L 59

Jornal Oficial

47.º ano 26 de Fevereiro de 2004

da União Europeia

Edição em língua portuguesa

Legislação

I Actos cuja publicação é uma condição da sua aplicabilidade
II Actos cuja publicação não é uma condição da sua aplicabilidade
Comissão
2004/156/CE:
Decisão da Comissão, de 29 de Janeiro de 2004, que estabelece orientações para a monitorização e a comunicação de informações relativas às emissões de gases com efeito de estufa, nos termos da Directiva 2003/87/CE do Parlamento Europeu e do Conselho (¹) [notificada com o número C(2004) 130]

(1) Texto relevante para efeitos do EEE

Preço: 18,00 EUR

Os actos cujos títulos são impressos em tipo fino são actos de gestão corrente adoptados no âmbito de política agrícola e que têm, em geral, um período de validade limitado.

Os actos cujos títulos são impressos em tipo negro e precedidos de um asterisco são todos os restantes.

1

II

(Actos cuja publicação não é uma condição da sua aplicabilidade)

COMISSÃO

DECISÃO DA COMISSÃO

de 29 de Janeiro de 2004

que estabelece orientações para a monitorização e a comunicação de informações relativas às emissões de gases com efeito de estufa, nos termos da Directiva 2003/87/CE do Parlamento Europeu e do Conselho

[notificada com o número C(2004) 130]

(Texto relevante para efeitos do EEE)

(2004/156/CE)

A COMISSÃO DAS COMUNIDADES EUROPEIAS,

Tendo em conta o Tratado que institui a Comunidade Europeia,

Tendo em conta a Directiva 2003/87/CE do Parlamento Europeu e do Conselho, de 13 de Outubro de 2003, relativa à criação de um regime de comércio de licenças de emissão de gases com efeito de estufa na Comunidade e que altera a Directiva 96/61/CE do Conselho (¹), e, nomeadamente, o n.º 1 do seu artigo 14.º,

Considerando o seguinte:

- (1) A monitorização e a comunicação de informações relativas às emissões de gases com efeito de estufa, de uma forma completa, coerente, transparente e exacta e em conformidade com as presentes orientações, é fundamental para o funcionamento do regime de comércio de licenças de emissão de gases com efeito de estufa criado pela Directiva 2003/87/CE.
- (2) As orientações contidas na presente decisão estabelecem critérios circunstanciados para a monitorização e a comunicação de informações relativas às emissões de gases com efeito de estufa, resultantes das actividades enumeradas no anexo I da Directiva 2003/87/CE, especificadas em relação a essas actividades, com base nos princípios de monitorização e comunicação de informações que constam do anexo IV da referida directiva.
- (3) Nos termos do artigo 15.º da Directiva 2003/87/CE, os Estados-Membros devem assegurar que os relatórios apresentados pelos operadores sejam verificados em conformidade com os critérios estabelecidos no anexo V da directiva.

(4) As medidas previstas na presente decisão estão em conformidade com o parecer do comité instituído pelo artigo 8.º da Decisão 93/389/CEE do Conselho (²),

ADOPTOU A PRESENTE DECISÃO:

Artigo 1.º

As orientações para a monitorização e a comunicação de informações relativas às emissões de gases com efeito de estufa resultantes das actividades enumeradas no anexo I da Directiva 2003/87/CE, referidas no artigo 14.º da mesma directiva, figuram nos anexos da presente decisão.

Estas orientações baseiam-se nos princípios que constam do anexo IV da Directiva 2003/87/CE.

Artigo 2.º

Os Estados-Membros são os destinatários da presente decisão.

Feito em Bruxelas, em 29 de Janeiro de 2004.

Pela Comissão Margot WALLSTRÖM Membro da Comissão

⁽²) JO L 167 de 9.7.1993, p. 31. Decisão com a última redacção que lhe foi dada pelo Regulamento (CE) n.º 1882/2003 do Parlemento Europeu e do Conselho (JO L 284 de 31.10.2003, p. 1).

Índice dos anexos

Anexo I:	Orientações gerais
Anexo II:	Orientações para as emissões de combustão das actividades enunciadas no anexo I da directiva
Anexo III:	Orientações específicas da actividade para as refinarias de óleos minerais enunciadas no anexo I da directiva
Anexo IV:	Orientações específicas da actividade para os fornos de coque enunciados no anexo I da directiva
Anexo V:	Orientações específicas da actividade para as instalações de ustulação ou sinterização de minério metálico enunciadas no anexo I da directiva
Anexo VI:	Orientações específicas da actividade para as instalações de produção de gusa ou aço, incluindo vazamento contínuo, enumeradas no anexo I da directiva
Anexo VII:	Orientações específicas da actividade para as instalações de produção de clínquer enunciadas no anexo I da directiva
Anexo VIII:	Orientações específicas da actividade para as instalações de produção de cal enunciadas no anexo I da directiva
Anexo IX:	Orientações específicas da actividade para as instalações de produção de vidro enunciadas no anexo I da directiva
Anexo X:	Orientações específicas da actividade para as instalações de fabrico de produtos cerâmicos enunciadas no anexo I da directiva
Anexo XI:	Orientações específicas da actividade para as instalações de fabrico de pasta de papel e de papel enunciadas no anexo I da directiva

ANEXO I

Orientações gerais

INTRODUÇÃO

O presente anexo apresenta as orientações gerais aplicáveis à monitorização e à comunicação de informações relativas às emissões de gases com efeito de estufa, resultantes das actividades enumeradas no anexo I da Directiva 2003/87/CE (a seguir denominada «directiva»), especificadas em relação a essas actividades. Os anexos II a XI apresentam orientações complementares aplicáveis a emissões específicas a determinadas actividades.

A Comissão procederá à revisão do presente anexo e dos anexos II a XI até 31 de Dezembro de 2006, tendo em conta a experiência adquirida com a aplicação dos presentes anexos e eventuais revisões da Directiva 2003/87/CE, de modo a que os anexos revistos possam ser aplicáveis a partir de 1 de Janeiro de 2008.

2. DEFINIÇÕES

Para efeitos do presente anexo e dos anexos II a XI, são aplicáveis as seguintes definições:

- a) «Actividades»: as actividades enunciadas no anexo I da directiva;
- b) «Específica a uma actividade»: específica a uma actividade desenvolvida numa instalação específica;
- c) «Lote»: uma quantidade de combustível ou de material objecto de uma transferência única ou transferida de forma contínua durante um período de tempo específico. Cada lote deve ser objecto de uma amostragem significativa e ser caracterizado no que respeita ao seu teor médio de energia e de carbono, bem como a outros aspectos relevantes da sua composição química;
- d) «Biomassa»: matéria orgânica não fossilizada e biodegradável proveniente de plantas, animais e microrganismos. A biomassa inclui, pois, os produtos, subprodutos e resíduos da agricultura, silvicultura e indústrias conexas, bem como as fracções não fossilizadas e biodegradáveis dos resíduos industriais e municipais. A biomassa inclui ainda os gases e os líquidos recuperados a partir da decomposição de matéria orgânica não fossilizada e biodegradável. Quando queimada para produção de energia, a biomassa é referida como combustível de biomassa;
- e) «Emissões de combustão»: emissões de gases com efeito de estufa que ocorrem durante a reacção exotérmica de um combustível com oxigénio;
- f) «Autoridade competente»: a(s) autoridade(s) competente(s) pertinente(s) para a aplicação das disposições da presente decisão, designada(s) em conformidade com o artigo 18.º da directiva;
- g) «Emissão»: a libertação de gases com efeito de estufa na atmosfera a partir de fontes existentes numa instalação, tal como definida na directiva;
- h) «Gases com efeito de estufa»: os gases enumerados no anexo II da directiva;
- i) «Título de emissão de gases com efeito de estufa» ou «título»: o título referido no artigo 4.º da directiva, emitido de acordo com o disposto nos artigos 5.º e 6.º da directiva;
- j) «Instalação»: a unidade técnica fixa onde se realizam uma ou mais das actividades enumeradas no anexo I
 e quaisquer outras actividades directamente associadas que tenham uma relação técnica com as
 actividades realizadas nesse local e que possam ter influência nas emissões e na poluição, tal como
 definida na directiva:
- k) «Nível de segurança»: a medida em que o verificador confia nas conclusões da verificação para confirmar ou infirmar o facto de o conjunto das informações comunicadas relativamente a uma instalação não conter inexactidões materiais;
- «Materialidade»: a avaliação profissional do verificador sobre se uma omissão, imprecisão ou erro, ou um conjunto destes factos, que afecta as informações comunicadas relativamente a uma instalação irá influenciar razoavelmente as decisões dos utilizadores previstos. A título de orientação geral, um verificador tenderá a classificar como «material» qualquer inexactidão nos valores respeitantes às emissões totais que dê origem a omissões, imprecisões ou erros que representem mais de 5 % do valor total das emissões;
- m) «Metodologia de monitorização»: a metodologia utilizada para a determinação de emissões, incluindo a escolha entre cálculo ou medição e a escolha de níveis metodológicos («níveis»);

- n) «Operador»: qualquer pessoa que explore ou controle uma instalação ou, caso a legislação nacional o preveja, em quem tenha sido delegado um poder económico decisivo sobre o funcionamento técnico da instalação, tal como definido na directiva;
- «Emissões de processo»: emissões de gases com efeito de estufa, que não as «emissões de combustão», que resultam de reacções intencionais e não intencionais entre substâncias ou da sua transformação, incluindo a redução química ou electrolítica de minério metálico, a decomposição térmica de substâncias e a formação de substâncias a utilizar como produtos ou matérias-primas;
- p) «Período coberto pelas informações»: o período de tempo durante o qual as emissões foram monitorizadas e comunicadas em conformidade com o n.º 3 do artigo 14.º da directiva e que corresponde a um ano civil:
- q) «Fonte»: um ponto ou processo identificável separadamente numa instalação e a partir do qual são emitidos gases com efeito de estufa;
- r) «Nível metodológico»: uma metodologia específica para a determinação dos dados da actividade, dos factores de emissão e dos factores de oxidação ou conversão. Os diversos «níveis metodológicos» constituem uma hierarquia de metodologias, da qual será seleccionado um nível, em conformidade com as presentes orientações;
- s) «Verificador»: um órgão de verificação acreditado, competente e independente responsável pela execução e pela comunicação de informações sobre o processo de verificação, de acordo com as normas estabelecidas pelos Estados-Membros em conformidade com o anexo V da directiva.

3. PRINCÍPIOS DE MONITORIZAÇÃO E COMUNICAÇÃO DE INFORMAÇÕES

A fim de assegurar uma rigorosa e verificável monitorização e comunicação de informações relativas às emissões de gases com efeito de estufa nos termos da directiva, a monitorização e comunicação de informações basear-se-á nos seguintes princípios:

Integralidade. A monitorização e a comunicação de informações relativas a uma instalação devem abranger a totalidade das emissões de processo e de combustão a partir de todas as fontes pertencentes às actividades enumeradas no anexo I da directiva e de todos os gases com efeito de estufa especificados em relação a essas actividades.

Coerência. As emissões monitorizadas e objecto de comunicações devem ser comparáveis ao longo do tempo, com as mesmas metodologias de monitorização e conjuntos de dados. As metodologias de monitorização podem ser alteradas em conformidade com o disposto nas presentes orientações, desde que tal permita melhorar o rigor dos dados comunicados. Qualquer alteração das metodologias de monitorização fica subordinada à aprovação da autoridade competente e deve ser devidamente documentada.

Transparência. Os dados relativos à monitorização, incluindo pressupostos, referências, dados da actividade, factores de emissão, factores de oxidação e factores de conversão, devem ser obtidos, registados, compilados, analisados e documentados de forma a permitir a reprodução da determinação de emissões pelo verificador e pela autoridade competente.

Rigor. Velar-se-á por que, sistematicamente, a determinação da emissão não seja superior nem inferior às emissões reais, até onde for possível avaliar, e por que as incertezas sejam tão reduzidas quanto possível e quantificadas sempre que as presentes orientações o requeiram. Deve diligenciar-se no sentido de assegurar que os cálculos e as medições das emissões sejam tão rigorosos quanto possível. O operador deve fornecer garantias razoáveis da integridade das emissões objecto da informação. As emissões devem ser determinadas com recurso às metodologias de monitorização adequadas, estabelecidas nas presentes orientações. Todo o equipamento de medição ou outro equipamento de ensaio utilizado para determinar os dados da monitorização deve ser devidamente utilizado, mantido, calibrado e verificado. As folhas de cálculo e os demais instrumentos utilizados para armazenar e manipular os dados da monitorização não devem conter erros.

Relação custo-eficácia. Na selecção de uma metodologia de monitorização, as melhorias obtidas graças a um grau mais elevado de rigor devem ser ponderadas face aos custos adicionais. Deste modo, a monitorização e a comunicação de informações relativas às emissões devem ser tão rigorosas quanto possível, a não ser que seja tecnicamente inviável ou implique custos desproporcionados. A própria metodologia de monitorização deve incluir as instruções para o operador, apresentadas de forma lógica e simples, que evite a duplicação de esforços e tenha em conta os sistemas existentes na instalação.

Materialidade. As comunicações relativas a emissões e conexas não devem conter inexactidões, devem evitar imprecisões na selecção e na apresentação das informações e conter informações credíveis e equilibradas sobre as emissões de uma instalação.

Fiabilidade. As comunicações relativas a emissões verificadas devem poder ser consideradas pelos utilizadores como representando fielmente aquilo que se julga representarem ou que se pode, legitimamente, esperar que representem.

Melhoria do desempenho em matéria de monitorização e comunicação de informações relativas às emissões. O processo de verificação das comunicações relativas a emissões deve constituir um instrumento eficaz e fiável de apoio aos processos de garantia e de controlo da qualidade, fornecendo informações com base nas quais um operador possa agir para melhorar o seu desempenho em matéria de monitorização e de comunicação de informações relativas a emissões.

MONITORIZAÇÃO

4.1. Limites

O processo de monitorização e de comunicação de informações relativas a uma instalação deve incluir a totalidade das emissões, a partir de todas as fontes pertencentes às actividades enumeradas no anexo I da directiva da instalação, de gases com efeito de estufa especificados em relação a essas actividades.

O n.º 2, alínea b), do artigo 6.º da directiva prevê que os títulos de emissão dos gases com efeito de estufa incluam uma descrição das actividades e emissões da instalação. Em consequência, todas as fontes de emissões de gases com efeito de estufa provenientes das actividades enumeradas no anexo I da directiva que devam ser objecto de monitorização e comunicação de informações são enumeradas no título. O n.º 2, alínea c), do artigo 6.º da directiva prevê que os títulos de emissão dos gases com efeito de estufa incluam os requisitos de monitorização, especificando a metodologia e a frequência do exercício dessa monitorização.

As emissões de motores de combustão interna para transporte devem ser excluídas das estimativas de emissão

A monitorização de emissões deve incluir emissões de operações regulares e ocorrências anormais, incluindo o início e o termo das emissões, bem como as situações de emergência registadas durante o período de informação.

Se a capacidade de produção ou a produção, separada ou combinada, de uma ou diversas actividades incluídas na mesma rubrica de actividade do anexo I da directiva for superior ao limiar correspondente estabelecido no anexo I da directiva numa instalação ou local, a totalidade das emissões de todas as fontes resultantes de todas as actividades enumeradas no anexo I da directiva da instalação ou local em causa devem ser objecto de monitorização e comunicação de informações.

Uma instalação de combustão — por exemplo, uma instalação combinada de produção de calor e de energia — será considerada parte de uma instalação que desenvolve outra actividade do anexo I ou uma instalação distinta em função de circunstâncias locais, ficando essa classificação estabelecida no título de emissão de gases com efeito de estufa da instalação.

Todas as emissões de uma instalação serão atribuídas a essa instalação, independentemente do facto de esta exportar calor ou electricidade para outras instalações. As emissões associadas à produção de calor ou electricidade importada de outras instalações não serão atribuídas à instalação importadora.

4.2. Determinação das emissões de gases com efeito de estufa

A monitorização exaustiva, transparente e rigorosa das emissões de gases com efeito de estufa requer a tomada de decisões quanto às metodologias de monitorização adequadas. Nomeadamente, é necessário decidir entre medição e cálculo, e seleccionar níveis metodológicos específicos para a determinação dos dados da actividade, dos factores de emissão e dos factores de oxidação ou conversão. O somatório das abordagens adoptadas por um operador com vista à determinação das emissões de uma instalação é considerado como uma metodologia de monitorização.

O n.º 2, alínea c), do artigo 6.º da directiva prevê que os títulos de emissão dos gases com efeito de estufa incluam os requisitos de monitorização, especificando a metodologia e a frequência do exercício dessa monitorização. Todas as metodologias de monitorização devem ser aprovadas pela autoridade competente, em conformidade com os critérios definidos no presente ponto. O Estado-Membro ou as suas autoridades competentes devem certificar-se de que a metodologia de monitorização a utilizar pelas instalações é especificada nas condições do título ou, se tal for compatível com a directiva, em regras gerais vinculativas.

A autoridade competente aprovará, antes do início do período de informação, uma descrição pormenorizada da metodologia de monitorização preparada pelo operador, devendo aprovar uma nova descrição pormenorizada sempre que forem introduzidas alterações na metodologia de monitorização aplicada numa instalação.

Essa descrição deve incluir:

- a definição exacta da instalação e das actividades desenvolvidas na instalação que serão objecto de monitorização,
- informações sobre a responsabilidade pela monitorização e a comunicação de informações nessa instalação,
- uma lista de fontes para cada uma das actividades desenvolvidas na instalação,
- uma lista dos fluxos de combustíveis e de materiais a monitorizar em relação a cada uma das actividades,
- uma lista dos níveis a aplicar para os dados da actividade, os factores de emissão, os factores de oxidação e conversão relativamente a cada uma das actividades e tipos de combustíveis/materiais,
- uma descrição do tipo, especificação e localização exacta dos dispositivos de medição a utilizar para cada uma das fontes e tipos de combustíveis/materiais,
- uma descrição da abordagem a utilizar para a colheita de amostras de combustíveis e de materiais com vista à determinação do valor calorífico líquido, do teor de carbono, dos factores de emissão e do teor de biomassa de cada uma das fontes e tipos de combustível/materiais,
- uma descrição das fontes ou das abordagens analíticas previstas para a determinação do valor calorífico líquido, do teor de carbono ou da fracção de biomassa de cada uma das fontes e tipos de combustível/materiais.
- uma descrição dos sistemas de medição contínua de emissões a utilizar na monitorização de uma fonte, isto é, os pontos de medição, a frequência das medições, o equipamento utilizado, os processos de calibração e os processos de recolha e armazenamento de dados (se pertinente),
- uma descrição dos processos de garantia e de controlo da qualidade da gestão dos dados,
- se pertinente, informações sobre as relações relevantes com actividades desenvolvidas no âmbito do sistema comunitário de ecogestão e auditoria (EMAS).

A metodologia de monitorização deve ser alterada sempre que tal aumente o rigor dos dados comunicados, a não ser que seja tecnicamente inviável ou que implique custos desproporcionados. Todas as alterações propostas das metodologias de monitorização ou dos conjuntos de dados subjacentes devem ser claramente descritas, justificadas, documentadas e apresentadas à autoridade competente. Todas as alterações das metodologias ou dos conjuntos de dados subjacentes devem ser aprovadas pela autoridade competente.

O operador deve propor sem demora alterações à metodologia de monitorização, sempre que:

- os dados acessíveis sofram uma alteração que permita maior rigor na determinação de emissões,
- tiver início uma emissão que anteriormente não existia,
- forem detectados nos dados erros resultantes da metodologia de monitorização,
- a autoridade competente solicitar uma alteração.

A autoridade competente pode solicitar ao operador que altere a sua metodologia de monitorização no período de informação seguinte, sempre que as metodologias de monitorização da instalação em causa tenham deixado de estar em conformidade com as regras definidas nas presentes orientações.

A autoridade competente pode igualmente solicitar ao operador que altere a sua metodologia de monitorização no período de informação seguinte no caso de a metodologia de monitorização constante do título ter sido actualizada na sequência de uma das revisões a efectuar antes do início de cada um dos períodos referidos no n.º 2 do artigo 11.º da directiva.

4.2.1. Cálculo e medição

O anexo IV da directiva permite que as emissões sejam determinadas com recurso a:

- uma metodologia baseada num cálculo («cálculo»),
- uma metodologia baseada numa medição («medição»).

O operador pode propor a medição das emissões, se estiver em condições de demonstrar que:

- a medição fornece resultados mais rigorosos do que o cálculo efectuado com recurso a uma combinação dos níveis metodológicos mais elevados, e
- a comparação entre a medição e o cálculo se baseia numa lista de fontes e emissões idêntica.

O recurso à medição deve ser aprovado pela autoridade competente. O operador deve corroborar, relativamente a todos os períodos de informações, as emissões medidas com cálculos efectuados em conformidade com as presentes orientações. As regras para a selecção dos níveis do cálculo de corroboração devem ser as aplicadas numa abordagem de cálculo e estabelecidas no ponto 4.2.2.1.4.

O operador pode, com a aprovação da autoridade competente, combinar a medição e o cálculo em fontes diferentes pertencentes a uma instalação. O operador deve assegurar e demonstrar que não se verificam lacunas nem duplas contagens em relação às emissões.

- 4.2.2. Cálculo
- 4.2.2.1. Cálculo das emissões de CO₂
- 4.2.2.1.1. Fórmulas de cálculo

O cálculo das emissões de CO, deverá basear-se na fórmula:

Emissões de CO, = dados da actividade * factor de emissão * factor de oxidação

ou numa fórmula alternativa, desde que definida nas orientações específicas às actividades.

As expressões desta fórmula são especificadas para as emissões de combustão e as emissões de processo do seguinte modo:

Emissões de combustão

Os dados da actividade devem basear-se no consumo de combustível. A quantidade de combustível utilizada é expressa, em termos de teor energético, em TJ. O factor de emissão é expresso em t CO_2/TJ . Durante o consumo de energia, nem todo o carbono contido no combustível se oxida em CO_2 . A oxidação incompleta verifica-se devido a ineficiências no processo de combustão que levam a que uma parte do carbono não seja queimado ou seja parcialmente oxidado em fuligem ou cinza. O carbono não oxidado é tido em conta no factor de oxidação, que deve ser expresso como fracção. Se o factor de oxidação for tido em conta no factor de emissão, não deve ser aplicado um factor de oxidação separado. O factor de oxidação deve ser expresso em percentagem. A fórmula de cálculo resultante é a seguinte:

Emissões de CO₂ = consumo de combustível [TJ] * factor de emissão [t CO₂/TJ] * factor de oxidação

O cálculo das emissões de combustão é aprofundado no anexo II.

Emissões de processo

Os dados da actividade devem basear-se no consumo, intensidade ou produção, expresso em t ou m^3 . O factor de emissão é expresso em [t CO_2 /t ou t CO_2 /m³]. O carbono contido nos materiais utilizados que não seja convertido em CO_2 durante o processo é tido em conta no factor de conversão, que deve ser expresso como fracção. Se o factor de conversão for tido em conta no factor de emissão, não deve ser aplicado um factor de conversão separado. A quantidade de material de entrada utilizada deve ser expressa em termos de massa ou volume [t ou m^3]. A fórmula de cálculo resultante é a seguinte:

Emissões de CO₂ = dados da actividade [t ou m³] * factor de emissão [t CO₂/t ou m³] * factor de conversão

O cálculo das emissões de processo é especificado nas orientações específicas às actividades, nos anexos II a XI, em que, por vezes, são fornecidos factores de referência específicos.

4.2.2.1.2. CO, transferido

O CO₂ que não seja emitido a partir da instalação, mas transferido da instalação como substância pura, componente de combustíveis ou directamente utilizado como matéria-prima na indústria química ou papeleira, deve ser subtraído ao nível de emissões calculado. A quantidade de CO₂ transferida deve ser comunicada para memória.

Pode ser considerado CO₂ transferido o CO₂ transferido a partir da instalação para as utilizações a seguir enunciadas:

- o CO, puro utilizado para gaseificação de bebidas,
- o CO₂ puro utilizado como gelo seco para efeitos de refrigeração,

- o CO₂ puro utilizado como agente de extinção de incêndios, agente de refrigeração ou gás de laboratório,
- o CO, puro utilizado para desinfestação de cereais,
- o CO, puro utilizado como solvente na indústria química ou alimentar,
- o CO₂ utilizado como matéria-prima na indústria química e de pasta de papel (por exemplo, para ureia ou carbonatos),
- o CO, incluído num combustível exportado da instalação.

O CO₂ transferido para uma instalação enquanto parte de um combustível misto (como gás de alto-forno ou gás de coqueria) deve ser incluído no factor de emissão do combustível em causa. Em consequência, deve ser adicionado às emissões da instalação em que o combustível for queimado e deduzido da instalação de origem.

4.2.2.1.3. Captura e armazenagem de CO,

A Comissão incentiva a investigação na área da captura e armazenagem de CO₂. Com efeito, a investigação nesta área será importante para a elaboração e adopção de orientações relativas à monitorização e comunicação de informação relativas à captura e armazenagem de CO₂, quando abrangidas pela directiva, em conformidade com o procedimento previsto no n.º 2 do artigo 23.º da directiva. Essas orientações terão em conta as metodologias desenvolvidas no âmbito da Convenção-Quadro das Nações Unidas sobre as Alterações Climáticas (CQNUAC). Convidam-se os Estados-Membros interessados na elaboração dessas orientações a apresentar os resultados das suas investigações à Comissão, a fim de que estas possam ser adoptadas em tempo oportuno.

Até à adopção dessas orientações, os Estados-Membros podem apresentar à Comissão orientações provisórias para a monitorização e comunicação de informações relativas à captura e armazenagem de CO₂, no âmbito da directiva. Mediante aprovação da Comissão, em conformidade com o procedimento previsto no n.º 2 do artigo 23.º da directiva, a captura e armazenagem do CO₂ pode ser subtraída, em conformidade com as orientações provisórias, ao nível de emissões calculado das instalações abrangidas pela directiva.

4.2.2.1.4. Níveis metodológicos

As orientações específicas a actividades constantes dos anexos II a XI contemplam metodologias específicas para a determinação das seguintes variáveis: dados da actividade, factores de emissão e factores de oxidação ou conversão. Estas diferentes abordagens são designadas níveis (metodológicos). O número crescente de níveis, de 1 em diante, reflecte o crescente grau de rigor, sendo preferido o nível a que é atribuído o número mais elevado. Níveis equivalentes ostentam o mesmo número, seguido de uma letra (por exemplo, nível 2a e nível 2b). Relativamente às actividades para as quais as presentes orientações prevêem métodos alternativos (por exemplo, no anexo VII: «Método A — Carbonatos» e «Método B — Produção de clínquer»), os operadores apenas podem mudar de método se fizerem prova bastante perante a autoridade competente de que tal mudança aumentará o rigor da monitorização e da comunicação de informações relativas às emissões da actividade em causa.

Para efeitos de monitorização e comunicação de informações, os operadores devem utilizar a abordagem correspondente ao nível mais elevado para determinar todas as variáveis relativas à totalidade das fontes de uma instalação. Apenas quando se demonstrar, de forma satisfatória para a autoridade competente, que a abordagem correspondente ao nível mais elevado é tecnicamente inviável ou implica custos desproporcionados se poderá utilizar o nível imediatamente inferior para a variável em causa no contexto de uma metodologia de monitorização.

Por conseguinte, o nível seleccionado deve reflectir o mais elevado grau de rigor tecnicamente viável e não acarretar custos desproporcionados. O operador pode aplicar diferentes níveis aprovados para as variáveis dados da actividade, factores de emissão e factores de oxidação ou conversão utilizadas num mesmo cálculo. A selecção dos níveis deve ser aprovada pela autoridade competente (ver ponto 4.2).

No período 2005-2007, os Estados-Membros devem aplicar, no mínimo, os níveis indicados no quadro 1, desde que tal seja tecnicamente viável. As colunas A apresentam valores de níveis metodológicos para as principais fontes de instalações com emissões anuais totais iguais ou inferiores a 50 quilotoneladas. As colunas B apresentam valores de níveis metodológicos para as principais fontes de instalações com emissões anuais totais superiores a 50 quilotoneladas, mas iguais ou inferiores a 500 quilotoneladas. As colunas C apresentam valores de níveis metodológicos para as principais fontes de instalações com emissões anuais totais superiores a 500 quilotoneladas. Os limiares indicados no quadro referem-se às emissões anuais totais de toda a instalação.

PT

Coluna A: emissões anuais totais ≤ 50 quilotoneladas Coluna B: 50 quilotoneladas < emissões anuais totais ≤ 500 quilotoneladas Coluna C: emissões anuais totais > 500 quilotoneladas

•	Dado	Dados da actividade	lade	Valor o	Valor calorífico líquido	quido	Fact	Factor de emissão	ŝão	Dados	Dados da composição	sição	Facto	Factor de oxidação	ção	Facto	Factor de conversão	são
Anexo/Actividade	V	В	C	A	В	C	A	В	C	V	В	C	V	В	C	A	В	C
II: Combustão																		
Combustão (gasosa, líquida)	2a/2b	3a/3b	4a/4b	2	2	3	2a/2b	2a/2b	3	n.d.	n.d.	n.d.	П	1	1	n.d.	n.d.	n.d.
Combustão (sólida)	1	2a/2b	3a/3b	2	3	3	2a/2b	3	3	n.d.	n.d.	n.d.	П	2	2	n.d.	n.d.	n.d.
Hares (queima de gases residuais)	2	3	3	n.d.	n.d.	n.d.	1	2	2	n.d.	n.d.	n.d.	1	1	1	n.d.	n.d.	n.d.
Depuração																		
Carbonato	1	1	1	n.d.	n.d.	n.d.	1	1	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	1
Gesso	1	1	П	n.d.	n.d.	n.d.	1	П	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	П	1	1
III: Refinarias																		
Balanço de massas	4	4	4	1	1	1	n.d.	n.d.	n.d.	1	1	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Regeneração <i>cracker</i> catalítico	1	2	2	n.d.	n.d.	n.d.	1	1	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	1
Cokers	1	2	2	n.d.	n.d.	n.d.	1	2	2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Produção de hidrogénio	1	2	2	n.d.	n.d.	n.d.	1	2	2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
IV: Coquerias																		
Balanço de massas	3	3	3	1	1	1	n.d.	n.d.	n.d.	1	1	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

1	Dade	Dados da actividade	dade	Valor	Valor calorífico líquido	quido	Facto	Factor de emissão	io	Dados	Dados da composição	sição	Facto	Factor de oxidação	ção	Factor	Factor de conversão	são
Anexo/Actividade	A	В	С	A	В	С	A	В	С	A	В	С	A	В	С	A	В	С
Combustível utilizado no processo	2	2	3	2	2	3	1	2	2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
V: Ustulação e sinterização de minério metálico																		
Balanço de massas	2	2	3	1	1	1	n.d.	n.d.	n.d.	1	1	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Carbonato utilizado	1	1	2	n.d.	n.d.	n.d.	1	1	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	1
VI: Ferro e aço																		
Balanço de massas	2	2	3	П	1	1	n.d.	n.d.	n.d.	П	1	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Combustível utilizado no processo	2	2	3	2	2	3	1	2	2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
VII: Cimento																		
Carbonatos	П	2	2	n.d.	n.d.	n.d.	П	1	П	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	П	П	
Produção de clínquer	1	2a/2b	2a/2b	n.d.	n.d.	n.d.	1	2	2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	1
Poeiras de forno de cimento	1	2	2	n.d.	n.d.	n.d.	1	2	2	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	1
VIII: Cal																		
Carbonatos	1	1	2	n.d.	n.d.	n.d.	1	1	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	1
Óxido alcalino	1	1	2	n.d.	n.d.	n.d.	1	1	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	1
IX: Vidro																		
Carbonatos	1	2	2	n.d.	n.d.	n.d.	1	1	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	1

	Dade	Dados da actividade	dade	Valor o	Valor calorífico líquido	quido	Facto	Factor de emissão	ão	Dados	Dados da composição	sição	Facto	Factor de oxidação	ção	Factor	Factor de conversão	são
Anexo/Actividade	A	В	Э	A	В	С	A	В	C	V	В	С	A	В	C	A	В	C
Óxido alcalino	1	2	2	n.d.	n.d.	n.d.	1	1	1	n.d.	n.d.	n.d.	.p.n	n.d.	n.d.	1	1	1
X: Cerâmica																		
Carbonatos	1	2	2	n.d.	n.d.	n.d.	1	1	П	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	1
Óxido alcalino	1	2	2	n.d.	n.d.	n.d.	1	П	П	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	1
Depuração	П	2	2	n.d.	n.d.	n.d.	1	П	П	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	1
XI: Pasta de papel e papel																		
Método padrão	1	2	2	n.d.	n.d.	n.d.	1	1	1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	1

Para as variáveis utilizadas no cálculo das emissões de fontes menores, incluindo fluxos menores de combustíveis ou materiais, o operador pode aplicar, após aprovação da autoridade competente, níveis metodológicos menos elevados do que os aplicados para as variáveis utilizadas no cálculo das emissões de fontes ou de fluxos de combustíveis ou materiais mais importantes de uma mesma instalação. Consideram-se fontes importantes, nomeadamente fluxos de combustíveis e materiais importantes, aquelas que, classificadas por ordem decrescente de magnitude, representam, cumulativamente, 95 %, no mínimo, das emissões anuais totais da instalação. Em consequência, as fontes menores são as que emitem 2,5 quilotoneladas ou menos por ano e representam, no máximo, 5 % das emissões totais anuais da instalação, independentemente da fonte que contribui com a maior quantidade de emissões, em termos absolutos. Em relação às fontes menores que, no seu conjunto, emitem anualmente 0,5 quilotoneladas ou menos e representam menos de 1 % das emissões totais da instalação, independentemente da fonte que contribui com a maior quantidade de emissões, os operadores podem, mediante autorização da autoridade competente, adoptar uma abordagem «de minimis» para efeitos de monitorização e comunicação de informações, utilizando o seu próprio método de estimativa, não incluído nos níveis metodológicos.

Em relação aos biocombustíveis puros, podem ser aplicados níveis inferiores, excepto se as emissões calculadas correspondentes forem utilizadas na subtracção do carbono da biomassa de emissões de dióxido de carbono determinadas através de medição contínua da emissão.

O operador deve propor sem demora alterações dos níveis aplicados, sempre que:

- os dados acessíveis sofram uma alteração que permita maior rigor na determinação de emissões,
- forem detectados nos dados erros resultantes da metodologia de monitorização,
- a autoridade competente solicitar uma alteração.

Para instalações com um total superior a 500 quilotoneladas de emissões anuais de equivalente CO₂, a autoridade competente deve, a partir de 2004, informar anualmente a Comissão, até 30 de Setembro, se considera que a aplicação, no período seguinte, de uma combinação de abordagens de níveis superiores para as fontes importantes de uma instalação é tecnicamente inviável ou é susceptível de implicar custos desproporcionados. Com base nas informações transmitidas pelas autoridades competentes, a Comissão decidirá da necessidade de uma eventual revisão das regras aplicáveis à selecção de níveis.

Se a metodologia do nível mais elevado, ou o nível metodológico aprovado específico para uma variável, for temporariamente inviável por razões de ordem técnica, um operador pode aplicar o nível mais elevado possível até estarem restabelecidas as condições para a utilização do inicial. O operador deve sem demora fazer prova, perante a autoridade competente, da necessidade de mudar de nível metodológico e fornecer-lhe informações sobre a metodologia de monitorização provisória. O operador deve tomar todas as medidas necessárias com vista ao rápido restabelecimento das condições necessárias à aplicação do nível inicial para efeitos de monitorização e comunicação de informações.

Qualquer mudança de nível deve ser devidamente documentada. O tratamento de pequenas lacunas nos dados resultantes de falhas no equipamento de medição deve obedecer a boas práticas profissionais e observar as disposições do documento de referência relativo aos princípios gerais de monitorização, de Julho de 2003, elaborado no âmbito da prevenção e controlo integrados da poluição (IPPC) (¹).

Em caso de mudança de nível no decurso de um período coberto por informações, os resultados relativos à actividade afectada devem, no que respeita aos diferentes segmentos do período de informação, ser calculados e comunicados em secções separadas do relatório anual a apresentar à autoridade competente.

4.2.2.1.5. Dados da actividade

Os dados da actividade constituem informações sobre o fluxo de materiais, consumo de combustíveis, material utilizado ou produção, expressas em teor energético [TJ] determinado como valor calorífico líquido para os combustíveis ou como volume para os materiais utilizados ou produzidos [t ou m³].

Sempre que os dados da actividade para o cálculo das emissões de processo não puderem ser medidos directamente antes de entrarem no processo e nenhum dos níveis constantes das orientações específicas da actividade (anexos II a XI) previr requisitos específicos, os dados da actividade devem ser determinados mediante a avaliação das alterações nas existências.

Material C = Material P + (Material S - Material E) - Material O

em que:

Material C: Material transformado durante o período de informação

Material P: Material comprado durante o período de informação

Material S: Existências de material no início do período de informação

Material E: Existências de material no final do período de informação

Material O: Material utilizado para outros fins (transporte ou revenda)

Caso não seja tecnicamente viável ou implique custos excessivos determinar o «Material S» e o «Material E» por medição, o operador pode estimar estes dois valores com base em dados relativos a anos anteriores e correlacionar estes dados com a situação do período de informação. Nesse caso, o operador deve confirmar as estimativas com cálculos de apoio documentados e com os mapas financeiros correspondentes. Os demais requisitos em matéria de selecção de níveis não devem ser afectados por esta disposição, por exemplo, o «Material P» e o «Material O» e os respectivos factores de emissão ou oxidação devem ser determinados em conformidade com as orientações específicas da actividade constantes dos anexos II a XI.

A fim de apoiar a selecção dos níveis adequados para os dados da actividade, o quadro 2 apresenta uma panorâmica das diferentes categorias de incertezas comuns identificadas para os diversos tipos de dispositivos de medição utilizados para determinar fluxos maciços de combustíveis, o fluxo material, os materiais utilizados ou a produção. O quadro pode ser utilizado para informar as autoridades competentes e os operadores sobre as possibilidades e limitações de aplicação do nível adequado para a determinação dos dados da actividade.

QUADRO 2

Quadro informativo com margens de incerteza comuns dos diferentes dispositivos de medição, quando utilizados em condições estáveis

Dispositivo de medição	Meio	Âmbito de aplicação	Margem de incerteza comum
Medidor de orifício	Gasoso	Diversos gases	± 1-3 %
Medidor de Venturi	Gasoso	Diversos gases	± 1-3 %
Fluxímetro ultra-sónico	Gasoso	Gás natural/mistura de gases	± 0,5-1,5 %
Medidor rotativo	Gasoso	Gás natural/mistura de gases	± 1-3 %
Medidor de turbina	Gasoso	Gás natural/mistura de gases	± 1-3 %
Fluxímetro ultrassónico	Líquido	Combustíveis líquidos	± 1-2 %
Medidor magnético indutivo	Líquido	Fluidos condutores	± 0,5-2 %
Medidor de turbina	Líquido	Combustíveis líquidos	± 0,5-2 %
Báscula	Sólido	Várias matérias-primas	± 2-7 %
Báscula sobre carris (comboios em circulação)	Sólido	Carvão	± 1-3 %
Báscula sobre carris (carruagem)	Sólido	Carvão	± 0,5-1,0 %
Navio — rio (deslocação)	Sólido	Carvão	± 0,5-1,0 %

Dispositivo de medição	Meio	Âmbito de aplicação	Margem de incerteza comum
Navio — oceano (deslocação)	Sólido	Carvão	± 0,5-1,5 %
Báscula de correias com inte- grador	Sólido	Várias matérias-primas	± 1-4 %

4.2.2.1.6. Factores de emissão

Os factores de emissão baseiam-se no teor de carbono dos combustíveis ou dos materiais utilizados e são expressos em t CO₂/TJ (emissões de combustão) ou t CO₂/t ou t CO₂/m³ (emissões de processo). Os factores de emissão e as disposições para o desenvolvimento de factores de emissão específicos às actividades são apresentados nos pontos 8 e 10 do presente anexo. Um operador pode utilizar para um combustível um factor de emissão expresso em teor de carbono (t CO₂/t) e não em t CO₂/TJ para as emissões de combustão, se demonstrar à autoridade competente que tal assegurará, em permanência, um grau de rigor mais elevado. Nesse caso, o operador deve, não obstante, determinar periodicamente o teor de energia, a fim de se conformar aos requisitos de comunicação de informações constantes do ponto 5 do presente anexo.

Para a conversão do carbono no valor de CO_2 correspondente, deve ser utilizado o factor (2) 3,667 [t CO_2] /t C].

Os níveis metodológicos mais rigorosos exigem o desenvolvimento de factores específicos da actividade, em conformidade com os requisitos estabelecidos no ponto 10 do presente anexo. As abordagens correspondentes ao nível 1 exigem a utilização de factores de emissão de referência, enumerados no ponto 8 do presente anexo.

A biomassa é considerada neutra em termos de CO_2 , pelo que lhe deve ser aplicado um factor de emissão igual a 0 [t CO_2/T] ou t ou m^3]. No ponto 9 do presente anexo, é apresentada uma lista com exemplos dos diferentes tipos de materiais aceites como biomassa.

Para os combustíveis fósseis, as presentes orientações não fornecem factores de emissão de referência, devendo os factores de emissão específicos ser determinados em conformidade com o disposto no ponto 10 do presente anexo.

Para os combustíveis e materiais que contenham, simultaneamente, carbono fóssil e carbono da biomassa, deve ser aplicado um factor de emissão ponderado, baseado na proporção do carbono fóssil no teor global de carbono do combustível. Este cálculo deve ser transparente e documentado em conformidade com as regras e processos enunciados no ponto 10 do presente anexo.

Devem ser claramente registadas todas as informações pertinentes relativas aos factores de emissão utilizados, incluindo fontes de informação e resultados de análises do combustível. As orientações específicas às actividades estabelecem requisitos mais pormenorizados.

4.2.2.1.7. Factores de oxidação/conversão

Se um factor de emissão não reflectir a proporção de carbono não oxidada, deverá ser utilizado um factor de oxidação/conversão adicional.

Os níveis metodológicos mais rigorosos exigem o desenvolvimento de factores específicos da actividade. Assim, as regras e processos para a determinação destes factores constam do ponto 10 do presente anexo.

No caso de, numa mesma instalação, serem utilizados diferentes combustíveis ou materiais e de serem calculados factores de oxidação específicos às actividades, o operador pode determinar um factor de oxidação para a actividade, a aplicar a todos os combustíveis e materiais, ou atribuir oxidação incompleta a um fluxo importante de combustível ou material, utilizando o valor 1 para os demais.

Devem ser claramente registadas todas as informações pertinentes relativas aos factores de oxidação//conversão utilizados, incluindo fontes de informação e resultados de análises do combustível e dos materiais utilizados e produzidos.

4.2.2.2. Cálculo das emissões de gases com efeito de estufa, excluindo CO2

Em conformidade com as disposições pertinentes da directiva, poderão ser ulteriormente elaboradas orientações para o cálculo das emissões de gases com efeito de estufa, excluindo CO₂.

⁽²) Baseado no rácio de massas atómicas de carbono (12) e de oxigénio (16) utilizado em Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories: Reference Manual, 1.13.

4.2.3. Medição

4.2.3.1. Medição das emissões de CO,

Em conformidade com o ponto 4.2.1, as emissões de gases com efeito de estufa podem ser determinadas com recurso a sistemas de medição contínua das emissões (CEMS) de cada fonte que utilizem métodos normalizados ou reconhecidos, desde que o operador tenha obtido, antes do início do período de informação, a aprovação da autoridade competente, admitindo que o recurso a um CEMS assegura maior rigor do que o cálculo das emissões pela abordagem correspondente ao nível mais rigoroso. Em relação aos períodos de informação seguintes, as emissões determinadas com recurso a CEMS devem ser corroboradas por um cálculo comprovativo das emissões; as regras para a selecção dos níveis do cálculo de corroboração devem ser as aplicadas numa abordagem de cálculo e estabelecidas no ponto 4.2.2.1.4.

As concentrações de CO₂, bem como o caudal mássico ou volúmico dos efluentes gasosos de cada chaminé, devem ser medidos em conformidade com as normas CEN pertinentes, logo que estas estejam disponíveis. Caso não existam normas CEN, são aplicáveis as normas ISO ou as normas nacionais. Caso não existam normas aplicáveis, as medições devem, sempre que possível, ser efectuadas em conformidade com projectos de normas ou com as orientações relativas às melhores práticas para o sector.

Constituem exemplos de normas ISO pertinentes:

- ISO 10396:1993 «Stationary source emissions Sampling for the automated determination of gas concentrations» [Emissões de fontes fixas — amostragem para a determinação automática de concentrações de gases],
- ISO 10012:2003 «Measurement management systems Requirements for measurement processes and measuring equipment» [Sistemas de gestão da medição — requisitos aplicáveis aos processos e equipamentos de medição].

Depois de instalados, os CEMS devem ser objecto de controlos regulares de funcionalidade e desempenho, incluindo:

- tempo de resposta,
- linearidade,
- interferência,
- desvio do zero e da calibração,
- rigor em relação a um método de referência.

A fracção de biomassa das emissões de CO₂ medidas deve ser subtraída com base num cálculo e comunicada para memória (ver ponto 12 do presente anexo).

4.2.3.2. Medição das emissões de outros gases com efeito de estufa

Em conformidade com as disposições pertinentes da directiva, poderão ser ulteriormente elaboradas orientações para a medição das emissões de gases com efeito de estufa, excluindo CO,.

4.3. Avaliação da incerteza

Nas presentes orientações, a «margem de incerteza admissível» é expressa como o intervalo de confiança de 95 % em relação ao valor medido, por exemplo, na caracterização de equipamento de medição do sistema de nível metodológico ou do rigor de um sistema de medição contínuo.

4.3.1. Cálculo

O operador deve ter a noção do impacto da incerteza na precisão global dos dados relativos às suas emissões.

No âmbito da metodologia baseada no cálculo, a autoridade competente deve ter aprovado a combinação de níveis aplicada a cada fonte da instalação, bem como todos os outros aspectos da metodologia de monitorização da instalação constantes do título. Com a sua aprovação, a autoridade competente autoriza a incerteza directamente resultante da correcta aplicação da metodologia de monitorização aprovada, constituído o conteúdo do título prova dessa autorização.

O operador deve indicar, no relatório anual sobre as emissões a apresentar à autoridade competente, a combinação de níveis aprovada para cada fonte da instalação em relação a cada actividade e fluxo de combustível ou material relevante. Para efeitos da directiva, a indicação da combinação de níveis no relatório sobre as emissões corresponde à comunicação da incerteza. Nestas circunstâncias, em caso de aplicação da metodologia baseada no cálculo, não é necessário fornecer mais informações sobre a incerteza.

A margem de incerteza admissível determinada para o equipamento de medição no âmbito do sistema de níveis inclui a incerteza especificada para o equipamento de medição, a incerteza associada à calibração e qualquer outra incerteza relacionada com a utilização efectiva do equipamento de medição. Os limiares indicados no âmbito do sistema de níveis dizem respeito à incerteza associada ao valor relativo a um período de informação.

O operador, através do processo de garantia e de controlo da qualidade, deve gerir e reduzir as incertezas subsistentes nos dados relativos às emissões incluídos no relatório sobre as suas emissões. Durante o processo de verificação, o verificador deve controlar a correcta aplicação da metodologia de monitorização aprovada e avaliar a gestão e a redução das incertezas subsistentes, com recurso aos processos de garantia e de controlo da qualidade do operador.

4.3.2. Medição

Em conformidade com o ponto 4.2.1, um operador pode justificar o recurso a uma metodologia baseada na medição com o facto de esta ser mais rigorosa do que a metodologia baseada no cálculo correspondente que aplica uma combinação dos níveis mais elevados. Para fornecer uma justificação à autoridade competente, o operador deve comunicar os resultados quantitativos de uma análise de incerteza mais exaustiva, que tenha em conta as seguintes fontes de incerteza:

Medições de concentração para a medição contínua das emissões:

- a incerteza especificada para o equipamento de medição contínua,
- as incertezas associadas à calibração,
- outras incertezas relacionadas com a utilização efectiva do equipamento de monitorização.

Na medição da massa e do volume com vista à determinação do fluxo de fumo para a monitorização contínua da emissão e o cálculo de corroboração:

- a incerteza especificada para o equipamento de medição,
- as incertezas associadas à calibração,
- outras incertezas relacionadas com a utilização efectiva do equipamento de medição.

Na determinação dos valores caloríficos, dos factores de emissão e de oxidação ou dos dados relativos à composição para o cálculo de corroboração:

- a incerteza especificada para o método ou sistema de cálculo aplicado,
- outras incertezas relacionadas com o modo de utilização efectiva do método de cálculo.

Com base na justificação apresentada pelo operador, a autoridade competente pode aprovar a utilização pelo operador de um sistema de medição contínua das emissões para determinadas fontes numa instalação e aprovar que os demais aspectos da metodologia de monitorização para as fontes em causa sejam incluídos no título dessa instalação. Com a sua aprovação, a autoridade competente autoriza a incerteza directamente resultante da correcta aplicação da metodologia de monitorização aprovada, constituído o conteúdo do título prova dessa autorização.

O operador deve indicar o valor para a incerteza resultante da primeira análise aprofundada da incerteza no relatório anual sobre as emissões a apresentar à autoridade competente, relativamente às fontes pertinentes, até que a autoridade competente reveja a escolha da medição em detrimento do cálculo e solicite que o valor para a incerteza volte a ser calculado. Para efeitos da directiva, a indicação do valor para a incerteza no relatório sobre as emissões corresponde à comunicação da incerteza.

O operador, através do processo de garantia e de controlo da qualidade, deve gerir e reduzir as incertezas subsistentes nos dados relativos às emissões incluídos no relatório sobre as suas emissões. Durante o processo de verificação, o verificador deve controlar a correcta aplicação da metodologia de monitorização aprovada e avaliar a gestão e a redução das incertezas subsistentes, com recurso aos processos de garantia e de controlo da qualidade do operador.

4.3.3. Valores ilustrativos da incerteza

O quadro 3 apresenta uma panorâmica da incerteza global frequente na determinação das emissões de CO₂ de instalações com níveis de emissões de diferentes magnitudes. As informações constantes deste quadro devem ser tidas em conta pela autoridade competente na avaliação ou na aprovação da metodologia de monitorização de uma instalação que utilize métodos de cálculo ou sistemas de medição contínua.

QUADRO 3

Quadro informativo com incertezas globais frequentes associadas à determinação das emissões de CO₂ de uma instalação ou actividade de uma instalação para fluxos individuais de combustível ou materiais com magnitudes diferentes

(em %)

		E: emissão de	e CO ₂ em quilo	toneladas/ano
Descrição	Exemplos	E > 500	100 < E < 500	E < 100
Combustíveis gasosos e líquidos de qualidade constante	Gás natural	2,5	3,5	5
Combustíveis gasosos e líquidos de composição variável	Gasóleo; gás de alto- -forno	3,5	5	10
Combustíveis sólidos de composição variável	Carvão	3	5	10
Combustíveis sólidos de composição muito variável	Resíduos	5	10	12,5
Emissões de processo de matérias- -primas sólidas	Calcário, dolomite	5	7,5	10

5. COMUNICAÇÃO DE INFORMAÇÕES

O anexo IV da directiva estabelece os requisitos em matéria de comunicação de informações a observar pelas instalações. O modelo de relatório constante do ponto 11 do presente anexo deverá ser utilizado como base para a comunicação dos dados quantitativos. O relatório será verificado em conformidade com as normas estabelecidas pelo Estado-Membro nos termos do anexo V da directiva. O operador deve apresentar o relatório verificado à autoridade competente até 31 de Março de cada ano, relativamente às emissões do ano anterior.

Os relatórios sobre as emissões na posse na autoridade competente devem ser por esta colocados à disposição do público, em conformidade com as regras previstas na Directiva 2003/4/CE, do Parlamento Europeu e do Conselho, de 28 de Janeiro de 2003, relativa ao acesso do público às informações sobre ambiente e que revoga a Directiva 90/313/CEE do Conselho (³). Relativamente à aplicação da excepção prevista no n.º 2, alínea d), do artigo 4.º da mesma directiva, os operadores podem indicar, nos seus relatórios, quais as informações que consideram sensíveis do ponto de vista comercial.

Cada operador incluirá as seguintes informações no relatório relativo a uma instalação:

1. Dados que identifiquem a instalação, em conformidade com o anexo IV da directiva, e o número do respectivo título.

⁽³⁾ JO L 41 de 14.2.2003, p. 26.

- 2. As emissões totais de todas as fontes, a abordagem adoptada (medição ou cálculo), os níveis e método (se pertinente) seleccionados, os dados da actividade (4), os factores de emissão (5) e os factores de oxidação//conversão (6). Se for aplicado um balanço de massas, os operadores devem comunicar o fluxo de massa, o carbono e o teor energético de cada fluxo de combustível ou material entrado ou saído da instalação, bem como as respectivas existências.
- 3. Mudanças temporárias ou permanentes de nível metodológico, as razões que ditaram as mudanças, a data de início de aplicação das mudanças e a data de início e de termo da aplicação das mudanças temporárias.
- 4. Quaisquer outras alterações registadas na instalações durante o período de informação que possam ser relevantes para o relatório de emissões.

As informações a fornecer em conformidade com os n.ºs 3 e 4 e as informações complementares fornecidas em conformidade com o n.º 2 não podem ser apresentadas nas tabelas do modelo de relatório, devendo ser incluídas no relatório anual sobre as emissões como texto simples.

Devem ser fornecidas, para memória, as seguintes informações, não consideradas em termos de emissões:

- quantidades de biomassa queimadas [TJ] ou utilizadas nos processos [t ou m³],
- emissões de CO, [t CO,] a partir de biomassa, sendo as emissões determinadas por medição,
- CO, transferido de uma instalação [t CO,] e o tipo de compostos em que este foi transferido.

Os combustíveis e as emissões destes resultantes devem ser comunicados com recurso às categorias de combustíveis normalizadas IPCC (ver ponto 8 do presente anexo), baseadas nas definições da Agência Internacional de Energia (http://www.iea.org/stats/defs/defs.htm). No caso de o Estado-Membro do operador ter publicado uma lista de categorias de combustíveis que inclua definições e factores de emissão coerentes com o mais recente inventário nacional por este apresentado ao Secretariado da Convenção-Quadro das Nações Unidas sobre as Alterações Climáticas, deverão ser utilizadas estas categorias e os respectivos factores de emissão, se aprovados no âmbito da metodologia de monitorização relevante.

Devem ainda ser indicados os tipos de resíduos e as emissões resultantes da sua utilização como combustíveis ou materiais. Os tipos de resíduos devem ser comunicados com recurso à classificação da «Lista Europeia de Resíduos» (Decisão 2000/532/CE da Comissão, de 3 de Maio de 2000, que substitui a Decisão 94/3/CE, que estabelece uma lista de resíduos em conformidade com a alínea a) do artigo 1.º da Directiva 75/442/CEE do Conselho, relativa aos resíduos, e a Decisão 94/904/CE do Conselho, que estabelece uma lista de resíduos perigosos em aplicação do n.º 4 do artigo 1.º da Directiva 91/689/CEE do Conselho, relativa aos resíduos perigosos (7) — http://europa.eu.int/comm/environment/waste/legislation/a.htm). Os nomes dos tipos de resíduos utilizados na instalação devem ser seguidos dos códigos de seis dígitos correspondentes.

Os dados sobre emissões de diferentes fontes de uma única instalação respeitantes ao mesmo tipo de actividade podem ser apresentados globalmente para o tipo de actividade em causa.

As emissões devem ser quantificadas em toneladas (por arredondamento) de CO₂ (por exemplo, 1 245 978 toneladas). Para efeito de cálculo das emissões a inscrever nos relatórios, os dados da actividade, os factores de emissão e os factores de oxidação ou de conversão devem ser arredondados de modo a incluir apenas dígitos significativos, por exemplo, até um máximo de cinco dígitos (por exemplo, 1,2369) para um valor com um grau de incerteza de ± 0,01 %.

A fim de assegurar a coerência entre os dados comunicados ao abrigo da directiva, os dados comunicados pelos Estados-Membros no âmbito da Convenção-Quadro das Nações Unidas sobre as Alterações Climáticas e outros dados relativos a emissões comunicados para inclusão no Registo Europeu das Emissões de Poluentes (EPER), todas as actividades desenvolvidas numa instalação devem ser identificadas através dos códigos dos seguintes sistemas de comunicação de informações:

- Os modelos comuns de relatórios dos sistemas nacionais de inventário de gases com efeito de estufa aprovados pelos órgãos competentes da Convenção-Quadro das Nações Unidas sobre as Alterações Climáticas (ver ponto 12.1 do presente anexo);
- O código IPPC do anexo A3 do Registo Europeu das Emissões de Poluentes (EPER) (ver ponto 12.2 do presente anexo).

^(*) Os dados da actividade relativos às actividades de combustão devem ser expressos em energia (valor calorífico líquido) e em massa. Os combustíveis ou materiais utilizados obtidos a partir de biomassa devem igualmente ser indicados como dados da actividade.

⁽⁵⁾ Os factores de emissão relativos a actividades de combustão devem ser expressos em emissões de CO, por teor energético.

⁽⁶⁾ Os factores de conversão e oxidação devem ser comunicados como frações sem dimensão.

⁽⁷⁾ JO L 226 de 6.9.2000, p. 3. Recentemente alterada pela Decisão 2001/573/CE do Conselho (JO L 203 de 28.7.2001, p. 18).

6. RETENÇÃO DE INFORMAÇÕES

O operador de uma instalação deve documentar e arquivar os dados de monitorização relativos às emissões de todas as fontes da instalação pertencentes às actividades enumeradas no anexo I da directiva dos gases com efeito de estufa especificados em relação a essas actividades.

Os dados de monitorização documentados e arquivados devem ser suficientes para permitir a verificação do relatório anual sobre as emissões de uma instalação apresentado pelo operador nos termos do n.º 3 do artigo 14.º da directiva, em conformidade com os critérios estabelecidos no anexo V da directiva.

Não deverá ser solicitada a comunicação ou a divulgação dos dados não incluídos no relatório anual sobre as emissões.

A fim de permitir a reprodutibilidade da determinação das emissões pelo verificador ou por outro terceiro, o operador de uma instalação deve conservar, no mínimo, durante os 10 anos seguintes à apresentação do relatório nos termos do n.º 3 do artigo 14.º da directiva e em relação a cada ano de informação:

Em caso de cálculo:

- a lista de todas as fontes monitorizadas,
- os dados da actividade utilizados para o cálculo das emissões de cada fonte de gases com efeito de estufa, discriminados por processo e tipo de combustível,
- documentos que justifiquem a selecção da metodologia de monitorização, bem como documentos que justifiquem mudanças, temporárias ou definitivas, da metodologia de monitorização e dos níveis aprovados pela autoridade competente,
- documentação sobre a metodologia de monitorização e resultados do desenvolvimento de factores de emissão específicos da actividade, de fracções de biomassa para combustíveis específicos e de factores de oxidação ou de conversão, bem como provas da correspondente aprovação pela autoridade competente,
- documentação sobre o processo de recolha de dados da actividade da instalação e respectivas fontes,
- os dados da actividade e os factores de emissão, oxidação ou conversão apresentados à autoridade competente tendo em vista o plano nacional de atribuição e relativos a anos anteriores ao período de tempo abrangido pelo regime de comércio,
- documentação relativa às responsabilidades em matéria de monitorização das emissões,
- o relatório anual sobre as emissões, e
- quaisquer outras informações consideradas necessárias para a verificação do relatório anual sobre as emissões.

Em caso de medição, devem ainda ser conservadas as seguintes informações:

- documentação que justifique a selecção da medição como metodologia de monitorização,
- os dados utilizados para a análise do grau de incerteza das emissões de cada fonte de gases com efeito de estufa, discriminados por processo e tipo de combustível,
- uma descrição técnica pormenorizada do sistema de medição contínua, incluindo a documentação da aprovação pela autoridade competente,
- dados não tratados e globais obtidos pelo sistema de medição contínua, incluindo a documentação de mudanças registadas ao longo do tempo, dos registos dos testes, das paragens, das calibrações e da assistência e manutenção,
- documentação relativa a eventuais mudanças do sistema de medição.

7. GARANTIA E CONTROLO DA QUALIDADE

7.1. Requisitos de carácter geral

O operador deve estabelecer, documentar, utilizar e manter um sistema eficaz de gestão dos dados para a monitorização e comunicação de informações relativas às emissões de gases com efeito de estufa em conformidade com as presentes orientações. O operador deve estabelecer o sistema de gestão dos dados antes do início do período de informação, de modo a que todos os dados sejam devidamente registados e controlados, na pendência da verificação. As informações armazenadas no âmbito do sistema de gestão dos dados devem incluir as informações enumeradas no ponto 6.

Os processos de garantia e de controlo da qualidade podem ser realizados no contexto do sistema comunitário de ecogestão e auditoria (EMAS) ou de outros sistemas de gestão ecológica, incluindo a norma ISO 14001: 1996 («Environmental management systems — Specification with guidance for use» [sistemas de gestão ambiental — especificações e directivas para a sua utilização]).

Os processos de garantia e de controlo da qualidade devem incidir nos procedimentos necessários à monitorização e comunicação de informações relativas às emissões de gases com efeito de estufa e na realização destes processos na instalação, e incluir, nomeadamente:

- a identificação das fontes de gases com efeito de estufa abrangidas pelo regime previsto no anexo I da directiva.
- a sequência e a interacção entre os processos de monitorização e comunicação de informações,
- as responsabilidades e as competências,
- os métodos de cálculo ou medição aplicados,
- o equipamento de medição utilizado (se pertinente),
- a comunicação de dados e registos,
- as análises internas dos dados comunicados e do sistema de qualidade,
- as medidas de correcção e prevenção.

Sempre que opte por subcontratar processos que afectem a garantia e o controlo da qualidade, o operador deve assegurar o controlo e a transparência desses processos. As medidas pertinentes em matéria de controlo e de transparência dos processos subcontratados devem ser identificadas no âmbito dos processos de garantia e de controlo da qualidade.

7.2. Técnicas e dispositivos de medição

O operador deve certificar-se de que o equipamento de medição é calibrado, ajustado e controlado regularmente, nomeadamente antes da sua utilização, e de que o mesmo é controlado de acordo com normas de medição baseadas em normas de medição internacionais. O operador deve ainda avaliar e registar a validade dos resultados da medição anterior, sempre que se verifique que o equipamento não está conforme aos requisitos. Caso se verifique que o equipamento não está conforme aos requisitos, o operador deve, de imediato, tomar as medidas de correcção necessárias. Devem ser conservados registos dos resultados da calibração e da autenticação.

Caso utilize um sistema de medição contínua das emissões, o operador deve observar as prescrições da norma EN 14181 («Stationary source emissions — Quality assurance of automated measuring systems» [emissões a partir de fontes fixas — garantia da qualidade de sistemas de medição automatizados]) e da norma EN ISO 14956:2002 («Air quality — Evaluation of the suitability of a measurement procedure» [Qualidade do ar — Avaliação da adequação de um processo de medição por comparação com um determinado grau de incerteza] relativas aos instrumentos e ao operador.

Em alternativa, as medições, a avaliação dos dados, a monitorização e a comunicação de informações podem ser confiados a laboratórios de ensaios independentes e acreditados. Neste caso, os laboratórios de ensaio devem ainda estar acreditados no contexto da norma EN ISO 17025:2000 («General requirements for the competence of testing and calibration laboratories» [Requisitos de carácter geral relativos à competência dos laboratórios de ensaio e calibração]).

7.3. Gestão de dados

O operador deve realizar processos de garantia e de controlo de qualidade da gestão dos seus dados, a fim de evitar omissões, imprecisões e erros. Tais processos serão definidos pelo operador em função da complexidade dos seus dados. Os processos de garantia e de controlo da qualidade da gestão dos dados deverão ser registados e facultados ao verificador.

A nível operacional, é possível realizar processos simples e eficazes de garantia e de controlo da qualidade, através da comparação dos valores monitorizados em abordagens verticais e horizontais.

Uma abordagem vertical compara dados relativos a emissões monitorizadas de uma mesma instalação em anos diferentes. É provável a existência de um erro de monitorização se as diferenças entre dados anuais não puderem ser explicadas por:

- alterações dos níveis de actividade,
- alterações nos combustíveis ou nos materiais utilizados,
- alterações nos processos de emissão (por exemplo, melhoramentos ao nível da eficiência energética).

Uma abordagem horizontal compara os valores obtidos por diferentes sistemas de recolha de dados operacionais, incluindo:

- a comparação de dados relativos aos combustíveis ou materiais consumidos por fontes específicas, incluindo dados relativos à compra de combustíveis e dados sobre alterações das existências,
- a comparação dos dados totais relativos aos combustíveis ou materiais consumidos, incluindo dados relativos à compra de combustíveis e dados sobre alterações das existências,
- a comparação dos factores de emissão calculados ou obtidos junto do fornecedor de combustível com factores de emissão nacionais ou internacionais de referência para combustíveis comparáveis,
- a comparação dos factores de emissão baseados em análises do combustível com factores de emissão nacionais ou internacionais de referência para combustíveis comparáveis,
- a comparação de emissões medidas com emissões calculadas.

7.4. Verificação e materialidade

O operador deve fornecer ao verificador o relatório sobre as emissões, uma cópia do título de cada uma das suas instalações e quaisquer outras informações que considere pertinentes. O verificador avaliará da conformidade da metodologia de monitorização aplicada pelo operador com a metodologia de monitorização da instalação aprovada pela autoridade competente, os princípios de monitorização e comunicação de informações enunciados no ponto 3 e as orientações estabelecidas no presente anexo e nos anexos seguintes. Com base nesta avaliação, o verificador determinará se os dados constantes do relatório sobre as emissões contêm omissões, imprecisões ou erros susceptíveis de gerar inexactidões nas informações comunicadas.

No âmbito do processo de verificação, o verificador deve, nomeadamente:

- identificar cada uma das actividades desenvolvidas na instalação, as fontes de emissões da instalação, o equipamento de medição utilizado para monitorizar ou medir os dados da actividade, a origem e a aplicação dos factores de emissão e dos factores de oxidação/conversão, bem como o contexto em que a instalação labora,
- conhecer o sistema de gestão de dados do operador e a organização geral em matéria de monitorização e comunicação de informações, e obter, analisar e controlar os dados abrangidos pelo sistema de gestão de dados.
- estabelecer um nível de materialidade admissível, tendo em conta a natureza e a complexidade das actividades e fontes da instalação,
- analisar, com base nos conhecimentos profissionais do verificador e nas informações fornecidas pelo operador, os riscos dos dados susceptíveis de induzir declarações inexactas no relatório sobre as emissões,
- elaborar um plano de verificação coerente com os resultados desta análise de risco e a dimensão e complexidade das actividades e fontes do operador, que defina os métodos de amostragem a utilizar nas instalações do operador em causa,
- executar o plano de verificação elaborado, reunindo dados segundo os métodos de amostragem definidos, bem como todos os elementos adicionais pertinentes; a conclusão da verificação basear-se-á no conjunto destes elementos,
- verificar se a aplicação da metodologia de monitorização especificada no título assegurou um nível de rigor compatível com os níveis definidos,
- antes de extrair uma conclusão definitiva da verificação, solicitar ao operador que forneça os dados eventualmente em falta ou que complete secções da pista de auditoria, explique variações dos dados relativos às emissões ou reveja cálculos.

Durante o processo de verificação, o verificador deve identificar declarações inexactas, determinando se:

- os processos de garantia e de controlo da qualidade descritos nos pontos 7.1, 7.2 e 7.3 foram realizados,
- os dados recolhidos facultam provas claras e objectivas em apoio da identificação de declarações inexactas.

O verificador avaliará da materialidade de eventuais erros individuais e do conjunto de erros não corrigidos, tendo em conta as omissões, imprecisões e erros susceptíveis de dar origem a inexactidões, por exemplo, um sistema de gestão de dados que produza valores não transparentes, distorcidos ou incoerentes. O nível de segurança deve ser coerente com o limiar de materialidade determinado para a instalação em causa.

No final do processo de verificação, o verificador deve determinar se o relatório sobre as emissões contém alguma inexactidão material. Se o verificador concluir que o relatório sobre as emissões não contém qualquer inexactidão material, o operador pode apresentar o relatório em causa à autoridade competente, em conformidade com o n.º 3 do artigo 14.º da directiva. Se o verificador concluir que o relatório sobre as emissões contém uma inexactidão material, o relatório do operador não será considerado satisfatório. Nos termos do artigo 15.º da directiva, os Estados-Membros devem assegurar que os operadores cujos relatórios não tenham, até 31 de Março de cada ano, sido considerados satisfatórios no que se refere às emissões do ano anterior não possam transferir licenças de emissão enquanto os respectivos relatórios não forem considerados satisfatórios. Os Estados-Membros determinarão as sanções aplicáveis, em conformidade com o artigo 16.º da directiva.

A autoridade competente utilizará o valor correspondente às emissões totais de uma instalação constante do relatório considerado satisfatório para verificar se o operador entregou um número de licenças suficiente para cobrir as emissões da instalação em causa.

Os Estados-Membros certificar-se-ão de que eventuais divergências de opiniões entre operadores, verificadores e autoridades competentes não afectem a adequada comunicação das informações e sejam solucionadas em conformidade com a directiva, as presentes orientações, os requisitos pormenorizados estabelecidos pelos Estados-Membros nos termos do anexo V da directiva e os procedimentos nacionais pertinentes.

8. FACTORES DE EMISSÃO

O presente ponto contém factores de emissão de referência para o nível metodológico 1 que permitem a utilização de factores não específicos da actividade para a queima de combustíveis. No caso de um combustível que não pertença a uma categoria de combustíveis existente, o operador deve recorrer à sua experiência para incluir o combustível numa categoria de combustíveis conexa, sob reserva da aprovação da autoridade competente.

QUADRO 4

Factores de emissão de combustíveis fósseis — relacionados com o valor calorífico líquido (VCL), excluindo factores de oxidação

Combustível	Factor de emissão CO ₂ (t CO ₂ /TJ)	Fonte do factor de emissão
A. Fóssil líquido		
Combustíveis primários		
Petróleo bruto	73,3	IPCC, 1996 (8)
Orimulsão	80,7	IPCC, 1996
Gás natural líquido	63,1	IPCC, 1996
Combustíveis/produtos secundários		
Gasolina	69,3	IPCC, 1996
Querosene (°)	71,9	IPCC, 1996
Óleo de xisto	77,4	Comunicação nacional da Estónia, 2002
Gasóleo/óleo diesel	74,1	IPCC, 1996
Fuelóleo residual	77,4	IPCC, 1996

⁽⁸⁾ Revised 1996 IPCC Guidelines for national greenhouse gas inventories: Reference manual, 1.13.

⁽⁹⁾ Excluindo o querosene para aviação.

Combustível	Factor de emissão CO ₂ (t CO ₂ /TJ)	Fonte do factor de emissão
Gás de petróleo liquefeito	63,1	IPCC, 1996
Etano	61,6	IPCC, 1996
Nafta	73,3	IPCC, 1996
Betume	80,7	IPCC, 1996
Lubrificantes	73,3	IPCC, 1996
Coque de petróleo	100,8	IPCC, 1996
Matéria-prima para refinaria	73,3	IPCC, 1996
Outros óleos	73,3	IPCC, 1996
B. Fóssil sólido		
Combustíveis primários		
Antracite	98,3	IPCC, 1996
Carvão de coque	94,6	IPCC, 1996
Outros carvões betuminosos	94,6	IPCC, 1996
Carvões sub-betuminosos	96,1	IPCC, 1996
Linhite	101,2	IPCC, 1996
Óleo de xisto	106,7	IPCC, 1996
Turfa	106,0	IPCC, 1996
Combustíveis secundários	l	
Briquetes de linhite e aglomerados de hullha	94,6	IPCC, 1996
Gás de coqueria/coque de gás	108,2	IPCC, 1996
C. Fóssil gasoso	ı	
Monóxido de carbono	155,2	Com base num VCL de 10,12 TJ/t (10)
Gás natural (seco)	56,1	IPCC, 1996
Metano	54,9	Com base num VCL de 50,01 TJ/t (11)
Hidrogénio	0	Substância isenta de carbono

⁽¹⁰⁾ J. Falbe e M. Regitz, Römpp Chemie Lexikon, Estugarda, 1995. (11) J. Falbe e M. Regitz, Römpp Chemie Lexikon, Estugarda, 1995.

9. LISTA DE BIOMASSA NEUTRA EM TERMOS DE ${\rm CO}_{_2}$

— biometanol,

— biodimetil-éter,

— bio-óleo (óleo combustível obtido por pirólise) e biogás.

efe CC	presente lista exemplificativa, mas não exaustiva, inclui diversas matérias consideradas biomassa para itos da aplicação das presentes orientações e às quais deve ser atribuído um factor de emissão igual a 0 [t p_2/T] ou t ou p_3/T]. A turfa e as fracções fósseis das matérias a seguir enumeradas não devem ser isiderados biomassa.
1.	Vegetais e partes de vegetais, nomeadamente:
	— palha,
	— feno e erva,
	— folhas, madeira, raízes, troncos e casca,
	— culturas, por exemplo, milho e triticale.
2.	Resíduos, produtos e subprodutos da biomassa, nomeadamente:
	 resíduos de madeira industriais (resíduos de madeira resultantes do trabalho da madeira e de operações de transformação da madeira e resíduos de madeira resultantes de operações da indústria dos materiais em madeira),
	— madeira usada (produtos usados de madeira, materiais de madeira) e produtos e subprodutos de operações de transformação da madeira,
	— resíduos à base de madeira das indústrias de pasta de papel e de papel, por exemplo, lixívia negra,
	— resíduos da silvicultura,
	— farinhas de animais e de peixes e farinhas alimentares, gorduras, óleos e sebo,
	— resíduos primários da produção de alimentos e bebidas,
	— estrume,
	— resíduos de plantas agrícolas,
	— lamas de depuração,
	— biogás produzido por digestão, fermentação ou gaseificação de biomassa,
	— lamas dos portos e lamas e sedimentos de outras massas de água,
	— gases de aterro.
3.	Fracções de biomassa de diversas matérias, nomeadamente:
	— a fracção de biomassa de salvados da gestão de massas de água,
	— a fracção de biomassa de diversos resíduos da produção de alimentos e bebidas,
	— a fracção de biomassa de produtos compostos que contenham madeira,
	— a fracção de biomassa de resíduos têxteis,
	— a fracção de biomassa do papel, cartão e cartolina,
	— a fracção de biomassa de resíduos urbanos e industriais,
	— a fracção de biomassa de resíduos urbanos e industriais tratados.
4.	Combustíveis cujas componentes e produtos intermédios foram produzidos a partir de biomassa, nomeadamente:
	— bioetanol,
	— biodiesel,
	— bioetanol eterizado,

10. DETERMINAÇÃO DE DADOS E FACTORES ESPECÍFICOS ÀS ACTIVIDADES

10.1. Determinação de valores caloríficos líquidos e de factores de emissão para combustíveis

O processo específico de determinação dos factores de emissão específicos da actividade, incluindo o processo de amostragem para um tipo de combustível específico, deve ser acordado com a autoridade competente antes do início do período de informação em que o mesmo será aplicado.

Os processos utilizados para colher amostras do combustível e determinar o respectivo valor calorífico líquido, teor de carbono e factor de emissão deve basear-se nas normas CEN pertinentes (relativas, nomeadamente, à frequência da colheita de amostras, aos processos de amostragem, à determinação do valor calorífico bruto e líquido e ao teor de carbono de diferentes tipos de combustíveis), logo que estas se encontrem disponíveis. Caso não existam normas CEN, são aplicáveis as normas ISO ou as normas nacionais. Caso não existam normas aplicáveis, as medições devem, sempre que possível, ser efectuadas em conformidade com projectos de normas ou com as orientações relativas às melhores práticas para o sector.

Constituem exemplos de normas CEN pertinentes:

 EN ISO 4259:1996 «Petroleum products — Determination and application of precision data in relation to methods of test» [Produtos petrolíferos — determinação e aplicação de dados precisos em relação aos métodos de ensaio].

Constituem exemplos de normas ISO pertinentes:

- ISO 13909-1,2,3,4: 2001 Hard coal and coke Mechanical sampling [Antracite e coque amostragem mecânica],
- ISO 5069-1,2: 1983: Brown coals and lignites; Principles of sampling [Hulha castanha e linhites; princípios de amostragem],
- ISO 625:1996 Solid mineral fuels Determination of carbon and hydrogen Liebig method [Combustíveis minerais sólidos — determinação do carbono e do hidrogénio — método Liebig],
- ISO 925:1997 Solid mineral fuels Determination of carbonate carbon content Gravimetric method [Combustíveis minerais sólidos — determinação do teor de carbonato de carbono — método gravimétrico],
- ISO 9300-1990: Measurement of gas flow by means of critical flow Venturi nozzles [Medição do fluxo de gás por tubo de Venturi de escoamento crítico],
- ISO 9951-1993/94: Measurement of gas flow in closed conduits Turbine meters [Medição do fluxo de gases em condutas fechadas — medidores de turbina].

As normas nacionais complementares para a caracterização dos combustíveis são as seguintes:

- DIN 51900-1:2000 «Testing of solid and liquid fuels Determination of gross calorific value by the bomb calorimeter and calculation of net calorific value Part 1: Principles, apparatus, methods» [Ensaio de combustíveis sólidos e líquidos determinação do valor calorífico bruto por calorímetro de bomba e cálculo do valor calorífico líquido Parte 1: princípios, equipamento, métodos],
- DIN 51857:1997 «Gaseous fuels and other gases Calculation of calorific value, density, relative density
 and Wobbe index of pure gases and gas mixtures» [Combustíveis gasosos e outros gases cálculo do
 valor calorífico, densidade, densidade relativa e índice Wobbe de gases puros e misturas de gases],
- DIN 51612:1980 Testing of liquefied petroleum gases; calculation of net calorific value [Ensaio de gases de petróleo liquefeitos, cálculo do valor calorífico líquido],
- DIN 51721:2001 «Testing of solid fuels Determination of carbon and hydrogen content» (also applicable for liquid fuels) [Ensaio de combustíveis sólidos determinação do teor de carbono e de hidrogénio (igualmente aplicável a combustíveis líquidos)].

O laboratório que determina o factor de emissão, o teor de carbono e o valor calorífico líquido deve estar acreditado em conformidade com a norma EN ISO 17025 («General requirements for the competence of testing and calibration laboratories» [Requisitos de carácter geral relativos à competência dos laboratórios de ensaio e calibração]).

Importa notar que, para que o factor de emissão específico da actividade possa ser determinado com o rigor adequado (para além da precisão do processo analítico de determinação do teor de carbono e do valor calorífico líquido), a frequência de amostragem, o processo de amostragem e a preparação das amostras assumem uma importância crucial. Estes elementos dependem, em larga medida, do estado e da homogeneidade do combustível/matéria. As matérias muito heterogéneas, como os resíduos sólidos urbanos, requerem um maior número de amostras, enquanto a maior parte dos combustíveis comerciais gasosos ou líquidos requer um número de amostras muito menos significativo.

A determinação do teor de carbono, dos valores caloríficos líquidos e dos factores de emissão para lotes de combustível deve obedecer a práticas universalmente aceites de colheita de amostras representativas. O operador deve provar que o teor de carbono, os valores caloríficos e os factores de emissão determinados são representativos e não distorcidos.

O factor de emissão deve ser utilizado, unicamente, para o lote de combustível de que foi considerado representativo.

Deve ser mantida e facultada ao verificador do relatório sobre as emissões a totalidade da documentação relativa aos processos utilizados em laboratório para a determinação do factor de emissão, bem como a totalidade dos resultados obtidos.

10.2. Determinação de factores de oxidação específicos às actividades

O processo específico para determinar os factores de oxidação específicos da actividade, incluindo o processo de amostragem para um tipo de combustível e uma instalação específicos, deve ser acordado com a autoridade competente antes do início do período de informação em que o mesmo será aplicado.

Os processos utilizados para determinar factores de oxidação representativos específicos a actividades (por exemplo, através do teor de carbono da fuligem, das cinzas, de efluentes e de outros resíduos ou subprodutos) para uma dada actividade devem basear-se nas normas CEN pertinentes, logo que estas se encontrem disponíveis. Caso não existam normas CEN, são aplicáveis as normas ISO ou as normas nacionais. Caso não existam normas aplicáveis, as medições devem, sempre que possível, ser efectuadas em conformidade com projectos de normas ou com as orientações relativas às melhores práticas para o sector.

O laboratório que determina o factor de oxidação ou os dados subjacentes deve estar acreditado em conformidade com a norma EN ISO 17025 («General requirements for the competence of testing and calibration laboratories» [Requisitos de carácter geral relativos à competência dos laboratórios de ensaio e calibração]).

A determinação dos factores de oxidação específicos às actividades a partir de lotes de matérias deve obedecer a práticas universalmente aceites de colheita de amostras representativas. O operador deve provar que os factores de oxidação determinados são representativos e não distorcidos.

Deve ser mantida e facultada ao verificador do relatório sobre as emissões a totalidade da documentação relativa aos processos utilizados pela organização para a determinação dos factores de oxidação, bem como a totalidade dos resultados obtidos.

10.3. Determinação dos factores de emissão de processo e dos dados relativos à composição

O processo específico para determinar os factores de emissão específicos da actividade, incluindo o processo de amostragem para um tipo de material específico, deve ser acordado com a autoridade competente antes do início do período de informação em que o mesmo será aplicado.

O processo de colheita de amostras e de determinação da composição do material em causa ou de cálculo do factor de emissão de processo utilizado deve basear-se nas normas CEN pertinentes, logo que estas se encontrem disponíveis. Caso não existam normas CEN, são aplicáveis as normas ISO ou as normas nacionais. Caso não existam normas aplicáveis, as medições devem, sempre que possível, ser efectuadas em conformidade com projectos de normas ou com as orientações relativas às melhores práticas para o sector.

O laboratório que determina a composição ou o factor de emissão deve estar acreditado em conformidade com a norma EN ISO 17025 («General requirements for the competence of testing and calibration laboratories» [Requisitos de carácter geral relativos à competência dos laboratórios de ensaio e calibração]).

A determinação dos factores de emissão de processo e os dados relativos à composição para lotes de material deve obedecer a práticas universalmente aceites de colheita de amostras representativas. O operador deve provar que os factores de emissão de processo ou dados relativos à composição determinados são representativos e não distorcidos.

O valor obtido deve ser utilizado, unicamente, para o lote de material de que foi considerado representativo.

Deve ser mantida e facultada ao verificador do relatório sobre as emissões a totalidade da documentação relativa aos processos utilizados pela organização para a determinação do factor de emissão e dos dados relativos à composição, bem como a totalidade dos resultados obtidos.

10.4. Determinação de uma fracção de biomassa

Para efeitos das presentes orientações, a expressão «fracção de biomassa» refere-se à percentagem de massa de carbono de biomassa combustível, de acordo com a definição de biomassa (ver pontos 2 e 9 do presente anexo) na massa total de carbono de uma mistura de combustíveis.

O processo específico para determinar a fracção de biomassa de um tipo específico de combustível, incluindo o processo de amostragem para um tipo de combustível específico, deve ser acordado com a autoridade competente antes do início do período de informação em que o mesmo será aplicado.

O processo de colheita de amostras e de determinação da fracção de biomassa ou de cálculo do factor de emissão de processo utilizado deve basear-se nas normas CEN pertinentes, logo que estas se encontrem disponíveis. Caso não existam normas CEN, são aplicáveis as normas ISO ou as normas nacionais. Caso não existam normas aplicáveis, os processos devem, sempre que possível, ser conformes a projectos de normas ou às orientações relativas às melhores práticas para o sector (12).

Os métodos aplicáveis para determinar a fracção de biomassa num combustível vão desde a triagem manual dos componentes de materiais misturados, a métodos diferenciais que determinam valores de aquecimento de uma mistura binária e dos seus dois componentes puros, ou a uma análise isotópica de carbono 14, consoante a natureza da mistura de combustíveis em causa.

O laboratório que determina a fracção de biomassa deve estar acreditado em conformidade com a norma EN ISO 17025 («General requirements for the competence of testing and calibration laboratories» [Requisitos de carácter geral relativos à competência dos laboratórios de ensaio e calibração]).

A determinação da fracção de biomassa de lotes de materiais deve obedecer a práticas universalmente aceites de colheita de amostras representativas. O operador deve provar que os valores determinados são representativos e não distorcidos.

O valor obtido deve ser utilizado, unicamente, para o lote de material de que foi considerado representativo.

Deve ser mantida e facultada ao verificador do relatório sobre as emissões a totalidade da documentação relativa aos processos utilizados em laboratório para a determinação da fracção de biomassa, bem como a totalidade dos resultados obtidos.

Se a determinação da fracção de biomassa de uma mistura de combustíveis não for tecnicamente viável ou acarretar custos desproporcionados, o operador deve considerar que a fracção de biomassa é igual a 0 (ou seja, que a totalidade do carbono do combustível em causa é de origem fóssil) ou propor um método de estimativa à aprovação da autoridade competente.

11. MODELO DE RELATÓRIO

Os quadros seguintes devem ser utilizados como base para a comunicação de informações, podendo ser adaptados em função do número de actividades, tipo de instalações, combustíveis e processos monitorizados.

11.1. Identificação da instalação

Identificação da instalação	Resposta
1. Nome da empresa-mãe	
2. Nome da empresa subsidiária	
3. Operador da instalação	
4. Instalação	
4.1. Designação	
4.2. Número do título (13)	
4.3. É requerido um relatório no âmbito do EPER?	Sim/Não
4.4. Número de identificação EPER (14)	
4.5. Endereço/localidade da instalação	

⁽¹²⁾ As orientações neerlandesas BRL-K 10016 («The share of biomass in secondary fuels» [A parte de biomassa nos combustíveis secundários]), desenvolvidas pela KIWA, constituem um exemplo.

⁽¹³⁾ O número de identificação é atribuído pela autoridade competente no âmbito do processo de concessão do título.

⁽¹⁴⁾ A indicar unicamente no caso de a instalação dever apresentar relatórios no âmbito do EPER e de o título da instalação abranger apenas uma actividade EPER. Esta informação não é obrigatória e é utilizada para efeitos de identificação adicional, para além do nome e do endereço fornecidos.

Identificação da instalação	Resposta			
4.6. Código postal/país				
4.7. Coordenadas da localização				
5. Pessoa a contactar				
5.1. Nome				
5.2. Endereço/localidade/código postal/país				
5.3. Telefone				
5.4. Fax				
5.5. Correio electrónico				
6. Ano abrangido				
7. Tipo de actividades do anexo I desenvolvidas (15)				
Actividade 1				
Actividade 2				
Actividade N				

11.2. Conjunto das actividades e emissões da instalação

Emissões de actividades do anexo I						
Categorias	Categoria MCR IPCC (¹6)	Código IPPC da categoria EPER	Abordagem adoptada: Cálculo/ /Medição	Incerteza (medição) (¹⁷)	Mudança de níveis: Sim/ /Não	Emissões (t/CO ₂)
Actividades						
Actividade 1						
Actividade 2						
Actividade N						
Total						

⁽¹⁵⁾ Por exemplo, «Refinarias de petróleo». (16) Por exemplo, «1. Processos Industriais, A. Produtos minerais, 1. Produção de cal». (17) A preencher unicamente no caso de as emissões terem sido determinadas por medição.

Aspectos para memória					
	CO ₂ tra	nsferido	Biomassa	Biomassa utilizada em processos	Emissões de biomassa
	Quantidade transferida	Material transferido	utilizada para combustão		
Unidade	[t CO ₂]		[TJ]	[t ou m³]	[t CO ₂] (18)
Actividade 1					
Actividade 2					
Actividade N					

11.3. Emissões de combustão (cálculo)

Actividade N				
Tipo de actividade do anexo I:				
Descrição da actividade:				
Combustíveis fósseis				
Combustível 1				
Combustível fóssil				
Tipo de combustível:				
		Unidade	Dados	Nível aplicado
	Dados da actividade	t ou m³		
		TJ		
	Factor de emissão	t CO ₂ /TJ		
	Factor de oxidação	%		
	Emissões totais	t CO ₂		
Combustível N		1		
Combustível fóssil				
Tipo de combustível:				
		Unidade	Dados	Nível aplicado
	Dados da actividade	t ou m³		

⁽¹⁸⁾ A preencher unicamente no caso de as emissões terem sido determinadas por medição.

PT

11.4.

		TJ		
	Factor de emissão	t CO ₂ /TJ		
	Factor de oxidação	%		
	Emissões totais	t CO ₂		
Combustíveis de biomassa e de mis	stura			
Combustível M				
Combustíveis de biomassa/de mistura				
Tipo de combustível:				
Fracção de biomassa (0-100 % de teor de carbono):				
		Unidade	Dados	Nível aplicado
	Dados da actividade	t ou m³		
		ТЈ		
	Factor de emissão	t CO ₂ /TJ		
	Factor de oxidação	%		
	Emissões totais	t CO ₂		
Total da actividade				
Emissões totais (t CO ₂) (19)				-
Biomassa utilizada total (TJ) (20)				
		1		-
Emissões de processo (cálculo)				
Actividade N				
Tipo de actividade do anexo I:				
Descrição da actividade:				

Processos que utilizam apenas material fóssil

Processo 1

Tipo de processo:

⁽¹⁹⁾ Igual à soma das emissões de combustíveis fósseis e à fracção fóssil dos combustíveis de mistura. (29) Igual ao teor energético da biomassa pura e à fracção de biomassa dos combustíveis de mistura.

PT

Descrição dos dados da actividade	:			
Método de cálculo aplicado (apena	as se especificado nas o	orientações):		
		Unidade	Dados	Nível aplicado
	Dados da actividade	t ou m³		
	Factor de emissão	t CO ₂ /t ou t CO ₂ /m ³		
	Factor de conversão	%		
	Emissões totais	t CO ₂		
Processo N				
Tipo de processo:				
Descrição dos dados da actividade	:			
Método de cálculo aplicado (apena	as se especificado nas c	orientações):		
		Unidade	Dados	Nível aplicado
	Dados da actividade	t ou m³		
	Factor de emissão	t CO ₂ /t ou t CO ₂ /m ³		
	Factor de conversão	%		
	Emissões totais	t CO ₂		
Processos que utilizam material	de biomassa/misto			
Processo M				
Descrição do processo:				
Descrição do material utilizado:				
Fracção de biomassa (% do teor d	e carbono):			
Método de cálculo aplicado (apena	as se especificado nas c	orientações):		
		Unidade	Dados	Nível aplicado
	Dados da actividade	t ou m³		

	Factor de emissão	t CO ₂ /t ou t CO ₂ /m ³		
	Factor de conversão	%		
	Emissões totais	t CO ₂		
Total da actividade				
Emissões totais	(t CO ₂)		•	
Biomassa utilizada total	(t ou m³)		•	

12. CATEGORIAS A INCLUIR NA COMUNICAÇÃO DE INFORMAÇÕES

As emissões devem ser comunicadas de acordo com as categorias do modelo de relatório do IPCC e com o código IPPC constante do anexo A3 da decisão EPER (ver ponto 12.2 do presente anexo). As categorias especificadas de ambos os modelos de relatórios são apresentadas em seguida. No caso de uma actividade poder ser incluída em duas ou mais categorias, a classificação seleccionada deve reflectir o principal objectivo da actividade.

12.1. Modelo de relatório IPCC

O quadro seguinte foi extraído do modelo comum para os relatórios (MCR) incluído nas orientações da CQNUAC para a elaboração de relatórios sobre os inventários anuais (21). No MCR, as emissões são distribuídas por sete grandes categorias:

- energia,
- processos industriais,
- utilização de solventes e outros produtos,
- agricultura,
- alteração do uso do solo e silvicultura,
- resíduos,
- outras.

As categorias 1, 2 e 6 do quadro seguinte, bem como as respectivas subcategorias pertinentes, são reproduzidas a seguir:

1. Relatório sectorial para a energia

- A. Actividades que envolvem queima de combustíveis (abordagem sectorial)
- 1. Indústrias do sector da energia
- a. Produção de electricidade e de calor pelo sector público
- b. Refinação de petróleo
- c. Produção de combustíveis sólidos e outras indústrias do sector da energia
- 2. Indústrias transformadoras e de construção

⁽²¹⁾ CQNUAC (1999): FCCC/CP/1999/7.

a.	Ferro e aço
b.	Metais não ferrosos
c.	Produtos químicos
d.	Pasta de papel, papel e gráfica
e.	Transformação de produtos alimentares, bebidas e tabaco
f.	Outra (especificar)
4.	Outros sectores
a.	Comercial/institucional
b.	Residencial
c.	Agricultura/silvicultura/pesca)
5.	Outro (especificar)
a.	Fixa
b.	Móvel
В.	Emissões fugitivas de combustíveis
1.	Combustíveis sólidos
a.	Extracção mineira de carvão
b.	Transformação de combustíveis sólidos
c.	Outro (especificar)
2.	Petróleo e gás natural
a.	Petróleo
b.	Gás natural

c.	c. Extracção e queima					
Ex	Extracção					
Qι	ıeima					
d.	Outro (especificar)					
2.	Relatório sectorial para processos industriais					
Α.	Produtos minerais					
1.	Produção de cimento					
2.	Produção de cal					
3.	Utilização de calcário e dolomite					
4.	Produção e utilização de cal de soda					
5.	Revestimento de telhados com asfalto					
6.	Pavimentação de estradas com asfalto					
7.	Outro (especificar)					
В.	Indústria química					
1.	Produção de amoníaco					
2.	Produção de ácido nítrico					
3.	Produção de ácido adípico					
4.	Produção de carbonetos					
5.	Outro (especificar)					
C.	Produção de metais					
1.	Produção de ferro e de aço					
2.	Produção de ligas de ferro					
3.	Produção de alumínio					

- 4. SF₆, utilizado nas fundições de alumínio e magnésio
- 5. Outro (especificar)

Aspectos para memória

Emissões de CO₂ da biomassa

12.2. Código IPPC das categorias de fontes da decisão EPER

O quadro seguinte foi extraído do anexo A3 da Decisão 2000/479/CE da Comissão, de 17 de Julho de 2000, relativa à criação de um registo europeu das emissões de poluentes (EPER) nos termos do artigo 15.º da Directiva 96/61/CE do Conselho relativa à prevenção e controlo integrados da poluição (²²).

Excerto do anexo A3 da decisão EPER

1.	Indústrias do sector da energia		
1.1.	Instalações de combustão > 50 MW		
1.2.	Refinarias de óleos minerais e de gás		
1.3.	Coquerias		
1.4.	Unidades de gaseificação e liquefacção de carvão		
2.	Produção e processamento de metais		
2.1/2.2/2.3/2.4/2.5/2.6.	Indústria metalúrgica e instalações de ustulação e sinterização de minérios; Instalações de produção de metais ferrosos e não ferrosos		
3.	Indústria mineral		
3.1/3.3/3.4/3.5.	Instalações de produção de clínquer de cimento (> 500 t/dia), cal (> 50 t/dia), vidro (> 20 t/dia), substâncias minerais (> 20 t/dia) ou produtos cerâmicos (> 75 t/dia)		
3.2.	Instalações para a produção de amianto ou de produtos à base de amianto		
4.	Indústria química e instalações químicas para a produção de:		
4.1.	Produtos químicos orgânicos de base		
4.2/4.3.	Produtos químicos inorgânicos de base ou fertilizantes		

4.4/4.6.	Biocidas e explosivos	
4.5.	Produtos farmacêuticos	
5.	Gestão de resíduos	
5.1/5.2.	Instalações para a eliminação ou valorização de resíduos perigosos (> 10 t/dia) ou resíduos urbanos (> 3 t/hora)	
5.3/5.4.	Instalações para a eliminação de resíduos não perigosos (> 50 t/dia) e aterros (> 10 t/dia)	
6.	Outras actividades do anexo I	
6.1.	Unidades industriais de produção de pasta de papel a partir de madeira ou de outros materiais fibrosos e de papel ou cartão (> 20 t/dia)	
6.2.	Unidades de pré-tratamento de fibras ou têxteis (> 10 t/dia)	
6.3.	Instalações destinadas ao curtimento de peles (> 12 t/dia)	
6.4.	Matadouros (> 50 t/dia), instalações de produção de leite (> 200 t/dia), outras matérias-primas animais (> 75 t/dia) ou vegetais (> 300 t/dia)	
6.5.	Instalações para a eliminação ou a reciclagem de carcaças de animais e resíduos de animais (> 10 t/dia)	
6.6.	Instalações para aves de capoeira (> 40 000), suínos (> 2 000) ou porcas (> 750)	
6.7.	Instalações para tratamento superficial de produtos que utilizem solventes orgânicos (> 200 t/ano)	
6.8.	Instalações de produção de carbono ou grafite	

ANEXO II

Orientações para as emissões de combustão das actividades enunciadas no anexo I da directiva

1. LIMITES E INTEGRALIDADE

As orientações específicas da actividade constantes do presente anexo devem ser utilizadas para a monitorização das emissões de gases com efeito de estufa de instalações de combustão com uma potência térmica nominal total superior a 20 MW (com excepção de instalações para resíduos perigosos ou resíduos sólidos urbanos), tal como previsto no anexo I da directiva, e para a monitorização das emissões de combustão resultantes de outras actividades enunciadas no anexo I da directiva, referidas nos anexos III a XI das presentes orientações.

A monitorização das emissões de gases com efeito de estufa de processos de combustão deve abranger as emissões resultantes da queima de todos os combustíveis na instalação em causa, bem como as emissões resultantes de processos de depuração destinados, por exemplo, a eliminar o SO₂. As emissões de motores de combustão interna para transporte não devem ser incluídas na monitorização e comunicação de informações. Todas as emissões de gases com efeito de estufa resultantes da queima de combustíveis na instalação serão atribuídas a essa instalação, independentemente do facto de esta exportar calor ou electricidade para outras instalações. As emissões associadas à produção de calor ou electricidade importada de outras instalações não serão atribuídas à instalação importadora.

2. DETERMINAÇÃO DAS EMISSÕES DE CO,

As fontes de emissões de CO ₂ de instalaçõe	es e processos de combustão incluem:
— caldeiras	

- queimadores
- turbinasaquecedores
- fornos metalúrgicos e para vidro
- incineradores
- fornos de cerâmica
- outros fornos
- secadores
- motores
- flares (queima secundária de gases residuais)
- depuradores (emissões de processo)
- qualquer outro equipamento ou maquinaria que utilize combustível, com excepção do equipamento ou maquinaria com motores de combustão utilizado para transporte.

2.1. Cálculo das emissões de CO,

2.1.1. Emissões de combustão

2.1.1.1. Actividades de combustão gerais

As emissões de CO₂ provenientes de fontes de combustão devem ser calculadas através da multiplicação do teor energético de cada um dos combustíveis utilizados por um factor de emissão e um factor de oxidação. Para cada combustível e em relação a cada actividade, deve ser efectuado o seguinte cálculo:

PT

em que:

a) Dados da actividade

Os dados da actividade são expressos como teor energético líquido do combustível consumido [TJ] durante o período de informação. O teor energético do consumo de combustível deve ser calculado através da seguinte fórmula:

Teor energético do consumo de combustível [TJ] = combustível consumido [t ou m³] * valor calorífico líquido do combustível [TJ/t ou TJ/m³] (2³)

sendo:

a1. Combustível consumido

Nível 1

O consumo de combustível é medido, sem armazenagem intermédia, antes da queima na instalação, do que resulta uma margem de incerteza admissível inferior a ± 7,5 % para o processo de medição.

Nível 2a

O consumo de combustível é medido, sem armazenagem intermédia, antes da queima na instalação, com recurso a dispositivos de medição, do que resulta uma margem de incerteza admissível inferior a ± 5,0 % para o processo de medição.

Nível 2b

O combustível comprado é medido com recurso a dispositivos de medição, do que resulta uma margem de incerteza admissível inferior a ± 4,5 % para o processo de medição. O consumo de combustível é calculado segundo uma abordagem de balanço de massas baseada na quantidade de combustível comprada e na diferença observada na quantidade em existência durante um determinado período de tempo, através da seguinte fórmula:

Combustível C = combustível P + (combustível S - combustível E) - combustível O

em que:

Combustível C: combustível queimado durante o período de informação

Combustível P: combustível comprado durante o período de informação

Combustível S: combustível em existência no início do período de informação

Combustível E: combustível em existência no final do período de informação

Combustível O: combustível utilizado para outros fins (transporte ou revenda).

Nível 3a

O consumo de combustível é medido, sem armazenagem intermédia, antes da queima na instalação, com recurso a dispositivos de medição, do que resulta uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 3b

O combustível comprado é medido com recurso a dispositivos de medição, do que resulta uma margem de incerteza admissível inferior a ± 2,0 % para o processo de medição. O consumo de combustível é calculado segundo uma abordagem de balanço de massas baseada na quantidade de combustível comprada e na diferença observada na quantidade em existência durante um determinado período de tempo, através da seguinte fórmula:

Combustível C = combustível P + (combustível S - combustível E) - combustível O

em que:

Combustível C: combustível queimado durante o período de informação

Combustível P: combustível comprado durante o período de informação

Combustível S: combustível em existência no início do período de informação

Combustível E: combustível em existência no final do período de informação

Combustível O: combustível utilizado para outros fins (transporte ou revenda).

⁽²³⁾ Caso sejam utilizadas unidades de volume, o operador deve considerar a possibilidade de ser necessária uma conversão para ter em conta as diferenças entre a pressão e a temperatura do dispositivo de medição e as condições normalizadas para as quais o valor calorífico líquido do tipo de combustível em causa foi determinado.

PT

Nível 4a

O consumo de combustível é medido, sem armazenagem intermédia, antes da queima na instalação, com recurso a dispositivos de medição, do que resulta uma margem de incerteza admissível inferior a ± 1,5 % para o processo de medição.

Nível 4b

O combustível comprado é medido com recurso a dispositivos de medição, do que resulta uma margem de incerteza admissível inferior a ± 1,0 % para o processo de medição. O consumo de combustível é calculado segundo uma abordagem de balanço de massas baseada na quantidade de combustível comprada e na diferença observada na quantidade em existência durante um determinado período de tempo, através da seguinte fórmula:

Combustível C = combustível P + (combustível S - combustível E) - combustível O

em que:

Combustível C: combustível queimado durante o período de informação Combustível P: combustível comprado durante o período de informação Combustível S: combustível em existência no início do período de informação Combustível E: combustível em existência no final do período de informação Combustível O: combustível utilizado para outros fins (transporte ou revenda).

Importa notar que a diferentes tipos de combustível corresponderão margens de incerteza admissíveis significativamente diferentes para o processo de medição, sendo o rigor da medição dos combustíveis gasosos e líquidos, de um modo geral, superior ao da medição dos combustíveis sólidos. Observam-se, contudo, numerosas excepções em todas as classes (consoante o tipo e as propriedades do combustível, a via de transporte (marítima, rodoviária, ferroviária, correia transportadora ou conduta) e as circunstâncias específicas da instalação), o que exclui a possibilidade de uma mera atribuição de combustíveis a níveis metodológicos.

a2. Valor calorífico líquido

Nível 1

O operador aplica valores caloríficos líquidos específicos por país para o combustível em causa, em conformidade com o apêndice 2.1 A.3 «1990 country specific net calorific values» da versão de 2000 do «Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories» (http://www.ipcc.ch/pub/guide.htm) do IPCC.

Nível 2

O operador aplica valores caloríficos líquidos específicos por país para o combustível em causa, em conformidade com o mais recente inventário nacional apresentado pelo Estado-Membro pertinente ao Secretariado da Convenção-Quadro das Nações Unidas sobre as Alterações Climáticas.

Nível 3

O valor calorífico líquido representativo de cada lote de combustível de uma instalação é medido pelo operador, por um laboratório contratado ou pelo fornecedor do combustível, em conformidade com o disposto no ponto 10 do anexo I.

b) Factor de emissão

Nível 1

Os factores de referência de cada combustível são utilizados em conformidade com o disposto no ponto 8 do anexo I.

Nível 2a

O operador aplica factores de emissão específicos por país para o combustível em causa, em conformidade com o mais recente inventário nacional apresentado pelo Estado-Membro pertinente ao Secretariado da Convenção-Quadro das Nações Unidas sobre as Alterações Climáticas.

Nível 2b

O operador determina os factores de emissão para cada lote de combustível com base numa das seguintes aproximações estabelecidas:

- Medição da densidade de óleos ou gases específicos, comuns, por exemplo, ao sector da refinaria ou do aço;
 e
- 2. Valor calorífico líquido de tipos específicos de carvão,

combinada com uma relação empírica determinada por um laboratório externo em conformidade com o disposto no ponto 10 do anexo I. O operador deve certificar-se de que a correlação satisfaz os requisitos das boas práticas de engenharia e é aplicada unicamente a valores aproximados incluídos na categoria para que foi estabelecida.

Nível 3

Os factores de emissão específicos da actividade para os lotes de combustível em causa são determinados pelo operador, por um laboratório externo ou pelo fornecedor do combustível, em conformidade com o disposto no ponto 10 do anexo I.

c) Factor de oxidação

Nível 1

É utilizado um factor de oxidação de referência/valor de referência de 0,99 (correspondente a uma conversão de 99 % do carbono em CO₂) para todos os combustíveis sólidos e de 0,995 para os demais combustíveis.

Nível 2

Para os combustíveis sólidos, os factores específicos da actividade são determinados pelo operador a partir do teor de carbono das cinzas, efluentes e outros resíduos e subprodutos, bem como de outras emissões de carbono não integralmente oxidadas, em conformidade com o disposto no ponto 10 do anexo I.

2.1.1.2. Flares (queima secundária de gases residuais)

As emissões resultantes de *flares* devem incluir as emissões da queima de rotina e da queima operacional (descarga, arranque e paragem), bem como das descargas de emergência.

As emissões de CO_2 devem ser calculadas a partir da quantidade de gás queimado [m³] e do respectivo teor de carbono [t CO_2/m^3] (incluindo, se for caso disso, o carbono inorgânico).

Emissões de CO, = dados da actividade * factor de emissão * factor de oxidação

em que:

a) Dados da actividade

Nível 1

Quantidade de gás queimado [m³] durante o período de informação, determinado por medição do volume, com uma margem de incerteza admissível de ± 12,5 % para o processo de medição.

Nível 2

Quantidade de gás queimado [m³] durante o período de informação, determinado por medição do volume, com uma margem de incerteza admissível de ± 7,5 % para o processo de medição.

Nível 3

Quantidade de gases de queima [m³] utilizada durante o período de informação, determinada por medição do volume, com uma margem de incerteza admissível de ± 2,5 % para o processo de medição.

b) <u>Factor de emissão</u>

Nível 1

Com recurso a um factor de emissão de referência de 0,00785 t CO₃/m³ (em condições normais), determinado a partir da combustão de butano puro, utilizado como valor aproximado por defeito para os gases de queima.

Nível 2

Factor de emissão [t $CO_2/m^3_{gás\ queimado}$] calculado a partir do teor de carbono do gás queimado, em conformidade com o disposto no ponto 10 do anexo I.

c) Factor de oxidação

Nível 1

Taxa de oxidação de 0,995.

2.1.2. Emissões de processo

As emissões de CO_2 de processo resultantes da utilização de carbonato para a eliminação de SO_2 do efluente gasoso devem ser calculadas com base na quantidade de carbonato comprado (método de cálculo nível 1a) ou de gesso produzido (método de cálculo nível 1b). Estes dois métodos de cálculo são equivalentes. O cálculo deve obedecer à seguinte fórmula:

Emissões de CO₂ [t] = dados da actividade * factor de emissão * factor de conversão

sendo:

Método de cálculo A — «a partir do carbonato»

As emissões são calculadas a partir da quantidade de carbonato utilizada:

a) Dados da actividade

Nível 1

[t] de carbonato seco utilizadas anualmente no processo pelo operador ou pelo fornecedor, com uma margem de incerteza admissível do processo de medição inferior a \pm 7,5 %.

b) Factor de emissão

Nível 1

Utilização de rácios estequiométricos de conversão de carbonatos [t CO₂/t carbonato seco], em conformidade com o quadro 1. Este valor deve ser ajustado ao teor de humidade e de ganga do carbonato utilizado.

QUADRO 1 Factores de emissão estequiométricos

Carbonato	Factor de emissão [t CO ₂ /t Ca-, Mg- ou outro carbonato]	Observações
CaCO ₃	0,440	
MgCO ₃	0,522	
Geral: X _y (CO ₃) _z	Factor de emissão = $[M_{CO2}] / \{Y * [M_x] + Z * [M_{CO3}^{3}]\}$	X = metais alcalino-terrosos ou alca- linos M _x = peso molecular de X em [g/mol] M _{CO2} = peso molecular de CO ₂ = 44 [g/ mol] M _{CO3} . = peso molecular de CO ₃ ²⁻ = 60 [g/ mol] Y = número estequiométrico de X = 1 (para metais alcalino-terrosos) = 2 (para metais alcalinos) Z = número estequiométrico de CO ₃ ²⁻ = 1

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

Método de cálculo B — «a partir do gesso»

As emissões são calculadas a partir da quantidade de gesso produzida:

a) Dados da actividade

Nível 1

[t] de gesso seco (CaSO₄· 2H₂O) resultantes anualmente do processo, medidas pelo operador ou transformador de gesso, com uma margem de incerteza admissível do processo de medição inferior a ± 7,5 %.

b) Factor de emissão

Nível 1

Rácio estequiométrico do gesso desidratado (CaSO₄· 2H₂O) e CO₂ no processo: 0,2558 t CO₂/t de gesso.

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

2.2. Medição das emissões de CO,

São aplicáveis as orientações para medição constantes do anexo I.

3. DETERMINAÇÃO DAS EMISSÕES DE GASES COM EFEITO DE ESTUFA, EXCLUINDO CO,

Em conformidade com as disposições pertinentes da directiva, poderão ser ulteriormente elaboradas orientações específicas para a determinação das emissões de gases com efeito de estufa, excluindo CO₂.

ANEXO III

Orientações específicas da actividade para as refinarias de óleos minerais enunciadas no anexo I da directiva

1. LIMITES

A monitorização dos gases com efeito de estufa emitidos por uma instalação deve incluir a totalidade das emissões dos processos de combustão e de produção realizados nas refinarias. As emissões dos processos realizados em instalações adjacentes da indústria química não incluídas no anexo I da directiva e que não façam parte da cadeia de produção da refinação não devem ser tidas em conta.

DETERMINAÇÃO DAS EMISSÕES DE CO,

As fontes potenciais de emissões de CO, incluem:

- a) Combustão relacionada com a energia:
 - caldeiras.
 - aquecedores/destiladores de petróleo,
 - motores de combustão interna/turbinas,
 - oxidadores catalíticos e térmicos,
 - fornos de calcinação do coque,
 - bombas de incêndio,
 - geradores de emergência/auxiliares,
 - queima de gases residuais (flares),
 - incineradores,
 - crackers.

b) Processo

- instalações de produção de hidrogénio,
- regeneração catalítica (por cracking catalítico ou por outros processos catalíticos),
- cokers (flexi-coking, coquefacção retardada).

2.1. Cálculo das emissões de CO₂

O operador pode calcular emissões:

- a) Para todos os tipos de combustíveis e processos da instalação; ou
- b) Através da abordagem do balanço de massas, desde que o operador consiga demonstrar que os resultados para a instalação são mais rigorosos do que os que obtidos através de um cálculo para cada tipo de combustível ou processo; ou
- c) Com recurso à abordagem do balanço de massas para um subconjunto bem definido de tipos de combustíveis ou processos e a cálculos individuais para os restantes tipos de combustíveis e processos da instalação, desde que consiga demonstrar que os resultados para a instalação são mais rigorosos do que os obtidos através de um cálculo para cada tipo de combustível ou processo.

2.1.1. Abordagem do balanço de massas

A abordagem do balanço de massas deve analisar a totalidade do carbono nos factores de produção, acumulações, produtos e exportações, com vista a determinar as emissões de gases com efeito de estufa da instalação, com recurso à seguinte equação:

Emissões de CO₂[t CO₂] = (factores de produção-produtos-exportações – alterações das existências) * factor de conversão CO₂/C

em que:

- Factores de produção [tC]: a totalidade do carbono que entra nos limites da instalação.
- Produtos [tC]: a totalidade do carbono nos produtos e materiais, incluindo subprodutos, que sai dos limites do balanço de massas.
- Exportações [tC]: o carbono exportado dos limites do balanço de massas, por exemplo, descarregado para condutas de águas residuais, depositado em aterro ou através de perdas. As exportações não incluem a libertação de gases com efeito de estufa para a atmosfera.
- Alterações das existências [tC]: Aumento das existências de carbono nos limites da instalação.

O cálculo deve obedecer à seguinte fórmula:

```
Emissões de CO_2[t\ CO_2] = (\Sigma\ (dados\ da\ actividade_{factores\ de\ produção}^{}\ *\ teor\ de\ carbono_{factores\ de\ produção}^{}\ -\ \Sigma\ (dados\ da\ actividade_{produtos}^{}\ *\ teor\ de\ carbono_{exportações}^{}\ -\ \Sigma\ (dados\ da\ actividade_{exportações}^{}\ *\ teor\ de\ carbono_{exportações}^{}\ -\ \Sigma\ (dados\ da\ actividade_{alterações\ das\ existências}^{}\ *\ teor\ de\ carbono_{alterações\ das\ existências}^{}\ )\ *\ 3,664
```

em que:

a) Dados da actividade

O operador deve analisar e comunicar os fluxos de massa de e para a instalação, bem como as alterações das existências correspondentes, separadamente, em relação a todos os combustíveis e materiais pertinentes.

Nível 1

Para um subconjunto de combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 7,5 % para o processo de medição. Para os demais combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 2

Para um subconjunto de combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 5,0 % para o processo de medição. Para os demais combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 3

Os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 4

Os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 1,0 % para o processo de medição.

b) Teor de carbono

Nível 1

No cálculo do balanço de massas, o operador deve observar o disposto no ponto 10 do anexo I em relação à colheita de amostras representativas dos combustíveis, produtos e subprodutos, e à determinação dos respectivos teor de carbono e fracção de biomassa.

c) Teor energético

Nível 1

Tendo em vista a coerência das informações comunicadas, deve ser calculado o teor energético dos fluxos de combustíveis e de materiais (expresso como valor calorífico líquido dos fluxos em causa).

2.1.2. Emissões de combustão

As emissões de combustão devem ser monitorizadas em conformidade com o anexo II.

2.1.3. Emissões de processo

Os processos específicos que dão origem a emissões de CO, incluem:

1) Regeneração por cracking catalítico e outros tipos de regeneração catalítica

O coque depositado no catalisador como subproduto do processo de *craking* é queimado no regenerador, a fim de restaurar a actividade do catalisador. Outros processos de refinaria utilizam um catalisador que necessita de regeneração, por exemplo, de reforma catalítica.

A quantidade de CO₂ emitida neste processo deve ser calculada em conformidade com o anexo II, em que a quantidade de coque queimada é utilizada como dados da actividade e o teor de carbono do coque como base para o cálculo do factor de emissão.

Emissões de CO, = dados da actividade * factor de emissão * factor de conversão

em que:

a) Dados da actividade

Nível 1

Quantidade de coque [t] queimada no catalisador durante o período de informação, com base nas orientações sectoriais sobre as melhores práticas para o processo específico.

Nível 2

Quantidade de coque [t] queimada no catalisador durante o período de informação, calculada através do balanço entre calor e material no catalisador de *cracking* catalítico.

b) Factor de emissão

Nível 1

Factor de emissão específico da actividade $[t\ CO_2/t\ de\ coque]$ baseado no teor de carbono do coque, determinado em conformidade com o disposto no ponto $10\ do\ anexo\ I.$

c) Factor de conversão

Nível 1

Factor de conversão: 1,0

2) Cokers

As fugas de CO₂ dos queimadores de coque dos *fluid cokers* e dos *flexi cokers*, devem ser calculadas do seguinte modo:

Emissões de CO₂ = dados da actividade * factor de emissão

em que:

a) Dados da actividade

Nível 1

Quantidade de coque [t] produzida durante o período de informação, determinada por pesagem, com uma margem de incerteza admissível de ± 5,0 % para o processo de medição.

Nível 2

Quantidade de coque [t] produzida durante o período de informação, determinada por pesagem, com uma margem de incerteza admissível de ± 2,5 % para o processo.

b) Factor de emissão

Nível 1

Factor de emissão específico [t CO₂/t de coque], com base nas orientações sectoriais sobre as melhores práticas para o processo específico.

Nível 2

Factor de emissão específico [t CO_2 /t de coque] determinado com base no teor de CO_2 medido em efluentes gasosos, em conformidade com o disposto no ponto 10 do anexo I.

3) Produção de hidrogénio em refinaria

O CO, emitido varia em função do teor de carbono do gás de alimentação. Em consequência, as emissões de CO, devem ser calculadas com base neste factor de produção.

Emissões de CO_2 = dados da actividade $_{factor\ de\ produção}$ * factor de emissão

em que:

a) Dados da actividade

Nível 1

Quantidade de hidrocarbonetos de alimentação [t de alimentação] utilizada durante o período de informação, determinada por medição do volume, com uma margem de incerteza admissível de ± 7,5 % para o processo de medição.

Nível 2

Quantidade de hidrocarbonetos de alimentação [t de alimentação] utilizada durante o período de informação, determinada por medição do volume, com uma margem de incerteza admissível de ± 2,5 % para o processo de medição.

b) Factor de emissão

Nível 1

Utilizar um valor de referência de 2,9 t $\mathrm{CO_2}$ por t
 de gás de alimentação utilizada, conservadoramente baseado no etano.

Nível 2

Utilizar um factor de emissão específico da actividade $[CO_2/t$ de gás de alimentação] calculado a partir do teor de carbono do gás de alimentação, determinado em conformidade com o disposto no ponto 10 do anexo I.

2.2. Medição das emissões de CO,

São aplicáveis as orientações para medição constantes do anexo I.

3. DETERMINAÇÃO DAS EMISSÕES DE GASES COM EFEITO DE ESTUFA, EXCLUINDO CO,

Em conformidade com as disposições pertinentes da directiva, poderão ser ulteriormente elaboradas orientações específicas para a determinação das emissões de gases com efeito de estufa, excluindo CO₂.

ANEXO IV

Orientações específicas da actividade para os fornos de coque enunciados no anexo I da directiva

LIMITES E INTEGRALIDADE

Os fornos de coque podem fazer parte do processo de produção de aço, com uma relação técnica directa com instalações de sinterização para a produção de gusa e aço, incluindo vazamento contínuo, provocando um intenso intercâmbio de energia e de material (por exemplo, gás de alto forno, gás de coqueria, coque) em funcionamento regular. Se o título da instalação, nos termos do artigo 4.º, 5.º e 6.º da directiva, incluir a totalidade do processo de produção do aço e não apenas o forno de coque, as emissões de CO₂ podem igualmente ser monitorizadas em todo o processo, com recurso à abordagem do balanço de massas especificado no ponto 2.1.1 do presente anexo.

Se na instalação se proceder à depuração de fumos e as emissões resultantes não forem incluídas nas emissões de processo da instalação, as mesmas devem ser calculadas em conformidade com o anexo II.

2. DETERMINAÇÃO DAS EMISSÕES DE CO,

Nos fornos de coque, as emissões de CO, provêm das seguintes fontes:

- matérias-primas (coque de carvão ou de petróleo),
- combustíveis convencionais (por exemplo, gás natural),
- gases da indústria (por exemplo, gás de alto forno),
- outros combustíveis,
- depuração de fumos.

2.1. Cálculo das emissões de CO₂

No caso de o forno de coque estar integrado no processo de produção de aço, o operador pode calcular as emissões:

- a) Da totalidade do processo integrado, através da abordagem do balanço de massas; ou
- b) Do forno de coque, enquanto actividade individual do processo integrado.

2.1.1. Abordagem do balanço de massas

A abordagem do balanço de massas deve analisar a totalidade do carbono nos factores de produção, acumulações, produtos e exportações, com vista a determinar as emissões de gases com efeito de estufa da instalação, com recurso à seguinte equação:

Emissões de CO₂ [t CO₂] = (factores de produção-produtos-exportações – alterações das existências) * factor de conversão CO₃/C

sendo:

- Factores de produção [tC]: a totalidade do carbono que entra nos limites da instalação.
- Produtos [tC]: a totalidade do carbono nos produtos e materiais, incluindo subprodutos, que sai dos limites do balanço de massas.
- Exportações [tC]: o carbono exportado dos limites do balanço de massas, por exemplo, descarregado para condutas de águas residuais, depositado em aterro ou através de perdas. As exportações não incluem a libertação de gases com efeito de estufa para a atmosfera.
- Alterações das existências [tC]: Aumentos das existências de carbono nos limites da instalação.

O cálculo deve obedecer à seguinte fórmula:

```
Emissões de CO_2[t\ CO_2] = (\Sigma\ (dados\ da\ actividade_{factores\ de\ produção}^{}\ *\ teor\ de\ carbono_{factores\ de\ produção}^{}\ -\ \Sigma\ (dados\ da\ actividade_{produtos}^{}\ *\ teor\ de\ carbono_{exportações}^{}\ -\ \Sigma\ (dados\ da\ actividade_{exportações}^{}\ *\ teor\ de\ carbono_{exportações}^{}\ -\ \Sigma\ (dados\ da\ actividade_{alterações\ das\ existências}^{}\ *\ teor\ de\ carbono_{alterações\ das\ existências}^{}\ )) * 3,664
```

em que:

a) Dados da actividade

O operador deve analisar e comunicar os fluxos de massa de e para a instalação, bem como as alterações das existências correspondentes, separadamente, em relação a todos os combustíveis e materiais pertinentes.

Nível 1

Para um subconjunto de combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 7,5 % para o processo de medição. Para os demais combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 2

Para um subconjunto de combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 5,0 % para o processo de medição. Para os demais combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 3

Os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 4

Os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 1,0 % para o processo de medição.

b) Teor de carbono

Nível 1

No cálculo do balanço de massas, o operador deve observar o disposto no ponto 10 do anexo I em relação à colheita de amostras representativas dos combustíveis, produtos e subprodutos, e à determinação dos respectivos teor de carbono e fracção de biomassa.

c) Teor energético

Nível 1

Tendo em vista a coerência das informações comunicadas, deve ser calculado o teor energético dos fluxos de combustíveis e de materiais (expresso como valor calorífico líquido dos fluxos em causa).

2.1.2. Emissões de combustão

Os processos de combustão ocorridos em fornos de coque em que os combustíveis (por exemplo, coque, carvão e gás natural) não são utilizados como agentes redutores ou não resultam de reacções metalúrgicas devem ser monitorizados e as informações correspondentes devem ser comunicadas em conformidade com o anexo II.

2.1.3. Emissões de processo

Durante a carbonização na câmara de coque do forno de coque, o carvão é convertido, com exclusão de ar, em coque e gás de coqueria bruto. O material/fluxo utilizado que contém maior teor de carbono é o carvão, mas podem ser igualmente pedaços de coque, coque de petróleo, gases de petróleo e de processo, como o gás de alto forno. O gás de coqueria bruto, enquanto parte do resultado do processo, contém muito carbono, nomeadamente sob a forma de dióxido de carbono (CO₂), monóxido de carbono (CO), metano (CH₄) e hidrocarbonetos (C,H₂).

A emissão total de CO, dos fornos de coque deve ser calculada segundo a seguinte fórmula:

Emissão de $CO_2[t\ CO_2] = \Sigma$ (dados da actividade $_{\text{FACTORES}}$ DE $_{\text{PRODUÇÃO}}$ * factor de emissão $_{\text{FACTORES}}$ DE $_{\text{PRODUÇÃO}}$) $-\Sigma$ (dados da actividade $_{\text{PRODUÇÃO}}$ * factor de emissão $_{\text{PRODUÇÃO}}$)

em que:

a) Dados da actividade

Os dados da actividade_{pactores De Produção} podem incluir o carvão, como matéria-prima, pedaços de coque, coque de petróleo, petróleo, gás de alto forno e afins. Os dados da actividade_{produção} podem incluir: coque, alcatrão, óleo ligeiro, gás de coqueria e afins.

a1. Combustível utilizado no processo

Nível 1

Os fluxos de massa de combustíveis seleccionados de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 7,5 % para o processo de medição.

Nível 2

Os fluxos de massa de combustíveis de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 5,0 % para o processo de medição.

Nível 3

Os fluxos de massa do combustível de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 4

Os fluxos de massa do combustível de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 1,0 % para o processo de medição.

a2. Valor calorífico líquido

Nível 1

O operador aplica valores caloríficos líquidos específicos por país para o combustível em causa, em conformidade com o apêndice 2.1 A.3 «1990 country specific net calorific values» da versão de 2000 do «Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories» (http://www.ipcc.ch/pub//guide.htm) do IPCC.

Nível 2

O operador aplica valores caloríficos líquidos específicos por país para o combustível em causa, em conformidade com o mais recente inventário nacional apresentado pelo Estado-Membro pertinente ao Secretariado da Convenção-Quadro das Nações Unidas sobre as Alterações Climáticas.

Nível 3

O valor calorífico líquido representativo de cada lote de combustível de uma instalação é medido pelo operador, por um laboratório contratado ou pelo fornecedor do combustível, em conformidade com o disposto no ponto 10 do anexo I.

b) Factor de emissão

Nível 1

Utilização dos factores de referência do quadro infra ou do ponto 8 do anexo I:

QUADRO 1

Factores de emissão dos gases de processo (incluindo a componente de CO₂ do combustível) (24)

Factor de emissão [t CO ₂ /TJ]		Fonte dos dados
Gás de coqueria	47,7	IPCC
Gás de alto-forno	241,8	IPCC

Nível 2

Os factores de emissão específicos são determinados em conformidade com o disposto no ponto 10 do anexo I.

2.2. Medição das emissões de CO,

São aplicáveis as orientações para medição constantes do anexo I.

3. DETERMINAÇÃO DAS EMISSÕES DE GASES COM EFEITO DE ESTUFA, EXCLUINDO CO,

Em conformidade com as disposições pertinentes da directiva, poderão ser ulteriormente elaboradas orientações específicas para a determinação das emissões de gases com efeito de estufa, excluindo CO₃.

⁽²⁴⁾ Os valores baseiam-se nos factores do IPCC, expressos em tC/TJ, multiplicados por um factor de conversão de CO₂/C de 3,664.

ANEXO V

Orientações específicas da actividade para as instalações de ustulação ou sinterização de minério metálico enunciadas no anexo I da directiva

1. LIMITES E INTEGRALIDADE

As instalações de ustulação ou sinterização de minério metálico podem ser parte integrante da produção de aço, com uma relação técnica directa com os fornos de coque e as instalações para a produção de gusa e aço, incluindo o vazamento contínuo. Deste modo, verifica-se um intenso intercâmbio de energia e de material (por exemplo, gás de alto forno, gás de coqueria, coque, calcário) em funcionamento regular. Se o título da instalação, nos termos dos artigos 4.º, 5.º e 6.º da directiva, incluir a totalidade do processo de produção do aço e não apenas a instalação de ustulação ou sinterização, as emissões de CO₂ podem igualmente ser monitorizadas ao longo de todo o processo integrado de produção de aço. Nesse caso, pode ser adoptada a abordagem do balanço de massas (ponto 2.1.1 do presente anexo).

Se na instalação se proceder à depuração de fumos e as emissões resultantes não forem incluídas nas emissões de processo da instalação, as mesmas devem ser calculadas em conformidade com o anexo II.

2. DETERMINAÇÃO DAS EMISSÕES DE CO.

Nas instalações de ustulação ou sinterização de minério metálico, as emissões de CO₂ provêm das seguintes fontes:

- matérias-primas (calcinação de calcário e dolomite),
- combustíveis convencionais (gás natural e coque/fragmentos de coque),
- gases da indústria (por exemplo, gás de coqueria e gás de alto forno),
- resíduos do processo utilizados como factores de produção, incluindo poeiras filtradas da instalação de sinterização, do conversor e do alto-forno,
- outros combustíveis,
- depuração de fumos.

2.1. Cálculo das emissões de CO,

O operador pode calcular as emissões através do balanço de massas ou através das várias fontes da instalação.

2.1.1. Abordagem do balanço de massas

A abordagem do balanço de massas deve analisar a totalidade do carbono nos factores de produção, acumulações, produtos e exportações, com vista a determinar as emissões de gases com efeito de estufa da instalação, com recurso à seguinte equação:

Emissões de CO₂ [t CO₂] = (factores de produção-produtos-exportações – alterações das existências) * factor de conversão CO₂/C

em que:

- Factores de produção [tC]: a totalidade do carbono que entra nos limites da instalação.
- Produtos [tC]: a totalidade do carbono nos produtos e materiais, incluindo subprodutos, que sai dos limites do balanço de massas.
- Exportações [tC]: o carbono exportado dos limites do balanço de massas, por exemplo, descarregado para condutas de águas residuais, depositado em aterro ou através de perdas. As exportações não incluem a libertação de gases com efeito de estufa para a atmosfera.
- Alterações das existências [tC]: Aumentos das existências de carbono nos limites da instalação.

O cálculo deve obedecer à seguinte fórmula:

Emissões de $CO_2[t\ CO_2] = (\sum\ (dados\ da\ actividade_{factores\ de\ produção}\ *\ teor\ de\ carbono_{factores\ de\ produção}) - \sum\ (dados\ da\ actividade_{produtos}\ *\ teor\ de\ carbono_{exportações}\ - \sum\ (dados\ da\ actividade_{exportações}\ *\ teor\ de\ carbono_{exportações}) - \sum\ (dados\ da\ actividade_{alterações\ das\ existências}\ *\ teor\ de\ carbono_{alterações\ das\ existências})) * 3,664$

em que:

a) Dados da actividade

O operador deve analisar e comunicar os fluxos de massa de e para a instalação, bem como as alterações das existências correspondentes, separadamente, em relação a todos os combustíveis e materiais pertinentes.

Nível 1

Para um subconjunto de combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 7,5 % para o processo de medição. Para os demais combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 2

Para um subconjunto de combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 5,0 % para o processo de medição. Para os demais combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 3

Os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 4

Os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 1,0 % para o processo de medição.

b) Teor de carbono

No cálculo do balanço de massas, o operador deve observar o disposto no ponto 10 do anexo I em relação à colheita de amostras representativas dos combustíveis, produtos e subprodutos, e à determinação do respectivo teor de carbono e fracção de biomassa.

c) Teor energético

Tendo em vista a coerência das informações comunicadas, deve ser calculado o teor energético dos fluxos de combustíveis e de materiais (expresso como valor calorífico líquido dos fluxos em causa).

2.1.2. Emissões de combustão

Os processos de combustão que ocorrem em instalações de ustulação e sinterização de minério metálico devem ser monitorizados e as informações correspondentes comunicadas em conformidade com o anexo II.

2.1.3. Emissões de processo

Durante a calcinação na grelha, é libertado CO₂ dos factores de produção, isto é, das várias matérias-primas (normalmente à base de carbonato de cálcio) e dos resíduos de processo reutilizados. Para cada factor de produção utilizado, a quantidade de CO₂ deve ser calculada do seguinte modo:

a) <u>Dados da activida</u>de

Nível 1

As quantidades [t] de carbonato $[t_{CaCO]}$, t_{MgCQ_1} ou $t_{CaCO_1,MgCO_2}]$ e de resíduos de processo utilizadas como factores de produção no processo, pesadas pelo operador ou fornecedor, com uma margem de incerteza admissível inferior a \pm 5,0 % para o processo de medição.

Nível 2

As quantidades [t] de carbonato [t_{CaCO_i} , t_{MgCO_i} ou $t_{CaCO_i,MgCO_i}$] e de resíduos de processo utilizadas como factores de produção no processo, pesadas pelo operador ou fornecedor, com uma margem de incerteza admissível inferior a \pm 2,5 % para o processo.

b) Factor de emissão

Nível 1

Para carbonatos: utilizar os rácios estequiométricos constantes do quadro 1:

QUADRO 1

Factores de emissão estequiométricos

Factor de emissão		
CaCO ₃	0,440 t CO ₂ /t CaCO ₃	
MgCO ₃	0,522 t CO ₂ /t MgCO ₃	

Estes valores devem ser ajustados ao teor de humidade e de ganga do carbonato utilizado.

Para resíduos do processo: devem ser determinados, em conformidade com o disposto no ponto 10 do anexo I, factores específicos da actividade.

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

Nível 2

Factores específicos da actividade, determinados em conformidade com o disposto no ponto 10 do anexo I, que determinem a quantidade de carbono no sínter produzido e nas poeiras filtradas. No caso de as poeiras filtradas serem reutilizadas no processo, a quantidade de carbono [t] correspondente não deve ser contabilizada, a fim de evitar a sua dupla contagem.

2.2. Medição das emissões de CO,

São aplicáveis as orientações para medição constantes do anexo I.

3. DETERMINAÇÃO DAS EMISSÕES DE GASES COM EFEITO DE ESTUFA, EXCLUINDO CO,

Em conformidade com as disposições pertinentes da directiva, poderão ser ulteriormente elaboradas orientações específicas para a determinação das emissões de gases com efeito de estufa, excluindo CO₃.

ANEXO VI

Orientações específicas da actividade para as instalações de produção de gusa ou aço, incluindo vazamento contínuo, enumeradas no anexo I da directiva

1. LIMITES E INTEGRALIDADE

As orientações constantes do presente anexo dizem respeito às instalações de produção de gusa e aço, incluindo vazamento contínuo. Abrangem a produção de aço primária [altos fornos e conversor de oxigénio] e secundária [forno de arco eléctrico].

As instalações para a produção de gusa ou aço, incluindo vazamento contínuo, são, em regra, parte integrante da produção de aço, com uma relação técnica com os fornos de coque e as instalações de sinterização. Deste modo, verifica-se um intenso intercâmbio de energia e de material (por exemplo, gás de alto-forno, gás de coqueria, coque, calcário) em funcionamento regular. Se o título da instalação, nos termos do artigo 4.º, 5.º e 6.º da directiva, incluir a totalidade do processo de produção do aço e não apenas os altos-fornos, as emissões de CO2 podem igualmente ser monitorizadas ao longo de todo o processo integrado de produção de aço. Nesse caso, pode ser adoptada a abordagem do balanço de massas apresentada no ponto 2.1.1 do presente anexo.

Se na instalação se proceder à depuração de fumos e as emissões resultantes não forem incluídas nas emissões de processo da instalação, as mesmas devem ser calculadas em conformidade com o anexo II.

2. DETERMINAÇÃO DAS EMISSÕES DE CO,

Nas instalações de produção de gusa ou aço, incluindo vazamento contínuo, as emissões de CO₂ podem provir das seguintes fontes:

- matérias-primas (calcinação de calcário ou dolomite),
- combustíveis convencionais (gás natural, carvão e coque),
- agentes redutores (coque, carvão, plásticos, etc.),
- gases da indústria (gás de coqueria, gás de alto-forno e gás do conversor de oxigénio),
- consumo de eléctrodos de grafite,
- outros combustíveis,
- depuração de fumos.

2.1. Cálculo das emissões de CO,

O operador pode calcular as emissões quer através do balanço de massas, quer para todas as fontes da instalação.

2.1.1. Abordagem do balanço de massas

A abordagem do balanço de massas deve analisar a totalidade do carbono nos factores de produção, acumulações, produtos e exportações, a fim de determinar as emissões de gases com efeito de estufa da instalação, com recurso à seguinte equação:

Emissões de CO₂ [t CO₂] = (factores de produção-produtos-exportações – alterações das existências) * factor de conversão CO₂/C

em que:

- Factores de produção [tC]: a totalidade do carbono que entra nos limites da instalação.
- Produtos [tC]: a totalidade do carbono nos produtos e materiais, incluindo subprodutos, que sai dos limites do balanço de massas.

- Exportações [tC]: o carbono exportado dos limites do balanço de massas, por exemplo, descarregado para condutas de águas residuais, depositado num aterro ou através de perdas. As exportações não incluem a libertação de gases com efeito de estufa para a atmosfera.
- Alterações das existências [tC]: aumento das existências de carbono nos limites da instalação.

O cálculo deve obedecer à seguinte fórmula:

```
Emissões de CO_2[t\ CO_2] = (\Sigma\ (dados\ da\ actividade_{factores\ de\ produção}^{}\ *\ teor\ de\ carbono_{factores\ de\ produção}^{}\ -\ \Sigma\ (dados\ da\ actividade_{produtos}^{}\ *\ teor\ de\ carbono_{produtos}^{}\ -\ \Sigma\ (dados\ da\ actividade_{exportações}^{}\ *\ teor\ de\ carbono_{exportações}^{}\ -\ \Sigma\ (dados\ da\ actividade_{alterações\ das\ existências}^{}\ )
```

em que:

a) Dados da actividade

O operador deve analisar e comunicar os fluxos de massa de e para a instalação, bem como as alterações das existências correspondentes, separadamente, em relação a todos os combustíveis e materiais pertinentes.

Nível 1

Para um subconjunto de combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 7,5 % para o processo de medição. Para os demais combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 2

Para um subconjunto de combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 5,0 % para o processo de medição. Para os demais combustíveis e materiais, os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 3

Os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 4

Os fluxos de massa de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 1,0 % para o processo de medição.

b) Teor de carbono

Nível 1

No cálculo do balanço de massas, o operador deve observar o disposto no ponto 10 do anexo I em relação à colheita de amostras representativas dos combustíveis, produtos e subprodutos, e à determinação dos respectivos teor de carbono e fracção de biomassa.

c) Teor energético

Nível 1

Tendo em vista a coerência das informações comunicadas, deve ser calculado o teor energético dos fluxos de combustíveis e de materiais (expresso como valor calorífico líquido dos fluxos em causa).

2.1.2. Emissões de combustão

Os processos de combustão ocorridos em instalações de produção de gusa ou aço, incluindo vazamento contínuo, em que os combustíveis (por exemplo, coque, carvão e gás natural) não sejam utilizados como agentes redutores ou não resultem de reacções metalúrgicas devem ser monitorizados e as informações correspondentes devem ser comunicadas em conformidade com o anexo II.

2.1.3. Emissões de processo

As instalações de produção de gusa ou aço, incluindo vazamento contínuo, caracterizam-se, normalmente, por uma sequência de instalações (por exemplo, altos-fornos, conversor de oxigénio, unidade de laminagem a quente), frequentemente tecnicamente associadas a outras instalações (por exemplo, forno de coque, instalação de sinterização, instalação de produção de energia). Neste tipo de instalações são utilizados diversos combustíveis diferentes como agentes redutores. Em geral, estas instalações produzem igualmente gases da indústria com diferentes composições, por exemplo, gás de coqueria, gás de alto-forno e gás do conversor de oxigénio.

As emissões totais de CO₂ das instalações para a produção de gusa e aço, incluindo vazamento contínuo, são calculadas do seguinte modo:

Emissão de $\mathrm{CO_2[t\ CO_2]} = \Sigma$ (dados da actividade $_{\mathrm{PRODUCÃO}}$ * factor de emissão $_{\mathrm{PRODUCÃO}}$) $-\Sigma$ (dados da actividade $_{\mathrm{PRODUCÃO}}$ * factor de emissão $_{\mathrm{PRODUCÃO}}$)

em que:

- a) Dados da actividade
- a1. Combustível utilizado

Nível 1

Os fluxos de massa do combustível de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 7,5 % para o processo de medição.

Nível 2

Os fluxos de massa do combustível de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 5,0 % para o processo de medição.

Nível 3

Os fluxos de massa do combustível de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 4

Os fluxos de massa do combustível de e para a instalação são determinados com recurso a dispositivos de medição de que resulte uma margem de incerteza admissível inferior a ± 1,0 % para o processo de medição.

a2. Valor calorífico líquido (se pertinente)

Nível 1

O operador aplica valores caloríficos líquidos específicos por país para o combustível em causa, em conformidade com o apêndice 2.1 A.3 «1990 country specific net calorific values» da versão de 2000 do «Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories» (http://www.ipcc.ch/pub//guide.htm) do IPCC.

Nível 2

O operador aplica valores caloríficos líquidos específicos por país para o combustível em causa, em conformidade com o mais recente inventário nacional apresentado pelo Estado-Membro pertinente ao Secretariado da Convenção-Quadro das Nações Unidas sobre as Alterações Climáticas.

Nível 3

O valor calorífico líquido representativo de cada lote de combustível de uma instalação é medido pelo operador, por um laboratório contratado ou pelo fornecedor do combustível, em conformidade com o disposto no ponto 10 do anexo I.

b) Factor de emissão

O factor de emissão para os dados da actividade $_{PRODUÇÃO}$ diz respeito à quantidade de carbono não CO_2 produzido pelo processo, expresso em t CO_2/t , a fim de melhorar a comparabilidade.

Nível 1

Sobre os factores de emissão de referência para os factores de produção e a produção, ver quadros 1 e 2 infra e ponto 8 do anexo I.

QUADRO 1 Factores de emissão de referência para os factores de produção (25)

Factor de emissão		Fonte do factor de emissão
Gás de coqueria	47,7 t CO ₂ /TJ	IPCC
Gás de alto-forno	241,8 t CO ₂ /TJ	IPCC
Gás do conversor de oxigénio	186,6 t CO ₂ /TJ	WBCSD/WRI
Eléctrodos de grafite	3,60 t CO ₂ /t eléctrodos	IPCC
PET	2,24 t CO ₂ /t de PET	WBCSD/WRI
PE	2,85 t CO ₂ /t de PE	WBCSD/WRI
CaCO ₃	0,44 t CO ₂ /t CaCO ₃	Rácio estequiométrico
CaCO ₃ -MgCO ₃	0,477 t CO ₂ /t CaCO ₃ -MgCO ₃	Rácio estequiométrico

QUADRO 2
Factor de emissão de referência para a produção (baseado no teor de carbono)

Factor de emissão [t CO ₂ /t]	Fonte do factor de emissão	
Minério	0	IPCC
Gusa, sucata de gusa e produtos de ferro	0,1467	IPCC
Sucata de aço e produtos de aço	0,0147	IPCC

Nível 2

Factores de emissão específicos [t $CO_J/t_{\text{FACTORES DE PRODUÇÃO}}$ ou $t_{\text{PRODUÇÃO}}$] dos materiais utilizados e produzido, determinados em conformidade com o disposto no ponto 10 do anexo I.

2.2. Medição das emissões de CO,

São aplicáveis as orientações para medição constantes do anexo I.

3. DETERMINAÇÃO DAS EMISSÕES DE GASES, EXCLUINDO CO,

Em conformidade com as disposições pertinentes da directiva, poderão ser ulteriormente elaboradas orientações específicas para a determinação das emissões de gases com efeito de estufa, excluindo CO₃.

⁽²⁵⁾ Os valores baseiam-se nos factores do IPCC, expressos em tC/TJ, multiplicados por um factor de conversão CO₃/C de 3,664.

ANEXO VII

Orientações específicas da actividade para as instalações de produção de clínquer enunciadas no anexo I da directiva

1. LIMITES E INTEGRALIDADE

Se na instalação se proceder à depuração de fumos e as emissões resultantes não forem incluídas nas emissões de processo da instalação, as mesmas devem ser calculadas em conformidade com o anexo II.

2. DETERMINAÇÃO DAS EMISSÕES DE CO,

Nas instalações de produção de cimento, as emissões de CO, provêm das seguintes fontes:

- calcinação de calcário nas matérias-primas,
- combustíveis fósseis convencionais para forno,
- combustíveis fósseis alternativos para forno e matérias-primas,
- combustíveis de biomassa para forno (resíduos de biomassa),
- combustíveis não destinados a forno,
- depuração de fumos.

2.1. Cálculo das emissões de CO,

2.1.1. Emissões de combustão

Os processos de combustão em que são utilizados diversos tipos de combustíveis (por exemplo, carvão, coque de petróleo, fuelóleo, gás natural e a vasta gama de combustíveis de resíduos) e que ocorrem em instalações de produção de clínquer devem ser monitorizados e as informações correspondentes comunicadas em conformidade com o anexo II. As emissões resultantes da combustão do teor orgânico das matérias-primas (alternativas) devem igualmente ser calculadas em conformidade com o disposto no anexo II.

Nos fornos de cimento, a combustão incompleta de combustíveis fósseis é negligenciável, devido às muito elevadas temperaturas de combustão, aos longos períodos de permanência nos fornos e às quantidades mínimas de carbono residual encontradas no clínquer. Em consequência, todos os combustíveis para fornos de cimento devem ser considerados integralmente oxidados (factor de oxidação = 1,0).

2.1.2. Emissões de processo

Durante a calcinação no forno de cimento, os carbonatos da mistura de matérias-primas libertam CO₂. O CO₂ resultante da calcinação está directamente relacionado com a produção de clínquer.

2.1.2.1. CO, resultante da produção de clínquer

O CO₂ resultante da calcinação deve ser calculado com base nas quantidades de clínquer produzidas e no teor de CaO e MgO do clínquer. O factor de emissão deve ser corrigido para ter em conta o Ca e o Mg já calcinados que entram no forno, por exemplo, através de cinzas volantes ou de combustíveis ou materiais alternativos, com um teor de CaO considerável (por exemplo, lamas de depuração).

As emissões devem ser calculadas com base no teor de carbonatos dos factores de produção do processo (método de cálculo A) ou na quantidade de clínquer produzida (método de cálculo B). Estas abordagens são consideradas equivalentes.

Método de cálculo A: Carbonatos

O cálculo deve basear-se no teor de carbonatos dos factores de produção do processo. O ${\rm CO}_2$ deve ser calculado através da seguinte fórmula:

em que:

a) Dados da actividade

Nível 1

A quantidade de carbonatos puros (por exemplo, calcário) [t] contida na matéria-prima utilizada no processo durante o período de informação, determinada por pesagem da matéria-prima, com uma margem de incerteza admissível inferior a ± 5,0 %. A determinação da quantidade de carbonatos a partir da composição da matéria-prima está caracterizada nas orientações para as melhores práticas da indústria.

Nível 2

A quantidade de carbonatos puros (por exemplo, calcário) [t] contida na matéria-prima utilizada no processo durante o período de informação, determinada por pesagem da matéria-prima, com uma margem de incerteza admissível inferior a ± 2,5 %. A determinação da quantidade de carbonatos a partir da composição da matéria-prima é efectuada pelo operador, em conformidade com o disposto no ponto 10 do anexo I.

b) Factor de emissão

Nível 1

Os rácios estequiométricos dos carbonatos que entram no processo, em conformidade com o quadro 1 infra.

QUADRO 1 Factores de emissão estequiométricos

Carbonatos	Factor de emissão
CaCO ₃	0,440 [t CO ₂ /CaCO ₃]
MgCO ₃	0,522 [t CO ₂ /MgCO ₃]

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

Método de cálculo B: Produção de clínquer

O presente método de cálculo baseia-se na quantidade de clínquer produzida. O CO₂ deve ser calculado através da seguinte fórmula:

Emissões de CO_{2clinouer} = dados da actividade * factor de emissão * factor de conversão

Se as estimativas de emissão se basearem na produção de clínquer, a libertação de CO₂ da calcinação das poeiras dos fornos de cimento deve ser tida em conta nas instalações em que se verifique a libertação destas poeiras. As emissões da produção de clínquer e das poeiras dos fornos de cimento devem ser calculadas separadamente e adicionadas às emissões totais:

Emissões relacionadas com a produção de clínquer

a) Dados da actividade

Quantidade de clínquer [t] produzida durante o período de informação.

Nível 1

Quantidade de clínquer [t] produzida, determinada por pesagem, com uma margem de incerteza admissível inferior a ± 5 % para o processo.

Nível 2a

Quantidade de clínquer [t] produzida, determinada por pesagem, com uma margem de incerteza admissível inferior a ± 2,5 % para o processo.

Nível 2b

A produção de clínquer [t] resultante do fabrico de cimento, determinada por pesagem, com uma margem de incerteza admissível inferior a ± 1,5 % para o processo de medição, é calculada com recurso à seguinte fórmula (equilíbrio material, tendo em conta o escoamento de clínquer, o fornecimento de clínquer e a variação das existências de clínquer):

clínquer produzido [t] = (cimento produzido [t] * rácio clínquer/cimento [t de clínquer/t de cimento])

- (clínquer fornecido [t]) + (clínquer escoado [t])
- (variação das existências de clínquer [t])

O rácio cimento/clínquer deve ser calculado e aplicado separadamente para os diferentes tipos de cimento produzidos na instalação. As quantidades de clínquer escoadas e fornecidas são determinadas com uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição. A incerteza da determinação das alterações das existências ao longo do período de informação deve ser inferior a ± 10 %.

b) Factor de emissão

Nível 1

Factor de emissão: 0,525 t CO₂/t de clínquer

Nível 2

O factor de emissão é calculado a partir de um equilíbrio CaO-MgO, partindo-se do pressuposto de que estes elementos não decorrem da conversão de carbonatos, estando já contidos nos factores de produção. A composição do clínquer e das matérias-primas pertinentes deve ser determinada em conformidade com o disposto no ponto 10 do anexo I.

O factor de emissão é calculado através da seguinte equação:

Factor de emissão [t CO_2/t clínquer] = 0,785 * (produção $_{CaO}$ [t CaO/t clínquer] – Entrada $_{CaO}$ [t CaO/t factores de produção]) + 1,092 * (produção $_{MgO}$ [t MgO/t clínquer] – Entrada $_{MgO}$ [t MgO/t factores de produção])

Esta equação utiliza a fracção estequiométrica de CO,/CaO e CO,/MgO constante do quadro 2.

QUADRO 2 Factores de emissão estequiométricos para o CaO e o MgO (produção líquida)

Óxidos	Factor de emissão
CaO	0,785 [t CO ₂ /CaO]
MgO	1,092 [t CO ₂ /MgO]

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

Emissões relacionadas com poeiras libertadas

O CO₂ das poeiras de derivação (*bypass*) ou das poeiras do forno de cimento libertadas deve ser calculado com base nas quantidades de poeira libertadas e no factor de emissão do clínquer, corrigido de modo a ter em conta a calcinação parcial das poeiras do forno de cimento. Contrariamente às poeiras libertadas do forno de cimento, as poeiras de derivação libertadas são consideradas inteiramente calcinadas. As emissões são calculadas do seguinte modo:

Emissões de CO_{200ciras} = dados da actividade * factor de emissão * factor de conversão

em que:

a) Dados da actividade

Nível 1

Quantidade de poeiras do forno de cimento [t] libertadas durante o período de informação, determinada por pesagem, com uma margem de incerteza admissível inferior a ± 10 % para o processo.

Nível 2

Quantidade de poeiras do forno de cimento ou de poeiras de derivação [t] libertadas durante o período de informação, determinada por pesagem, com uma margem de incerteza admissível inferior a ± 5,0 % para o processo.

b) Factor de emissão

Nível 1

Aplicar o valor de referência de 0,525 t CO₂ por tonelada de clínquer também para as poeiras do forno de cimento.

Nível 2

Deve ser calculado um factor de emissão [t CO₂/t de poeiras de forno de cimento] baseado no grau de calcinação das poeiras do forno de cimento. A relação entre o grau de calcinação das poeiras do forno de cimento e as emissões de CO₂ por tonelada de poeiras do forno de cimento não é linear, devendo ser aproximada com recurso à seguinte fórmula:

$$EF_{CKD} = \frac{\frac{EF_{Cli}}{1 + EF_{Cli}} * d}{1 - \frac{EF_{Cli}}{1 + EF_{Cli}} * d}$$

em que:

 $\mathrm{EF}_{\mathrm{CKD}}$ = factor de emissão das poeiras de forno de cimento parcialmente calcinadas [t $\mathrm{CO_2/t}$ CKD]

EF_{Cli} = factor de emissão do clínquer específico da instalação [CO₂/t de clínquer]

d = grau de calcinação das poeiras do forno de cimento (CO₂ libertado, em % de CO₂ no carbonato total das várias matérias-primas)

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

2.2. Medição das emissões de CO₂

São aplicáveis as orientações para medição constantes do anexo I.

3. DETERMINAÇÃO DAS EMISSÕES DE GASES COM EFEITO DE ESTUFA, EXCLUINDO CO,

Em conformidade com as disposições pertinentes da directiva, poderão ser ulteriormente elaboradas orientações específicas para a determinação das emissões de gases com efeito de estufa, excluindo CO₂.

ANEXO VIII

Orientações específicas da actividade para as instalações de produção de cal enunciadas no anexo I da directiva

1. LIMITES E INTEGRALIDADE

Se na instalação se proceder à depuração de fumos e as emissões resultantes não forem incluídas nas emissões de processo da instalação, as mesmas devem ser calculadas em conformidade com o anexo II.

2. DETERMINAÇÃO DAS EMISSÕES DE CO,

Nas instalações de produção de cal, as emissões de CO, provêm das seguintes fontes:

- calcinação de calcário e de dolomite nas matérias-primas,
- combustíveis fósseis convencionais para forno,
- combustíveis fósseis alternativos para forno e matérias-primas,
- combustíveis de biomassa para forno (resíduos de biomassa),
- outros combustíveis,
- depuração de fumos.

2.1. Cálculo das emissões de CO

2.1.1. Emissões de combustão

Os processos de combustão em que são utilizados diversos tipos de combustíveis (por exemplo, carvão, coque de petróleo, fuelóleo, gás natural e a vasta gama de combustíveis de resíduos) e que ocorrem em instalações de produção de cal devem ser monitorizados e as informações correspondentes comunicadas em conformidade com o anexo II. As emissões resultantes da combustão do teor orgânico das matérias-primas (alternativas) devem igualmente ser calculadas em conformidade com o disposto no anexo II.

2.1.2. Emissões de processo

Durante a calcinação no forno, os carbonatos das matérias-primas libertam CO₂. A calcinação de CO₂ está directamente associada à produção de cal. Ao nível da instalação, a calcinação de CO₂ pode ser calculada de duas formas: com base na quantidade de carbonatos da matéria-prima (principalmente calcário e dolomite) convertidos no processo (método de cálculo A) ou com base na quantidade de óxidos alcalinos na cal produzida (método de cálculo B). As duas abordagens são consideradas equivalentes.

Método de cálculo A: carbonatos

O cálculo deve basear-se na quantidade de carbonatos utilizada. Deve ser utilizada a seguinte fórmula:

Emissões de CO_2 [t CO_2] = \sum {(dados da actividade_{Carbonatos-FACTORES DE PRODUÇÃO} - dados da actividade_{Carbonatos-PRODUÇÃO}) * factor de emissão * factor de conversão}

em que:

a) Dados da actividade

Os dados da actividade $_{\text{Carbonatos-PACTORES DE PRODUÇÃO}}$ e os dados da actividade $_{\text{Carbonatos-PRODUÇÃO}}$ são as quantidades [t] de CaCO₃, MgCO₃ ou outros carbonatos alcalino-terrosos ou alcalinos utilizados durante o período de informação.

Nível 1

Quantidade de carbonatos puros (por exemplo, calcário) [t] utilizadas no processo de produção e no produto durante o período de informação, determinada por pesagem, com uma margem de incerteza admissível inferior a ± 5,0 % para o processo de medição da matéria-prima. A composição da matéria-prima e do produto deve ser conforme às orientações relativas às melhores práticas industriais do ramo.

Nível 2

Quantidade de carbonatos puros (por exemplo, calcário) [t] utilizadas no processo de produção e no produto durante o período de informação, determinada por pesagem, com uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição da matéria-prima. A composição da matéria-prima e do produto deve ser determinada pelo operador em conformidade com o ponto 10 do anexo I.

b) Factor de emissão

Nível 1

Os rácios estequiométricos dos carbonatos dos factores de produção e da produção, em conformidade com o quadro 1.

QUADRO 1
Factores de emissão estequiométricos

Carbonato	Factor de emissão [t CO ₂ /t Ca-, Mg- ou outro carbonato]	Observações
CaCO ₃	0,440	
MgCO ₃	0,522	
Geral: X _y (CO ₃) _z	Factor de emissão = $[M_{CO2}] / \{Y * [M_x] + Z * [M_{CO3}^{-1}]\}$	X = metais alcalino-terrosos ou alca- linos M_x = peso molecular de X em $[g/mol]$ M_{CO2} = peso molecular de CO_2 = 44 $[g/mol]$ M_{CO3} . = peso molecular de CO_3^{2-} = 60 $[g/mol]$ Y = número estequiométrico de X = 1 (para metais alcalino-terrosos) = 2 (para metais alcalinos) Z = número estequiométrico de CO_3^{2-} = 1

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

Método de cálculo B: óxidos alcalino-terrosos

O CO, deve ser calculado com base nas quantidades de CaO, MgO e de outros óxidos alcalino-terrosos/alcalinos na cal produzida. Devem ser tidos em conta o Ca e o Mg já calcinados que entram no forno, por exemplo, através de cinzas volantes ou de combustíveis ou matérias-primas alternativos com um teor de CaO e/ou MgO considerável.

Deve ser utilizada a seguinte fórmula de cálculo:

Emissões de CO_2 [t CO_2] = \sum {[(dados da actividade $_{\text{óxidos alcalinos PRODUÇÃO}}$ - dados da actividade $_{\text{óxidos alcalinos PACTORES DE}}$ $_{\text{PRODUÇÃO}}$) * factor de emissão * factor de conversão]}

em que:

a) Dados da actividade

A expressão «dados da actividade_{o Produção} – dados da actividade_{o Factores de Produção}» representa a quantidade total [t] de CaO, MgO ou outros óxidos alcalino-terrosos ou alcalinos convertidos a partir dos respectivos carbonatos durante o período de informação.

Nível 1

A massa de CaO, MgO ou outros óxidos alcalino-terrosos ou alcalinos [t] no produto e no processo de produção durante o período de informação, determinada por pesagem efectuada pelo operador, com uma margem de incerteza admissível de ± 5,0 % para o processo de medição, em conformidade com as orientações relativas às melhores práticas industriais em matéria de composição dos tipos de produtos e matérias-primas em causa.

Nível 2

A massa de CaO, MgO ou outros óxidos alcalino-terrosos ou alcalinos [t] no produto e no processo de produção durante o período de informação, determinada por pesagem efectuada pelo operador, com uma margem de incerteza admissível de ± 2,5 % para o processo de medição e análise da composição em conformidade com o disposto no ponto 10 do anexo I.

b) Factor de emissão

Nível 1

Os rácios estequiométricos dos óxidos dos factores de produção e da produção, em conformidade com o quadro 2.

QUADRO 2 Factores de emissão estequiométricos

Carbonato	Factor de emissão [t CO ₃]/[t Ca-, Mg- ou outro óxido]	Observações
CaO	0,785	
MgO	1,092	
Geral: $X_y(O)_z$	Factor de emissão = $ [M_{CO2}] / \{Y * [M_x] + Z * [M_O] \} $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

2.2. Medição das emissões de CO,

São aplicáveis as orientações para medição constantes do anexo I.

3. DETERMINAÇÃO DAS EMISSÕES DE GASES COM EFEITO DE ESTUFA, EXCLUINDO CO,

Em conformidade com as disposições pertinentes da directiva, poderão ser ulteriormente elaboradas orientações específicas para a determinação das emissões de gases com efeito de estufa, excluindo CO₂.

ANEXO IX

Orientações específicas da actividade para as instalações de produção de vidro enunciadas no anexo I da directiva

1. LIMITES E INTEGRALIDADE

Se na instalação se proceder à depuração de fumos e as emissões resultantes não forem incluídas nas emissões de processo da instalação, as mesmas devem ser calculadas em conformidade com o anexo II.

2. DETERMINAÇÃO DAS EMISSÕES DE CO,

Nas instalações de produção de vidro, as emissões de CO, provêm das seguintes fontes:

- fusão dos carbonatos dos metais alcalinos e alcalino-terrosos das matérias-primas,
- combustíveis fósseis convencionais para forno,
- combustíveis fósseis alternativos para forno e matérias-primas,
- combustíveis de biomassa para forno (resíduos de biomassa),
- outros combustíveis,
- aditivos que contenham carbono, incluindo poeiras de coque e de carvão,
- depuração de fumos.

2.1. Cálculo das emissões de CO,

2.1.1. Emissões de combustão

Os processos de combustão que ocorrem em instalações de produção de vidro devem ser monitorizados e as informações correspondentes comunicadas em conformidade com o anexo II.

2.1.2. Emissões de processo

O CO₂ é libertado a partir dos carbonatos das matérias-primas, durante a fusão no forno, bem como da neutralização do HF, HCl e SO₂ dos gases de combustão com calcário ou outros carbonatos. As emissões resultantes da decomposição de carbonatos no processo de fusão e da depuração devem ser incluídas nas emissões da instalação. Estas emissões devem ser adicionadas ao total das emissões, mas, na medida do possível, ser comunicadas separadamente.

O CO₂ libertado pelos carbonatos das matérias-primas durante a fusão no forno está directamente associado à produção de vidro e pode ser calculado de duas formas: com base na quantidade convertida de carbonatos das matérias-primas — principalmente soda, cal/calcário, dolomite e outros carbonatos alcalinos e alcalino-terrosos, bem como vidro reciclado (casco) (método de cálculo A) ou com base na quantidade de óxidos alcalinos no vidro produzido (método de cálculo B). Estes dois métodos de cálculo são considerados equivalentes.

Método de cálculo A: carbonatos

O cálculo deve basear-se na quantidade de carbonatos utilizada. Deve ser utilizada a seguinte fórmula:

Emissões de CO_2 [t CO_2] = (Σ {dados da actividade_{Carbonatos} * factor de emissão} + Σ {aditivo * factor de emissão}) * factor de conversão

em que:

a) Dados da actividade

Os dados da actividade_{Carbonatos} são a quantidade [t] de CaCO₃, MgCO₃, Na₂CO₃, BaCO₃ ou de outros carbonatos alcalinos ou alcalino-terrosos das matérias-primas (soda, cal/calcário, dolomite) transformados durante o período de informação, bem como a quantidade de aditivos que contêm carbono.

Nível 1

A massa de CaCO₃, MgCO₃, Na₂CO₃, BaCO₃ ou outros carbonatos alcalinos ou alcalino-terrosos e a massa de aditivos que contêm carbono [t] utilizados no processo durante o período de informação, determinada por pesagem das matérias-primas correspondentes pelo operador ou pelo fornecedor, com uma margem de incerteza admissível de ± 2,5 % para o processo de medição, e os dados relativos à composição constantes das orientações relativas às melhores práticas industriais para a categoria de produtos em causa.

Nível 2

A massa de CaCO₃, MgCO₃, Na₂CO₃, BaCO₃ ou de outros carbonatos alcalinos ou alcalino-terrosos e a massa de aditivos que contêm carbono [t] utilizados no processo durante o período de informação, determinada por pesagem das matérias-primas correspondentes pelo operador ou pelo fornecedor, com uma margem de incerteza admissível de +1,0 % para o processo de medição e análise da composição em conformidade com o disposto no ponto 10 do anexo I.

b) Factor de emissão

Nível 1

Carbonatos

Os rácios estequiométricos dos carbonatos dos factores de produção e da produção, em conformidade com o quadro 1.

QUADRO 1 Factores de emissão estequiométricos

Carbonato	Factor de emissão [t CO ₂ /t Ca-, Mg- Na-, Ba- ou outro carbonato]	Observações
CaCO ₃	0,440	
MgCO ₃	0,522	
Na ₂ CO ₃	0,415	
BaCO ₃	0,223	
Geral: $X_y(CO_3)_z$	Factor de emissão = $[M_{CO2}] / \{Y * [M_x] + Z * [M_{CO3}^2]\}$	X = metais alcalino-terrosos ou alcalinos M _x = peso molecular de X em [g/mol] M _{co2} = peso molecular de CO ₂ = 44 [g/mol] M _{co3} = peso molecular de CO ₃ ²⁻ = 60 [g/mol] Y = número estequiométrico de X = 1 (para metais alcalino-terrosos) = 2 (para metais alcalinos) Z = número estequiométrico de

Estes valores devem ser ajustados em função do teor de humidade e de ganga do carbonato utilizado.

Aditivos

Factor de emissão específico, determinado em conformidade com o disposto no ponto 10 do anexo I.

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

Método de cálculo B: óxidos alcalinos

As emissões de CO₂ devem ser calculadas com base nas quantidades de vidro produzidas e no teor de CaO, MgO, Na₂O, BaO e de outros óxidos alcalino-terrosos/alcalinos do vidro produzido (dados da actividade_{O PRODUÇÃO}). O factor de emissão deve ser corrigido para o Ca, Mg, Na e Ba e outros alcalino-ferrosos/alcalinos que não entrem no forno como carbonatos, mas, por exemplo, em vidro reciclado ou combustíveis e matérias-primas alternativos com um teor considerável de CaO, MgO, Na₂O ou BaO e de outros óxidos alcalino-terrosos ou alcalinos (dados da actividade_{O FACTORES DE PRODUÇÃO}).

Deve ser utilizada a seguinte fórmula de cálculo:

Emissões de CO_2 [t CO_2] = (\sum {(dados da actividade_{o PRODUÇÃO} - dados da actividade_{o FACTORES DE PRODUÇÃO}) * factor de emissão}) * factor de conversão

em que:

a) Dados da actividade

A expressão «dados da actividade o PRODUÇÃO – dados da actividade o FACTORES DE PRODUÇÃO representa a massa [t] de CaO, MgO, Na₂O, BaO ou de outros óxidos alcalino-terrosos ou alcalinos convertidos a partir de carbonatos durante o período de informação.

Nível 1

A quantidade [t] de CaO, MgO, Na₂O, BaO ou de outros óxidos alcalinos ou alcalino-terrosos utilizados no processo e nos produtos durante o período de informação, bem como a quantidade de aditivos que contêm carbono, determinada por medição das matérias-primas e dos produtos na instalação, com uma margem de incerteza admissível de ± 2,5 % para o processo de medição, e os dados relativos à composição constantes das orientações relativas às melhores práticas industriais para as categorias de produtos e matérias-primas em causa.

Nível 2

A quantidade [t] de CaO, MgO, Na_2O , BaO ou de outros óxidos alcalinos ou alcalino-terrosos utilizados no processo e nos produtos durante o período de informação, bem como a quantidade de aditivos que contêm carbono, determinada por medição das matérias-primas e dos produtos na instalação, com uma margem de incerteza admissível de \pm 1,0 % para o processo de medição, e análise da composição em conformidade com o disposto no ponto 10 do anexo I.

b) Factor de emissão

Nível 1

Carbonatos

Os rácios estequiométricos dos óxidos dos factores de produção e da produção, em conformidade com o quadro 2.

QUADRO 2 Factores de emissão estequiométricos

Óxidos	Factor de emissão [t CO ₃ /t Ca-, Mg-, Na, Ba- ou outro óxido]	Observações
CaO	0,785	
MgO	1,092	
Na ₂ O	0,710	
BaO	0,287	

Óxidos	Factor de emissão [t CO ₃ /t Ca-, Mg-, Na, Ba- ou outro óxido]	Observações
Geral: $X_y(O)_z$	Factor de emissão = $ [M_{CO2}] / \{Y * [M_x] + Z * [M_O]\} $	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

Aditivos

Factores de emissão específicos, determinados em conformidade com o disposto no ponto 10 do anexo I.

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

2.2. Medição das emissões de CO,

São aplicáveis as orientações para medição constantes do anexo I.

3. DETERMINAÇÃO DAS EMISSÕES DE GASES COM EFEITO DE ESTUFA, EXCLUINDO CO,

Em conformidade com as disposições pertinentes da directiva, poderão ser ulteriormente elaboradas orientações específicas para a determinação das emissões de gases com efeito de estufa, excluindo CO₃.

ANEXO X

Orientações específicas da actividade para as instalações de fabrico de produtos cerâmicos enunciadas no anexo I da directiva

1. LIMITES E INTEGRALIDADE

Não existem questões de limites específicas.

2. DETERMINAÇÃO DAS EMISSÕES DE CO,

Nas instalações de fabrico de produtos cerâmicos, as emissões de CO, provêm das seguintes fontes:

- calcinação de calcário/dolomite nas matérias-primas,
- calcário para redução dos poluentes atmosféricos,
- combustíveis fósseis convencionais para forno,
- combustíveis fósseis alternativos para forno e matérias-primas,
- combustíveis de biomassa para forno (resíduos de biomassa),
- outros combustíveis,
- matéria orgânica da argila utilizada como matéria-prima,
- aditivos utilizados para induzir a porosidade, por exemplo, serradura ou polistirol,
- depuração de fumos.

2.1. Cálculo das emissões de CO,

2.1.1. Emissões de combustão

Os processos de combustão que ocorrem em instalações de fabrico de produtos cerâmicos devem ser monitorizados e as informações correspondentes comunicadas em conformidade com o anexo II.

2.1.2. Emissões de processo

O CO₂ é libertado durante a calcinação das matérias-primas no forno, bem como a partir da neutralização do HF, HCl e SO₂ dos gases de combustão com calcário ou outros carbonatos. As emissões resultantes da decomposição de carbonatos no processo de calcinação e da depuração devem ser incluídas nas emissões da instalação. Estas emissões devem ser adicionadas ao total das emissões, mas, na medida do possível, ser comunicadas separadamente. O cálculo deve obedecer à seguinte fórmula:

Emissões de
$$CO_{2\text{total}}$$
 [t] = emissões de $CO_{2\text{factores de produção}}$ [t] + emissões de $CO_{2\text{depuração}}$ [t]

2.1.2.1. CO, resultante dos factores de produção

O CO₂ resultante dos carbonatos e do carbono contidos noutros factores de produção deve ser calculado com recurso a um método de cálculo baseado na quantidade de carbonatos das matérias-primas (principalmente calcário e dolomite) convertidas no processo (método de cálculo A) ou a uma metodologia baseada nos óxidos alcalinos dos produtos cerâmicos fabricados (método de cálculo B). Estas abordagens são consideradas equivalentes.

Método de cálculo A: carbonatos

O cálculo baseia-se nos carbonatos utilizados, incluindo a quantidade de calcário utilizada para neutralizar o HF, HCl e SO₂ dos gases de combustão, bem como no carbono contido nos aditivos. Deve evitar-se a dupla contagem resultante da reciclagem interna das poeiras.

Deve ser utilizada a seguinte fórmula de cálculo:

Emissões de CO_2 [t CO_2] = (Σ {dados da actividade $Corr}$ * factor de emissõo} + Σ {dados da actividade $Corr}$ * factor de emissõo}) * factor de conversõo

em que:

a) Dados da actividade

Os dados da actividade $_{\text{Carbonatos}}$ são a quantidade [t] de CaCO_3 , MgCO_3 ou de outros carbonatos alcalinos ou alcalino-terrosos utilizada durante o período de informação através das matérias-primas (calcário e dolomite) e a respectiva concentração de $\text{CO}_3^{\,2}$, bem como a quantidade de aditivos que contêm carbono [t].

Nível 1

A massa de CaCO₃, MgCO₃ ou de outros carbonatos alcalinos ou alcalino-terrosos [t], bem como a quantidade de aditivos que contêm carbono, utilizados no processo durante o período de informação, determinada por pesagem pelo operador ou pelo fornecedor, com uma margem de incerteza admissível de ± 2,5 % para o processo de medição, e os dados relativos à composição constantes das orientações relativas às melhores práticas industriais para a categoria de produtos em causa.

Nível 2

A massa de CaCO₃, MgCO₃ ou de outros carbonatos alcalinos ou alcalino-terrosos [t], bem como a quantidade de aditivos que contêm carbono, utilizados no processo durante o período de informação, determinada por pesagem pelo operador ou pelo fornecedor, com uma margem de incerteza admissível de ± 1,0 % para o processo de medição, e análises da composição em conformidade com o disposto no ponto 10 do anexo I.

b) Factor de emissão

Nível 1

Carbonatos

Os rácios estequiométricos dos carbonatos dos factores de produção e da produção, em conformidade com o quadro 1.

QUADRO 1 Factores de emissão estequiométricos

Carbonato	Factor de emissão [t CO ₂ /t Ca-, Mg- ou outro carbonato]	Observações
CaCO ₃	0,440	
MgCO ₃	0,522	
Geral: X _y (CO ₃) _z	Factor de emissão = $[M_{CO2}] / \{Y * [M_x] + Z * [M_{CO3}^2]\}$	X = metais alcalino-terrosos ou alca- linos M _x = peso molecular de X em [g/mol] M _{CO2} = peso molecular de CO ₂ = 44 [g/ mol] M _{CO3} . = peso molecular de CO ₃ ²⁻ = 60 [g/ mol] Y = número estequiométrico de X = 1 (para metais alcalino-terrosos) = 2 (para metais alcalinos) Z = número estequiométrico de CO ₃ ²⁻ = 1

Estes valores devem ser ajustados em função do teor de humidade e de ganga do carbonato utilizado.

Aditivos

Factores de emissão específicos, determinados em conformidade com o disposto no ponto 10 do anexo I.

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

Método de cálculo B: óxidos alcalinos

O CO₂ da calcinação é calculado com base nas quantidades de produtos cerâmicos fabricadas e no teor de CaO, MgO e de outros óxidos alcalino-terrosos/alcalinos nos produtos cerâmicos (dados da actividade_{O,PRODUÇÃO}). O factor de emissão deve ser corrigido para ter em conta o Ca, o Mg e outros materiais alcalinos/alcalino-terrosos já calcinados que entram no forno (dados da actividade_{O,FACTORES DE PRODUÇÃO}), por exemplo, através de combustíveis ou matérias-primas alternativos com um teor de CaO ou MgO considerável. As emissões da redução de HF, HCl ou SO₂ devem ser calculadas com base na entrada de carbonato, em conformidade com o método de cálculo A.

Deve ser utilizada a seguinte fórmula de cálculo:

Emissões de $CO_2[t\ CO_2] = \sum \{[(dados\ da\ actividade_{O\ PRODUÇÃO} - dados\ da\ actividade_{O\ FACTORES\ DE\ PRODUÇÃO})^* factor de emissão * factor de conversão]\} + (emissões de <math>CO_2$ da redução de HF, HCl e/ou SO_2)

em que:

a) Dados da actividade

A expressão «dados da actividade_{o propução} – dados da actividade_{o propução}» representa a quantidade [t] de CaO, MgO ou de outros óxidos alcalino-terrosos ou alcalinos convertidos a partir de carbonatos durante o período de informação.

Nível 1

A massa de CaO, MgO ou de outros óxidos alcalino-terrosos ou alcalinos [t] nos factores de produção e nos produtos durante o período de informação, determinada por pesagem efectuada pelo operador, com uma margem de incerteza admissível de ± 2,5 % para o processo de medição, em conformidade com as orientações relativas às melhores práticas industriais em matéria de composição dos tipos de produtos e matérias-primas em causa.

Nível 2

A massa de CaO, MgO ou de outros óxidos alcalino-terrosos ou alcalinos [t] nos factores de produção e nos produtos durante o período de informação, determinada por pesagem efectuada pelo operador, com uma margem de erro admissível de ± 1,0 % para o processo de medição, e análise da composição em conformidade com o disposto no ponto 10 do anexo I.

b) Factor de emissão

Nível 1

Devem ser utilizados os rácios estequiométricos dos óxidos dos factores de produção e da produção (ver quadro 2).

QUADRO 2 Factores de emissão estequiométricos

Carbonato	Factores de emissão [t CO ₂ /t Ca-, Mg- ou outro óxido]	Observações
CaO	0,785	
MgO	1,092	

Carbonato	Factores de emissão [t CO ₃ /t Ca-, Mg- ou outro óxido]		Observações
Geral: X _y (O) _z	Factor de emissão = $[M_{CO2}] / \{Y * [M_x] + Z * [M_O]\}$	X	= metais alcalino-terrosos ou alca- linos
		M _x	= peso molecular de X em [g/mol]
		M _{CO2}	= peso molecular de CO ₂ = 44 [g/ /mol]
		M_{o}	= peso molecular de O = 16 [g/mol]
		Y	= número estequiométrico de X
			= 1 (para metais alcalino-terrosos)
			= 2 (para metais alcalinos)
		Z	= número estequiométrico de O = 1

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

2.1.2.2. CO, resultante da depuração dos gases de combustão

O CO₂ resultante da depuração dos gases de combustão deve ser calculado com base na quantidade de CaCO₃ dos factores de produção.

Deve ser utilizada a seguinte fórmula de cálculo:

Emissões de CO, [t CO,] = dados da actividade * factor de emissão * factor de conversão

em que:

a) Dados da actividade

Nível 1

Quantidade [t] de CaCO₃ seco utilizada durante o período de informação, determinada por pesagem efectuada pelo operador ou pelo fornecedor, com uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 2

Quantidade [t] de CaCO₃ seco utilizada durante o período de informação, determinada por pesagem efectuada pelo operador ou pelo fornecedor, com uma margem de incerteza admissível inferior a ± 1,0 % para o processo de medição.

b) Factor de emissão

Nível 1

Os rácios estequiométricos do CaCO₃, em conformidade com o quadro 1.

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

2.2. Medição das emissões de CO,

São aplicáveis as orientações para medição constantes do anexo I.

3. DETERMINAÇÃO DAS EMISSÕES DE GASES COM EFEITO DE ESTUFA, EXCLUINDO CO,

Em conformidade com as disposições pertinentes da directiva, poderão ser ulteriormente elaboradas orientações específicas para a determinação das emissões de gases com efeito de estufa, excluindo CO₂.

ANEXO XI

Orientações específicas da actividade para as instalações de fabrico de pasta de papel e de papel enunciadas no anexo I da directiva

1. LIMITES E INTEGRALIDADE

No caso de a instalação exportar CO₂ obtido a partir de combustíveis fósseis, por exemplo, para uma instalação adjacente de carbonato de cálcio precipitado (PCC), tais exportações não devem ser incluídas nas emissões da instalação.

Se na instalação se proceder à depuração de fumos e as emissões resultantes não forem incluídas nas emissões de processo da instalação, as mesmas devem ser calculadas em conformidade com o anexo II.

2. DETERMINAÇÃO DAS EMISSÕES DE CO₂

Nos processos do fabrico de pasta de papel e de papel com potencial para emitir CO,, incluem-se:

- caldeiras geradoras de energia, turbinas a gás e outros dispositivos de combustão que produzam vapor ou energia para a instalação,
- caldeiras de recuperação e outros dispositivos de queima de lixívias residuais do fabrico da pasta de papel,
- incineradores.
- fornos e calcinadores de cal,
- depuração de fumos,
- secadores alimentados a gás ou a outro combustível fóssil (como secadores de infra-vermelhos).

O tratamento de águas residuais e os aterros sanitários, incluindo as operações de tratamento anaeróbico de águas residuais ou de digestão de lamas e os aterros utilizados para eliminação de resíduos da instalação, não são referidos no anexo I da directiva. Em consequência, as respectivas emissões não se inscrevem no âmbito da directiva.

2.1. Cálculo das emissões de CO,

2.1.1. Emissões de combustão

As emissões dos processos de combustão que ocorrem nas instalações de fabrico de pasta de papel e de papel devem ser monitorizadas em conformidade com o anexo II.

2.1.2. Emissões de processo

As emissões resultam da utilização de carbonatos como produtos químicos de reposição em instalações de fabrico de pasta de papel. Embora as perdas de sódio e de cálcio do sistema de recuperação e na zona de causticação sejam, normalmente, compensadas com produtos químicos sem carbonato, são por vezes utilizadas pequenas quantidades de carbonato de cálcio (CaCO₃) e de carbonato de sódio (Na₂CO₃), de que resultam emissões de CO₂. Em geral, o carbono contido nestes produtos químicos é de origem fóssil, embora em alguns casos (por exemplo, Na₂CO₃ comprado a fábricas de produtos semi-químicos de base sódica) possa ter sido produzido a partir de biomassa.

Parte-se do princípio de que o carbono contido nestes produtos químicos é emitido como CO₂ pelo forno de cal ou pelo forno de recuperação. Estas emissões são determinadas partindo-se do pressuposto de que a totalidade do carbono contido no CaCO₃ e no Na₂CO₃ utilizados nas zonas de recuperação e de causticação é libertada na atmosfera

A reposição do cálcio é necessária devido às perdas na zona de causticação, a maior parte das quais sob a forma de carbonato de cálcio.

As emissões de CO, devem ser calculadas do seguinte modo:

em que:

a) Dados da actividade

Os dados da actividade_{Carbono} são as quantidades de CaCO₃ e de Na₂CO₃ utilizadas no processo.

Nível 1

As quantidades [t] de CaCO₃ e Na₂CO₃ utilizadas no processo, pesadas pelo operador ou pelo fornecedor, com uma margem de incerteza admissível inferior a ± 2,5 % para o processo de medição.

Nível 2

As quantidades [t] de CaCO₃ e Na₂CO₃ utilizadas no processo, pesadas pelo operador ou pelo fornecedor, com uma margem de incerteza admissível inferior a ± 1,0 % para o processo de medição.

b) Factor de emissão

Nível 1

Os rácio estequiométricos $[t_{CO2}/t_{CaCO3}]$ e $[t_{CO2}/t_{Na2CO3}]$ dos carbonatos não obtidos a partir de biomassa, tal como indicado no quadro 1. Os carbonatos obtidos a partir da biomassa são ponderados com um factor de emissão de 0 [t CO_2/t carbonato].

QUADRO 1 Factores de emissão estequiométricos

Tipo e origem do carbonato	Factor de emissão [t CO ₂ /t carbo- nato]
Reposição de CaCO ₃ na fábrica de pasta de papel	0,440
Reposição de Na ₂ CO ₃ na fábrica de pasta de papel	0,415
CaCO ₃ obtido a partir da biomassa	0,0
Na ₂ CO ₃ obtido a partir da biomassa	0,0

Estes valores devem ser ajustados em função do teor de humidade e de ganga do carbonato utilizado.

c) Factor de conversão

Nível 1

Factor de conversão: 1,0.

2.2. Medição das emissões de CO,

São aplicáveis as orientações para medição constantes do anexo I.

3. DETERMINAÇÃO DAS EMISSÕES DE GASES COM EFEITO DE ESTUFA, EXCLUINDO CO,

Em conformidade com as disposições pertinentes da directiva, poderão ser ulteriormente elaboradas orientações específicas para a determinação das emissões de gases com efeito de estufa, excluindo CO₃.