COMMISSION STAFF WORKING DOCUMENT

IMPACT ASSESSMENT

Accompanying the document

Proposal for a Regulation of the European Parliament and of the Council setting CO2 emission performance standards for new heavy duty vehicles

Contents

GLOSSARY - ACRONYMS AND DEFINITIONS .. 2
1 INTRODUCTION.. 3
2 PROBLEM DEFINITION... 6
3 WHY SHOULD THE EU ACT?.. 19
4 OBJECTIVES: WHAT IS TO BE ACHIEVED? .. 20
5 WHAT ARE THE VARIOUS OPTIONS TO ACHIEVE THE OBJECTIVES? .. 21
6 WHAT ARE THE IMPACTS OF THE POLICY OPTIONS? .. 33
7 COMPARISON OF OPTIONS.. 56
8 PREFERRED OPTION... 68
9 HOW WOULD IMPACTS BE MONITORED AND EVALUATED? .. 69
GLOSSARY - ACRONYMS AND DEFINITIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEA</td>
<td>Federation of European Car Manufacturers</td>
</tr>
<tr>
<td>CNG</td>
<td>Compressed Natural Gas</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>EEA</td>
<td>European Environment Agency</td>
</tr>
<tr>
<td>ESR</td>
<td>Effort Sharing Regulation</td>
</tr>
<tr>
<td>ETS</td>
<td>EU Emission Trading System</td>
</tr>
<tr>
<td>EURO VI</td>
<td>Euro VI emission standard for HDV as regards air pollutants, which are set out in Regulation (EC) 595/2009</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas(es)</td>
</tr>
<tr>
<td>GVW</td>
<td>Gross Vehicle Weight – weight of the fully loaded vehicle and/or trailer, including all cargo, fluids, passengers and optional equipment</td>
</tr>
<tr>
<td>HDV</td>
<td>Heavy-Duty Vehicles: freight vehicles of more than 3.5 tonnes (lorries) or passenger transport vehicles of more than 8 seats (buses and coaches)</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>Mission Profile</td>
<td>A trip with certain characteristics in terms of length, slope and speed used for the purpose of VECTO simulations</td>
</tr>
<tr>
<td>LCV</td>
<td>Light Commercial Vehicle(s): van(s)</td>
</tr>
<tr>
<td>LDV</td>
<td>Light-Duty Vehicle(s): passenger cars and vans</td>
</tr>
<tr>
<td>LEV</td>
<td>Low-Emission Vehicles: vehicles with tailpipe emissions significantly below the fleet-wide average emissions</td>
</tr>
<tr>
<td>LNG</td>
<td>Liquefied Natural Gas</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied Petroleum Gas</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organisation</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrogen oxides (nitric oxide (NO) and nitrogen dioxide (NO₂))</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer (HDV manufacturer)</td>
</tr>
<tr>
<td>Payload</td>
<td>Weight that a vehicle can carry</td>
</tr>
<tr>
<td>Trailer</td>
<td>A road vehicle for transporting goods designed to be hauled by a road transport vehicle</td>
</tr>
<tr>
<td>VECTO</td>
<td>Vehicle Energy Consumption calculation Tool</td>
</tr>
<tr>
<td>ZEV</td>
<td>Zero-emission vehicles: vehicles with zero tailpipe emissions</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

1.1 Policy context

Under the Paris Agreement, the European Union (EU) has committed to avoiding dangerous climate change by limiting global warming to well below 2°C. Decreasing greenhouse gas (GHG) emissions is a key prerequisite for fulfilling that commitment. The EU 2030 framework for climate and energy includes a target of at least 40% reduction of domestic EU GHG emissions compared to 1990 levels. The emission reductions in the Emissions Trading System (ETS) and in the sectors covered by the Effort Sharing Regulation (ESR) amount to at least 43% and 30% by 2030 compared to 2005, respectively.

Road transport, a sector covered by the ESR, is of key importance for reducing GHG emissions and decarbonising the EU economy. In the past 25 years however, as demand for mobility grew, transport emissions have steadily increased to reach 22% of EU GHG emissions in 2015.

While Heavy Duty Vehicles (HDVs) are currently responsible for about a quarter of CO₂ emissions from road transport in the EU and for some 6% of total EU emissions, their CO₂ emissions are not yet regulated in the EU. The Commission has taken a number of preparatory initiatives in this direction over the past years, as set out in Section 1.4.

This initiative is part of the 2018 third Mobility Package and builds on the 2016 Low Emission Mobility Strategy, the previous two Mobility Packages, the Industrial Policy Strategy (see Annex 6) and the Commission proposal for CO₂ emission standards post-2020 for cars and vans¹.

1.2 Description of the Heavy Duty Vehicles (HDV) sector

HDVs are defined as freight vehicles of more than 3.5 tonnes (lorries) or passenger transport vehicles of more than 8 seats (buses and coaches).

Road freight transport is essential for the development of trade and commerce on the European continent. Lorries carry 71.3% of freight transported over land², delivering also essential public services such as garbage collection, fire and construction. The road freight and passenger transport sector largely consists of SMEs, with over 600,000 enterprises across the EU employing almost 3 million people. Another 3.5 million people are employed in lorry manufacturing, repair, sales, leasing and insurance³.

The production of HDVs⁴ in the EU is concentrated in a few countries, in particular Germany, the Netherlands, Belgium, France, Sweden and Spain (Figure 1). The EU is a major exporter of lorries, which generates a trade balance surplus of €4.9 billion in 2016.

Six major manufacturers dominate the EU lorry market: Daimler, DAF, M.A.N., Scania, Renault, Volvo and Iveco⁵, as shown in Figure 2. The Chinese and Asia-Pacific markets are less consolidated and dominated mainly by domestic manufacturers (see Annex 5.1).

¹ COM (2017) 676 final
³ International Road Transport Union: https://www.iru.org/who-we-are/about-mobility/trucks
⁴ Data refers to HDVs over 15 tonnes (including articulated trucks).
⁵ DAF is owned by US manufacturer PACCAR. Renault Trucks is part of the Volvo Group, while M.A.N. and Scania are owned by Volkswagen.
1.3 Specificities of the HDV sector compared to light-duty vehicles (cars and vans)

CO₂ emissions from new light-duty vehicles (LDVs) have been regulated in the EU for a number of years. While several elements of the overall approach used for regulating cars and vans will be considered, the regulatory experience cannot be simply carried over to HDVs. This is because the HDV market is significantly different, in particular due to the wider range of types and models of vehicles, the lack of certified data as well as the size and the market structure, with purchasers of HDVs mostly consisting of SMEs. Also, HDV purchase prices are on average around 110,000 EUR per lorry, and thus far higher than for LDVs. The mileages driven by HDVs are on average around 1,200,000 km, and exceed those of LDVs by about a factor of 6. These key differences, which are summarised in Annex 5.2, need to be taken into account when preparing policies regulating CO₂ emissions from HDVs.

1.4 VECTO, certification and monitoring/reporting of HDV CO₂ emissions

In 2014, the first key Commission initiative to tackle HDV CO₂ emissions in the EU was the adoption of a strategy for reducing HDVs fuel consumption and CO₂ emissions. This strategy laid down a step-wise approach for regulating CO₂ emissions in this sector, which has been rolled out as follows:

i. Firstly, the pre-requisite was to develop a tool for determining CO₂ emissions and fuel consumption of HDVs in a harmonized way across the EU. For that purpose, the Commission has engaged since 2009 with main stakeholders in the development of a simulation tool, the so-called the Vehicle Energy Consumption Calculation Tool (VECTO).

ii. Secondly, the Commission adopted the Certification Regulation. This Regulation requires HDV manufacturers, as of 1 January 2019, to determine the CO₂ emissions and fuel consumption of new vehicles they place on the EU market. The CO₂ emissions are calculated by using VECTO. Information on the CO₂ emissions and fuel consumption of new HDVs will be declared for the registration of vehicles under the EU type-approval legislative framework.

6 Data refers to HDVs over 15 tonnes (including articulated trucks).
7 COM(2014) 285 final
8 Regulation (EU) 2017/2400
iii. Thirdly, the Commission adopted in May 2017, as part of the first mobility package, a proposal\(^9\) for a Regulation on the monitoring and reporting of CO\(_2\) emission and fuel consumption data ("Monitoring and Reporting Regulation"). The European Parliament and the Council reached an agreement in March 2018 on this proposal. Monitoring and Reporting Regulation requires that HDV manufacturers monitor and report these data to the Commission to be made publicly available.

As a result of these important steps, information on emissions data and fuel consumption will be improved making the comparison of the performance of vehicles possible. These steps were also pre-conditions for regulating CO\(_2\) emissions from this sector.

As regards the scope of the legislation, to date the Certification Regulation covers the four main groups of lorries, accounting for about 65% to 70% of total HDV CO\(_2\) emissions. Annually, some 250,000 new lorries falling into these four groups are registered. Buses and coaches, which are not yet covered by the Certification Regulation, represent about 10% of the total HDV CO\(_2\) emissions.

The extension of the Certification Regulation to other groups of HDVs requires the further development of the VECTO simulation tool. At this stage, VECTO can simulate only lorries above 7.5 tonnes. Further development work is ongoing for VECTO to cover additional new technologies as of 2020 and to simulate smaller lorries, as well as buses and coaches as of 2020, and trailers as of 2021.

Additional information can be found in Annex 8.

1.5 Legal context

No EU legislation regulates directly the level of CO\(_2\) emissions of HDVs. Legislation indirectly affecting CO\(_2\) emissions from HDVs is listed in Annex 6.

1.6 Evaluation of the implementation

No evaluation could be carried out in view of the absence of EU legislation setting CO\(_2\) standards for HDVs.

Nevertheless the relevant experiences from the first years of implementing the legislation setting CO\(_2\) emission performance standards for light-duty vehicles\(^10\) have been taken into account for this Impact Assessment. This is in particular the case for the main governance related issue identified during that evaluation with the recommendation to systematically monitoring the evolution of the gap between the type-approval emissions and those in the real world as can be seen from Section 5.5.

\(^9\) COM(2017) 0279 final

2 PROBLEM DEFINITION

2.1 What are the problems?

An overview of the drivers, problems and objectives is presented in Figure 3.

Figure 3: Drivers, problems and objectives

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Problems</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road freight transport activity increasing</td>
<td>HDV sector is significant and growing source of GHG emissions</td>
<td>Reduce HDV sector CO₂ emissions in line with EU climate change commitments</td>
</tr>
<tr>
<td>Market barriers hindering the uptake of more fuel-efficient technologies</td>
<td>Transport operators miss out on fuel savings which translates into higher costs of ownership</td>
<td>Reduce fuel consumption costs for transport operators and/ or consumers (depending on pass-through of fuel savings)</td>
</tr>
<tr>
<td>Limited use of zero and low-emission vehicles in the HDV sector</td>
<td>EU HDV manufacturers and component suppliers at risk of technological leadership position</td>
<td>Maintain the technology leadership position of EU manufacturers and component suppliers</td>
</tr>
</tbody>
</table>

2.1.1 Problem 1: HDV sector is a significant and growing source of GHG emissions

In 2015, GHG emissions from HDVs were around 19% higher than in 1990, representing around 6% of total EU emissions, and almost a fifth of all transport emissions. Without further action and HDV activity steadily increasing, HDV CO₂ emissions are set to increase by up to 6% between 2015 and 2030.¹¹

At the same time, the EU has set ambitious targets for reducing GHG emissions by 2030, including for the non-ETS sectors, to which the transport sector must contribute. Cars and vans are already delivering their share and legislation has been proposed¹² so that they continue doing so after 2020. However, the accompanying Impact Assessment¹³ shows that further measures are needed in the road transport sector, including for HDVs, in order to cost-effectively contribute to meet the 2030 national targets set under the Effort Sharing Regulation¹⁴.

To this end, a similar bottom-up approach will be used in this Impact Assessment as was the case for the Impact Assessment underlying the Cars and Vans CO₂ proposal, i.e. assessing the impacts of different options covering a broad range of target levels for new lorries (see Section 5.1.4).

As a result, for each target level, the GHG emission reductions that would be achieved over the next decade can be determined and hence the contribution to the reduction of GHG emissions can be calculated.

¹¹ SWD(2017) 180 final
¹² COM (2017) 676 final
¹³ SWD (2017) 650 final
¹⁴ As regards GHGs, this Impact Assessment focuses on CO₂ emissions. Emissions of other GHGs, such as methane and nitrous oxide are dealt with in Regulation 595/2009 on type-approval of motor vehicles and engines with respect to emissions from HDVs (Euro VI).
emissions needed to meet the 2030 targets, as well as the related economic costs and benefits (see Section 6.2.4.2, Section 6.2.4.4.4 and in Annex 10.9).

As regards air pollutants, transport remains the largest contributor to NO\textsubscript{x} emissions in the EU. High levels of air pollution are of particular concern in urban areas. Even though HDVs are subject to the EURO standards for pollutant emissions and drive for most of their mileage in intra-urban areas, their emissions contribute both to background and traffic NO\textsubscript{2} concentrations. Contribution of HDVs to total NO\textsubscript{x} emissions can be nearly 40 \%, with a roughly equal split between buses, coaches and heavy goods vehicles.

2.1.2 Problem 2: Transport operators and their customers miss out on possible fuel savings due to the limited uptake of fuel-efficient technologies

A broad range of technologies for reducing the fuel consumptions and CO\textsubscript{2} emissions from HDVs is readily available on the market, while others are at various stages of development. Furthermore, HDVs may be equipped with alternative powertrains such as LNG fuelled engines.

Table 1 groups these technologies into five types depending on their nature, degree of implementation and constraints affecting their widespread deployment. Technologies listed in the first and second category are readily available while the timing of roll-out, commercial availability and up-take of the others is more uncertain.

For technologies of the first type, no technical or legal constraints should prevent their widespread deployment. Table 1 shows the costs and fuel savings for a number of these readily available technologies when applied for a long-haul tractor vehicle16, as well as their current market penetration in the EU.

Surprisingly, as illustrated in Figure 4, many of these technologies are not yet widely spread even though their costs are low – generally well below 1\% of the purchase price of a new vehicle - and they would bring considerable net savings over time. However, the net savings of individual technologies will be perceived as rather modest if compared to the total fuel bill, as most of them do not save more than 2\% of the fuel bill or about 0.5\% of the total operating costs. If transport operators want to reap the full benefits, they will have to select a number of technologies at the same time, which makes the purchasing decision more complex.

Similar conclusions have been drawn up by the US authorities in their Regulatory Impact Analysis17 underpinning the phase 2 of the US legislation setting CO\textsubscript{2} emission standards for HDVs: "Economic theory suggests that interactions between vehicle buyers and sellers in a normally-functioning competitive market would lead HDV manufacturers to incorporate all technologies that contribute to lower net costs into the vehicles they offer, and buyers to purchase them willingly. Nevertheless, many readily available technologies that appear to offer cost-effective increases in HDV fuel efficiency (when evaluated over their expected lifetimes using conventional discount rates) have not been widely adopted, despite their potential to repay buyers' initial investments rapidly."

15 UK Air Quality plan 2017 – HDV share is 36%. Berlin Air Quality Plan 2011-2017 – HDV share is 35%

16 A tractor with a 4x2 axle configuration and a technically permissible laden mass of more than 16 tonnes (vehicle group 5), which is used for long haul (LH) transport (see Annex 8.2)

17 US EPA and NHTSA (2016) Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium and Heavy Duty Engines and Vehicles Phase 2: Regulatory Impact Analysis (https://nepis.epa.gov/ExeZyPDF.cgi/P100P7NS.PDF?Dockey=P100P7NS.PDF)
The lack of uptake is to the detriment of freight transport operators, who on average experience fuel costs about a quarter of their total operational costs18. A higher uptake of efficient technologies should in particular benefit the more than half a million transport companies in the EU that are SMEs or micro-enterprises and work off tight margins.

The uptake of the technologies of the second type shown in Table 1 has been constrained by legal restrictions, which will be removed in the near future.

Based on the analysis of the technologies and fuel savings potentials, it appears that the full deployment into the fleet of the first two types of technologies listed in Table 1 would bring about 15 to 20\% CO\textsubscript{2} emission savings in 2025 compared to 2019.

As regards the technologies in the other three groups, their broad uptake is currently constrained either by the fact that there are at present only prototypes available and mass production has not yet started (type 3) or by external technical factors including the availability of the necessary infrastructure, e.g. refuelling, recharging, catenary lines. However, each of them has the economic potential to be taken up over the next decade.

18 SWD (2017) 188, section 5.6 and Annex 10, Figure 18.
Table 1: Overview of technologies for reducing CO₂ emissions from HDV, their current and future market penetration, and constraints for their widespread deployment.¹⁹

<table>
<thead>
<tr>
<th>Technology types</th>
<th>Description</th>
<th>Market penetration</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Readily available technologies</td>
<td>Technologies readily available that could be implemented across the whole fleet. Examples: low rolling resistance tyres, better lubricants, certain aerodynamic improvements or efficiency improvements of the engine and the pollutant after-treatment systems.</td>
<td>Current market penetration is limited despite high net savings</td>
<td>None</td>
</tr>
<tr>
<td>2. Available technologies, which are not implemented due to legal restrictions</td>
<td>Technologies currently available from a technical perspective, but not implemented due to legal restrictions Examples: elongated cabins, rear-view cameras instead of mirrors.</td>
<td>Currently no market penetration. Implementation expected as of early 2020s.</td>
<td>Constraints due to type approval and safety legislation and the Weights and Dimensions Directive. These are to be removed through Commission proposals as part of the 3rd Mobility Package amending the General Safety Regulation and the Weights and Dimensions Directive. Amendments will also be necessary to implementing type approval legislation until end 2018.</td>
</tr>
<tr>
<td>3. Prospective technologies</td>
<td>Known technologies, existing at least as prototypes or currently installed on some selected vehicles. However, due to their complexity and a certain lack of maturity, a deployment on a wide range of the vehicle fleet by 2025 may be very difficult to achieve. Examples: waste heat recovery or hybridisation.</td>
<td>Currently almost no market penetration Based on existing development cycles of manufacturers, the uptake rates of these technologies in the year 2025 will still be limited (max. 5% for waste heat recovery and full hybridisation)</td>
<td>No principal technical constraints. Constraints from integrating the necessary development work into existing product cycles.</td>
</tr>
<tr>
<td>4. LNG vehicles</td>
<td>Current “conventional” LNG technology offers a CO₂ emission reduction of up to 5% as compared to similar diesel vehicles. A new LNG technology is under development and could achieve up to 20% fuel efficiency improvement when operated in the high-pressure direct injection (HPDI) engine cycle.</td>
<td>Currently very limited market penetration (<1% of the fleet). Contribution of conventional LNG vehicles in 2025 is expected to be limited. For the following years, the contribution of LNG vehicles can be larger depending on the CO₂ emission target levels. The most efficient HDPI LNG vehicles are expected to be available on a wide scale only after 2025.</td>
<td>The use of LNG vehicles is constrained by the required LNG infrastructure, which is expected to improve over time.</td>
</tr>
<tr>
<td>5. Zero- and low-emission vehicles</td>
<td>Battery and fuel cell electric lorries are in pilot or early development stages. Pilot project for lorries using catenary lines; no commercial concept of large plug-in hybrid lorries.</td>
<td>Currently no market penetration (see Section5.3. Future market penetration depends on the CO₂ emission target levels and possible incentives.</td>
<td>The use of zero and low emission vehicles is constrained by the required appropriate infrastructure.</td>
</tr>
</tbody>
</table>

¹⁹ “Heavy Duty Vehicles - support for preparation of impact assessment for CO₂”, study for the Commission by TNO and consortium, report to be published
Table 2: Cumulative fuel savings during first use (5 years)20 and manufacturing costs of a series of readily available technologies, listed under the first technology type in Table 1, for reducing CO\textsubscript{2} emissions from HDV, and their implementation rate in 2016

<table>
<thead>
<tr>
<th>Technologies</th>
<th>Fuel savings</th>
<th>Technology costs</th>
<th>Net savings</th>
<th>Payback period in years</th>
<th>Implementation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Improved lubricants</td>
<td>€1,910</td>
<td>€23</td>
<td>0.02%</td>
<td>€1,887</td>
<td>1.1%</td>
</tr>
<tr>
<td>Improved SCR and optimised SCR heating methods</td>
<td>€3,979</td>
<td>€105</td>
<td>0.10%</td>
<td>€3,874</td>
<td>2.2%</td>
</tr>
<tr>
<td>Aerodynamic mud flaps</td>
<td>€2,880</td>
<td>€135</td>
<td>0.12%</td>
<td>€2,745</td>
<td>1.6%</td>
</tr>
<tr>
<td>Tire pressure monitoring systems (TPMS) on truck</td>
<td>€459</td>
<td>€149</td>
<td>0.14%</td>
<td>€310</td>
<td>0.2%</td>
</tr>
<tr>
<td>Closable front grille</td>
<td>€2,531</td>
<td>€150</td>
<td>0.14%</td>
<td>€2,381</td>
<td>1.3%</td>
</tr>
<tr>
<td>Cooling fan</td>
<td>€825</td>
<td>€180</td>
<td>0.16%</td>
<td>€645</td>
<td>0.4%</td>
</tr>
<tr>
<td>Friction reduction + improved water and oil pumps</td>
<td>€3,148</td>
<td>€200</td>
<td>0.18%</td>
<td>€2,948</td>
<td>1.7%</td>
</tr>
<tr>
<td>Air compressor</td>
<td>€2,728</td>
<td>€250</td>
<td>0.23%</td>
<td>€2,478</td>
<td>1.4%</td>
</tr>
<tr>
<td>Reduced losses (lubricants, design)</td>
<td>€2,978</td>
<td>€250</td>
<td>0.23%</td>
<td>€2,728</td>
<td>1.5%</td>
</tr>
<tr>
<td>Predictive cruise control (PCC)</td>
<td>€2,282</td>
<td>€600</td>
<td>0.55%</td>
<td>€1,682</td>
<td>1.0%</td>
</tr>
<tr>
<td>Downspeeding with optimised map</td>
<td>€1,170</td>
<td>€750</td>
<td>0.68%</td>
<td>€420</td>
<td>0.2%</td>
</tr>
<tr>
<td>Improved turbocharging and EGR</td>
<td>€7,958</td>
<td>€1,050</td>
<td>0.95%</td>
<td>€6,908</td>
<td>3.9%</td>
</tr>
<tr>
<td>Side and underbody panels at truck chassis</td>
<td>€2,531</td>
<td>€1,539</td>
<td>1.40%</td>
<td>€992</td>
<td>0.6%</td>
</tr>
<tr>
<td>Low rolling resistance tires on truck/tractor</td>
<td>€12,541</td>
<td>€2,100</td>
<td>1.91%</td>
<td>€10,441</td>
<td>5.9%</td>
</tr>
</tbody>
</table>

(1) Fuel savings from a first use (5 years) perspective (EUR/lorry)
(2) Average technology costs (EUR/lorry) – based on a study carried by Commission contractors
(3) Technology costs (percentage of vehicle purchase price, i.e. €110,000)
(4) Net savings (EUR/lorry) from a first use (5 years) perspective: difference between (1) fuel savings and (3) technology costs
(5) Net savings from a first use (5 years) perspective (percentage of total fuel costs)
(6) Payback period of technology costs in years
(7) Technology implementation rate across the EU fleet in 2016

20 Costs and savings for a tractor with a 4x2 axle configuration and a technically permissible laden mass of more than 16 tonnes (vehicle group 5), used for long haul (LH) transport (see Annex 8.2)
2.1.3 Problem 3: EU HDV manufacturers and component suppliers are at risk of losing their technological and innovation leadership position

The focus of this problem is on the risk of lagging behind in terms of innovation in new technologies.

The EU HDV manufacturers and component suppliers currently have a global technological leadership position, as EU lorries are more fuel efficient than lorries in other economies. However, EU manufacturers face increasing global competitive pressures. Significant markets such as the US, Canada, Japan and China have in recent years implemented fuel consumption and/or emission standards in order to stimulate innovation and rapidly improve vehicle efficiency. Annex 5.3 provides an overview of the legislation and Annex 7.2 gives data on average fuel consumption.

On the one hand, the EU could benefit, via spill-over effects, from this evolution, as it will create technological progress and economies of scale in the rest of the world. On the other hand, this would potentially increase the chance that, in absence of policy incentives, manufacturers would market the least efficient HDVs in Europe, while keeping more efficient technologies in markets with regulations to curb emissions.

In view of this, the EU HDV manufacturers and component suppliers would need to keep up with the technological improvements in the other markets in which they are active, in order to preserve their leading innovative position.

This pressure is already clearly visible in the field of electric buses and smaller trucks where Chinese manufacturers have taken a significant technological leadership. In China, more than 300,000 electric buses are already in circulation, compared to about 1,000 vehicles in the EU. This development in China is mainly forced by public tendering also trying to tackle severe problems of air pollution in cities.
Since European manufacturers are hardly present in the Chinese bus market, they could easily lose competitive edge for electric HDVs in general if those are introduced too slowly or in insufficient numbers in Europe.

Thus, the future competitive position of EU manufacturers and suppliers operating globally would be strengthened with respect to competitors of other regions if in their home market they provide, by default, vehicles with high standards.

From a longer-term perspective, the absence of regulatory pressure for innovating and improving HDV fuel efficiency in the EU could potentially risk putting manufacturers only present in the European markets at a disadvantage with respect to better prepared competitors from other regions.

Experience with the cars and vans CO₂ legislation shows that CO₂ emission standards are a strong driver for innovation. The lack of such regulatory approach in the EU with regards to CO₂ emissions from HDVs is therefore a factor of risk for the EU industry to lose their leadership on innovation.

2.2 What are the problem drivers?

2.2.1 Driver 1: Road freight transport activity is increasing

The road freight sector must accommodate the increasing demand for the movement of goods on the EU's road networks. As a result, road freight transport by HDVs has had the most steady growth and increasingly high relative share among the main transport modes. Despite the economic and financial crisis in 2007 - 2009, road freight activity was 34% higher in 2015 compared its 1995 levels.

In the longer term, under current trends and adopted policies²¹, road freight transport activity is set to increase between 2010 and 2050 by about 56% (1.1% p.a.) due to a strong correlation with economic growth (see Annex 7.3).

2.2.2 Driver 2: Barriers hindering the uptake of more fuel-efficient technologies

In a perfectly competitive market, with perfect information, HDV manufacturers would provide mostly vehicles equipped with advanced fuel-efficient technologies leading to net savings, while most buyers would be willing to purchase such vehicles. However, as shown in Section 2.1.2, a large number of readily available cost-effective technologies are not widely deployed in the market, even though they could bring high net savings from a first use perspective.

As fuel costs are a major item in transport operators' expenses, one would expect fuel efficiency considerations to be among their key criteria in purchasing a new vehicle.

Most transport operators work off a payback period of maximum three years, which is less than the average period of use by the first buyer and far below the average lifetime of the vehicle. This is a sign that risk-aversion make some buyers of HDVs forgo opportunities that would pay off in a longer time than three years.

In the preparation of the US CO₂ standards for HDVs, the US EPA provided for an equivalent description of this situation, commonly known as "the energy efficiency gap"

²¹ SWD(2017) 180 final
or "energy paradox"\(^{22}\). This is due to lack of information about technology performance and network externalities that contribute to slow adoption of some technologies\(^{23}\).

In its regulatory impact analysis, the US authorities underlined the following: "Explaining why the gap exists is a separate and difficult challenge from observing the existence of the gap, because of the difficulties involved in developing tests of the different possible explanations. There is very little empirical evidence on behaviors that might lead to the gap, even while there continues to be substantial evidence, via the cost and effectiveness analysis, of the gap’s existence."

According to the literature\(^{24}\), a number of causes may contribute to the slow adoption of some technologies, such as environmental externalities and market failures mainly related to the asymmetry of information between sellers and buyers. Based on the stakeholders’ consultations, the main barriers are discussed below. This is also consistent with the analysis carried out by the US authorities in preparation of the US legislation. A study for the German government of the year 2015 came to similar conclusions for the European market\(^{25}\).

Environmental externalities

Even if the market was perfectly competitive and there was perfect information available to all agents, market forces would unlikely deliver the societal optimum in terms of CO\(_2\) emissions. Externalities are to result from costs and benefits that are not directly priced into the market. Both transport operators and manufacturers want to maximise profits. As societal costs and benefits do not enter their calculations, supply and demand are likely to meet at a level that is not the best for the environment and climate change, see Section 6.2.4.2.1 for a calculation of the avoided cost of CO\(_2\) that would result from higher use of technologies. This issue is further reinforced by imperfect information.

Imperfect and asymmetric information in the new vehicle market

Buyers of lorries have less accurate information than manufacturers about the potential performance of fuel-saving technologies. One of the main options for the buyer is to test drive the vehicle in advance or to use data from independent lorry tests. However, this would provide information only about a bundle of technologies and not on the impact of each of them. In addition, information in expert journals is limited and might not reflect the transport operators’ actual usage of the vehicle.

Furthermore, transport operators often find it difficult differentiating fuel savings resulting from technology adoption. They also consider the operational measures, in particular improved driver behaviours, as more important than investments in new technologies for which the fuel efficiency gains are more difficult to evaluate. They

\(^{25}\) F. Dünnebeil (ifu), A. Kies (TUG) et al. “Zukünftige Massnahmen zur Kraftstoffeinsparung und Treibhausgasminderung bei schweren Nutzfahrzeugen”, UBA-FB-002058
might also doubt the effectiveness of fuel-saving technologies in providing benefits proportionate to their costs.

The availability of VECTO data from 2019 will help addressing asymmetries but is unlikely to be sufficient to close them. While in principle it will be possible for the prospective buyer to ask the manufacturer for information on the basis of VECTO, there is no automatism that the buyer, mostly SMEs, can acquire such comparative information on the effects of specific technologies. Access to this technical information will remain complex for SMEs and it will be difficult for buyers to make full use of the detailed reporting data26.

This point is also confirmed by the experience in the US where the availability of a simulation tool GEM has improved information but has had limited effects on the uptake of readily available technologies27.

In addition, VECTO data will only cover technologies already available in the market. The effect of new, advanced technologies will continue only to be known by manufacturers.

The price premium sellers can earn for more fuel-efficient vehicles in the second hand market is also unclear.

For these reasons of uncertainty, buyers may attach a risk premium to investing in new technologies and give a relatively larger weight to immediate costs than future savings. This will in turn affect their likelihood of adoption, and in turn the expectation of low uptake will make manufacturers less likely to bring the technologies to market. The possible scepticism from buyers towards technologies is consistent with evidence from the U.S. that “a general rule-of-thumb is to take manufacturer claims about fuel consumption reduction and cut these numbers in half”28.

The barrier on asymmetry of information also results in an 'adverse selection' problem. Buyers are not willing to pay the price that is necessary for the seller to cover the additional technology cost with some profit margin on top. Sellers offer only packages of additional technologies only as ‘premium’ options29. As many buyers are under-resourced SMEs, they do not take these premium package options. This may somehow be reinforced by a widespread perception in the road freight sector that operational measures such as driver training are more beneficial compared to additional, at times expensive new technologies30. Overall, the information asymmetries and the uncertainty on the side of buyers reduce demand for new technologies and reduce the readiness of technology suppliers to invest in further research and development. The reasons for inertia in the HDV market are explored in Box 1.

Access to finance

Banks do not factor in fuel efficiency as part of their lending criteria31. As a result, higher upfront cost options are less likely to secure finance. This exacerbates the payback gap,
i.e. the difference between the time fuel cost savings amortise the capital investment and the willingness of buyers to wait for the benefit to materialise. That adds to the explanations of the observed average payback period of three years or less.

Split incentives

Fuel consumption in the transport industry is partly affected by a principal-agent problem. There could be split incentives when the buyer of a technology is not directly responsible for the lorry's fuel costs. Two instances are:

1. **Separate ownership of the lorry:** the buyer of the vehicle is not its operator, for instance due to leasing arrangements. In the EU, the share of hired or leased heavy goods vehicles in total new registrations is estimated to be about 40%.

2. **Fuel provisions in contracts:** fuel provisions are part of fixed transport contracts such that the operator's costs do not change with fuel consumption. An EU study found that open-book fuel provisions are used by roughly 20% of the companies surveyed.

Cost pass through

Due to the large number of transport operators, the market providing transport services is very competitive, and it is likely that a part of the fuels savings is passed through via a reduction of freight cost to the final customer of transport services. Because of that, transport operators will be uncertain to what extent purchasing a highly fuel efficient truck will translate into a higher income for them. Annex 10.8 shows that the expected magnitude of lower freight costs and increased activity is limited.

Box 1: Drivers of inertia in the market for HDV

A first driver of inertia, that prevents fuel savings technology from being adopted, is the structure of the HDV market. The current market for HDV is one where sellers offer packages of additional technologies generally as ‘premium’ options and not as part of standard vehicles. Apart from fuel saving technologies, these include also other technologies that improve e.g. the comfort, appearance of the vehicle. This marketing strategy allows sellers to charge more to "premium customers". As such, this marketing approach limits demand and, thus, is not likely to incentivise manufacturers to promote fuel efficiency technologies. The majority of particularly small transport operators may not be interested in buying these premium products as they have limited access to finance, and expectations of short-term pay back.

This situation is likely to persist in the existing concentrated market structure. The market is very concentrated on the side of the HDV manufacturers, which might exert low competitive pressure. The European market is dominated by only a few companies, with market shares1 in the range of 7% to 30%. The relative small number of sellers might restrict product variety. In addition, the high level of price transparency in the market increases the probability of price alignment among competitors, even without explicit coordination between them. In contrast, the majority of freight operators are small businesses, with 85% having fewer than 10 vehicles.

A second driver is the presence of market uncertainties. Transport operators have difficulties in objectively assessing the fuel savings of the large variety of fuel efficient technologies. The net savings of these technologies will often be perceived as rather modest in the order of 0.5% of total operating costs. More substantial savings will only be made if a number of technologies is purchased at the same time. In addition, high time preferences make some buyers of lorries forgo opportunities that would pay off in a longer time than three years. Other considerations are the widespread perception of transport operators that operational measures such as driver training are sufficient, and that the first user might not be able to charge a premium when selling second-hand.

2.2.3 Driver 3: Limited use of zero and low-emission vehicles in the HDV sector

HDVs rely for about 98% on the use of diesel fuel. Currently, there are virtually no zero- or low-emission lorries on the European roads in the vehicle groups targeted by this Impact Assessment. However, almost all traditional manufacturers have announced plans for electrification. Some new manufacturers from outside the EU, such as BYD and Tesla, aim to produce exclusively electric HDVs and want to enter the European market.

In some other HDV groups, such as buses or smaller lorries, ZEV/LEV development and uptake is more advanced and a broader range of ZEV/LEV powertrain types could be soon commercially viable.

More information on this issue can be found in Annex 9.3.

2.3 Overview of EU mobility policies

There are a number of different pieces of EU legislation relevant for the decarbonisation of road transport and addressing to some extent the abovementioned problems. The main regulatory and non-regulatory instruments are summarized in Figure 5 and described in Annex 6, including their expected impacts on CO₂ emissions. They concern supply, demand, economic and enabling instruments.

Figure 5: Overview of main EU mobility related policies
2.4 How will the problem evolve and how mobility policies affect the problem drivers?

As shown in Figure 6, freight activity and GHG emissions from HDVs have been closely linked over time with very little decoupling taking place. As shown in Figure 7, without further action, HDV CO₂ emissions are set to increase by up to 9% between 2010 and 2030\(^{34}\).

Figure 6: Trend of HDV activity versus GHG emissions

Figure 7: HDV CO₂ emission projections 2015-2050 without further policies

The objective of reducing CO₂ emissions in the road freight transport sector can be achieved by a combination of influencing three variables, i.e. (i) reducing the level of activity, e.g. a modal shift from road to rail, improving logistics, (ii) improving the energy efficiency of road transport, and (iii) reducing the CO₂ intensity of energy use in transport, e.g. by increasing the percentage of low emission fuels. Since the scope of each of these three routes is limited, all three of them will be needed to achieve the EU's CO₂ reduction objectives and are therefore complementary. Their respective effects on CO₂ emission reductions are essentially cumulative.

It should also be noted that the introduction of incentives for zero- and low-emission vehicles as assessed in the draft IA would be well in line with some increased long haul freight transport via rail, as such vehicles are particularly suitable for regional freight distribution services starting from rail transport hubs.

While all existing policy measures shown in Figure 5 and detailed in Annex 6 address to a certain extent the drivers identified and complement each other, these are not sufficient for tackling the key barriers for the uptake of fuel-efficient technologies.

Annex 7 provides more details on this issue.

The energy efficiency of HDVs may improve in the period to 2030 in response to forecast higher oil prices, technology improvements, and through the implementation of related policies such as the revised Eurovignette and Clean Vehicles Directives. However, this will not be sufficient to ensure the HDV sector can contribute sufficiently towards reaching the 2030 climate change targets and the goals of the Paris Agreement.

In the absence of significant improvements in vehicle energy efficiency and the ongoing prevalence of certain barriers, transport operators will continue to miss out on operational cost savings, which also impacts transport costs.

\(^{34}\) SWD(2017) 180 final
It should also be noted that the existence of CO\textsubscript{2} emission and fuel consumption standards in other major economies such as Japan, the US, Canada and China spurs the development of more energy-efficient technologies in their HDV sectors. Without any regulatory pressure, a risk exists that the EU HDV sector may miss out on technological innovation. Countries which have introduced fuel consumption and CO\textsubscript{2} standards have observed improved levels of fuel efficiency.

According to a recent study, the introduction of fuel standards in the US, brought about a 24\% fuel efficiency gain from 2011 to 2017 through the deployment of fuel-saving technologies35. It should be noted, however, that average fuel consumption of lorries started from a higher level in the US.

Recently, it has also been observed in the US that, after the introduction of the first phase of the CO\textsubscript{2} emission standards for HDVs, fuel-saving technologies such as aerodynamic kits and automated manual transmissions are being adopted at a rate much greater than expected, as larger fleets are becoming aware of the short payback periods.36

A similar conclusion can be drawn from the introduction of EU CO\textsubscript{2} standards for LDV, which lead to a sharper reduction of emissions.

In light of the above, there is merit in analysing adding CO\textsubscript{2} emission standards for HDVs to the policy portfolio presented in Figure 5 and detailed in Annex 6. This would set out a supply side measure at EU level with the view of ensuring an effective decarbonisation of the HDVs transport sector. This is therefore the focus of the further analysis of this impact assessment.

The analysis will concern the largest lorries belonging to the four main vehicle groups currently covered by the certification legislation. Other smaller lorries as well as buses and trailers could be addressed at a later stage, the development of the VECTO simulation tool and the certification of their emissions being a pre-requisite for any regulatory measures (for more information on the possible change of the scope of CO\textsubscript{2} emission standards for HDV see Section 5.1.1).

2.5 Who is affected and how

Major stakeholder groups affected include the general population, freight transport operators and logistics companies, vehicle manufactures, and automotive component suppliers. The main impacts are:

- The EU population is increasingly and negatively affected by climate change. In addition, lower air pollution will improve the wellbeing of the EU population.
- Transport operators will benefit from the lower fuel costs and the lower total cost of vehicle ownership.
- Depending on the scale of expected benefits and costs and the level of pass-through, a change in freight costs for goods could take place, affecting producers and final consumers.
- Vehicle manufacturers will be affected by the obligation to reduce CO\textsubscript{2} emissions, and will have to introduce technical CO\textsubscript{2} reduction measures. In the short-term, this is likely to result in increased production costs. There would be different impacts on

35 Transport & Environment (2018) - US Truck Fuel Efficiency Standards: Costs and Benefits Compared

36 US EPA (2018). Personal communication
different manufacturers depending on the actual reduction level required and the current level of investment and focus by the manufacturer on reducing emissions.

- Component suppliers are expected to benefit from higher demand for advanced technologies. Given that EU manufacturers may need new technologies to comply with the standards, EU-based suppliers might improve their revenues.
- Sectors other than transport that emit GHGs will avoid demands to further reduce emissions to compensate for increased transport emissions. In so far as these sectors are exposed to competition, this will be important for their competitiveness.
- Energy security of the European Union will improve, as the import of oil will decrease with lower fuel consumption.

3 WHY SHOULD THE EU ACT?

3.1 Legal basis

Articles 191 to 193 of the Treaty on the Functioning of the European Union (TFEU) confirm and further specify EU competencies in the area of climate change. In particular, the TFEU provides the legal basis for acting on HDV fuel consumption and CO₂ emissions.

The EU has already acted in the area of vehicle CO₂ emissions, adopting Regulations (EC) 443/2009 and (EU) 510/2011, which set limits for CO₂ emissions from cars and vans. These Regulations are based upon the Environment chapter of the Treaty, namely on Article 192 TFEU.

3.2 Subsidiarity: Necessity of EU action

Climate change is a transboundary problem and at the same time is a competence shared between the EU and Member States. Road freight transport also has a transboundary dimension in view of the specific service it renders – transportation of goods does not stop at the borders - and the fact that HDVs can be traded across the EU. Consequently, EU action is justified in view of both the cross-border impact of climate change and the need to safeguard a single market in road freight transport services and in HDVs.

Without action at EU level, one would have to rely on Member State initiatives to reduce HDV emissions. However, many Member States apply a preferential tax treatment for the fuel used in the HDV transport sector and there are few signals that this would change in the future. The current fuel tax levels have not triggered the necessary increase in fuel efficiency.

Furthermore, such a decision lies with Member States and it is unlikely that Member States will generally increase fuel tax levels to such a level that could trigger significant efficiency improvement as the entire fleet will be subject to the increase in fuel taxes affecting a large number of SMEs and individual transport operators. In addition, the EU taxation policy is subject to unanimity making it difficult to harmonize this policy field.

For these reasons, the possible increase in fuel tax levels could only be complementary but could not substitute the setting of CO₂ emission standards.

Furthermore, in case action would be left to Member States, there could be a risk of a range of national schemes to reduce HDV CO₂ emissions, e.g. depending on the targets set under the ESR. If this were to happen, it would result in differing ambition levels and
design parameters, which would require a range of technology options, diminishing economies of scale and fragmenting the single market.

Since manufacturers hold differing shares of the vehicle market in different Member States they would therefore be differentially impacted by various national legislations potentially causing competitive distortions. There might even be a risk that national legislation might be tailored to suit local industry.

Coordination of climate action at EU level is therefore necessary.

3.3 Subsidiarity: Added value of EU action

In view of the existing single market for new HDVs, it is most cost-effective to ensure harmonised action and set CO₂ targets on new HDVs at EU level. It is unlikely that Member States acting individually would set targets in an equally consistent manner as shown by the widely differing tax treatment of new vehicles across the EU. Poor coordination between Member States would raise compliance costs and weaken the incentive to design fuel efficient HDVs because of the fragmentation of the European market. HDV manufacturers have recognised the risk of market fragmentation should Member States individually implement legislation to reduce HDV CO₂ emissions.

The automotive industry requires regulatory certainty to make the large capital investments necessary to maximise the fuel economy of new vehicles. The need for regulatory certainty was specifically highlighted by HDV manufacturers during the public consultation. Standards at EU level provide this certainty, which could not be guaranteed at Member State level.

4 Objectives: What is to be achieved?

4.1 General objectives

The general policy objective is to contribute to the achievement of the EU’s commitments under the Paris Agreement (based on Article 192 TFEU).

4.2 Specific objectives

The three specific objectives are the following:

1. Reduce CO₂ emissions from the HDV sector in line with the requirements of EU climate policy and the Paris Agreement.

With road transport causing one third of non-ETS emissions and emissions increasing in the last few years, reducing CO₂ emissions from HDVs is of key importance. This objective was considered very important by all stakeholder groups during the open public consultation.

2. Facilitate a reduction in operating costs for transport operators, most of which are SMEs, and more broadly of transportation costs for consumers depending on pass-through of fuel savings.

Operating costs of transport operators are expected to decrease due to the positive effect of fuel savings.
This objective is related to the consumer angle of the CO\(_2\) standards, aiming to create benefits for transport operators through the sales of more efficient vehicles.

3. Maintain the **technological and innovative leadership** position of EU HDV manufacturers and component suppliers.

By providing a clear regulatory signal and predictability for industry to develop and invest in fuel-efficient technologies, this initiative aims to foster innovation in a fast changing global automotive landscape.

In addition, the introduction of CO\(_2\) emission standards for HDVs is expected to lead to two main co-benefits: improvements in air quality and increased energy security.

5 **WHAT ARE THE VARIOUS OPTIONS TO ACHIEVE THE OBJECTIVES?**

The options considered cover a number of elements, which are grouped into five categories: (i) CO\(_2\) emission targets; (ii) Distribution of target across vehicle groups and manufacturers; (iii) Incentives for zero- and low-emission vehicles; (iv) Elements for cost-effective implementation and (v) Governance.

Annex 9.1 shows how these categories are related to the problems defined in Section 2.1.

5.1 **EU fleet-wide CO\(_2\) emission targets**

5.1.1 **Scope**

In line with the approach taken in the Certification Regulation and the VECTO simulation tool, CO\(_2\) standards are to be set at the whole-vehicle level, similarly as for LDVs under the EU Regulations. In the USA, whole-vehicle CO\(_2\) standards are complemented by CO\(_2\) standards for engines in order to ensure that engine efficiency is improved. Engine CO\(_2\) emissions are currently type approved in the EU.\(^{38}\)

As described in Annex 8, the Certification Regulation and VECTO distinguish several HDV groups. Amongst those, group 5 vehicles (tractors with 4x2 axles and a GVW of more than 16 t) by far have the highest contribution to the CO\(_2\) emissions, followed by vehicles in groups 4, 9 and 10. In view of the above, the following three options are considered with respect to the scope of the CO\(_2\) emission targets:

- **Scope 1**: Lorries falling in groups 4, 5, 9 and 10, currently covered by VECTO (whole-vehicle CO\(_2\) standards only);
- **Scope 2**: Lorries falling in group 5 (whole-vehicle CO\(_2\) standards only);
- **Scope 3**: Two separate standards for whole-vehicle and engine-only CO\(_2\) emissions for the vehicles falling within the scope (Scope 1 or Scope 2).

Stakeholders generally supported option 1, except for some environmental NGOs, who favoured option 3.

In the future, the development of the VECTO simulation tool will provide the necessary data that will enable other HDV types such as small lorries, buses, coaches and trailers to be made subject to CO\(_2\) emission standards. As explained in Section 1.4, the planned timeline for simulating the mentioned vehicle types is 2020 – 2021.

\(^{38}\) CO\(_2\) emissions of the vehicle engine are measured on an engine test bed and are an input parameter in VECTO. For more information on VECTO: see Section 1.4 and Annex 8.
It should be noted, though, that the availability of CO\textsubscript{2} emission data on new vehicle types should be reflected in the reporting and monitoring as well as in the certification procedures. That would require amendments to the Certification Regulation as well as the Reporting and Monitoring Regulation. Following such amendments, CO\textsubscript{2} emission standards could be extended to cover vehicle types other than those within groups 4, 5, 9 and 10.

5.1.2 Metric for expressing the CO\textsubscript{2} emission targets

When defining CO\textsubscript{2} emission targets, it has to be considered which phases of a vehicle's life they should cover. Several approaches are possible:

- **CO\textsubscript{2} emissions at the vehicle's tailpipe, i.e. Tank-to-Wheel (TTW) approach:**

 This approach considers emissions from the combustion of fuels during the use of the vehicle. It allows taking into account the emission reduction achieved by using less carbon intensive fuels. For instance, using LNG could reduce tailpipe emissions by up to 15 to 20% compared to diesel technology. A TTW approach was supported by most of the stakeholders.

- **CO\textsubscript{2} emissions during fuel production and at the vehicle's tailpipe, i.e. Well-To-Wheel (WTW) approach:**

 Next to the tailpipe emissions, the fuel used to propel a vehicle also gives rise to emissions during its production. These are the so-called Well-To-Tank (WTT) emissions. Different energy sources vary in the amount of WTT CO\textsubscript{2} emissions generated during their production. This is particularly relevant for different types of low-carbon fuels, e.g. biofuels, biogas or power-to-gas. Under a WTW approach, the targets take into account the sum of the tailpipe (TTW) and upstream (WTT) emissions. Only a few stakeholders from the fuels and gas sector supported this option during the open public consultation.

- **Full life-cycle CO\textsubscript{2} emissions:**

 Under a life-cycle based approach, in addition to the WTW emissions, the target would also cover CO\textsubscript{2} emissions occurring during the manufacturing of the vehicles and their end-of-life phase. These so-called "embedded emissions" may be of greater relative importance for electric vehicles39.

 A life-cycle based approach would add an enormous complexity and additional burden as it requires much more detailed reporting by lorry manufacturers. In view of the very low share of electric vehicles in the HDV sector, a metric including embedded emissions would have limited added value. Therefore, it will not be further considered in the present impact assessment. This approach was not suggested by any stakeholders.

The options considered for the metric expressing the CO\textsubscript{2} emission target are therefore:

- Metric 1: Tank-to-Wheel (TTW) approach
- Metric 2: Well-To-Wheel (WTW) approach

39 SWD (2017) 650 final of 8.11.2017, Part 2/2
5.1.3 Unit for expressing CO₂ emission targets

In terms of units to express the whole-vehicle CO₂ targets (options Scope 1 and Scope 2 as set out in Section 5.1.1), three options will be considered, all of which are calculated by the VECTO simulation tool:

- Metric unit 1: g CO₂/km
- Metric unit 2: g CO₂/tkm
- Metric unit 3: g CO₂/m³km

The g CO₂/km metric allows comparing the emission performance of vehicles on a unit distance basis but does not account for a lorry’s payload, which may differ significantly across different vehicle groups and mission profiles. The g CO₂/tkm metric also factors in payloads reflecting the characteristics of individual HDVs in terms of their freight function. The g CO₂/m³km takes into account the volume the vehicle could transport taking into consideration that the general cargo type of goods is often volume sensitive.

During the public consultation, stakeholders representing manufacturers, component suppliers and the gas sector preferred expressing the targets in g CO₂/tkm. By contrast, most civil society organisations preferred expressing the targets in g CO₂/km.

5.1.4 Target levels

In order to ensure that the specific objectives are achieved, an adequate level of the overall CO₂ emission target needs to be defined.

However, the HDV target levels considered cannot be directly derived from the overall multi-sectoral target set under the Effort Sharing Regulation (ESR) of reducing emissions in 2030 by 30% compared to 2005. Instead, a range of options as regards the level of the HDV CO₂ emission targets has been determined, through a bottom-up approach, based on the cost-curves reflecting the CO₂ emission potentials of technological improvements.

For the purpose of the assessment, the contribution of the policy to road transport emissions under those CO₂ target level options for new HDV has been calculated (see section 6.2.4.4.4).

The first full year for which official CO₂ emissions data will be available is 2019. Due to a lack of certified CO₂ emissions data at this stage, the CO₂ target level will have to be expressed in relative terms rather than as an absolute value. Thus, different options for the EU fleet-wide CO₂ emission targets are defined as a percentage efficiency improvement with respect to the levels of the reference year 2019.

A procedure for the adjustment of the reported 2019 CO₂ reference levels will also need to be introduced to address the effects of possible technical changes in VECTO, for instance with regards to payload values or the inclusion in VECTO of new technologies affecting the mission profiles.

Depending on the options as regards the timing of the CO₂ emission targets (see Section 5.1.5), one or two targets will need to be defined - for 2025 and/or 2030. For the option where targets are defined for both 2025 and 2030, the emission reduction trajectory between 2019 and 2030 could be either linear or non-linear (NL).
Taking all of this into account, Table 3 summarises the options considered for EU fleet-wide CO₂ emission target levels. The label of the options refers to the percentage reduction to be achieved in 2030\(^{40}\).

The baseline represents the situation where no CO₂ targets would be set. A certain reduction of CO₂ emissions would still be achieved due to autonomous technological improvements, depending on the technology cost assumptions (see Section 6.1).

The options considered cover the range of views expressed by stakeholders, with HDV manufacturers supporting a target level close to the baseline, while environmental NGOs are in favour of the most ambitious target levels considered as part of these options.

Based on the analysis of the fuel savings potentials of the currently available technologies, the full deployment into the fleet of the first two technology types shown in Table 1 in Section 2.1.2, i.e. the technologies readily available and those for which the implementation is constrained by legal restrictions soon to be lifted, would bring about 15% to 20% CO₂ emission savings in 2025 compared to the baseline.

Table 3: Emission reductions expected under the baseline and options considered as regards the EU fleet-wide CO₂ emission target level (% reduction from 2019 level)

<table>
<thead>
<tr>
<th>Target Level Options</th>
<th>2025(^{41})</th>
<th>2030(^{42})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (base costs)</td>
<td>7%</td>
<td>12%</td>
</tr>
<tr>
<td>Baseline (high costs)</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>TL 20</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>TL 30NL (non-linear)</td>
<td>12.5%</td>
<td>30%</td>
</tr>
<tr>
<td>TL 30</td>
<td>15%</td>
<td>30%</td>
</tr>
<tr>
<td>TL 32</td>
<td>17.5%</td>
<td>32%</td>
</tr>
<tr>
<td>TL 35</td>
<td>20%</td>
<td>35%</td>
</tr>
</tbody>
</table>

5.1.5 **Timing**

Considering the likely date of adoption of the standards, the objective of contributing to achieving the 2030 climate and energy objectives, the availability of certified CO₂ emission data from 2019 on, as well as the lead time needed for the uptake of new technologies, the following options will be considered for defining the year(s) for which new targets could be set up to 2030.

The option of setting no binding targets, but only voluntary or aspirational ones is reflected in the baseline option for the target levels, as experience with a voluntary approach in the light-duty vehicles sector has proven that this does not result in higher emission reductions than what could be expected as a result of “autonomous improvements”.

During the public consultation, most of the HDV manufacturers as well as ACEA had identified the use of voluntary agreements with industry as one of their least preferred options to tackle CO₂ emissions.

\(^{40}\) Assuming a 2030 target would be set.

\(^{41}\) This is only relevant under options Timing 1 and 2, see Section 5.1.5

\(^{42}\) This is only relevant under options Timing 2 and 3, see Section 5.1.5
• Target timing 1: Single CO₂ emission target that starts to apply in 2025. For 2030, an aspirational target would be set
• Target timing 2: A first CO₂ emission target starts to apply in 2025 and will continue to apply until 2029 and a second, stricter target starts to apply in 2030
• Target timing 3: Single CO₂ emission target that starts to apply in 2030

All options would include a review mechanism in the year 2022 when certified CO₂ emission data for three years will have been collected. This review would address the following:

• establish or confirm the 2030 targets for the vehicle groups covered by the first phase of the CO₂ emission standards;
• extend the scope to other groups of HDVs not yet covered by the first phase, taking account of the updates of VECTO and the Certification Regulation;
• review the modalities for implementation, for instance with regards to the incentive scheme for zero and low emission vehicles (see Section 5.3).

During the public consultation, a strong majority across all stakeholder groups preferred fixed dates over annual reduction targets. Stakeholders justified their preference referring to the need for planning certainty and the necessary lead time for industry to develop the technology taking account of the long product cycle for HDVs. Industry favours option 2 and environmental NGOs option 1.

Furthermore, HDV manufacturers have expressed the need to base CO₂ emission standards on VECTO CO₂ data. Such data will become only gradually available over the next years. The abovementioned review mechanism would allow certain aspects of the CO₂ emission standards to be reassessed and adjusted if necessary. This will address the manufacturers’ concerns about the robustness of the data underpinning the CO₂ emission standards for 2030.

5.2 Distribution of EU fleet-wide CO₂ emission target level across HDV groups and manufacturers

The practical application of the EU fleet-wide CO₂ target requires consideration of the EU fleet composition and its distribution over vehicle groups and manufacturers, who in the end will have to demonstrate compliance. Technical differences between HDVs covered by the various vehicle groups (see Annex 8, Section 8.2) mean that these groups have intrinsically different CO₂ emission performances.

These differences should be considered when distributing the EU fleet-wide emission targets across the HDV groups. Depending on the predominant use of the vehicles for one of the two mission profiles, each of the four vehicle groups considered could be further split into two sub-groups, either Long Haul or Regional Delivery. Information on the weighting of mission profiles for calculating the regulatory CO₂ emissions is given in Annexes 11 and 12.

In order to implement the legislation, it needs to be clearly established which target(s) each manufacturer would have to comply with. Two different options will be considered:

• Distribution 1 - Separate targets per HDV sub-group: The CO₂ emission reduction targets (in percentages) for each HDV sub-group are determined such that the total costs across all HDVs covered, i.e. the overall technology costs minus the
fuel savings, are minimized. Each of the sub-group targets would apply for each of the manufacturers.

This would allow for reflecting the differences in cost-effective emission reduction potentials between vehicle sub-groups. For this reason, there would be no need for additional flexibility for individual manufacturers in implementing these targets.

- **Distribution 2 - Single target per manufacturer:** The same CO₂ emission reduction target (in percentages) applies for all HDV sub-groups covered. The specific manufacturer targets are defined as the average of those sub-group targets, weighted according to the number of lorries registered within each sub-group and a factor reflecting their utility. The utility factor would depend on the unit for expressing the target and, where relevant, would cover mileage (km), payload (t), volume (m³).

 This option is described in further detail in Annex 11.

It should be noted that both options will lead to different target levels in absolute terms for the different HDV sub-groups due to the significant differences in fuel consumption per 100 tkm as illustrated in Annex 11.

During the stakeholder consultation, manufacturers expressed their support for option 2.

5.3 Incentives for Zero- and Low-Emission Vehicles (ZEV/LEV)

The July 2016 Commission's European Strategy for Low-Emission mobility\(^{43}\) highlighted the increasing role of zero- and low-emission vehicles in delivering CO₂ reductions in the road transport sector, especially in the medium- and long-term. In view of the low uptake of these vehicles in the HDV sector, several options are considered with the aim of incentivising their deployment.

5.3.1 Scope of the ZEV/LEV incentive

In order to identify which vehicles would qualify for the ZEV/LEV incentive, it is necessary to define which types of HDV would be eligible. Two options are considered in this respect:

- **Scope 1: ZEV only**, meaning that only HDVs with CO₂ emissions of zero would qualify;
- **Scope 2: ZEV and LEV**, meaning that all HDVs with CO₂ emissions significantly below the fleet-wide average would qualify.

Under option Scope 2, LEV would be vehicles emitting less than half of the average fleet-wide emissions. This approach is in line with the one taken for LDV. As fleet-wide average HDV emissions are currently around 800 g CO₂/km and taking into account the expected efficiency improvements by 2025, a HDV would qualify as a LEV if it emits less than 350 g CO₂/km. This would correspond, using the current weighing of VECTO mission profiles, to 30 g CO₂/tkm.

Furthermore, as proposed for cars and vans from 2025 on\(^{44}\), LEV with the lowest emissions would be incentivised more by taking into account for the purpose of the

\(^{43}\) COM(2016) 501 final

\(^{44}\) COM(2017) 676 final
crediting system the emission level of the vehicle. Each ZEV and LEV would be counted as 1-(E/350), with E being the vehicle's CO₂ emissions in g/km.

The use of other types of alternative fuels than electricity or hydrogen, such as biodiesel, biogas or e-fuels, has been considered as part of the option on a Well-To-Wheel (WTW) approach for the metric (see Section 5.1.2). Tailpipe CO₂ emissions of vehicles running on such fuels are comparable with those of vehicles running on conventional fossil fuels. In these cases, the potential emissions savings of using the alternative fuels would only occur at the stage of the production of the fuels.

5.3.2 Type and level of incentive

Regulatory tools used or considered for incentivising the uptake of ZEV/LEV are those which were considered in the context of light-duty vehicles):

- **ZEV/LEV incentive type 1**: super-credit system

 Under the current Cars and Vans Regulations, a "super-credit" modality exists, under which, during a limited number of years around the entry into effect of new CO₂ target values, ZEV and LEV may be counted as more than one vehicle for the purpose of calculating the average specific emissions of a manufacturer.

 In analogy, under option 1, each ZEV/LEV registered by a manufacturer in a given year would be counted multiple times for the purpose of calculating the average specific emissions of the manufacturer. In order to avoid too much weakening of the CO₂ target, a cap needs to be established on the number of super-credits that may be used. Drawing on the rules established for cars, this cap could be set so that average specific emissions of the manufacturer are not lowered by more than 2.5% to 3%.

- **ZEV/LEV incentive type 2**: one-way crediting system based on a benchmark for the ZEV/LEV share of the fleet

- **ZEV/LEV incentive type 3**: two-way crediting system based on a benchmark for the ZEV/LEV share of the fleet

 Under Option 2 and 3, a crediting system is used, which works in connection with a manufacturer's specific CO₂ target. A benchmark is defined for the share of ZEV/LEV in the new fleet in a given year. The specific CO₂ target of a manufacturer exceeding this ZEV/LEV benchmark will be relaxed depending on the extent to which the benchmark is exceeded (1% less strict target for each additional percent of ZEV/LEV), subject to a cap. In addition, under option 3), the specific emissions target of a manufacturer would be tightened in case he would register less ZEV/LEV than the benchmark level.

 In order to avoid too much weakening of the CO₂ target, a cap would be set allowing a manufacturer's specific CO₂ target not to be relaxed by more than 2.5%.

- **ZEV/LEV incentive type 4**: ZEV/LEV binding mandate:

45 SWD(2017) 650 final
46 The maximum multiplier for cars and vans in the context of the 2015, resp. 2017 CO2 emission targets was 3.5.
 The maximum multiplier for cars in the context of the 2021 targets is 2.
47 In order to take into account the emissions of the ZEV/LEV, the maximum multiplier would apply for ZEV and a variable multiplier would apply for LEV, according to a linear scale as a function of the emissions.
48 In the current Cars Regulation, the cap for super-credits is set at 7.5 g CO₂/km, as a total over 3 years, i.e. on average at around 2.5 g CO₂/km annually and this against a target in 2021 of 95 g CO₂/km.
Under this option, each manufacturer’s fleet of new HDV would need to have at least the share of ZEV/LEV established by the binding mandate.

- **ZEV/LEV incentive - variant:** allow ZEV HDV, which are outside the scope of the Regulation, to be counted for the purpose of the ZEV/LEV incentive.

Under this variant, which could work under each of the four options considered, next to the HDV falling with the scope of the Regulation, also other HDV, which are ZEV and which are registered by the same manufacturer, would be taken into account for the purpose of the incentive mechanism.

This would mean for example that a manufacturer registering zero-emission buses or small lorries could obtain super-credits for those vehicles or that those vehicles could count towards meeting the benchmark or mandate level established.

This approach would currently only work for ZEV, as they could be defined as having zero emissions according to the type-approval properties of their engines, i.e. independently of the certification of the whole vehicles based on VECTO.

The situation is different for LEV, the CO₂ emissions of which can only be determined once they are covered by the Certification Regulation. Considering those LEV for the purpose of these incentives would also require further analysis on the appropriate level of the threshold for defining such vehicles.

Based on the on-going further development of VECTO (see Annex 8.1), it is expected that by 1 January 2025 also these vehicles will be subject to the Certification Regulation.

Finally, as zero-emission buses are to some extent already incentivised via requirements on public tendering through the proposed revision of the Clean Vehicle Directive, and to avoid that the incentive would exclusively target one vehicle group, a restriction would apply next to the above-mentioned caps. This would limit the share of credits that could be attributed to buses and smaller lorries to a maximum of 50% of the cap (under options 1-3) or mandate (under option 4).

During the public consultation, HDV manufacturers expressed their support for the introduction of super-credits (option 1). Environmental NGOs were in favour of introducing a mandate (option 4).

5.4 Elements for Cost-Effective Implementation (Flexibilities)

Elements increasing the flexibility for manufacturers for implementing the CO₂ standards set, while not undermining the overall objectives of the policy should lower the costs of compliance and improve the cost-effectiveness of the policy. Such options have been used in the LDV CO₂ Regulations. The evaluation of those Regulations judged these flexibilities positively in terms of their impacts. Flexibilities have also been used in the US under the HDV emissions legislation.

The majority of stakeholders across all stakeholder groups was in favour of pooling, banking/borrowing, and trading to support the cost-effective implementation of the targets. However, civil society organisations supported trading only and argued that the other options may undermine the legislation. HDV manufacturers supported only the introduction of exemptions and of banking and borrowing.

HDV manufacturers also suggested to introduce an eco-innovation scheme as in the LDV legislation, where it covers innovative CO₂ reducing technologies, the effect of which cannot be demonstrated during the physical type approval test cycle.
However, for HDVs, CO\textsubscript{2} emissions are not measured on a physical test cycle but simulated with VECTO. The possibilities of considering new technologies in VECTO are therefore much wider and VECTO will be further improved and updated to cover the effects of new innovative technologies, as illustrated in Annex 8. This is a more straightforward and transparent procedure than introducing a new parallel eco-innovation scheme. As a result, this option is not considered further for the analysis.

5.4.1 Exemptions

While most of the HDVs in the groups 4, 5, 9, 10 are used for delivery purposes, there are also a series of HDV, which are used for other purposes, such as construction lorries, garbage lorries, concrete mixers etc. Together, these vehicles can be described as "vocational vehicles". According to data from HDV manufacturers, these vocational vehicles represent less than 2% of the fleet of each manufacturer.

In view of their particular uses, vocational vehicles differ substantially from the HDVs used for the delivery of goods. Due to their technical characteristics and relatively small annual mileage, the possibilities of reducing CO\textsubscript{2} emissions are both more limited and less cost-efficient than for delivery vehicles.

During the public consultation, HDV manufacturers called for exempting vocational vehicles from the requirements of CO\textsubscript{2} emission standards.

Currently, vocational vehicles cannot be identified on the basis of clear technical criteria. However, the necessary changes will be made in the type approval legislation to ensure that this identification is possible. This requires the introduction of a multi-stage type approval in the HDV CO\textsubscript{2} certification process.

Before these changes are made in the type approval legislation, vocational vehicles are identified on the basis that they are not certified on a delivery-type mission profile in VECTO.

Consideration was also given to small-volume manufacturers, but the analysis has shown that there are currently no such manufacturers operating in the EU market and there is no indication of new entrants beside manufacturers of zero-emission vehicles, which would not have difficulties in meeting the targets. As a result, the option of exempting small-volume manufacturers was not considered further. No stakeholders have asked for such exemptions.

Consequently, the only option considered regarding exemptions is:

- Exempt vocational vehicles of a manufacturer's fleet

5.4.2 Flexibilities across manufacturers

In order to provide manufacturers with additional flexibility for the purpose of achieving compliance with the target, the following options are considered:

- Target flexibility 1: Allow pooling between manufacturers

A group of individual manufacturers may agree to form a "pool", which enables them to be considered as a single entity for the purpose of compliance with the joint target.

- Target flexibility 2: Allow trading between manufacturers

Trading would allow individual manufacturers (or pools) to trade credits depending on their performance. A manufacturer (pool) overachieving its specific CO\textsubscript{2} emissions target
would obtain credits that could be sold to another manufacturer (pool), which would otherwise not meet its target.

The main distinction with pooling is that trading does not require an upfront decision by manufacturers on which other manufacturer(s) to associate with. The decision to trade would take place at the time the provisional emission performance of the manufacturer (pool) is known.

5.4.3 Flexibilities across different target years

Compliance checks are necessary to ensure effective implementation of the CO₂ emission targets. As indicated in Section 5.1.5, target compliance would be assessed based on the emissions in a given year. In this respect, additional flexibility could be provided and the following options are considered.

- **Target compliance 1**: annual compliance assessment

 Under this option, target compliance would be assessed on the basis of the specific emissions in one calendar year. In case of non-compliance, penalties would apply (see Section 5.5.3). This option was supported by environmental NGOs.

- **Target compliance 2**: banking and borrowing

 Under this option, manufacturers could use banking and/or borrowing of CO₂ credits to achieve the CO₂ targets applying in a given year. The rationale behind it is that the desired outcome in terms of an overall CO₂ emission target should be achieved by a certain time, while the optimal route to that point may differ between actors. This is in particular relevant for the HDV sector where design cycles are much longer than for cars, around 10 to 15 years. Under this option, early action by manufacturers could also be rewarded.

 Banking would mean that if in a given year the CO₂ emissions of a manufacturer are below the target, the manufacturer could carry over the difference as CO₂ credits for future compliance purposes. In case its CO₂ emissions would exceed the target in one of the following years, the manufacturer could offset these excess emissions with the ‘banked’ CO₂ credits.

 Borrowing would mean that, in a given year, a manufacturer could comply with its CO₂ target by ‘borrowing’ CO₂ credits, which would have to be ‘paid back’ by using credits obtained in subsequent years from overachieving the target.

 The design elements of this option are particularly sensitive considering the specificities of the HDV market and the uncertainties on the future levels of emissions.

 A more detailed description of the option is provided in Annex 9.4.

HDV manufacturers have expressed support for the banking and borrowing option.

5.5 Governance

The effectiveness of the CO₂ targets in reducing real emissions depends on the one hand on the representativeness of the VECTO simulation results with respect to average real-world driving, and on the other hand on the extent to which the HDVs placed on the market conform to the reference vehicles tested at type approval.
5.5.1 **Real-world emissions**

The effectiveness of technologies to reduce real-world CO\(_2\) emissions of vehicles is affected by the actual driving conditions, which vary significantly. Therefore, emissions determined through VECTO simulation will always differ from the emissions achieved in the real world\(^{49}\). As such, this is not problematic as long as the expected divergence between the VECTO values and the real world emissions will remain at the same level over time.

It is current practice that most HDV manufacturers equip their vehicles with non-standardised fuel metering devices on a voluntary basis. The information derived from these devices could be reported and used for establishing the magnitude of deviations between VECTO CO\(_2\)/fuel consumption values and real-world values. Consideration could be given to making such reporting mandatory in the future.

In addition, it could be considered to mandate the use of standardised devices for measuring fuel consumption, ideally together with load sensors, and to have the resulting data reported anonymously.

The following options are therefore considered:

- **Real-world emissions 1**: Collection, publication and monitoring of real world fuel consumption data reported by manufacturers using currently available devices.

- **Real-world emissions 2**: Collection, publication and monitoring of real-world fuel consumption data reported by manufacturers, based on mandatory standardised devices.

Under option 1, the Commission would be empowered to determine the conditions for collecting and publishing the data, taking into account relevant data protection requirements. Under option 2, the Commission would in addition be empowered to mandate in type approval legislation the installation of standardised devices in all new vehicles.

A clear majority of stakeholder groups considered it important to develop processes for assessing the certified CO\(_2\) emissions against real driving emissions. Only some component suppliers and vehicle manufacturers were either neutral or explicitly against.

5.5.2 **Market surveillance**

Under type-approval legislation, a procedure is currently being developed to verify the type-approved CO\(_2\) emissions at the stage of production. A procedure for verifying the CO\(_2\) emissions of vehicles on the road, i.e. a so-called in-service conformity test does not yet exist for HDVs. The following option is therefore being considered:

- **Market surveillance 1**: Introduce in-service conformity tests, the obligation to report deviations and the introduction of a correction mechanism.

Under this option, a mechanism would be put in place to detect deviations from the type approval values as part of the conformity of production tests. This would have to be

developed under the type approval framework, for instance during verification tests of vehicles in-service.

Furthermore, an obligation would be introduced in the CO₂ emissions legislation for Member States and manufacturers to systematically inform the Commission of any findings resulting from conformity of production tests or, where applicable, from in-service conformity tests, and of deviations from the type approved CO₂ emissions.

The CO₂ monitoring data for a manufacturer would be corrected in case of serious deviations from the type approval values, which cannot be technically or otherwise justified. The Commission would be empowered to define the details of the procedures.

During the open public consultation, most automotive component suppliers and vehicle manufacturers were against or to a lesser extent neutral on the introduction of an ex-post mechanism requiring compliance of the certified CO₂ emissions with real-driving emissions. Such an ex-post feedback mechanism was supported by logistics operators, vehicle fleet operators, and civil society organisations.

5.5.3 Penalties for non-compliance

Ensuring compliance is a key element that guarantees the effectiveness of any regulatory requirement. Financial penalties associated with the failure to meet the required emission standards may act as an incentive for manufacturers to meet their emission targets.

In order to be effective, financial penalties should be set at a level significantly exceeding the average marginal cost of the technologies needed to meet the targets. Under the current LDV legislation⁵⁰ the excess emissions premium for exceeding CO₂ emission targets from 2019 on is €95 per g CO₂/km for each new vehicle registered in the year of exceedance. As HDVs have an average lifetime mileage of around 1.2 million km, which is about six times higher than LDVs, this penalty level would translate into a €570 per g CO₂/km penalty for HDVs. Using an average payload value of about 12 tons as set out in VECTO, this value translates into €47.50 per gCO₂/tkm, which has been rounded to €50/tkm.

The following option is considered with respect to the introduction of financial penalties for manufacturers not complying with their specific CO₂ emission targets:

- **Penalties 1**: Financial penalties.

The penalty would apply to each newly registered vehicle of a manufacturer in the year of exceedance. The level of the penalty will be assessed considering the marginal technology costs and the metric chosen to express the target level set.

Implementation of these penalties at manufacturer level would need to take account of how the specific targets have been derived from the EU fleet-wide target and the vehicle sub-group targets (see Section 5.2).

6 WHAT ARE THE IMPACTS OF THE POLICY OPTIONS?

6.1 Methodology

The quantification of the impacts, in particular as regards the target levels and their
distribution across vehicle groups relies on a suite of models and a dedicated set of cost
curves covering a broad range of up-to-date technologies for reducing CO₂ emissions
from HDVs.

These cost curves, which show the CO₂ reduction potential and costs for over 50
technologies, were determined as part of a study carried out by Commission contractors⁵¹
and work by the JRC⁵². The technologies considered include those that are currently
already utilised in vehicles in the marketplace, as well as those expected to be available
in the 2020-2030 period.

In the preparation of the cost curves, the (im)possibility to combine technologies has
been duly taken into account, as has their pre-existing market penetration in the vehicle
fleet and possible overlaps in the CO₂ saving potential of technologies when combined.

Stakeholders were given the opportunity to comment on the work of the study throughout
its progress. Two types of cost curves have been considered:

i. Base cost assumption: derived from the above mentioned study;

ii. High cost assumption: reflecting manufacturers' views

The high cost assumption has been added in the assessment in order to reflect the views
expressed by HDV manufacturers during bilateral meetings highlighting uncertainties
surrounding the effectiveness and costs, in particular R&D, of the more advanced
technologies many of which are only at the prototype stage, in particular in a 2025
perspective⁵³.

As regards the technologies readily available, the uncertainty regarding the data used for
the cost curves is small. As described in Section 2.1.2, the full deployment of those
technologies would bring about 15% to 20% CO₂ emission savings in 2025 compared to
the baseline.

The models used and the link between the new baseline and policy scenarios with the
"Reference Scenario 2016"⁵⁴ are extensively described in Annex 4.

The PRIMES-TREMOVE model was used to project the evolution of the road transport
sector. It was consistently used for climate, energy and transport initiatives in the past
years. In addition, the DIONE model developed by the JRC was used for the cost
assessment. The macro-economic model EXIOMOD developed by TNO was used to
quantify the impacts on GDP and sectoral turnover. It takes input from PRIMES-
TREMOVE, including fuel consumption from lorries, and annuity payments for capital
costs for road transport vehicles, to quantify the impact on other sectors of the economy.

⁵¹ “Heavy Duty Vehicles - support for preparation of impact assessment for CO₂”, study for the Commission by TNO
and consortium, report to be published;

⁵² “Heavy Duty Vehicles CO₂ Emission Reduction Cost Curves and Cost Assessment – enhancement of the DIONE
model”, JRC, to be published

⁵³ See Table 1 in Section 1.2.

6.2 EU fleet-wide CO\textsubscript{2} emission targets

6.2.1 Scope

6.2.1.1 Options Scope 1 and Scope 2

Options Scope 1 (covering HDV groups 4, 5, 9 and 10) and Scope 2 (covering only group 5) are assessed together as they both rely on whole-vehicle CO\textsubscript{2} standards and differ only in scale. As the magnitude of the economic, social and environmental impacts of these options will mainly depend on the CO\textsubscript{2} target level, the quantitative assessment is addressed in Section 6.2.4.2.

Economic Impact

The economic impacts of options Scope 1 and 2 relate to the scale of the investments needed to introduce the CO\textsubscript{2} abatement technologies and the impact of the resulting fuel savings on the economy as a whole.

Most emission reduction technologies can be applied in all lorry groups. Technology costs are mainly composed of two parts: (1) variable costs and (2) fixed costs, the share of which depends on economies of scale.

Even though small differences may exist for some technologies, the cost analysis indicates that variable technology costs are largely similar across the four lorry groups relevant for the options considered here. This is elaborated further in Section 6.3.

As the relative share of the fixed technology costs for an individual vehicle decreases with the number of vehicles for which the technology is installed, economies of scale make option Scope 1 more cost-efficient for achieving a given CO\textsubscript{2} emission reduction target. This also entail that this option might be more beneficial in terms of innovation development and strengthening of manufacturers´ technological leadership.

Furthermore, as a larger number of their vehicles would be covered under Scope option 1, this option would translate into higher overall fuel savings for transport operators.

Social Impact

There is no particular social impact of the options Scope 1 and Scope 2.

Environmental Impact

As the vehicle groups 4, 5, 9 and 10 together account for some 65\% to 70\% of total HDV CO\textsubscript{2} emissions, option Scope 1 is expected to have a firmly positive and sizeable environmental impact as it addresses all the major CO\textsubscript{2} emitters in the HDV sector.

Under option Scope 2, the legislation would cover some 50\% of total HDV emissions. With the target levels and all other design elements being equal, this option will have a positive environmental effect in reducing emissions, but on a smaller scale as it focuses on one single lorry group.

6.2.1.2 Option Scope 3

Under option Scope 3, two separate standards for whole-vehicle CO\textsubscript{2} and the engine-only CO\textsubscript{2} emissions would be set.

Economic Impact

Option Scope 3 would not allow manufacturers to achieve the required level of emissions in the most cost-efficient way by combining all available CO\textsubscript{2} reduction technologies. It
would most likely result in higher compliance costs. It would also deviate from a technology neutral approach, limit technological flexibility and undermine innovation in non-engine related CO₂ reduction technologies.

Administrative burden

This option would create an additional administrative burden due to the additional reporting and compliance systems that would need to be put in place to regulate separately the performance of engines.

Social Impact

There is no particular social impact of this option.

Environmental Impact

By setting whole-vehicle standards, engine emissions would already be regulated as they are captured by VECTO. Introducing engine-only standards on top of whole-vehicle standards would therefore not necessarily create a higher environmental ambition level.

There could be a positive environmental impact if the requirements of the engine-only standards would go beyond the requirements of the whole vehicle standards. However, at least the same level of environmental impact can be achieved if the whole-vehicle standards are set with a more ambitious target level.

During the open public consultation, some civil society organisations gave preference to this option as they consider it would allow better exploiting the emission reduction potential of the engines. However, this especially concerned smaller vehicles that are not yet covered by VECTO.

6.2.2 Metric for expressing the CO₂ emission targets

6.2.2.1 Metric 1: Tank to Wheel (TTW) approach

Economic Impact

The economic impact will depend on the target level chosen.

Environmental Impact

Under this option, the legislation focuses on the vehicle's CO₂ efficiency. The TTW approach is currently used for CO₂ targets for LDV, where it effectively contributed to reduce CO₂ emissions from cars and vans. The actual environmental impact will depend on the target level chosen. In case a higher uptake of more fuel-efficient vehicles reduces the overall demand for fuels, this would also lower WTT emissions.

The focus on vehicle efficiency also ensures that investments in research and development in this area would be incentivised with a corresponding positive effect on technological leadership.

Other considerations

This option would be directly linked with the VECTO and Certification Regulation, which provide tailpipe CO₂ emission values. The evaluation study of the Cars and Vans Regulations noted that the TTW approach has proven to be an effective way of triggering the uptake of vehicle technology and starting a shift towards alternative powertrains.

The TTW approach allows vehicle manufacturers and automotive component suppliers to focus their investments towards technologies increasing vehicles’ fuel efficiency which is
within their remit of decision making. Fostering the uptake of those technologies lowers investment costs and technology costs thanks to economies of scale. During the public consultation, most stakeholders supported this approach.

6.2.2.2 Metric 2: Well to Wheel (WTW) approach

General considerations

As explained in the impact assessment\(^5\) accompanying the Commission's proposal setting CO\(_2\) emission performance standards for passenger cars and vans for the period after 2020, the two arguments most frequently used in favour of a WTW metric are that this would allow:

i. accounting for the WTT emissions of electricity generation, particularly as the power sector is not yet fully decarbonised;

ii. rewarding the use of low-carbon fuels like bio-ethanol, bio-methane or synthetic fuels produced from renewable electricity.

As regards the second point, particularly the Commission's 2016 RED-II proposal provides for the strongest possible economic incentives by setting sales mandates for the deployment of such low-carbon fuels across all sectors, including freight transport. This means that a WTW metric would de facto constitute double regulation for these sectors.

Environmental impacts

There is a risk that a WTW approach could undermine the environmental effectiveness of EU legislation as emission reductions counted under RED-II would be double counted under the vehicles legislation. This would make it difficult for Member States to estimate the emission reductions in the transport sector stemming from RED-II and the improvements in HDV CO\(_2\) efficiency improvements, particularly as the consumption of biofuels is not evenly distributed among Member States.

In order to maintain the overall environmental ambition of the two legislative acts together, a WTW approach would most likely require more stringent target levels in either the renewable energy or the vehicle emissions legislation.

Other considerations

In view of the very limited uptake of electrified HDV, the need to account for the WTT emissions from electricity is less relevant for HDVs.

In addition, as the WTW emissions are not a property of the vehicle alone, it would be very difficult to establish a target value which is accurate, fair and cost-effective. Uncertain ex-ante assumptions would have to be used to account for the potential use of low-carbon fuels as it is not possible to determine upfront on which fuel a vehicle with a conventional powertrain will run. An ex-post crediting approach based on the actual fuel use and GHG emission factors could serve as an alternative, but would face similar problems as it would be very difficult to set WTT factors for the different fuels available on the market.

Besides these major uncertainties, vehicle manufacturers have no influence on the fuels used by the vehicle operator and they may therefore be held responsible for emissions

\(^5\) SWD (2017) 650 final
they have no or little control of. This approach was supported by the fuel industry and transport operators.

6.2.3 Unit Metric

Payloads, mileage and transport volume are fixed parameters for each mission profile as part of the VECTO simulations. This means that, for a given mission profile, the numerical values of the VECTO simulation corresponding to different unit metrics are proportional. As a result, the choice of the unit metric is mainly a question of presentation.

The unit g CO₂/km is currently used for setting CO₂ emission limits for cars and vans. Using this unit for HDVs would ease the comparison with the light duty sector. It is also most commonly used in existing publications within the sector. However, this metric would not represent the fact that lorries carry heavy or voluminous loads.

The use of this metric is supported by environmental NGOs but not by the transport sector, which calls for the targets to reflect the transport utility.

The unit g CO₂/tkm expresses CO₂ emissions in relation to the mileage travelled and the mass of goods transported. It is supported by manufacturers and transport operators.

The unit g CO₂/m³km expresses CO₂ emissions in relation to the mileage travelled and the volume of goods the vehicle could potentially transport. From a technical perspective, CO₂ emissions and transport volume are only weakly correlated. Furthermore, the current certification regulation does not distinguish between the possible different transport volumes as it assumes standard bodies and trailers added to the base vehicles. This unit metric is therefore not appropriate for the existing setup of the certification process.

The choice of unit metric will not have an effect on innovation.

6.2.4 Target levels

6.2.4.1 Fleet composition

Different CO₂ target levels will not only affect the uptake of fuel-efficient technologies within a given vehicle category (powertrain), but may also change the share of different powertrains in the EU fleet. The results obtained from the PRIMES TREMOVE model show a gradual increase in the uptake of LNG lorries at the expense of diesel fuelled lorries as CO₂ targets get tighter. Under the baseline, with the base cost assumptions, the share of diesel HDV is projected to be 97.6% in 2025 and 96.3% in 2030, the remainder of the fleet being LNG lorries. The diesel share becomes 94% in 2025 and 89.6% in 2030 under the option TL20 and reduces further to 87.2% in 2025 and 77.5% in 2030 under the option TL35. More specific information is available in Annex 10.1.

6.2.4.2 Economic impacts

In this section, the following economic impacts will be considered:

(i) Net economic savings from different perspectives (societal, first use, second use)
(ii) Energy system impacts and transport activity impacts
(iii) Macro-economic impacts in terms of changes in GDP and sectoral aspects

Net economic savings taking different perspectives
The direct economic impacts of the options have been assessed by considering the changes compared to the corresponding baseline in technology costs and fuel costs for an "average" new lorry, registered in 2025 or in 2030.

An "average" new lorry of a given year is defined by averaging the contributions of the different vehicle groups, weighted according to their market penetration as estimated. The new fleet composition in a given year results from the need to comply with the requirements of the new policy. Therefore, the different policy options lead to different projected fleet compositions, characterised by different shares of powertrain types (diesel, LNG, etc.) in the different vehicle groups.

As the vehicle groups reflect certain technical characteristics depending on the use of the vehicle, vehicles in the different groups cannot substitute each other. Therefore, in the model, the shares of vehicles in the different groups were kept constant on the basis of the sales data received from manufacturers for the 2016 fleet.

For this analysis, the following three indicators have been used:

i. **Net economic benefits over the vehicle lifetime from a societal perspective:** This parameter reflects the change in net costs over the lifetime of 15 years of an "average" new lorry without considering taxes and using a discount rate of 4%. It also includes the CO\(_2\) avoided costs.

ii. **Total cost of ownership (TCO) for the first use (TCO-first use):** This parameter reflects the change in net costs, during the first five years after registration of use, i.e. the average time the first buyer is using the vehicle. Taxes are included, except VAT in view of the commercial use of the vehicles, and a discount rate of 9.5% is used.

iii. **Total cost of ownership (TCO) for the second use (TCO-second use):** This parameter reflects the change in costs, from the sixth year of the lorry onwards. Again, taxes are included and a discount rate of 9.5% is used.\(^{56}\)

Cost assumptions

As explained in Section 6.1, two types of cost curves have been used for the analysis to reflect base and high costs assumptions. For the calculation of the net costs and savings under the two cost assumptions, the corresponding baseline was used. A sensitivity analysis on the economic impacts with varying international oil price is presented in Annex 10.6.

6.2.4.2.1 *Net economic benefits over the vehicle lifetime from a societal perspective*

Figure 8 shows the net economic benefits per vehicle over the vehicle lifetime from a societal perspective expressed as the difference from the baseline for an average lorry registered in 2025 and in 2030 under the different target level options. These economic benefits are the sum of the net savings and the avoided CO\(_2\) costs. As shown in Annex 10.2, the net savings are the difference between the fuel savings and the incremental capital costs, which in this case are equal to the additional manufacturing costs.

Both in 2025 and in 2030, very significant net benefits can be realised under all options with both base and high cost assumptions. Net benefits are profoundly higher compared

\(^{56}\) The transfer of the vehicle from the first to the second owner is modelled by assuming a residual value of 44% of the vehicle, which is applied to the base vehicle and fuel saving technologies alike.
to cars and vans57. Lorries have a much higher fuel consumption per kilometre and run much higher mileages compared to cars and vans.

With the base and the high cost assumptions, net benefits are highest under the most ambitious option TL35 in both 2025 and 2030.

Whether net savings under the various options are higher or lower under the base or high costs assumptions depends on a number of factors. These include the difference in autonomous improvements under the two baselines and the increase in LNG share in the fleet needed to meet the higher levels of ambition.

The avoided cost of CO\textsubscript{2} increase as the CO\textsubscript{2} target gets stricter. See more detailed information in Annex 10.3.

Figure 8: Net economic benefits, including avoided CO\textsubscript{2} costs, over the vehicle lifetime from a societal perspective in 2025 and 2030 (EUR/lorry)

6.2.4.2.2 TCO-first use (5 years)

Figure 9 shows the net savings, expressed as the difference from the corresponding baseline, from a first-use perspective over five years for an average new lorry registered in 2025 and in 2030 under the different target level options considered. The underlying capital costs and fuel savings are shown in Annex 10.4.

Both in 2025 and in 2030, considerable cumulative net savings occur over five years for all options considered, both for the base and high cost assumptions. Net savings are slightly lower for the high cost case. However, benefits are significantly smaller compared to the societal perspective. The difference mainly represents the external CO\textsubscript{2} costs avoided.

From the perspective of the truck operator, the cumulative net savings represent between 0.01 and 0.05 EUR per km in 2025 or 1% to 4% of the total operating costs depending the options considered. In 2030, the ranges are 0.04 to 0.11 EUR per km or 3% – 12% of the total operating costs.

Under both cost assumptions, net savings are highest with option TL35 in 2025 and in 2030.

57 SWD (2017)650 final
6.2.4.2.3 TCO-second use

Figure 10 shows the net savings from a second use perspective under the different target level options, expressed as the difference with the baseline under the two cost assumptions, for an average new lorry registered in 2025 and in 2030. The underlying capital costs and fuel savings are shown in Annex 10.5.

Both in 2025 and in 2030, considerable net savings occur, which are roughly one third smaller during the second use compared to the first use. Under both cost assumptions, the highest net savings are realised with option TL35 in both 2025 and 2030.

From the perspective of the truck operator, the cumulative net savings represent between 0.01 and 0.05 EUR per km in 2025 or 1% to 4% of the total operating costs depending the options considered. In 2030, the ranges are 0.04 to 0.10 EUR per km or 3% – 12% of the total operating costs.

Figure 10: Net economic savings from a second use perspective in 2025 and 2030 (EUR/lorry)

6.2.4.2.4 Energy system impact

Across the different CO2 target levels considered the final energy demand will be reduced compared to the baseline. For option TL30, the reduction is around 2 % and 5% by 2025 and 2030, respectively. In this way, HDV CO2 targets would help improving the energy efficiency in the transport sector. In both years, diesel demand decreases with stricter targets, while LNG demand increases. The decreasing energy demand from diesel is larger than the increase for LNG.

Annex 10.7 provides more detailed information on the impact of the different TL options on the final energy demand for lorries in 2025 and 2030.
6.2.4.2.5 Freight (HDV) transport impact

The freight transport activity is projected to increase slightly over time in the baseline scenario due to increased economic activity. The decrease in the fuel costs lowers freight costs, and consequently increases freight transport activity. However, as shown in Figure 11, for all the options assessed, this increase remains limited in the range of 0.2% to 0.4% in 2025 and 0.5% to 0.9% in 2030 depending on the target level option.

Figure 11: Freight (HDV) transport activity (Gtkm) evolution in the period 2020-2030 under different target level options using the base cost assumptions

Further analysis displayed in Annex 10.8 shows that the target levels have a limited impact on the reduction of the total costs of freight (HDV) transport per activity, by less than 1% in 2025 and in the order of 1 to 3% in 2030 depending on the target level. However, in turn, the reduction in transport costs will only lead to a minor increase in demand for transport services. These results are in line with the literature on the topic.58

Annex 10.8 illustrates how the different policy options have the potential to reduce the weight of fuel costs with respect to the total operating costs for a transport operator. Assuming that fuel costs in 2019 represent around a quarter of total operating costs, fuel savings could reduce total costs up to 5% in 2030 under the most ambitious target level option. The other costs would only increase slightly due to the cost of fuel-saving technologies. The overall impacts on the goods trade should therefore be limited.

6.2.4.2.6 Macro-economic impacts

Table 4 shows the projected impact under the EXIOMOD model on GDP for the EU-28 of the target level options considered, compared to the baseline. The results show a small, almost negligible positive impact on EU-28 GDP under the five policy options considered, in both 2025 and 2030. In the projections, increased household expenditure and higher investment are associated with tighter CO2 targets for HDV.

Impacts on the turnover of the most affected sectors are shown in Annex 10.7. Sectors associated to fossil fuels and petroleum products are projected to have a small decrease in turnover, which increases slightly with stricter CO2 targets. The other sectors overall see small positive impacts, in particular freight and passenger services.

58 See, for instance, Winebrake et al (2015); Dahl (2012); Matos and Silva (2011)
Table 4: GDP impacts in the baseline (million euros) and percentage change from the baseline under the policy options

<table>
<thead>
<tr>
<th>Option</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (M EUR)</td>
<td>14,447,916</td>
<td>15,397,847</td>
</tr>
<tr>
<td>TL 20</td>
<td>0.00%</td>
<td>0.03%</td>
</tr>
<tr>
<td>TL 30NL</td>
<td>0.01%</td>
<td>0.08%</td>
</tr>
<tr>
<td>TL 30</td>
<td>0.02%</td>
<td>0.09%</td>
</tr>
<tr>
<td>TL 32</td>
<td>0.02%</td>
<td>0.11%</td>
</tr>
<tr>
<td>TL 35</td>
<td>0.03%</td>
<td>0.14%</td>
</tr>
</tbody>
</table>

6.2.4.2.7 Impact on innovation and technological leadership

The stricter the target level, the higher the incentive on HDV manufacturers and technology suppliers to innovate and develop more fuel-efficient technologies. A greater effort to innovate would translate into higher potential for technological development and better chances for EU HDV manufacturers to preserve their existing competitive edge on the world market.

6.2.4.3 Social Impacts

As shown in Table 5, with stricter CO₂ target levels increasing economic activity, there is also a small increase of the number of jobs across the EU-28 compared to the baseline. The main drivers behind the GDP impacts also explain the induced employment impacts.

Table 5: Total number of jobs (000s) under the baseline and percentage changes to the baseline under different policy options

<table>
<thead>
<tr>
<th>Option</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (000s)</td>
<td>236,339</td>
<td>242,102</td>
</tr>
<tr>
<td>TL20</td>
<td>0.00%</td>
<td>0.02%</td>
</tr>
<tr>
<td>TL30NL</td>
<td>0.01%</td>
<td>0.04%</td>
</tr>
<tr>
<td>TL30</td>
<td>0.01%</td>
<td>0.05%</td>
</tr>
<tr>
<td>TL32</td>
<td>0.02%</td>
<td>0.06%</td>
</tr>
<tr>
<td>TL35</td>
<td>0.02%</td>
<td>0.08%</td>
</tr>
</tbody>
</table>

At sectoral level, the overall impacts are small. As shown in Annex 10.9, job losses are projected in the extraction of crude petroleum and manufacturing of refined petroleum products. Small positive impacts are seen for transport at higher target levels. The development of new fuel-saving technologies would only have a limited effect on the nature of the jobs in the HDV manufacturing sector and its suppliers. The need for reskilling and upskilling could be greater in the future with a larger scale deployment of zero- and low-emission vehicles in the HDV sector.

6.2.4.4 Environmental impacts

6.2.4.4.1 CO₂ emission (tailpipe)

The main environmental impact of setting the CO₂ targets for the new HDV fleet concern the tailpipe CO₂ emissions within the sector. Figure 12 shows the evolution of the tailpipe CO₂ emissions of HDVs (entire fleet, not only newly registered) between 2005 and 2035.
As shown in Annex 10.10, the cumulative HDVs CO₂ emission reduction compared to the baseline over the period 2020-2035 is estimated to range from 75,000 kt (TL20) to nearly 200,000 kt (TL35). As a matter of comparison, the Commission proposal setting new standards for cars and vans post-2020 would lead to a much higher cumulative CO₂ reduction of about 500,000 kt over the period 2020-2035. This is due to the fact that emissions from LDV are around four times larger than those of the four groups of lorries under consideration.

Figure 12: (Tailpipe) CO₂ emissions of HDVs in EU-28 - % reduction compared to 2005 using the base cost assumptions

6.2.4.4.2 CO₂ emissions (WTW)

When considering the WTW CO₂ emissions, the trends are very similar as for tailpipe emissions. Under the baseline, emissions increase by around 4% between 2005 and 2030. Across the options considered, emissions in 2030 reduce from around 3% (TL20) to around 8% (TL35) with respect to the baseline.

6.2.4.4.3 Air pollutant emissions

Both the reduction in overall fuel consumption and the shift to LNG lorries as the CO₂ targets get stricter also have a positive impact on air pollutant emissions. With the base cost assumptions, emissions of nitrogen oxides (NOₓ) from road transport are projected to be reduced, compared to the baseline, by 0.3% to 0.8% in 2025 and by 1.3% to 4.7% in 2030. Similarly, emissions of particulate matter (PM₂.₅) from road transport are estimated to be reduced by 0.1% in 2025 (for all target levels considered) and between 0.2£ and 0.6% in 2030. The highest air quality co-benefits are achieved with the most ambitious CO₂ targets. This is further illustrated in Annex 10.10.

6.2.4.4.4 Contribution to the Effort Sharing Regulation targets

Road transport is one of the sectors covered by the Effort Sharing Regulation (ESR). As shown by the EU Reference Scenario 2016, further efforts are necessary to meet the EU’s 2030 ESR target. The analytical work underpinning the ESR as well as the Energy Efficiency Directive proposals built on the so-called EUCO30 scenario, under which all 2030 climate and energy targets are met.

60 The EUCO30 scenario achieves the EU-wide 2030 targets for GHG emissions in the Effort Sharing Regulation (ESR) sectors (30% reduction compared to 2005), and for final energy supply (27% renewable energy and 30%
A consistency check was performed between the emission reductions under different CO\textsubscript{2} target level options considered in this Impact Assessment and those under EUCO\textsubscript{30}, taking into account also the 2017 Commission proposal for post-2020 CO\textsubscript{2} emission standards for new cars and vans.

Figure 13 depicts the projected GHG emissions from road transport under various scenarios. Under the EUCO\textsubscript{30} scenario, emissions are projected to reduce by 25\% in 2030 with respect to 2005. Emission reductions are some 8 percentage points lower under the baseline. With the proposal for cars and vans, this difference gets significantly smaller, to 4 percentage points. The gap could be progressively closed with the implementation of CO\textsubscript{2} standards for lorries. Option TL20 would reduce the gap by about a quarter, while option TL35 would halve the gap.

Furthermore, the Commission proposed other additional policies with impacts on GHG road transport emissions. This concerns the minimum share of renewable fuels in transport as proposed by the Commission in the revision of the Renewable Energy Directive, as well as of the Eurovignette, Clean Vehicles and Combined Transport Directives. Figure 14 shows the projected GHG emissions from road transport in a scenario including also the proposal for CO\textsubscript{2} standards for cars and vans post-2020 as well as the option TL30 as regards the CO\textsubscript{2} emissions from heavy duty vehicles. The results are determined by the different sets of policies assumed in each scenario. It shows that the gap with respect to the EuCo30 scenario closes.

Furthermore, the Commission proposed other additional policies with impacts on GHG road transport emissions. This concerns the minimum share of renewable fuels in transport as proposed by the Commission in the revision of the Renewable Energy Directive, as well as of the Eurovignette, Clean Vehicles and Combined Transport Directives. Figure 14 shows the projected GHG emissions from road transport in a scenario including also the proposal for CO\textsubscript{2} standards for cars and vans post-2020 as well as the option TL30 as regards the CO\textsubscript{2} emissions from heavy duty vehicles. The results are determined by the different sets of policies assumed in each scenario. It shows that the gap with respect to the EuCo30 scenario closes.

energy efficiency). It assumes the implementation of additional policies compared to the EU Reference scenario 2016. For the road transport sector, these additional policies included more ambitious CO\textsubscript{2} emission standards for new cars and vans.
6.2.5 Timing

6.2.5.1 Target timing 1

Under this option, a single target would start to apply in 2025. For 2030, an aspirational target would be defined.

Economic impacts

This option would give sufficient lead time to manufacturers for gradually fitting the most cost-effective technologies to their new vehicles. The early uptake of fuel saving measures would lead to earlier net benefits for consumers and society, hence cumulative net savings would increase. Manufacturing costs could be reduced earlier as economies of scale could be reached earlier. EU manufacturers would be in a better position to preserve their innovation edge against global competitors.

The absence of a more stringent binding target after 2025 could create uncertainty for manufacturers as they would lack a longer term perspective for the deployment of technologies improving vehicle efficiency. This uncertainty could be mitigated by an early review to confirm the level of a binding target for 2030.

Social impacts

There is no particular social impact for this option.

Environmental impacts

This option provides for early action as a 2025 target could potentially lead to a steeper emission reduction trajectory in the period up to 2025. The sooner the CO₂ emission target comes into force, the higher the cumulative emission reductions by 2030.

It will also reassure Member States that will have binding reduction targets for every year from 2021 until 2030 under the Effort Sharing Regulation that the HDV sector will contribute a specific share of reductions.
The absence of a more stringent binding 2030 target may initially slow down emission reductions after 2025, but this could be mitigated by defining an aspirational target combined with an early review to confirm it.

6.2.5.2 Target timing 2

Under this option, a first CO₂ reduction target will start to apply in 2025 followed by a stricter one introduced as of 2030.

Economic Impact

Setting CO₂ emission reduction targets in 2025 and 2030 would provide both an early and a medium-term signal for the HDV sector to deploy more fuel-efficient technologies over the next 15 years. Setting a mandatory 2030 target at this stage, given the lack of robust information on how technology performance and costs might evolve, bears the risk that the target is not set at the most cost-effective level. It will therefore be necessary to review the 2030 CO₂ emission targets in 2022 once sufficient certified CO₂ emission data have been collected.

Transport operators would benefit from fuel cost savings from the early 2020s on due to an earlier introduction of more efficient HDVs driven by a first target starting to be applicable in 2025.

A stricter target introduced in 2030 would provide a strong signal to the market of the need to invest in research and development.

Social impacts

There is no particular social impact for this option.

Environmental Impact

With the introduction of a 2025 target, this option provides for early action well ahead of 2030 while at the same time providing for a longer term emission reduction trajectory. As a result, cumulative emission reductions are expected to increase.

6.2.5.3 Target timing 3

Under this option, a single CO₂ emission target would start to apply in 2030.

Economic Impact

Applying a first target in 2030 only would allow manufacturers to postpone investments in new technologies. While this might be perceived as reducing costs in the short term, it could have a negative impact on the technology cost reduction over time by not realising early economies of scale.

Secondly, such delay will lower the rate of innovation over the next years and risks maintaining the current low market deployment of new technologies. Given the regulatory situation and evolution in other regions in the world, EU manufacturers could risk losing their technological leadership position.

Thirdly, from a consumer, transport operator and societal perspective, economic benefits would be foregone as the net savings delivered by lower fuel costs would not materialise in the next years.

This option increases the risk for EU manufacturers to lose their current position of technological leadership as delaying the entry into force of a binding target would not promote innovation in the coming decade.
Social impacts

There is no particular social impact for this option.

Environmental Impact

Even if a 2030 target may be expected to create some anticipation by manufacturers, the absence of a binding CO₂ target prior to 2030 is very likely to cause a number of technologies to be introduced only close to the date of application of the CO₂ reduction target, in particular for those technologies with higher manufacturing costs.

Furthermore, given the average lifetime of new vehicles, cumulative emissions would increase and this effect would persist in the years after 2030.

6.3 Distribution of EU fleet-wide CO₂ emission target across vehicle groups and manufacturers

6.3.1 Option Distribution 1: Separate targets per HDV sub-group

Under this option, the CO₂ reduction targets (in percentage) would differ across the sub-groups covered, based on an overall cost minimisation. Each of those targets (up to eight in case of option Scope 1) would apply for each manufacturer. The analysis found that the reduction targets derived this way would actually differ very little amongst the sub-groups, so this option would yield almost the same outcome as option Distribution 2 as far as the sub-group targets are concerned.

Economic Impact

As the sub-group targets set under this option would reflect the minimal total costs across all HDVs covered, the economic impacts of this option would in principle be optimal.

However, this would only be the case if the cost assumptions would be perfectly known in advance, and the fleet composition used for deriving the targets would effectively materialise and not significantly vary over time. Relative changes in costs or fleet composition would lead to a sub-optimal outcome in terms of overall costs as under this option there would be no opportunity for manufacturers to compensate an underperformance in one sub-group with an overachievement in others.

Social Impact

There is no particular social impact for this option.

Environmental Impact

For a given transport activity level, the actual target levels and the evolution of the fleet composition would be the main determining factor for the environmental impact. Setting different reduction targets for each sub-group would not affect the overall environmental outcome, nor would the fact that the sub-group targets apply for each manufacturer.

Other considerations

Setting eight different emission targets for each manufacturer does not offer any flexibility in terms of implementation. The implementation of eight sub-targets could be administratively more burdensome, in particular in view of the rather limited number of vehicles registered annually per manufacturer within some of the sub-groups. For manufacturers it might be more cost-effective to pay the penalty for non-compliance than to make the effort to reduce emissions for a small number of lorries.
6.3.2 Option Distribution 2: Single target per manufacturer

Under this option, the same emission reduction target (in percentage) would be applicable for all sub-groups covered, and this would be translated into a single target for each manufacturer, calculated as the weighted average of all sub-group targets, taking into account the number of vehicles and their utility.

Economic Impact

Due to the technical differences between the sub-groups, as reflected in the cost-curves, equal sub-group reduction targets could lead to different technology costs across the subgroups. However, as confirmed by the analysis of option Distribution 1, equal sub-group targets would reflect a nearly optimal distribution of the overall costs across the HDV fleet. In addition, a further cost optimisation at manufacturer level would be possible due to the additional flexibility offered by the single specific target value. This would allow manufacturers to compensate non-compliance with one sub-group target by overachieving the target for another sub-group.

Since fuel consumption is proportional to CO₂ emissions, the flexible accounting across sub-groups would reward a higher uptake of emission reducing technologies in sub-groups with a high average transport utility, i.e. a high fuel consumption during its lifetime. In general, this is in the interest of the customer and society.

This option would provide flexibility for manufacturers to optimise their vehicle portfolio across sub-groups to customer demand and future technical developments.

Social Impact

There is no particular social impact for this option.

Environmental Impact

Setting the same reduction targets for each sub-group does not per se affect the overall environmental outcome of the policy, as this will be determined – for a given transport activity level - by the actual target level applied and by the evolution of the fleet composition.

The flexibility of applying a single average target for each manufacturer would be environmentally neutral as long as it can be ensured that the total lifetime CO₂ emissions of the vehicle fleet do not increase. This would be achieved by the weighting of the sub-group targets on the basis of the number of vehicles in each sub-group and their utility.

6.4 Incentives for Zero- and Low-Emission Vehicles (ZEV/LEV)

Targeted ZEV/LEV incentives should help the HDV sector and public authorities in developing an EU market for these vehicles fostering the required investments in fuel efficient vehicle technologies.

Reliable cost data for ZEV/LEV are currently very scarce and do not allow for robust cost projections in the short and medium term. For electric lorries, the main incremental

61 An overview of projected costs gathered from literature is given e.g. in ICCT (2017) Transitioning to zero-emission heavy-duty freight vehicles. (M. Mouluk, N. Lutsey, D. Hall) and in IEA/OECD (2017) The Future of Trucks - Implications for energy and the environment (https://www.iea.org/publications/freepublications/publication/TheFutureofTrucksImplicationsforEnergyandtheEnvironment.pdf)
cost is the cost of battery packs, which has recently been rapidly decreasing\(^\text{62}\). As regards lorries using catenary systems, electric road systems (ERS), which build upon a mainstream technology adopted in many cities for buses, require high investments.

Given the lack of robust cost data, only a qualitative assessment of the impacts of the various options considered is currently possible. It is expected that more reliable cost data will become available by 2022 once the development and deployment of these vehicles advances in the next years.

Economic impacts

As regards the two options concerning the scope of the incentive, covering either ZEV only or both ZEV and LEV, the economic impacts would be quite similar for both of them, especially when compared to the impacts of the other design elements, e.g. the super-credit multiplier and the caps.

The following considerations can be made as regards the economic impacts of the options considered for the type and level of incentive:

<table>
<thead>
<tr>
<th>Option</th>
<th>Economic Impacts</th>
</tr>
</thead>
</table>
| 1. Super-credits | - manufacturing / capital costs: Reduction of costs for manufacturers as the measure is not binding and allows manufacturers to optimise their fleet composition to meet the target.
 | - fuel savings: Risk for reduced fuel savings for the average vehicle in case of a weakening of the target and a deployment of less efficient ZEV/LEV. This risk would be limited by (i) the low expected share of ZEV/LEV; (ii) a low multiplier and (iii) the cap to limit the weakening of the target. |
| 2. One-way crediting system | - manufacturing / capital costs: similar as for option 1.
 | - fuel savings: similar as for option 1. Risk is even lower as target relaxation is only granted to manufacturers exceeding the benchmark level and in relation to the excess share of ZEV/LEV. |
| 3. Two-way crediting system | - manufacturing / capital costs: Impact will depend on the feasibility for manufacturers (on average) to meet the benchmark. If the benchmark is too strict, the targets would be tightened and this would cause costs to increase. In the other case, a small decrease of costs is likely to occur in view of the target relaxation.
 | - fuel savings: Same considerations as for costs, but with opposite effect, i.e. high likelihood of more fuel savings in case of a too strict benchmark. |
| 4. Binding mandate | - manufacturing / capital costs: Same considerations as for option 3. A too strict mandate would lead to penalties for manufacturers.
 | - fuel savings: same considerations as for costs, but with opposite effect, i.e. more fuel savings in case of stricter benchmark. |
| Variant – opt-in for zero-emission buses and small lorries | - manufacturing / capital costs: Reduced costs for manufacturers, as this option provides additional possibilities to optimise the fleet composition in view of meeting the target.
 | - fuel savings: Increased risk of reduced fuel savings |

\(^62\) This is extensively documented in SWD(2017) 650 final (8.11.2017)
- competition impacts: Risk of creating a competitive distortion among lorry manufacturers, as only some of them are also manufacturing buses. Also risk of creating a competitive distortion for manufacturers producing buses only, as those would not receive such incentives as compared to operators in the HDV sector.

Incentivising the development of ZEV/LEV would help stimulating innovation in the HDV sector and EU automotive industry to safeguard its technological leadership position.

Energy system impacts

Based on the findings for cars/vans63, where projected uptake of electric vehicles is much higher than in the case of HDV, it can be safely assumed that the increased market penetration of electrically chargeable HDV would not significantly change the share of electricity in the final energy demand for transport by 2025.

Social Impacts

No significant social impacts are expected.

Environmental impacts

The impacts on CO\textsubscript{2} emissions are mainly determined by the EU-wide fleet CO\textsubscript{2} target, to which the ZEV/LEV incentive would be a complementary measure. Therefore, it may be generally expected that the scope, the type and the design of the incentive mechanism would have limited environmental consequences.

Option Scope 1 (ZEV only) would ensure that the uptake of vehicles contributing most to the emission reductions is incentivised. While in the short term this may weaken the targets a bit more, it would provide a stronger signal towards the future need for a higher share of ZEVs to reach the longer-term objectives.

Option Scope 2, allowing also LEV to be incentivised, could smoothen the transition towards zero-emission mobility, even though it is currently unclear to what extent manufacturers are advancing with the development and deployment of such LEV. Granting credits on the basis of the emissions of the LEV provides an incentive for improving LEV CO\textsubscript{2} performance, while mitigating the risk of weakening the targets for the sake of achieving limited environmental benefit.

The following considerations concern the options regarding the type of incentive:

<table>
<thead>
<tr>
<th>Option</th>
<th>Environmental impacts - CO\textsubscript{2} emissions (tailpipe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Super-credits</td>
<td>Counting ZEV/LEV as more than one vehicle in principle creates a risk of weakening the overall CO\textsubscript{2} target as it allows emissions of other HDVs to increase64. However, this weakening would be limited by (i) the low expected share of ZEV/LEV; (ii) a low multiplier and (iii) the cap to limit the weakening of the target.</td>
</tr>
<tr>
<td>2. One-way crediting</td>
<td>Similar considerations as for option 1, albeit to a lesser extent, as a target relaxation would only be granted to those manufacturers</td>
</tr>
</tbody>
</table>

63 SWD(2017) 650 final

system exceeding the benchmark level and in relation to their excess share of ZEV/LEV. The cap would avoid extensive target weakening.

3. Two-way crediting system

The impacts will depend on the ZEV/LEV uptake by manufacturers. In case all manufacturers would overachieve the benchmark, considerations are identical as for option 2. However, in all other cases the risk for target relaxation is mitigated as those manufacturers not meeting the benchmark share of ZEV/LEV will need to meet a stricter CO\textsubscript{2} target.

4. Binding mandate

No negative environmental impact as the mandate will act as an additional requirement, leaving the overall CO\textsubscript{2} target unaffected.

Variant – opt-in for zero-emission buses and small lorries

This creates a further risk for lowering the amount of CO\textsubscript{2} emission reductions achieved by the policy and this for all of the above options. Incentivising HDVs, which are not subject to the CO\textsubscript{2} target, will reduce the need to lower the emissions from the HDVs within the scope. While the caps will limit this negative impact, it is more likely under this variant that the cap would be "filled" by allowing more vehicle types to be eligible.

The net environmental impacts of this variant will depend on whether or not the incentive would lead to more zero-emission buses and small lorries compared to the baseline situation.

| 6.5 Elements for Cost-Effective Implementation (Flexibilities) |

6.5.1 Exemption of vocational vehicles

Economic Impact

Due to their lower mileage and payloads compared to other HDVs, vocational vehicles have a more limited cost-effective CO\textsubscript{2} emission reduction potential. Exempting these vehicles from the scope could thus avoid disproportionately high compliance costs for the manufacturers concerned.

Social Impact

There were no relevant social impacts of this option identified.

Environmental Impact

By allowing some vehicles not to be subject to the CO\textsubscript{2} reduction requirements, this option may result in lower CO\textsubscript{2} emission reductions and hence decrease the effectiveness of the policy. However, by targeting a group of vehicles with a rather low annual mileage and restricting the share of vehicles which may be exempted, the environmental benefits foregone would be limited.

6.5.2 Flexibilities across manufacturers

6.5.2.1 Pooling

Economic Impact

Pooling can reduce overall compliance costs for manufacturers. Instead of meeting a specific emissions target individually, pooling allows manufacturers to specialise by sharing and lowering compliance costs. Experience under the LDV Regulations has shown that pooling may be an important flexibility, which has improved the cost-effectiveness of the Regulations.
However, the situation is different in the HDV sector where pooling could limit technological competition between the already limited number of individual manufacturers and foster concentration on a limited range of CO₂ reduction technologies. That would lead to a narrower product range of technological options available on the market and slow down innovation. Thus, from a perspective of an individual manufacturer, while pooling might pay off in the short term through lower manufacturing costs, it could be risky if it stalls innovation in fuel efficiency.

Social Impact

There were no relevant social impacts of this option identified.

Environmental Impact

While pooling may negatively affect the level of investment in CO₂ reducing technologies by individual manufacturers, it should not negatively affect the achievement of the fleet-wide CO₂ emission reduction target.

Administrative burden

Pooling would increase the administrative burden as applicable rules and conditions would need to be set out and applied by the manufacturers pooling among each other.

6.5.2.2 Trading

Economic Impact

Trading can reduce overall compliance costs for manufacturers by providing for flexibility in meeting the targets. This in turn may create an additional revenue stream.

Compared to pooling, trading does not require an upfront decision on whom to share reduction efforts with as it could practically only take place after manufacturers are informed about the provisional calculations of their target compliance. This would allow manufacturers to trade the exact amount of credits needed to meet their target before the confirmation of the final compliance data.

A manufacturer or pool that over-complies with its target and has therefore invested in more efficient vehicles can sell credits and generate additional revenue to recover its additional investment costs, at least partially. At the same time, for another manufacturer or pool it may be cheaper to buy credits than putting additional investments in new technologies or paying penalties.

These benefits depend on the liquidity in the market and the willingness of manufacturers to trade. Given the small number of manufacturers, a few of them may dominate the market and this could have negative effects on competition, hampering rather than accelerating technology development. This may limit the economic benefits of trading.

During the public consultation, some stakeholder groups supported trading as it would decrease compliance costs. Manufacturers did not support this option.

Social Impact

There were no relevant social impacts of this option identified.

Environmental Impact

Trading should not negatively affect the achievement of the EU-wide fleet CO₂ targets. A trading mechanism may affect the level of investment in new technologies by each specific manufacturer (or pool). Without a trading mechanism, each manufacturer (or
pool) would have to have a certain number of energy-efficient vehicles in its fleet in order to comply with the set targets.

By contrast, under a trading mechanism, a manufacturer could decide to invest less in new technologies and instead buy credits from other manufacturers to fulfil the CO₂ target. Investments in energy-efficient vehicles and/or ZEV/LEV may be limited to only some specialised manufacturers (or pools) and hence possibly limit the number of manufacturers taking up innovative technologies.

Administrative burden

This option would increase administrative costs. It would require both manufacturers and the Commission to monitor all transactions, e.g. in the form of a register.

6.5.3 Flexibilities across different target years

6.5.3.1 Target compliance 1: annual compliance assessment

Economic Impact

An annual compliance option limits the flexibility for HDV manufacturers to develop and market new technologies, and thus to comply with the CO₂ emission targets. It may therefore increase compliance costs. In the initial years, this option could also restrict the lead time available for some HDV manufacturers to develop the technologies necessary to comply with the CO₂ emission target. In view of the long development cycle for HDVs, this option may unnecessarily penalise manufacturers who experience minor delays in bringing the target-compliant HDV models to the market.

Social Impact

There are no direct or otherwise relevant social impacts of this option.

Environmental Impact

By strictly adhering to a certain annual emission level this option reinforces the certainty of accomplishing the CO₂ emission target.

6.5.3.2 Target compliance 2: banking and borrowing

Economic Impact

Allowing the banking and borrowing of credits offers manufacturers greater flexibility and can therefore increase the overall cost-effectiveness of the policy.

Banking rewards early movers and helps to alleviate efforts at a later stage, which may be generally more expensive or require a more advanced shift in fuel-efficient technologies. It would allow for managing unexpected annual fluctuations in a manufacturer's fleet without falling into non-compliance.

A particular downside as regards borrowing could arise in case a manufacturer that has been borrowing credits to be reimbursed in future compliance periods would go out of business. This would create problems of liability for compensating the credit deficit for that period. This risk would be addressed by limiting the borrowing to 5% of the specific emissions target.

Social Impact

There are no direct or otherwise relevant social impacts of this option.

Environmental Impact
Banking poses the risk that accumulating and carrying over of credits can undermine the effectiveness of the CO\textsubscript{2} reduction target in the medium to long-term. If that risk materialises, negative effects on the environment cannot be excluded.

Borrowing also implies the risk of a negative impact on environment. When borrowing, manufacturers may not be able to balance a negative amount of credits at the end of the implementation period, e.g. when going out of business.

Nevertheless, mitigating measures exist to limit the negative environmental effects. In the option considered and described in Section 5.4.3 and Annex 9.4, several parameters have been introduced to limit this risk. This concerns the definition of the trajectory against which credits/debits will be generated and limiting the use of credits to one compliance period without the possibility of carry-over into the next period.

Administrative burden

The introduction of banking and borrowing would increase administrative costs as it would require tracking of the credits and debits. However, this would not be excessive as the number of market participants is very small.

6.6 **Governance**

6.6.1 **Real-world emissions**

6.6.1.1 **Option 1: Collection, publication, and monitoring of real world fuel consumption data reported by manufacturers using currently available devices**

Economic Impact

The economic impact of this option is mainly associated to the administrative burden to establish and operate a monitoring mechanism, which will strongly depend on its actual design.

Social Impact

There is no significant social impact due to this option.

Environmental Impact

Regular monitoring of real-world fuel consumption data and the possibility to make it publicly available would provide a basis for cross-checking the representativeness of certified CO\textsubscript{2} emission data. This would allow to identify corrective actions limiting the possible growth of a gap between certification and real-world CO\textsubscript{2} emission values.

Availability and public access to real world fuel consumption and CO\textsubscript{2} emission data could increase market transparency, which may in turn stimulate the market up-take of CO\textsubscript{2} reducing technologies.

The environmental effectiveness of the option depends on the quality of the available data, which may be undermined in the absence of standardised measurement devices.

6.6.1.2 **Option 2: Collection, publication, and monitoring of real world fuel consumption data reported by manufacturers using mandatory standardised fuel consumption monitoring devices**

Economic Impact

If the standardised measurement devices would become mandatory in new HDVs through type approval, the Commission could propose to retrieve such data for example
by means of reporting or publication obligations for manufacturers, periodic or ad-hoc inspections, remote sensing or a combination thereof. This would be subject to a dedicated analysis and assessment to underpin new regulatory provisions on this issue.

Alternatively, ad hoc periodic test campaigns covering representative fleet samples could be carried out. In this case, the Commission would carry out internal and external specific studies.

Social Impact

There is no relevant social impact associated with this option.

Environmental Impact

This option would allow for a robust monitoring of real-world CO₂ emission data. The standardised nature of the measurement devices would ensure comparability of the monitored emission data and provide for a solid basis for verifying the certified emission data. The better quality of the available data will make the CO₂ emission reduction target more effective with a positive effect on the environment.

The availability of public access to real world fuel consumption and CO₂ emission data would increase market transparency, which may in turn stimulate the market up-take of CO₂ reducing technologies.

6.6.2 Market surveillance

6.6.2.1 Option 1: Introduce in-service conformity tests, the obligation to report deviations and the introduction of a correction mechanism

Economic Impact

The requirement for national authorities to carry out in-service conformity tests and to report to the Commission any deviations found would allow the Commission to take further steps in ensuring that such deviations are penalised and remediated. This would prevent the distorting effect such deviations may have on the competition among different manufacturers.

It would also create a strong deterrent from placing vehicles on the market with deviating CO₂ and fuel consumption values. It could be expected that the mere possibility of being subject to corrections of the CO₂ monitoring data would in itself reduce the risk for such deviations occurring systematically.

This option would incur an administrative burden on type approval authorities. However, it can be assumed that the data concerned will also be documented and reported for the purpose of the type approval legislation.

Social Impact

There is no relevant social impact associated with this option

Environmental Impact

This option should contribute to ensuring reliable and representative CO₂ data to be made available. This would lead to improving the effectiveness of the CO₂ emission standards by ensuring that the CO₂ reductions foreseen are actually achieved.

6.6.3 Penalties

Economic Impact
The economic impact of financial penalties will depend on the target level set as this influences the marginal technology costs.

As illustrated in Annex 10.13, a penalty level of €570 per g CO₂/km, which is the equivalent of the currently applicable penalty under the LDV Regulations (see Section 5.5.3) would exceed the marginal technology costs in the HDV sector for most target level options. However, in 2030, for the most ambitious target levels considered, a higher penalty level would be required to ensure sufficient incentives are provided for manufacturers to invest in new cost-effective technologies.

Social Impact
There are no direct or otherwise relevant social impacts of this option.

Environmental Impact
As long as the penalties are higher than the marginal costs of the new technologies needed to meet the CO₂ target, the penalties are a deterrent for non-compliance. In that case, setting a penalty will ensure that emissions are effectively reduced.

7 COMPARISON OF OPTIONS

The options considered are compared against the following criteria:

- **Effectiveness**: the extent to which different options would achieve the objectives;
- **Efficiency**: the benefits versus the costs; i.e. "the extent to which objectives can be achieved for a given level of resource/at least cost".
- The coherence of each option with the overarching objectives of EU policies;
- The compliance of the options with the proportionality principle

The effectiveness of the policy options considers the extent to which the set objectives as presented in Chapter 4 are achieved.

While CO₂ emission standards for lorries are a key element to achieve the objectives, they cannot deliver them on their own. A number of other complementary policy measures – both on the supply and demand side – have already been or need to be put in place at EU and national level.

These include procedures for certifying CO₂ emissions and fuel consumption (HDVs certification legislation, VECTO), policies supporting the internalisation of external costs linked to emissions (Eurovignette Directive), development of new technologies through research, deployment of low-emission HDVs through public procurement (Clean Vehicles Directive), investment in the necessary refuelling/recharging infrastructure (Alternative Fuels Infrastructure Directive), and policies and measures to improve energy efficiency and the use of low-carbon fuels (Renewable Energy Directive) (see Section 2.3 and Annex 6.2 for more details).
Table 6: Comparison of the options considered against the key criteria

Assessment of expected impacts – legend

<table>
<thead>
<tr>
<th></th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
<th>Proportionality – added value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strongly negative</td>
<td>Weakly negative</td>
<td>No or negligible impact</td>
<td>Weakly positive</td>
<td>Strongly positive</td>
</tr>
</tbody>
</table>

1. EMISSION TARGETS

1.1. SCOPE

<table>
<thead>
<tr>
<th>Options considered</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
<th>Proportionality – added value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups 4, 5, 9 and 10 whole-vehicle CO₂ standards</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Group 5 whole-vehicle CO₂ standards</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional engine-only CO₂ emissions standards</td>
<td>✓ ✓ O ✓ ✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2. METRIC

<table>
<thead>
<tr>
<th>Options considered</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
<th>Proportionality – added value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank-to-Wheel</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Well-to-Wheel</td>
<td>✓ ✓ O ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓</td>
<td></td>
</tr>
</tbody>
</table>

1.3. METRIC UNIT

<table>
<thead>
<tr>
<th>Options considered</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
<th>Proportionality – added value</th>
</tr>
</thead>
<tbody>
<tr>
<td>g CO₂/km</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>O ✓ ✓</td>
<td>O ✓ ✓</td>
</tr>
<tr>
<td>g CO₂/km</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>g CO₂/m³ km</td>
<td>✓ ✓ ✓</td>
<td>O ✓ ✓</td>
<td>O ✓ ✓</td>
<td>O ✓ ✓</td>
</tr>
</tbody>
</table>

1.4. CO₂ TARGET LEVEL

<table>
<thead>
<tr>
<th>Options considered</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
<th>Proportionality – added value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL 20</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>O ✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>TL 30NL (Non Linear)</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>TL 30</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>TL 32</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>TL 35</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>O ✓ ✓</td>
<td>✓ ✓</td>
</tr>
</tbody>
</table>

1.5. TIMING

<table>
<thead>
<tr>
<th>Options considered</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
<th>Proportionality – added value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ target in 2025 and aspirational target in 2030</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>CO₂ targets in 2025 and in 2030</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>CO₂ targets in 2030</td>
<td>O ✓ ✓</td>
<td>O ✓ ✓</td>
<td>O ✓ ✓</td>
<td>✓ ✓</td>
</tr>
</tbody>
</table>

2. DISTRIBUTION OF EU FLEET-WIDE CO₂ EMISSION TARGET LEVEL

<table>
<thead>
<tr>
<th>Options considered</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
<th>Proportionality – added value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different emission reduction target per sub-group / eight targets per manufacturer</td>
<td>✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Same emission reduction target for all sub-groups / one target per manufacturer</td>
<td>✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓</td>
</tr>
</tbody>
</table>

3. ZEV / LEV INCENTIVES

<table>
<thead>
<tr>
<th>Options considered</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
<th>Proportionality – added value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super-credits</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>One-way crediting system</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>Two-way crediting system</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>O ✓ ✓</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>ZEV/LEV mandate</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>O ✓ ✓</td>
<td>✓ ✓</td>
</tr>
</tbody>
</table>
Options considered

<table>
<thead>
<tr>
<th>Options considered</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
<th>Proportionality – added value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count ZEV/LEV HDV outside the scope of the targets</td>
<td>✓</td>
<td>✓</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

4. ELEMENTS FOR COST-EFFECTIVE IMPLEMENTATION

4.1. EXEMPTIONS

<table>
<thead>
<tr>
<th>Option</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exempt vocational vehicles</td>
<td>O</td>
<td>✓</td>
<td>O</td>
</tr>
</tbody>
</table>

4.2. FLEXIBILITIES ACROSS MANUFACTURERS

<table>
<thead>
<tr>
<th>Flexibility</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooling</td>
<td>O</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Trading</td>
<td>O</td>
<td>✓</td>
<td>X</td>
</tr>
</tbody>
</table>

4.3. FLEXIBILITIES ACROSS DIFFERENT TARGET YEARS

<table>
<thead>
<tr>
<th>Flexibility</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual compliance assessment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Banking and borrowing</td>
<td>O</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

5. GOVERNANCE

5.1. REAL-WORLD EMISSIONS

<table>
<thead>
<tr>
<th>Monitoring</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real world fuel consumption data using currently available devices</td>
<td>✓</td>
<td>O</td>
<td>✓</td>
</tr>
<tr>
<td>Real world fuel consumption data using standardised devices</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

5.2. MARKET SURVEILLANCE

<table>
<thead>
<tr>
<th>Reporting</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviations found during in-service conformity tests and correction mechanism for monitoring data</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

5.3. PENALTIES

<table>
<thead>
<tr>
<th>Financial penalties</th>
<th>Effectiveness</th>
<th>Efficiency</th>
<th>Coherence</th>
<th>Proportionality – added value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance with CO₂ emission standards</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

7. Emission target

7.1. Scope

Options 1 and 2 set whole-vehicle standards only for the main vehicle groups, with option 1 covering the four main groups and option 2 covering only the largest one. The main distinction between the impacts of these two options lies in their scale.

By covering some 65% to 70% of total HDV CO₂ emissions, option 1 is more effective than option 2 in achieving the objective related to the reduction of CO₂ emissions. It would also benefit a larger number of transport operators in terms of reduction of fuel costs. It would also incentivise innovation in a larger number of vehicles. Thus, option 1 is more effective in reaching all the specific objectives.

The applicable emission reduction technologies are largely similar for the different vehicle groups, meaning that technology costs do not differ much across the groups. Spreading those costs over a larger number of vehicles will therefore allow for realising economies of scale, and thereby reduce the average compliance costs. As a consequence, option 1 should be the cost efficient option.
Both options 1 and 2 are coherent with the overarching EU policy objectives and are proportionate as they target the main vehicle groups within the sector.

Under option 3, engine-only CO₂ standards would be set in addition to the whole-vehicle standards foreseen under options 1 and 2. The whole-vehicle standards in fact already include engine emissions as these are captured by the VECTO simulation tool. In case the whole-vehicle standards are properly defined, complementing them with engine only standards would increase administrative burden and compliance costs without significant additional environmental benefit. Consequently, option 3 scores worse in terms of efficiency, while not being more effective. As the engine-only standards risk being incoherent with the whole-vehicle standards, it also scores lower in terms of coherence and proportionality – added value.

Stakeholders generally supported option 1, except for some environmental NGOs, who favoured option 3.

7.1.2 Metric

As described in Chapter 6, key distinctions between the TTW and WTW options considered lie in their differences in coherence with other policies and in additional complexity and administrative burden they might cause.

The WTW approach presents implementation difficulties as WTT emissions are not a property of the vehicle but depend on the fuel used. It would be very difficult to establish an adequate target value and it would lead to confusion of responsibilities and liabilities by making manufacturers accountable for emissions occurring outside their sector.

By focusing on the vehicle’s CO₂ efficiency, the TTW approach is considered fully coherent with the other policy instruments contributing to the EU’s climate and energy policy. It is also more effective in addressing the objectives of reducing fuel costs for transport operators and for promoting technological innovation.

On the contrary, a WTW metric could lead to double regulation interfering with the EU ETS and the low-emission fuels policy, in particular the Commission's RED-II proposal. There is even a risk that a WTW approach could undermine the environmental effectiveness of EU legislation as emission reductions already counted under RED-II would also be counted under the vehicles legislation, i.e. representing double counting. This would make it difficult for Member States to estimate the total amount of emission reductions in the transport sector stemming from RED-II and the improvements in HDV CO₂ efficiency improvements, particularly as the consumption of biofuels is not evenly distributed among Member States.

In order to maintain the cumulative environmental ambition of the two legislative acts, a WTW approach would require more stringent target levels in the vehicle emissions legislation in order to take account of the significant emission reductions that would be counted twice.

Only a few stakeholders from the fuels and gas sector supported a WTW approach during the open public consultation.

7.1.3 Unit metric

The three options on the unit metric for the whole-vehicle standards differ in the extent to which they reflect the nature of transport utility and the possibility they offer for comparison between CO₂ emissions in light duty and heavy-duty sectors.
Using the unit g CO₂/km makes it easy to compare the CO₂ emissions in light-duty and heavy-duty sectors because it is the unit metric used to measure CO₂ emission reductions in the case of cars and vans.

The units g CO₂/km and g CO₂/m³km do not fully reflect the transport utility of HDVs in terms of mileage travelled and the mass of goods actually transported. The only unit metric that does so is the one expressed in g CO₂/tkm which therefore scores more positively in terms of coherence and added value. However, the choice of the unit metric is mainly a question of presentation.

Stakeholders representing vehicle manufacturers, automotive component suppliers and the gas sector expressed a preference for a g CO₂/tkm unit, while most civil society organisations preferred expressing the targets in g CO₂/km.

7.1.4 Target levels

The options considered cover a range of CO₂ reduction target trajectories up to 2030.

An analysis of the cost-effective technologies already at hand or becoming readily available in the short term shows that their full deployment would allow achieving emission reductions between 15% to 20% in 2025 compared to the baseline.

Higher uncertainties over the performance and costs of more advanced technologies and, in particular, alternative powertrains relying on the existence of an alternative fuels infrastructure could affect the feasibility of higher target level options in 2030.

The stricter the target levels, the higher their effectiveness in achieving the specific objective of reducing CO₂ emissions and in addressing the market uncertainties and inertia in the HDV market in deploying readily available fuel saving technologies and in investing in new technologies. Across the options considered, emission reductions from the entire HDV fleet in 2030 range from around 3% (TL20) to around 8% (TL35) compared to the baseline.

The co-benefits in terms of reduced air pollution also increase with the stringency of the target leading to additional reductions of NOₓ and PM₂.₅ emissions by 2030 compared to the baseline. The improvements range from 1.3 percentage points (TL20) to 4.7 percentage points for NOₓ (TL35) and up to 0.6 percentage points for PM₂.₅ (TL35).

All options considered deliver economic benefits for society as a whole as well as for transport operator and consumers representing a classical win-win situation.

Benefits for society are expressed as the additional net savings that could be achieved compared to the corresponding baseline. These savings are calculated as the difference between the fuel savings and the capital costs over the lifetime of the vehicles. The analysis, using two sets of cost curves (base and high costs) demonstrated that, both in 2025 and in 2030, very significant cumulative net savings can be realised under all options. The significant fuel savings strongly outweigh the additional capital costs. These high savings reflect that HDVs have an average lifetime mileage of around 1.2 million km, which is about six times higher than cars. Such a mileage leads to total fuel costs of about 400,000 EUR over the lifetime of a vehicle.

The maximum CO₂ reduction trajectories with respect to net economic benefits including the avoided cost of CO₂ from a societal perspective are TL30, TL32 and TL35 not taking into account the higher uncertainty that comes with the highest target levels. When considering the base cost curves, the estimated net economic benefits per lorry are
32,193 to 52,369 EUR in 2025 and 77,360 to 87,278 EUR in 2030. Basing the analysis on the high cost curves, net savings per lorry range from 34,814 to 41,881 EUR in 2025 and from 59,060 to 76,963 EUR in 2030.

From the perspective of the transport operator, the 'total cost of ownership' reflects the change in costs from an end-use perspective for an 'average new lorry'. The analysis shows significant cumulative net savings for transport operators, the majority of whom are SMEs. They are smaller than the societal benefits, and the difference is mainly stemming from the fact that the transport operator will not take the avoided CO₂ costs into account.

During the first use (5 years) of the vehicle and when using the base costs curves, a transport operator could realise cumulative net savings per lorry of 7,323 to 37,589 EUR in 2025 and 30,339 to 72,120 EUR in 2030 for the range of options considered. This is equivalent to saving 1-4 % of its operating costs in 2025 and 3-12 % in 2030.

The analysis of the two sets of cost curves demonstrated that as the fleet-wide CO₂ target levels get tighter, the capital costs as well as the fuel cost savings increase. Yet, the increase in fuel cost savings is higher than that in capital costs leading to increasing overall net savings. This trend is observed both from a first use as well as from a second use perspective.

However, consideration is needed of the lead time to implement the new technologies, as well as their impacts on the manufacturing costs. As for all energy efficiency investments, an upfront investment is required for deploying CO₂ saving technologies for HDVs.

Additional manufacturing costs for a 2025 lorry under the options TL20 to TL35 increase from 858 to 7,339 EUR under the base cost assumption and from 3,077 to 27,797 EUR under the high cost assumption. In relative terms, this represents between 0.8% and 6.7% and between 2.8% and 25.3%, of the purchase price of the vehicle, for the base cost and high cost assumptions, respectively.

Higher manufacturing costs for 2030 reflect the existing uncertainties over the costs and availability of new technologies in that time frame. The introduction of the regulatory standards might, however, affect the development and uptake of technologies, and thus their availability and costs in a 2030 perspective. Actual developments in technology costs will be reviewed as foreseen in 2022.

All options are expected to reduce slightly the energy demand with the biggest reductions observed under options TL30, TL 32 and TL35.

Under the different target options, the decrease in the fuel costs leads to a decrease in freight costs, and consequently an increase in freight transport activity. However, for all the options assessed, this increase remains limited in the range of 0.2% to 0.4% in 2025 and 0.5% to 0.9% in 2030 depending on the target level option.

Furthermore, the different policy options have a limited impact on the reduction of the total costs of freight (HDV) transport per activity, by less than 1% in 2025 and in the order of 1% to 3% in 2030 depending on the target level.

As regards the macro-economic impacts, the results show an almost negligible positive impact compared to the baseline in terms of EU-28 GDP for the all options considered. The sectors mostly affected are the ones associated to petroleum products showing a gradual decrease in turnover as CO₂ targets become stricter and the manufacturing of
motor vehicles sector, while the transport service sector is expected to be positively affected by the introduction of CO₂ targets.

The targets are also expected to have a small but positive impact on employment, in particular in the sectors of transport and construction. The latter is driven by higher activity in the construction sector as transport services become cheaper.

In light of the analysis carried out, on one hand, options TL30, TL32 and TL35 score better than option TL20 on effectiveness in reducing CO₂ emissions as well in terms of net savings from a societal, first use and second use perspective. Those options score also better in terms of incentives for innovation. On the other hand, in particular options TL32 and TL35, with the strictest target levels, score less positively on proportionality as they lead to high manufacturing costs, especially in 2030.

In terms of coherence, a key consideration is related to the way HDV CO₂ targets would deliver a cost-effective contribution to reducing emissions of the sectors covered by the Effort Sharing Regulation by 2030.

Chapter 6 shows a significant difference between the emission reduction in road transport in the EUCO30 scenario as compared to the baseline. With the proposal for cars and vans, this difference gets significantly smaller, from around 8 to 4 percentage points.

This gap could be progressively closed with the implementation of CO₂ standards for lorries. Option TL20 would reduce the gap by about 25%, while option TL35 would halve the gap.

In this respect, stricter HDV targets enable Member States in meeting their target under the Effort Sharing Regulation taking into account also that depending on the Member State other sectors covered by that Regulation might have a lower than average cost-effective emission reduction potential. However, the strictest target scores less positively against the coherence criteria in view of the increased manufacturing costs.

The options considered covered the range of views expressed by stakeholders, with HDV manufacturers supporting a target level close to the baseline, while environmental NGOs are in favour of the most ambitious target levels considered as part of these options.

7.1.5 Timing

The three options on timing mainly differ in their effectiveness and efficiency.

Setting a CO₂ target for 2025, as under options 1 and 2, would provide a clear and early signal for the HDV sector to increase the availability of more fuel-efficient vehicles in the EU from the early 2020s on. Such a target can be achieved with readily available technologies which are currently not widely deployed in the market. It would address the market uncertainties and the inertia in the HDV market in deploying such technologies. It would also incentivize the European automotive sector to swiftly upscale their investments in key fuel-saving technologies and benefit early on from the economies of scale and learning in the context an increasing competitive market.

At the same time, a 2025 target would leave sufficient flexibility to manufacturers to phase in more efficient technologies and hence give sufficient lead time for the automotive supply chain to adapt.

It is in particular effective in achieving the first specific objective by reducing CO₂ emissions early. As a result, cumulative emission reductions over the period up to 2030 would be higher. It is also most effective against the second and third specific objective
as transport operators or consumers depending on pass through would accrue significant fuel savings or transport cost savings in the period up to 2030, while technological deployment and innovation would be stimulated early on. This would also increase the efficiency of the policy.

A binding 2025 target is also coherent with the broader climate and energy policy by ensuring that the HDV policy will contribute to Member States delivering on time on their national annual emission reduction targets set under the Effort Sharing Regulation up to 2030.

In contrast, delaying the first CO₂ target for HDVs until 2030 as under option 3 would cause the uptake of existing available fuel-efficient technologies to be postponed, leading to higher emissions and lagging technology deployment and innovation as a result of the inertia and uncertainties in the HDV market. Transport operators and consumers would also miss out on fuel savings.

Combining a binding 2030 target with a 2025 target as under option 2 would in principle score high in terms of effectiveness as this would send a clear signal towards the HDV sector to continue deploying more fuel-efficient technologies over the next 15 years.

However, as explained in Chapter 6, given the current lack of robust information on how technology performance and costs might evolve in the medium term as regards the more innovative and prospective technologies, there is a risk that a binding 2030 target could not be set at the most cost-effective level right now. It will therefore be necessary to review the 2030 CO₂ emission targets in 2022 once sufficient certified CO₂ emission data have been collected and more information is available on the costs and savings of the prospective technologies, reducing the level of uncertainty on these technologies.

In view of the above, option 1 and 2 score best on effectiveness and efficiency as it provides for early emission reduction, fuel savings, incentives for technology deployment and innovation as well as signals the need for continued action after 2025. For both options, it will be essential to provide for a review of the initially established 2030 target to ensure its robustness in view of the certified data which will be gathered from 2019 on under the reporting and monitoring legislation.

A strong majority of stakeholders preferred fixed dates combined with an early review clause over annual reduction targets, justifying their preference by referring to the need for planning certainty and the necessary lead time for industry to develop the technology. Industry favours option 2 and environmental NGOs option 1.

7.2 Distribution of EU-wide HDV fleet CO₂ emission target level across vehicle groups and manufacturers

The way the EU fleet-wide CO₂ emission reduction target is distributed across vehicle (sub-) groups and manufacturers should first and foremost not affect the overall effectiveness of the policy. It would neither have an effect on the overall level of innovation in the HDV sector. Therefore, the two options considered ensure the same level of effectiveness and coherence.

However, they differ slightly in terms of efficiency. Although option 1 in principle takes into account the specificities of the different vehicle sub-groups and minimises the total costs across all HDVs, it does not provide manufacturers with flexibility in finding a cost-optimal way to achieve their specific CO₂ emission reduction targets. This is particularly relevant in case of year to year fluctuations and changes in the composition
of their future fleet sold and the sequence of the development and gradual roll-out of new technical developments.

Option 2 provides for such flexibility by allowing for the possibility of balancing an underperformance of vehicles in certain sub-groups with an overachievement of the targets for other vehicle sub-groups. Therefore, option 2 scores better in terms of efficiency and proportionality than option 1. Also, HDV manufacturers expressed their support for option 2.

7.3 Incentive for Zero- and Low-Emission Vehicles (ZEV/LEV)

When comparing the four options and one variant regarding the type and level of incentive, special consideration needs to be given to the fact that ZEV/LEV lorries are mostly in prototype phase and have not reached the stage of commercial deployment.

In view of this, as long as the incentive mechanism contains sufficient safeguards preventing a weakening of the CO₂ targets, the scope option covering both ZEV and LEV for the purpose of the incentive scores higher in terms of effectiveness, efficiency, coherence and added value than the more restrictive option of allowing such incentives only for ZEVs.

As regards the type of incentive, a binding mandate or a two-way crediting system could in principle provide the strongest regulatory signal for industry to invest in ZEV/LEV.

However, taking into account the very low penetration of ZEV/LEV in the HDV fleet and the scarcity of robust data on such vehicles, defining an appropriate level for a binding ZEV/LEV mandate or a benchmark until 2030 on the basis of high uncertainties is quite challenging. There is a significant risk that the level chosen would be either too demanding - thus undermining the efficiency of the incentive - or too weak - which would limit the effectiveness of the incentive, while putting at risk the environmental effectiveness of the entire policy.

Therefore, a binding mandate and a one- or two-way crediting system based on a pre-defined benchmark are likely not to be efficient and score lower on proportionality than a super-credit system, which does not require setting mandates or benchmarks.

If the uptake of ZEV/LEV is higher than expected, super-credits or a one-way crediting system could undermine the environmental integrity of the policy by weakening of the overall CO₂ target. However, this risk can be minimised by setting a cap for a maximum possible increase of emissions.

These two options of a ZEV/LEV incentive would provide manufacturers with greater flexibility in composing their fleet, in particular in view of the current early stage of development of the market for ZEV/LEV.

As regards the scope for a possible incentive mechanism, the definition of ZEV/LEV would need to be set to cover vehicles with CO₂ emissions significantly below the fleet-wide average emissions in order to preserve the environmental integrity of the system and incentivize innovation towards zero emission mobility. Furthermore, LEV with the lowest emissions should be incentivized more.

The effectiveness and added value of the ZEV/LEV incentive mechanism could be increased if it were to cover zero-emission buses and smaller lorries, which would not be subject to the CO₂ targets until the review of the legislation.
In those HDV segments, the commercial deployment of ZEV has already started. Although the uptake of such vehicles would already be incentivised under the proposed revision of the Clean Vehicle Directive65, a complementary incentive could further speed up the market uptake of these technologies, which could in turn promote and accelerate the dissemination in other HDV segments. This is in particular true for smaller lorries and, to a lesser extent, for buses which are likely to benefit more from public procurement policies.

Bringing zero-emission buses and smaller lorries under the ZEV/LEV incentive mechanism would, however, reduce the need to lower the emissions from the largest HDVs covered by the standards. Their contribution to the incentive scheme should therefore be restricted so that ZEV/LEV for the largest vehicles remain sufficiently incentivized. Furthermore, there is a risk of creating a competitive distortion (i) among lorry manufacturers, as one of them does not manufacture buses and manufacturers have different shares of buses in their portfolio (ii) for manufacturers producing buses only, as those would not receive such incentives as compared to operators of large HDVs.

HDV manufacturers expressed their support for the introduction of an incentive scheme in the form of super credits (option 1), while environmental NGOs were in favour of introducing a mandate (option 4).

7.4 Elements for Cost-Effective Implementation (Flexibilities)

7.4.1 Exemptions

The option of exempting vocational vehicles from meeting the CO\textsubscript{2} emission targets would slightly reduce the effectiveness of the policy in reducing emissions from HDVs. However, due to the small number of vocational vehicles and their significantly lower mileage, the effect on total emissions is not deemed to be substantial. The additional administrative burden to capture these vehicles adequately would be high because of the large variety of vocational vehicles.

The exemption might reduce the coherence of the policy and create a risk of market distortions because it leads to a different treatment of genuinely similar vehicles, which are used for very different purposes. However, these risks are limited since these vocational vehicles will be clearly identified through the necessary changes in type approval legislation by the time when the standards will apply.

This option is also cost-efficient and proportional in view of the specific technical characteristics of the targeted vehicles.

HDV manufacturers supported the introduction of exemptions.

7.4.2 Flexibilities across manufacturers

7.4.2.1 Pooling

As explained in Chapter 6, pooling in itself should not negatively affect the achievement of the EU fleet-wide CO\textsubscript{2} emission reduction target. Consequently, this option does not affect the effectiveness of the policy.

65 SWD(2017) 366 final
However, pooling allows manufacturers to reach the CO₂ emission targets at a lower cost and thus could increase the efficiency of the policy.

In spite of that, due to the specificities of the HDV sector, this option is not optimal in term of coherence and proportionality. Pooling poses the risk of limiting competition between the very limited number of individual manufacturers operating in an already concentrated oligopolistic market. Pooling could lead to a narrow range of technological options available on the market and slow down competition and innovation.

The majority of stakeholders across all stakeholder groups was in favour of pooling, to support the cost-effective implementation of the targets. However, civil society organisations supported trading only and HDV manufacturers considered the introduction of pooling not to be necessary.

7.4.2.2 Trading

Trading can reduce overall compliance costs for manufacturers by providing for additional flexibility in meeting the targets. Consequently, as with pooling, trading could positively affect the efficiency of the policy, but would have little if any effect on its effectiveness.

The efficiency gains will depend on the level of liquidity in the market. Given the small number of manufacturers, it is uncertain whether the necessary level of liquidity for trading to become efficient would be achieved. As in the case of pooling, trading has a risk of negative effects on competition due to the limited number of market participants.

The majority of stakeholders across all stakeholder groups was in favour of trading to support the cost-effective implementation of the targets. HDV manufacturers consider the introduction of trading not to be necessary.

7.4.3 Flexibilities across different target years

Performing an annual compliance check against the applicable targets ensures that those targets are effectively met each year. This increases the effectiveness of the policy and its coherence with the overarching EU objectives.

However, having fixed annual targets (option 1) also limits the flexibility for HDV manufacturers to deal with unforeseen fluctuations in their fleet composition, e.g. due to varying customer preferences or other external factors like economic growth, or with the existing differences in manufacturer-specific innovation cycles.

Allowing banking and borrowing (option 2) would help to overcome this and thus to reduce compliance costs and to improve the efficiency of the policy. Furthermore, this option would provide for rewarding early action including before the first year of application of the new targets.

Care should be taken in the design of banking and borrowing in order to prevent negative impacts on environmental effectiveness. This could occur if potential technological progress were to be grossly underestimated and banking would allow for an extensive accumulation and carry over of large amounts of credits. Borrowing could lead to a situation where manufacturers would not be able to balance borrowed credits, or in situations where manufacturers in debt would go out of the market. Therefore, as described in Chapters 5 and 6, the option for banking and borrowing foresees a number of mitigating measures, which should ensure that the environmental objective is met.

Banking and borrowing could improve competition between manufacturers.
The majority of stakeholders across all groups was in favour of banking/borrowing to support the cost-effective implementation of the targets. However, civil society organisations argued that this may undermine the effectiveness of the legislation.

7.5 Governance

7.5.1 Real-world emissions

Options 1 and 2, both involving the collection, publication and monitoring of real-world fuel consumption data score positively against all assessment criteria. They will ensure the availability of more representative certified CO\textsubscript{2} emission data, which will stimulate technological innovation, facilitate reducing CO\textsubscript{2} emissions and the actual fuel-cost savings. These options would thus increase the effectiveness, coherence and added value of the regulatory framework.

The availability of real-world fuel consumption data would allow the verification of the assumptions made on the gap between the CO\textsubscript{2} values obtained from VECTO and the average real-world emissions. This would in turn make it possible to take corrective actions in case significant divergences would be found so as to ensure the overall integrity and robustness of the regulatory framework. In addition, the publication of real-world fuel consumption data would strongly improve transparency for consumers and may influence purchase decisions towards more efficient HDVs.

The only difference between the second and the third option is the nature of the monitoring devices used to collect the real-world fuel consumption data. Using the currently installed non-standardised fuel consumption measurement devices could result in non-comparable data, which risks rendering this option ineffective having little added value.

In comparison, the use of standardised measurement devices would create a more robust framework ensuring data quality and comparability, thus reinforcing the importance of the reporting obligation. Therefore, option 2 scores best in terms of effectiveness, coherence and added value. The slightly higher costs of introducing standardised measurement devices could be offset by the expected benefits.

A clear majority of stakeholders across different groups viewed it important to develop processes for assessing the certified CO\textsubscript{2} emissions against real driving emissions. Only some automotive component suppliers and vehicle manufacturers were either neutral or explicitly against.

7.5.2 Market surveillance

The option introducing an obligation to report deviations found during market surveillance and the introduction of a correction mechanism scores positively in terms of effectiveness, efficiency and added value.

This obligation would complement the reporting of real world CO\textsubscript{2} data by ensuring that CO\textsubscript{2} emissions of vehicles, as type-approved are correct or that these are swiftly corrected in case of deviations. Since type-approved CO\textsubscript{2} emission values are used for assessing CO\textsubscript{2} target compliance introducing such a verification and correction procedure is critical to ensure that the CO\textsubscript{2} emission reduction objective will actually be achieved.

During the public consultation, most automotive component suppliers and vehicle manufacturers were against or neutral on the introduction of an ex-post feedback mechanism requiring compliance of the certified CO\textsubscript{2} emissions with real-driving
emissions. Such an ex-post feedback mechanism was supported by logistics operators, vehicle fleet operators, and civil society organisations.

7.5.3 Penalties

When penalties are set at an optimal level, these will have a deterrent effect and steer market players towards a preferred course of action. Thus, effective financial penalties will ensure that manufacturers comply with the CO₂ emission targets. The absence of effective financial penalties, poses the risk of manufacturers paying the fine, while deliberately not complying with the CO₂ emission targets, thus undermining the effectiveness of the policy.

Consequently, financial penalties would enhance the effectiveness, coherence and efficiency of the policy and, when set at an optimal level, ensure its proportionality.

8 PREFERRED OPTION

While for most of the issues a preferred option has been identified, this is not the case for the following issues, for which trade-offs between the various options are described in Section 7 and Annex 3.2 with a view of informing the decision making process:

- the level and timing of the CO₂ emission targets
- the specific design elements of the incentive system for zero and low emission vehicles.

Table 7: Overview of the preferred options

<table>
<thead>
<tr>
<th>Preferred Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Emission target</td>
</tr>
<tr>
<td>Scope</td>
</tr>
<tr>
<td>Metric</td>
</tr>
<tr>
<td>Metric unit</td>
</tr>
<tr>
<td>CO₂ target levels</td>
</tr>
<tr>
<td>Timing</td>
</tr>
<tr>
<td>2. Distribution of EU fleet-wide CO₂ emission target level</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3. ZEV/LEV incentives</td>
</tr>
</tbody>
</table>
Super-credits with sufficient safeguards preventing a weakening of the CO₂ targets

<table>
<thead>
<tr>
<th>4. Elements for cost-effective implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemptions</td>
</tr>
<tr>
<td>Flexibilities across manufacturers</td>
</tr>
<tr>
<td>Flexibilities across different target years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Governance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-world emissions</td>
</tr>
<tr>
<td>Market surveillance</td>
</tr>
<tr>
<td>Penalties</td>
</tr>
</tbody>
</table>

REFIT (simplification and improve efficiency)

The initiative in itself would not entail any additional administrative costs for type-approval authorities. The costs related to certification and the monitoring and reporting of data on CO₂ emissions have been considered in the context of those proposals.

9 HOW WOULD IMPACTS BE MONITORED AND EVALUATED?

The actual impacts of the legislation will be monitored and evaluated against a set of indicators tailored to the specific policy objectives to be achieved with the legislation. A mid-term review of the legislation foreseen in 2022 would allow the Commission to assess the effectiveness of the legislation and, where appropriate, propose changes.

Under the proposed HDV Monitoring and Reporting Regulation⁶⁶, the Commission will collect the CO₂ emissions and fuel consumption data resulting from the certification procedure. Efficient monitoring is conditional on a well-functioning certification process and reliable emission data from VECTO. The European Environment Agency (EEA) will combine the registration data from national authorities with the monitoring data from manufacturers and publish per manufacturer and vehicle group annual monitoring data for each certified new vehicle registered in the EU.

Moreover, this Impact Assessment puts forward the option of complementing the proposed Regulation on monitoring and reporting of CO₂ emissions data from HDV with two additional monitoring measures.

⁶⁶ COM(2017) 0279 final
The first one is the collection, publication, and monitoring of real world fuel consumption data reported by manufacturers based on mandatory standardised devices.

The second one introduces in-service conformity tests and the obligation to report deviations from type approval values, which could be tackled by a correction mechanism.

These two measures would reinforce the monitoring process and ensure the effectiveness of the proposed legislative initiative. They entail a limited additional administrative burden on type approval authorities. In light of the importance of ensuring transparency and the representativeness of monitored CO₂ emission values, this appears well justified.

9.1 Indicators

For the specific policy objectives the following core monitoring indicators have been identified:

- **Reduce CO₂ emissions from the HDV sector** in line with the requirements of EU climate policy and the Paris Agreement
 - The EU-wide fleet average of the CO₂ emissions measured at type approval will be monitored annually on the basis of the monitoring data so that it can be compared against the target level set in the legislation.
 - Total HDV GHG emissions will be monitored through Member States' annual GHG emissions inventories.
 - The deployment of fuel-efficient technologies, their costs and the resulting fuel savings will be monitored on the basis of data collected from manufacturers, suppliers and experts. Information will also be available through the proposed Regulation on monitoring and reporting of CO₂ emissions data from HDVs.

- **Facilitate a reduction in operating costs for transport operators**, most of which are SMEs, and more broadly of transportation costs for consumers depending on pass-through of fuel savings:
 - The development in fuel cost savings will be monitored through the evolution of the EU-wide fleet average emissions for the various type of vehicle groups. This monitoring will also take account of the collection of real world fuel consumption data and in-service conformity checks, if available.
 - The development of freight costs will be monitored on the basis of data to be collected from transport operators, customers and experts.

- **Maintain the technological and innovative leadership** position of EU HDV manufacturers and component suppliers
 - The level of innovation will be measured in terms of new patents by European HDV manufacturers related to fuel-efficient technologies and zero/low-emission vehicles, including through publicly available patents databases. Data will be compared against main competitors from other world regions.

- **Employment**: The level of employment will be monitored on the basis of publicly available Eurostat statistics on sectoral employment data for the EU.
• **Air quality:** The ambient levels of air pollutants such as NO\textsubscript{x} and PM\textsubscript{2.5} will be monitored by the Commission in application of the air quality legislation and reported by the EEA under AirBase.67

• **Energy security:** Improvements in energy security will be monitored on the basis of Eurostat statistics on fuels imports, including transport fuels.

The methodology for evaluating the legislation will put particular emphasis on ensuring that causality between the observed outcomes based on the above indicators and the legislation can be established. In this context, methodological elements will include the establishment of a robust baseline/counterfactual scenario and the use of econometric analysis of empirical data.

9.2 Operational objectives

<table>
<thead>
<tr>
<th>Operational objectives</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reach a specific CO\textsubscript{2} emissions target level by the target year(s)</td>
<td>Compliance of manufacturers with their specific emissions target in the target year(s)</td>
</tr>
<tr>
<td>Stimulate the deployment of ZEV/LEV in a specific period</td>
<td>Share of ZEV/LEV in that period</td>
</tr>
<tr>
<td>Achieve actual CO\textsubscript{2} emissions reductions maintaining a minimum "emissions gap"</td>
<td>Divergence between real-world emissions and certified/reported CO\textsubscript{2} emissions data</td>
</tr>
<tr>
<td></td>
<td>Deviation between in-service conformity results and certified/reported CO\textsubscript{2} emissions data</td>
</tr>
<tr>
<td>Lower operating costs for transport operators</td>
<td>Evolution of the EU-wide fleet average emissions for the various types of vehicle groups, as well as real world fuel consumption data.</td>
</tr>
<tr>
<td>Increase technological innovation</td>
<td>Number of new patents registered by European HDV manufacturers related to fuel-efficient technologies and zero/low-emission vehicles</td>
</tr>
</tbody>
</table>

67 AirBase is the European air quality database maintained by the EEA through its European topic center on Air pollution and Climate Change mitigation. It contains air quality monitoring data and information submitted by participating countries throughout Europe. The air quality database consists of a multi-annual time series of air quality measurement data and statistics for a number of air pollutants.