be used to optimize
sensitivity or specificity.
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