I

(Besluiten waarvan de publicatie voorwaarde is voor de toepassing)

RICHTLIJN 2004/73/EG VAN DE COMMISSIE

van 29 april 2004

tot negenentwintigste aanpassing aan de vooruitgang van de techniek van Richtlijn 67/548/EEG van de Raad betreffende de aanpassing van de wettelijke en bestuursrechtelijke bepalingen inzake de indeling, de verpakking en het kenmerken van gevaarlijke stoffen

(Voor de EER relevante tekst)

DE COMMISSIE VAN DE EUROPESE GEMEENSCHAPPEN,

Gelet op het Verdrag tot oprichting van de Europese Gemeenschap,

Gelet op Richtlijn 67/548/EEG van de Raad van 27 juni 1967 betreffende de aanpassing van de wettelijke en bestuursrechtelijke bepalingen inzake de indeling, de verpakking en het kenmerken van gevaarlijke stoffen¹, en met name op artikel 28,

Overwegende hetgeen volgt:

(1) Bijlage I bij Richtlijn 67/548/EEG bevat een lijst van gevaarlijke stoffen met gegevens over de indeling en etikettering van elke stof. Deze lijst moet worden aangevuld met aangemelde nieuwe stoffen en reeds langer bestaande stoffen, en dient aan de technische vooruitgang te worden aangepast, bijvoorbeeld door de vaststelling van milieutechnische concentratiegrenzen voor bepaalde stoffen. Bovendien is het noodzakelijk vermeldingen voor bepaalde stoffen te schrappen en een aantal vermeldingen op te splitsen omdat de indeling niet langer van toepassing is op alle stoffen die onder die vermeldingen worden opgevoerd. De etikettering van 1,3-butadiene bevattende stoffen moet worden gewijzigd om aan te geven dat deze stof op grond van de onderhavige richtlijn zal worden ingedeeld als mutageen agens.

(2) In bijlage V bij Richtlijn 67/548/EEG zijn de methoden vastgesteld voor de bepaling van de fysisch-chemische eigenschappen, de toxiciteit en de ecotoxiciteit van stoffen en preparaten. Deze bijlage moet worden gewijzigd om ervoor te zorgen dat het aantal dieren die voor experimentele doeleinden worden gebruikt, tot een minimum wordt beperkt, overeenkomstig Richtlijn 86/609/EEG van de Raad van 24 november 1986 inzake de onderlinge aanpassing van de wettelijke en bestuursrechtelijke bepalingen van de lidstaten betreffende de bescherming van dieren die voor experimentele en

andere wetenschappelijke doeleinden worden gebruikt. De in de hoofdstukken B.1, B.4, B.5, B.31 en B.35 opgenomen methoden voor de bepaling van de subchronische orale toxiciteit moeten dienovereenkomstig worden aangepast. Bovendien moet hoofdstuk B.42 toegevoegd worden aan bijlage V teneinde een fijnmazige methode ter beschikking te stellen voor de bepaling van de subchronische orale toxiciteit. Tot slot moeten hoofdstuk A.21 inzake de fysisch-chemische eigenschappen, hoofdstuk B.43 inzake de subchronische orale toxiciteit en de hoofdstukken C.21 tot en met C.24 inzake milieutoxiciteit worden toegevoegd teneinde bepaalde eigenschappen beter te kunnen bepalen dan nu met de in bijlage V opgenomen methoden mogelijk is.

(3) De bepalingen van deze richtlijn zijn in overeenstemming met het advies van het Comité voor de aanpassing aan de vooruitgang van de techniek van de richtlijnen met betrekking tot de opheffing van technische handelsbelemmeringen voor gevaarlijke stoffen en preparaten.

HEeft DE VOLGENDE RICHTLijn VASTGestElD:

Artikel 1

Richtlijn 67/548/EEG wordt als volgt gewijzigd:

1. Bijlage I wordt als volgt gewijzigd:
 a) nota K in het voorwoord wordt vervangen door de tekst in bijlage 1A bij onderhavige richtlijn;
 b) de in bijlage 1B bij onderhavige richtlijn opgenomen vermeldingen vervangen de dienovereenkomstige vermeldingen van bijlage I bij Richtlijn 67/548/EEG;
 c) de in bijlage 1C bij onderhavige richtlijn opgenomen vermeldingen worden ingevoegd overeenkomstig de volgorde van de in bijlage I bij Richtlijn 67/548/EEG opgenomen vermeldingen;
 d) de vermeldingen voor de indexnummers 604-050-00-X, 607-050-00-8, 607-171-00-6 en 613-130-00-3 worden geschraapt;
 e) de vermelding voor indexnummer 048-002-00-0 wordt vervangen door de in bijlage 1D bij onderhavige richtlijn opgenomen vermeldingen voor de indexnummers 048-002-00-0 en 048-011-00-X;
 f) de vermelding voor indexnummer 609-006-00-3 wordt vervangen door de in bijlage 1D bij onderhavige richtlijn opgenomen vermeldingen voor de indexnummers 609-006-00-3 en 609-065-00-5;
 g) de vermelding voor indexnummer 612-039-00-6 wordt vervangen door de in bijlage 1D bij onderhavige richtlijn opgenomen vermeldingen voor de indexnummers 612-039-00-6 en 612-207-00-9.

2. Bijlage V wordt als volgt gewijzigd:
 a) de in bijlage 2A bij onderhavige richtlijn opgenomen tekst wordt toegevoegd als hoofdstuk A.21;

b) hoofdstuk B.1bis wordt vervangen door de tekst in bijlage 2B bij onderhavige richtlijn;
c) hoofdstuk B.1ter wordt vervangen door de tekst in bijlage 2C bij onderhavige richtlijn;
d) hoofdstuk B.4 wordt vervangen door de tekst in bijlage 2D bij onderhavige richtlijn;
e) hoofdstuk B.5 wordt vervangen door de tekst in bijlage 2E bij onderhavige richtlijn;
f) hoofdstuk B.31 wordt vervangen door de tekst in bijlage 2F bij onderhavige richtlijn;
g) hoofdstuk B.35 wordt vervangen door de tekst in bijlage 2G bij onderhavige richtlijn;
h) de tekst in bijlage 2H bij onderhavige richtlijn wordt toegevoegd als hoofdstuk B.42 en hoofdstuk B.43;
i) de tekst in bijlage 2I bij onderhavige richtlijn wordt toegevoegd als de hoofdstukken C.21 tot en met C.24.

Artikel 2

2. De lidstaten delen de Commissie de tekst van de belangrijkste bepalingen van intern recht mee die zij op het onder deze richtlijn vallende gebied vaststellen.

Artikel 3

Deze richtlijn treedt in werking op de twintigste dag volgende op die van haar bekendmaking in het Publicatieblad van de Europese Unie.

Artikel 4

Deze richtlijn is gericht tot de lidstaten.

Voor de Commissie
Margot WALLSTRÖM
Lid van de Commissie
BIJLAGE 1A
Nota K:

De stof behoeft niet als kankerverwekkend of mutageen te worden ingedeeld als kan worden aangetoond dat zij minder dan 0,1 % (g/g) buta-1,3-dieen (Einecs-nr. 203-450-8) bevat. Als de stof niet als kankerverwekkend of mutageen wordt ingedeeld, gelden hiervoor minimaal de S-zinnen (2-)9-16. Deze nota is alleen van toepassing op bepaalde complexe aardoliedervaten in bijlage I.
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota’s voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota’s voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>006-005-00-4</td>
<td>thiram tetramethylthiuram disulfide</td>
<td>205-286-2</td>
<td>137-26-8</td>
<td>Xn; R20/22-48/22 Xi; R36/38 R43 N; R50-53</td>
<td>Xn; N R: 20/22-36/38-43-48/22-50/53 S: (2-26)-36/37-40/61</td>
<td>C ≥ 25 %: Xn; N; R20/22-36/38-43-48/22-50/53 20 % ≤ C < 25 %: Xn; N; R36/38-43-48/22-50/53 10 % ≤ C < 20 %: Xn; N; R43-48/22-50/53 2,5 % ≤ C < 10 %: Xi; N; R43-50/53 1 % ≤ C < 2,5 %: Xi; N; R43-51/53 0,25 % ≤ C < 1 %: N; R51/53 0,025 % ≤ C < 0,25 %: R52/53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-006-01-7</td>
<td>hydrogeecyanide ...%</td>
<td>B</td>
<td>200-821-6</td>
<td>74-90-8</td>
<td>T1; R26/27/28 N; R50-53</td>
<td>T1; N R: 26/27/28-50/53 S: (3/2-37/2-16-36/37-38-45-60/61</td>
<td>C ≥ 25 %: T3; N; R26/27/28-50/53 7 % ≤ C < 25 %: T; N; R26/27/28-51-53 2,5 % ≤ C < 7 %: T; N; R23/24-51-53 1 % ≤ C < 2,5 %: T; N; R23/24-52-53 0,25 % ≤ C < 1 %: Xn; R20/21/22-52-53 0,1 % ≤ C < 0,25 %: Xi; R20/21/22</td>
<td></td>
</tr>
<tr>
<td>006-012-00-2</td>
<td>ziram (ISO) zinc-bis(N,N-dimethylthiocarbamaat)</td>
<td>205-288-3</td>
<td>137-30-4</td>
<td>T1; R26 Xn; R22-48/22 Xi; R37-41 R43 N; R50-53</td>
<td>T1; N R: 22-26-37-41-43-48/22-50/53 S: (1/2-22)-26-28-36/37/39-45-60/61</td>
<td>C ≥ 25 %: T3; N; R22-26-37-41-43-48/22-50/53 20 % ≤ C < 25 %: T; N; R22-37-41-43-48/22-50/53 10 % ≤ C < 20 %: T; N; R26-41-43-48/22-50/53 7 % ≤ C < 10 %: T; N; R26-36-43-50/53 5 % ≤ C < 7 %: T; N; R23-36-43-50/53 1 % ≤ C < 5 %: T; N; R23-43-50/53 0,25 % ≤ C < 1 %: Xn; N; R20-50/53 0,1 % ≤ C < 0,25 %: Xi; N; R20-51/53 0,025 % ≤ C < 0,1 %: N; R51-53 0,0025 % ≤ C < 0,025 %: R52-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-021-00-1</td>
<td>linuron (ISO) 3-(3,4-dichloorfenyl)-1-methoxy-1-methylureum</td>
<td>E</td>
<td>206-356-5</td>
<td>330-55-2</td>
<td>Repr. Cat. 2; R61 Repr. Cat. 3; R62 Care. Cat. 3; R40</td>
<td>T; N R: 61-22-40-48/22-62-50/53</td>
<td>30-4-2004 NL Publicatieblad van de Europese Unie L 126</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>006-044-00-7</td>
<td>isopropurene 3-(4-isopropylfenyl)-1,1-dimethyleureum</td>
<td></td>
<td>251-835-4</td>
<td>34123-59-6</td>
<td>Xn; N</td>
<td>R; 10-50/53 S; (2)-36/37-60-61</td>
<td>C ≥ 2,5 %: Xn, N; R40; 50-53 1 % ≤ C < 2,5 %: Xn, N; R40; 51-53 0,25 % ≤ C < 1 %: N; R51-53 0,025 % ≤ C < 0,25 %: R52-52</td>
<td></td>
</tr>
<tr>
<td>006-072-00-8</td>
<td>S-benzyl-N,N-dipropylthiocarbamatuur</td>
<td></td>
<td>401-730-6</td>
<td>52888-80-9</td>
<td>Xn; N</td>
<td>R; 22-43-51/53 S; (2)-24-37-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006-089-00-2</td>
<td>chlooroxide</td>
<td></td>
<td>233-162-8</td>
<td>10049-04-4</td>
<td>O; R8 T; R6</td>
<td>R; 26-34-50 S; (1/2)-23-26-28-36/37/39-38-45-61</td>
<td>C ≥ 5 %: T; N; R26-34-50 1 % ≤ C < 5 %: T; N; R26-36/37/38-50 0,5 % ≤ C < 1 %: T; N; R26-36/37/38-50 0,02 % ≤ C < 0,25 %: Xn; N; R20-50</td>
<td></td>
</tr>
<tr>
<td>006-089-01-X</td>
<td>chlooroxide... %</td>
<td></td>
<td>233-162-8</td>
<td>10049-04-4</td>
<td>T; R25 C; R34</td>
<td>N; R50</td>
<td>T; N R; 25-34-50 S; (1/2)-23-26-28-36/37/39-45-61</td>
<td>C ≥ 25 %: T; N; R25-34-50 10 % ≤ C < 25 %: C; N; R22-34-50 3 % ≤ C < 10 %: Xn; N; R22-36/37/38-50 0,3 % ≤ C < 3 %: Xn; R36</td>
</tr>
<tr>
<td>007-001-00-5</td>
<td>ammoniak, watersvrij</td>
<td></td>
<td>231-635-3</td>
<td>7661-41-7</td>
<td>R10 T; R23 C; R34</td>
<td>N; R50</td>
<td>T; N R; 10-23-34-50 S; (1/2)-39-16-26-36/37/39-45-61</td>
<td>C ≥ 25 %: T; N; R23-34-50 5 % ≤ C < 25 %: T; R23-34 0,5 % ≤ C < 5 %: Xn; R20-36/37/38</td>
</tr>
<tr>
<td>007-008-00-3</td>
<td>hydrazone</td>
<td></td>
<td>206-114-9</td>
<td>302-01-2</td>
<td>R10 Carc. Cat. 2; R45 T; R23/24/25 C; R34 R43 N; R50-53</td>
<td>T; N R; 45+10-23/24/25-34-43-50/53 S; 53-45-60-61</td>
<td>C ≥ 25 %: T; N; R45-23/24/25-34-43-50/53 10 % ≤ C < 25 %: T; N; R45-20/21/22-34-43-51/53 3 % ≤ C < 10 %: T; N; R45-20/21/22-36/37/38-43-51/53 2,5 % ≤ C < 3 %: T; N; R45-43-51/53 1 % ≤ C < 2,5 %: T; R45-43-52/53 0,25 % ≤ C < 1 %: T; R45-52/53 0,1 % ≤ C < 0,25 %: T; R45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>007-010-00-4</td>
<td>natriumnitriet</td>
<td></td>
<td>231-555-9</td>
<td>7632-00-0</td>
<td>O; R8</td>
<td>T; R25</td>
<td>N; R50</td>
<td>C ≥ 25 %; T; N; R25-50 5 % ≤ C < 25 %; T; R25 1 % ≤ C < 5 %; Xn; R22</td>
</tr>
<tr>
<td>007-011-00-X</td>
<td>kaliumnitriet</td>
<td></td>
<td>231-832-4</td>
<td>7758-09-0</td>
<td>O; R8</td>
<td>T; R25</td>
<td>N; R50</td>
<td>C ≥ 25 %; T; N; R25-50 5 % ≤ C < 25 %; T; R25 1 % ≤ C < 5 %; Xn; R22</td>
</tr>
<tr>
<td>007-013-00-0</td>
<td>1,2-dimethylhydrazine</td>
<td></td>
<td>E</td>
<td>540.73-8</td>
<td>N</td>
<td></td>
<td></td>
<td>C ≥ 25 %; T; N; R45-23/24-25-51/53 3 % ≤ C < 25 %; T; R45-20/21/22.52/53 2,5 % ≤ C < 3 %; T; R45-52/53 0,01 % ≤ C < 2,5 %; T; R45</td>
</tr>
<tr>
<td>007-017-00-2</td>
<td>isobutylnitriet</td>
<td></td>
<td>208-819-7</td>
<td>542.56-3</td>
<td>F; R11</td>
<td>Xn; R20/22</td>
<td>Carec. Cat.; 2; R45</td>
<td>C ≥ 25 %; T; N; R45-23/24-25-51/53 3 % ≤ C < 25 %; T; R45-20/21/22.52/53 2,5 % ≤ C < 3 %; T; R45-52/53 0,01 % ≤ C < 2,5 %; T; R45</td>
</tr>
<tr>
<td>007-027-00-7</td>
<td>1,6-bis(3,3-bis(1-methylpentylidenimino)propyl)uriedo)hexaan</td>
<td></td>
<td>420-190-2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>008-003-00-9</td>
<td>waterstofperoxide in oplossing ...</td>
<td></td>
<td>B</td>
<td>231-765-0</td>
<td>7722-84-1</td>
<td>R5</td>
<td>O; R8</td>
<td>C; R35 Xn; R20/22</td>
</tr>
<tr>
<td>009-015-00-7</td>
<td>safturyldifluoride</td>
<td></td>
<td>220-281-5</td>
<td>2699-79-8</td>
<td>T; R23</td>
<td>Xn; R48/20</td>
<td>N; R50</td>
<td>T; N R; 23-48/20-50 S; (1/2)-45-63-60-61</td>
</tr>
<tr>
<td>015-002-00-7</td>
<td>rode fosfor</td>
<td></td>
<td>231-768-7</td>
<td>7723-14-0</td>
<td>F; R11</td>
<td>R16</td>
<td>R52-53</td>
<td>F</td>
</tr>
<tr>
<td>015-014-00-2</td>
<td>triburylfosfaat</td>
<td></td>
<td>204-800-2</td>
<td>126-73-8</td>
<td>Carec. Cat.; 3; R40 Xn; R22 Xr; R38</td>
<td>Xn</td>
<td>R; 22-38-40 S; (2)-36/37-46</td>
<td></td>
</tr>
<tr>
<td>015-015-00-8</td>
<td>tricesylfosfaat</td>
<td></td>
<td>C</td>
<td>201-103-5</td>
<td>78-30-8</td>
<td>T; R39/23/24/25</td>
<td>T; N</td>
<td>C ≥ 25 %; T; N; R39/23/24/25-</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>015-016-00-3</td>
<td>tricresylfosfaat</td>
<td>m·m·m, m·m·p, m·p·p, p·p·p</td>
<td>C</td>
<td>201-105-6</td>
<td>78-32-0</td>
<td>Xn; R21/22 N; R51-53</td>
<td>R; 39/23/24/25-51/53 S; (1/2)·20/21·28-45-61</td>
<td>51/53 2,5 % ≤ C ≤ 5 % T; R39/23/24/25 52/53 1 % ≤ C ≤ 2,5 % T; R39/23/24/25 0,2 % ≤ C ≤ 1 % Xn; R51-53 25 % ≤ C ≤ 50 % T; R52/53</td>
</tr>
<tr>
<td>015-020-00-5</td>
<td>mevinphos (ISO)</td>
<td>2-methoxy carbonyl-1-methylisothio dimethyl fosfaat</td>
<td>232-095-1</td>
<td>7786-34-7</td>
<td>T; R27/28 N; R50-53</td>
<td>T; N R; 27/28-50/53 S; (1/2)·22/23-36/37·45 60/61</td>
<td>C ≥ 7 % T; N; R27/28-50-53 1 % ≤ C ≤ 7 % T; N; R24/25-50-53 0,1 % ≤ C ≤ 7 % Xn; N; R51-53 0,0025 % ≤ C ≤ 0,0025 % N; R51-53 0,000025 % ≤ C ≤ 0,000025 % N; R52-53</td>
<td></td>
</tr>
<tr>
<td>015-021-00-0</td>
<td>trichlofoxon (ISO)</td>
<td>dimethyl-2,2,2-trichlo-1-hydroxyethylfosfaat</td>
<td>200-149-3</td>
<td>52-08-6</td>
<td>Xn; R22 R43 N; R50-53</td>
<td>Xn; N R; 22-43-50/53 S; (2)·24-37·60/61</td>
<td>C ≥ 25 % Xn; N; R22-43-50-53 1 % ≤ C ≤ 25 % Xn; N; R43-50-53 0,0025 % ≤ C ≤ 1 % N; R50-53 0,00025 % ≤ C ≤ 0,0025 % N; R51-53 0,000025 % ≤ C ≤ 0,00025 % N; R52-53</td>
<td></td>
</tr>
<tr>
<td>015-027-00-3</td>
<td>saffitop (ISO)</td>
<td>O,O,O,O-tetraethyl lithium fosfaat</td>
<td>222-995-2</td>
<td>3689-24-5</td>
<td>T; R27/28 N; R50-53</td>
<td>T; N R; 27/28-50/53 S; (1/2)·23-28·36/37·45 60-61</td>
<td>C ≥ 7 % T; N; R27/28-50-53 1 % ≤ C ≤ 7 % T; N; R24/25-50-53 0,1 % ≤ C ≤ 1 % Xn; N; R21/22-50-53 0,025 % ≤ C ≤ 0,025 % N; R50-53 0,0025 % ≤ C ≤ 0,0025 % N; R51-53</td>
<td></td>
</tr>
<tr>
<td>015-032-00-0</td>
<td>prothoate (ISO)</td>
<td></td>
<td>218-893-2</td>
<td>2275-18-5</td>
<td>T; R27/28</td>
<td>T;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>CAS No</td>
<td>EC No</td>
<td>Natura voor rechten</td>
<td>Kemorenken</td>
<td>Concentraties</td>
<td>Natura voor preparaten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td>---------------------</td>
<td>------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>051-033-00-6</td>
<td>286-662-2</td>
<td>290-02-2</td>
<td>2% ≤ C ≤ 7%</td>
<td>0 ≤ C ≤ 1%</td>
<td>R22-63</td>
<td>N-R22-63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>051-031-00-1</td>
<td>200-271-7</td>
<td>56-30-2</td>
<td>2% ≤ C ≤ 7%</td>
<td>0 ≤ C ≤ 1%</td>
<td>R22-63</td>
<td>N-R22-63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>051-035-00-7</td>
<td>286-083-1</td>
<td>290-04-0</td>
<td>2% ≤ C ≤ 7%</td>
<td>0 ≤ C ≤ 1%</td>
<td>R22-63</td>
<td>N-R22-63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>015-041-00-00-X</td>
<td>malathion (ISO) 1,2-bis(ethylcarbonyl)ethyl-O.O-dimethylthiodithiофaat</td>
<td>204-497-7</td>
<td>121-75-5</td>
<td>Xn; R22 N; R50-53</td>
<td>Xn; N R: 22-50/53 S: (2-3)24-60/61</td>
<td>C ≥ 25 %: Xn; N; R22-50-53 0,25 % ≤ C < 25 %: N; R50-53 0,0025 % ≤ C < 0,25 %: N; R51-53 0,0025 % ≤ C < 0,25 %: R52-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-042-00-5</td>
<td>chloethion (benaming niet aanvaard door ISO) O-(3-chloor-4-nitrofenyl)-O.O-dimethyl-monothiofosfaat</td>
<td>207-902-5</td>
<td>500-28-7</td>
<td>Xn; R20/21/22 N; R50-53</td>
<td>Xn; N R: 20/21/22-50/53 S: (2-3)13-60/61</td>
<td>C ≥ 25 %: Xn; N; R20/21/22-50-53 0,25 % ≤ C < 25 %: N; R50-53 0,0025 % ≤ C < 0,25 %: N; R51-53 0,0025 % ≤ C < 0,25 %: R52-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-047-00-2</td>
<td>ethion (ISO) O,O'D,O'-tetraethyl-S,S'-methyleenndithiofosfaat</td>
<td>209-242-3</td>
<td>563-12-2</td>
<td>T; R25 Xn; R21 N; R50-53</td>
<td>T; N R: 21-25-50/53 S: (1/2-3)25-36/37-45-60/61</td>
<td>C ≥ 25 %: T; N; R21-25-50-53 3 % ≤ C < 25 %: Xn; N; R22-50-53 0,0025 % ≤ C < 3 %: N; R50-53 0,00025 % ≤ C < 0,0025 %: N; R51-53 0,000025 % ≤ C < 0,000025 %: R52-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-052-00-X</td>
<td>fenchlorphos (ISO) O-2,4,5-trichloorfenyl-O.O'-dimethylthiodithiофaat</td>
<td>206-682-6</td>
<td>299-84-3</td>
<td>Xn; R21/22 N; R50-53</td>
<td>Xn; N R: 21/22-50/53 S: (7-)35-36/37-40-61</td>
<td>C ≥ 25 %: Xn; N; R21/22-36/38-50 20 % ≤ C < 25 %: Xi; N; R36/58-50 0,025 % ≤ C < 20 %: N; R50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-055-00-6</td>
<td>naled (ISO) 1,2-dibroom-2,2-dichloorethylidimethylfosfaat</td>
<td>206-098-3</td>
<td>300-76-5</td>
<td>Xn; R21/22 Xi; R36/38 N; R50</td>
<td>Xn; N R: 21/22-36/38-50 S: (2-)36/37-61</td>
<td>C ≥ 25 %: Xn; N; R21/22-36/38-50 20 % ≤ C < 25 %: Xi; N; R36/58-50 0,025 % ≤ C < 20 %: N; R50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-063-00-X</td>
<td>dioxathion (ISO) 1,4-dioxaan-2,3-diylo.O.O'D.O'-tetraethylidithiofosfaat</td>
<td>201-107-7</td>
<td>78-34-2</td>
<td>Tt; R26/28 T; R24 N; R50-53</td>
<td>Tt; N R: 24-26/28-50/53 S: (1/2-)28-36/37-45-60/61</td>
<td>C ≥ 25 %: Tt; N; R24-26/28-50-53 7 % ≤ C < 25 %: Tt; N; R21-26/28-50-53 3 % ≤ C < 7 %: T; N; R21-23/25-50-53 1 % ≤ C < 3 %: T; N; R23/25-50-53 0,1 % ≤ C < 1 %: Xi; N; R20/22-50-53 0,025 % ≤ C < 0,1 %: N; R50-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>015-065-00-0</td>
<td>S-2-ethyl-sulfanyl-ethyl-O,O-dimethyl-dithiofosfaat</td>
<td>-</td>
<td>2703-37-9</td>
<td>T+; R26/27/28 N: R51-53</td>
<td>T+; N R: 20/27/28-51/53 S: (1/2)-13-28-45-60-61</td>
<td>C ≥ 7 %; T+ N: R26/27/28-50-53 1 % ≤ C < 7 %; T; N: R23/24/50-50-53 0,1 % ≤ C < 1 %; Xn: N; R20/21/22-50-53 0,025 % ≤ C ≤ 0,1 %; N: R50-53 0,0025 % ≤ C < 0,025 %; N: R51-53 0,00025 % ≤ C < 0,0025 %; R52-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-076-00-0</td>
<td>O,O-diethyl-O-4-methylcumarin-7-yl-thiofosfaat</td>
<td>-</td>
<td>299-45-6</td>
<td>T+; R26/27/28 N: R50-53</td>
<td>T+; N R: 20/27/28-50/53 S: (1/2)-13-28-45-60-61</td>
<td>C ≥ 7 %; T+ N: R26/27/28-50-53 1 % ≤ C < 7 %; T; N: R23/24/50-50-53 0,1 % ≤ C < 1 %; Xn: N; R20/21/22-50-53 0,025 % ≤ C ≤ 0,1 %; N: R50-53 0,0025 % ≤ C < 0,025 %; N: R51-53 0,00025 % ≤ C < 0,0025 %; R52-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-084-00-4</td>
<td>chloorpyrifos (ISO)</td>
<td>O,O-diethyl-O-3,5,6-trichloor-2-pyridylthiofosfaat</td>
<td>220-864-4</td>
<td>2021-88-2</td>
<td>T+; R25 N: R50-53</td>
<td>T; N R: 25-50-53 S: (1/2)-26-45-60-61</td>
<td>C ≥ 25 %; T; N: R25-50-53 3 % ≤ C < 25 %; Xn: N; R22-50-53 0,0025 % ≤ C < 3 %; N: R50-53 0,00025 % ≤ C < 0,0025 %; N: R51-53 0,000025 % ≤ C < 0,00025 %; R52-53</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>FC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>015-097-00-5</td>
<td>feenthraat (ISO) ethyl-2- (dimethoxyfosfinothioylthio)-2- feny lacetaat</td>
<td>219-997-0</td>
<td>2597-03-7</td>
<td>Xn; R21/22 N; R50-53</td>
<td>Xn; N R: 21/22-50/53 S: (2)-22-36/37-60/61</td>
<td>C ≥ 25 %: Xn, N; R21/22-50-53 0,25 % ≤ C < 25 %: N; R50-53 0,025 % ≤ C < 0,25 %: R52-53</td>
<td>3 % ≤ C < 7 %: T, N; R21-25-50-53 1 % ≤ C < 3 %: T, N; R25-50-53 0,25 % ≤ C < 1 %: Xn, N; R22-50-53 0,1 % ≤ C < 0,25 %: Xn, N; R22-51-53 0,025 % ≤ C < 0,1 %: R52-53</td>
<td></td>
</tr>
<tr>
<td>015-100-00-X</td>
<td>foexim (ISO) α- (diethoxyfosfinothioylamino)feny lacetonitril</td>
<td>238-887-3</td>
<td>14816-18-3</td>
<td>Xn; R22 N; R50-53</td>
<td>Xn; N R: 22-50/53 S: (2)-36-60-61</td>
<td>C ≥ 25 %: Xn, N; R22-50-53 0,25 % ≤ C < 25 %: N; R50-53 0,025 % ≤ C < 0,25 %: N; R51-53 0,0025 % ≤ C < 0,025 %: R52-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-101-00-5</td>
<td>fosmet (ISO) O,O- dimethyllitaalimidomethylthiofosfaat</td>
<td>211-987-4</td>
<td>732-11-6</td>
<td>Xn; R21/22 N; R50-53</td>
<td>Xn; N R: 21/22-50/53 S: (2)-22-36/37-60/61</td>
<td>C ≥ 25 %: Xn, N; R21/22-50-53 0,25 % ≤ C < 25 %: N; R50-53 0,025 % ≤ C < 0,25 %: N; R51-53 0,0025 % ≤ C < 0,025 %: R52-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-105-00-7</td>
<td>trifenylosfiet</td>
<td>202-908-4</td>
<td>101-02-0</td>
<td>Xi; R36/38 N; R50-53</td>
<td>Xi; N R: 36/38 50/53 S: (2)-28-60-61</td>
<td>C ≥ 25 %: Xi, N; R36/38-50/53 5 % ≤ C < 25 %: Xi, N; R36/38-51/53 2,5 % ≤ C ≤ 5 %: N; R51-53 0,25 % ≤ C < 2,5 %: R32/53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-107-00-8</td>
<td>ethoprophos (ISO) ethyl-S,S-dipropylthiofosfaat</td>
<td>236-152-1</td>
<td>13194-48-4</td>
<td>Tr; R26/27 T; R25 R47 N; R50-53</td>
<td>Tr; N R: 25-26/27-43/50/53 S: (1/2)-27/28-36/37/39-45-60/61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-108-00-3</td>
<td>bromofos (ISO) O-4-broom-2,5-dichloorfenyl- O,O-dimethylthiofosfaat</td>
<td>218-277-3</td>
<td>2104-96-3</td>
<td>Xn; R22 N; R50-53</td>
<td>Xn; N R: 22-50/53 S: (2)-36-60-61</td>
<td>C ≥ 25 %: Xn, N; R22-50-53 0,25 % ≤ C < 25 %: N; R50-53 0,025 % ≤ C < 0,25 %: N; R51-53 0,0025 % ≤ C < 0,025 %: R52-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>015-109-00-9</td>
<td>croteoxyfos (ISO) 1-fenylethyl-3- (dimethoxyfosinyloxy) isocrotonaat</td>
<td>231-720-5</td>
<td>7700-17-6</td>
<td>T; N; R24/25 N; R50-53</td>
<td>T; N R; 24/25-50/53 S; (1/2) 28-36/37-45- 60-61</td>
<td>C ≥ 25 %; T; N; R24/25-50-53 3 % ≤ C < 25 %; XN; N; R21/22-50-53 2,5 % ≤ C < 3 %; N; R50-53 0,25 % ≤ C < 2,5 %; N; R51-53 0,025 % ≤ C < 0,25 %; R52-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-110-00-4</td>
<td>cyanofenfos (ISO) O-4-cyanfenvyl-O-ethylisofenfosfonaat</td>
<td>-</td>
<td>13067-93-1</td>
<td>T; R25-39/25 N; R21 N; R36 N; R51-53</td>
<td>T; N R; 21-25-36-39/25- 51/53 S; (1/2) 26-36/45-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-114-00-6</td>
<td>chloormefos (ISO) S-chloor methyl O.O- diethyldithiophosfaat</td>
<td>246-538-1</td>
<td>24934-91-6</td>
<td>T; N; R27/28 N; R50-53</td>
<td>T; N R; 27/28-50/53 S; (1/2) 26-36/45- 60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-115-00-1</td>
<td>chloorthiophos (ISO)</td>
<td>244-663-6</td>
<td>21923-23-9</td>
<td>T; N; R28 N; R50-53</td>
<td>T; N R; 24-28-50/53 S; (1/2) 26-36/45-60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-122-00 X</td>
<td>O-6 ethoxy 2 ethylpyrimidine-4- yl-O.O-dimethylthiophosfaat etrinfos</td>
<td>253-855-9</td>
<td>38260-54-7</td>
<td>Xn; R22 N; R50-53</td>
<td>Xn; N R; 22-50/53 S; (2) 90/61</td>
<td>C ≥ 25 %; Xn, N; R22-50-53 2,5 % ≤ C < 25 %; N; R50-53 0,25 % ≤ C < 2,5 %; N; R51-53 0,025 % ≤ C < 0,25 %; R52-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-123-00-5</td>
<td>fenamifos (ISO) ethyl-4-methylthio-m-tolyl-N- isopropyl fosforanimidaz</td>
<td>244-848-1</td>
<td>22224-92-6</td>
<td>T; N; R28 N; R50-53</td>
<td>T; N R; 24-28-50/53 S; (1/2) 23-28/36/37- 60-61</td>
<td>C ≥ 25 %; T; N; R24-28-50-53 7 % ≤ C < 25 %; T; N; R21-28-50-53 3 % ≤ C < 7 %; T; N; R21-25- 50-53 1 % ≤ C < 3 %; T; N; R25-50-53 0,25 % ≤ C < 1 %; Xn, N; R22-50-53 0,1 % ≤ C < 0,25 %; Xn, N; R22-51-53 0,025 % ≤ C < 0,25 %; N; R51-53 0,0025 % ≤ C < 0,025 %; N; R52-53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 015-126-00-1 | heptenfos (ISO) 7-chloorbicyclo(3,2,0)hepta-2,6- dieen-6- yldimethylfosfaat | 245-737-0 | 23560-39-0 | T; N; R25 N; R50-53 | T; N R; 25-50/53 S; (1/2) 23-28-37/45- 60-61 | C ≥ 25 %; T; N; R25-50-53 3 % ≤ C < 25 %; Xn, N; R22- 50-53 0,25 % ≤ C < 3 %; N; R50-53 0,025 % ≤ C < 0,25 %; N; R51-
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota’s voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota’s voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>015-127-00-7</td>
<td>S-benzyldiisopropylthiofosfaat</td>
<td></td>
<td>247-449-0</td>
<td>26087-47-8</td>
<td>Xn; R22</td>
<td>N; R51-53</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>015-128-00-2</td>
<td>S-ethylsulfinylmethyl-O,O-diisopropylthiofosfaat</td>
<td>-</td>
<td>5827-05-4</td>
<td>T; R27</td>
<td>T; R25</td>
<td>N; R50-53</td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>015-129-00-8</td>
<td>isofenfos (ISO) O-ethyl-O-2-isopropoxycarbonyl-1-phenyl-N-isopropylthiofosforamidaat</td>
<td>246-814-1</td>
<td>25311-71-1</td>
<td>T; R24/25</td>
<td>N; R50-53</td>
<td>T; N</td>
<td>R: 24/25-50/53</td>
<td></td>
</tr>
<tr>
<td>015-131-00-9</td>
<td>O,O-diethyl-O-5-fenylisoxazol-3-ythiofosfaat</td>
<td>242-624-8</td>
<td>18854-01-8</td>
<td>T; R24/25</td>
<td>N; R50-53</td>
<td>T; N</td>
<td>R: 24/25-50/53</td>
<td></td>
</tr>
<tr>
<td>015-132-00-4</td>
<td>S-(chlorofenylthiomethyl)-O,O-dimethylthiofosfaat</td>
<td>-</td>
<td>953-17-3</td>
<td>T; R24/25</td>
<td>N; R50-53</td>
<td>T; N</td>
<td>R: 24/25-50/53</td>
<td></td>
</tr>
<tr>
<td>015-133-00-X</td>
<td>piperofos (ISO) S-2-methylpiperidinocarbonylmethyl-O,O-diisopropylthiofosfaat</td>
<td>-</td>
<td>24151-93-7</td>
<td>Xn; R22</td>
<td>N; R50-53</td>
<td>Xn; N</td>
<td>R: 22-50/53</td>
<td></td>
</tr>
</tbody>
</table>

<p>|</p>
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota's voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota's voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>015-134-00-5</td>
<td>pirimifos-methyl (ISO) O-(2-dietylamino-6-methylpyrimidine-4-yl)-O-dimethylthiofosfaat</td>
<td></td>
<td>249-528-5</td>
<td>29232-93-7</td>
<td>Xn; R22 N; R50-53</td>
<td>Xn; N R: 22-50/53 S: (2):60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-135-00-0</td>
<td>profenofos (ISO) O-(4-brom-2-chlorfenyl)-O-ethyl-S-propylthiofosfaat</td>
<td></td>
<td>255-255-2</td>
<td>41198-08-7</td>
<td>Xn; R20/21/22 N; R50-53</td>
<td>Xn; N R: 20/21/22-50/53 S: (2):36/37-60-61</td>
<td>C ≥ 25 %: Xn, N; R20/21/22-50-53 0,025 % ≤ C < 25 %: N; R50-53 0,0025 % ≤ C < 0,025 %: N; R51-53 0,00025 % ≤ C < 0,0025 %: R52-53</td>
<td></td>
</tr>
<tr>
<td>015-136-00-6</td>
<td>O-ethyl O(2-isopropoxy carbonyl)-1-methyl[nitro(bis(dimethylamino))thiofosfaat</td>
<td></td>
<td>250-517-2</td>
<td>31218-83-4</td>
<td>T; R25 N; R50-53</td>
<td>T; N R: 25-50/53 S: (1/2):37-45-60-61</td>
<td>C ≥ 25 %: T, N; R25-50-53 3 % ≤ C < 25 %: Xn, N; R22-50-53 0,25 % ≤ C < 3 %: N; R50-53 0,025 % ≤ C < 0,25 %: N; R51-53 0,0025 % ≤ C < 0,025 %: R52-53</td>
<td></td>
</tr>
<tr>
<td>015-138-00-7</td>
<td>quinalfos (ISO) O,O-diethyl-O-chinoxaline-2-ythiofosfaat</td>
<td></td>
<td>237-031-6</td>
<td>13593-03-8</td>
<td>T; R25 Xn; R21 N; R50-53</td>
<td>T; N R: 21-25-50/53 S: (1/2):22-36/37-45-60-61</td>
<td>C ≥ 25 %: T, N; R21-25-50-53 3 % ≤ C < 25 %: Xn, N; R22-50-53 0,25 % ≤ C < 3 %: N; R50-53 0,025 % ≤ C < 0,25 %: N; R51-53 0,0025 % ≤ C < 0,025 %: R52-53</td>
<td></td>
</tr>
<tr>
<td>015-139-00-2</td>
<td>S-tert-butylthiometyl-O,O-diethylthiofosfaat terbufos (ISO)</td>
<td></td>
<td>235-963-8</td>
<td>13071-79-9</td>
<td>T+; R27/28 N; R50-53</td>
<td>T+; N R: 27/28-50/53 S: (1/2):36/37-45-60-61</td>
<td>C > 7 %: T+; N; R27/28-50-53 1 % ≤ C < 7 %: T; N; R24/25-50-53 0,1 % ≤ C < 1 %: Xn; N; R21/22-50-53 0,025 % ≤ C < 0,1 %: N; R50-53 0,0025 % ≤ C < 0,025 %: N; R51-53 0,00025 % ≤ C < 0,0025 %: R52-53</td>
<td></td>
</tr>
<tr>
<td>015-154-00-4</td>
<td>2-chloorethifoszuur</td>
<td></td>
<td>240-718-3</td>
<td>16672-87-0</td>
<td>Xn; R20/21 C; R34 R52-53</td>
<td>C R: 20/21-34-52/53 S: (1/2):26-28/36/37-39-45-61</td>
<td>C ≥ 25 %: C; R20/21-34-52/53 10 % ≤ C < 25 %: C; R34 5 % ≤ C < 10 %: Xn; R36/37/38</td>
<td></td>
</tr>
</tbody>
</table>

NL

Publicatieblad van de Europese Unie
L 132/16
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota’s voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota’s voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>015-179-00-0</td>
<td>UVCB condensatieproduct van: tetrakis-hydroxymethylfosfoniumchloride, ureum en gedistilleerd gelydrogeneerde C16-18-taalkylamine</td>
<td>422-720-8</td>
<td>166242-53-1</td>
<td>Carec; Cat; 3; R40 Xn; R22-48/22 C; R34 R43 N; R50-53</td>
<td>C; N R; 22-34-40-43-48/22-50/53 S; (1/2)-26-36/37/39-45-60-61</td>
<td>F+; T+; N R; 12-26-50 S; (1/2)-39-16-36-38-45-61</td>
<td>C > 25 %; C; N; R31-34-50 5 % ≤ C < 25 %; C; R31-34 1 % ≤ C < 5 %; Xi; R31-36/38</td>
<td></td>
</tr>
<tr>
<td>016-001-00-4</td>
<td>hydrogeensulfide</td>
<td>231-977-3</td>
<td>7783-06-4</td>
<td>F+; R12 T+; R26 N; R50</td>
<td>F+; T+; N R; 12-26-50 S; (1/2)-39-16-36-38-45-61</td>
<td>C > 25 %; C; N; R31-34-50 5 % ≤ C < 25 %; C; R31-34 1 % ≤ C < 5 %; Xi; R31-36/38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>016-008-00-2</td>
<td>ammoniumpolysulfiden</td>
<td>232-989-1</td>
<td>9080-17-5</td>
<td>R31 C; R34 N; R50</td>
<td>C; N R; 31-34-50 S; (1/2)-26-45-61</td>
<td>C > 25 %; T; C; N; R20-25-35-50 10 % ≤ C < 25 %; C; R22-35 5 % ≤ C < 10 %; C; R22-34 3 % ≤ C < 5 %; Xi; R22-36/37/38 1 % ≤ C < 3 %; Xi; R36/37/38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>016-012-00-4</td>
<td>zwavelchloride</td>
<td>233-036-2</td>
<td>10025-67-9</td>
<td>R14 T; R25 Xn; R20 R29 C; R35 N; R50</td>
<td>T; C; N R; 14-20-25-29-35-50 S; (1/2)-26-36/37/39-45-61</td>
<td>C > 25 %; T; C; N; R20-25-35-50 10 % ≤ C < 25 %; C; R22-35 5 % ≤ C < 10 %; C; R22-34 3 % ≤ C < 5 %; Xi; R22-36/37/38 1 % ≤ C < 3 %; Xi; R36/37/38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>016-013-00-X</td>
<td>zwaveldichloride</td>
<td>234-129-0</td>
<td>10545-99-0</td>
<td>R14 C; R34 Xi; R37 N; R50</td>
<td>C; N R; 14-34-37-50 S; (1/2)-26-45-61</td>
<td>C > 25 %; C; N; R34-50 10 % ≤ C < 25 %; C; R34 5 % ≤ C < 10 %; Xi; R36/37/38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>016-014-00-5</td>
<td>zwavelchloride</td>
<td>-</td>
<td>13451-08-6</td>
<td>R14 C; R34 N; R50</td>
<td>C; N R; 14-34-50 S; (1/2)-26-45-61</td>
<td>C > 25 %; C; N; R34-50 10 % ≤ C < 25 %; C; R34 5 % ≤ C < 10 %; Xi; R36/37/38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 016-021-00-3 | methaanthiol methylmercaptan | 200-822-1 | 74-93-1 | F+; R12 T; R23 N; R50-53 | F+; T; N R; 12-23-50/53 S; (2)-16-25-60-61 | C > 25 %; T+; R45-R25-R26-R34-R43 R68 10 % ≤ C < 25 %; T+; R45-R22-R26-R34-R43 R68 7 % ≤ C < 10 %; T+; R45-R22-R26 R36/37/38 R43 R68 5 % ≤ C < 7 %; T; R45-R22-R23-R36/37/38-R43-R68 3 % ≤ C < 5 %; T; R45-R22-R23-R43-R68 1 % ≤ C < 3 %; T; R45-R23-R43-R68 0,1 % ≤ C < 1 %; T; R45-R20-
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota’s voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota’s voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>016-059-00-0</td>
<td>N,N,N',N'-tetramethyldithiobis(ethyleen)diaminedihydrochloride</td>
<td></td>
<td>405-300-9</td>
<td>17339-60-5</td>
<td>Xu; R22</td>
<td>Xi; R36</td>
<td>R43</td>
<td>N; R50-53</td>
</tr>
<tr>
<td>017-003-00-8</td>
<td>bariumchloraat</td>
<td></td>
<td>236-760-7</td>
<td>13477-00-4</td>
<td>O; R9</td>
<td>Xn; R20/22</td>
<td>N; R51-53</td>
<td>O; Xu; N</td>
</tr>
<tr>
<td>017-004-00-3</td>
<td>kaliumchloraat</td>
<td></td>
<td>223-289-7</td>
<td>3811-04-9</td>
<td>O; R9</td>
<td>Xn; R20/22</td>
<td>N; R51-53</td>
<td>O; Xu; N</td>
</tr>
<tr>
<td>017-005-00-9</td>
<td>natriumchloraat</td>
<td></td>
<td>231-887-4</td>
<td>7775-09-9</td>
<td>O; R9</td>
<td>Xn; R22</td>
<td>N; R51-53</td>
<td>O; Xu; N</td>
</tr>
<tr>
<td>017-011-00-1</td>
<td>natriumhypochloriet, oplossing ... % Cl actief</td>
<td>B</td>
<td>231-668-3</td>
<td>7681-52-9</td>
<td>C; R34</td>
<td>R31</td>
<td>N; R50</td>
<td>C; N</td>
</tr>
<tr>
<td>017-012-00-7</td>
<td>calciumhypochloriet</td>
<td></td>
<td>231-908-7</td>
<td>7778-54-3</td>
<td>O; R8</td>
<td>Xn; R22</td>
<td>R31</td>
<td>C; R34</td>
</tr>
<tr>
<td>024-001-00-0</td>
<td>chroomtri oxide</td>
<td>E</td>
<td>215-607-8</td>
<td>1333-82-0</td>
<td>O; R9</td>
<td>Care; Cat. 1; R45</td>
<td>Mura; Cat. 2; R46</td>
<td>Repr; Cat. 3; R62</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>024-002-00-6</td>
<td>kaliumdichromaat</td>
<td>E</td>
<td>231-906-6</td>
<td>7778-50-9</td>
<td></td>
<td>O; R8</td>
<td>Carc. Cat. 2; R45</td>
<td>T+; N; R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Repr. Cat. 2; R46</td>
<td>T+; R26</td>
<td>T; R25-48/23 Xn; R21</td>
</tr>
<tr>
<td>024-003-00-1</td>
<td>ammoniumdichromaat</td>
<td>E</td>
<td>232-143-1</td>
<td>7789-09-5</td>
<td></td>
<td>E; R2 O; R8</td>
<td>Carc. Cat. 2; R45</td>
<td>T+; N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Muta. Cat. 2; R46</td>
<td>Repr. Cat. 2; R60-61</td>
<td>T+; R26</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>024-004-00-7</td>
<td>natrium dichromaat</td>
<td>E</td>
<td>234-190-3</td>
<td>10588-01-9</td>
<td>O; R8 Care, Cut. 2; R45 Muta. Cat. 2; R46 Repr. Cat. 2; R60-61 T+; R26 T; R25-48/23 Xn; R21 C; R34 R42/43 N; 50-53</td>
<td>T+; N; O R; 45-46-60-61-8-21-25-26-34-42/43-48/23-30/53 S; 53-45-60-61</td>
<td>C ≥ 25 %: T+, N; R45-46-60-61-21-25-26-34-42/43-48/23-50/53 10 % ≤ C < 25 %: T+, N; R45-46-60-61-22-26-34-42/43-48/23-51/53 7 % ≤ C < 10 %: T+, N; R45-46-60-61-22-26-36/37/38-42/43-48/20-51/53 5 % ≤ C < 7 %: T, N; R45-46-60-61-22-23-36/37/38-42/43-48/20-51/53 3 % ≤ C < 5 %: T, N; R45-46-60-61-22-23-42/43-48/20-51/53 2,5 % ≤ C < 3 %: T, N; R45-46-60-61-23-42/43-48/20-51/53 2,5 % ≤ C < 3 %: T, N; R45-46-60-61-23-42/43-48/20-51/53 1 % ≤ C < 2,5 %: T; R45-46-60-61-23-42/43-48/20-52/53 0,5 % ≤ C < 1 %: T; R45-46-60-61-20-42/43-52/3 0,25 % ≤ C < 0,5 %: T; R45-46-20-42/43-52/3 0,2 % ≤ C < 0,25 %: T; R45-46-20-42/43 0,1 % ≤ C < 0,2 %: T; R45-46-20</td>
<td></td>
</tr>
<tr>
<td>024-004-01-4</td>
<td>natrium dichromaat, dihydroaat</td>
<td>E</td>
<td>234-190-3</td>
<td>7789-12-0</td>
<td>O; R8 Care, Cut. 2; R45 Muta. Cat. 2; R46 Repr. Cat. 2; R60-61 T+; R26</td>
<td>T+; N; O R; 45-46-60-61-8-21-25-26-34-42/43-48/23-30/53 S; 53-45-60-61</td>
<td>C ≥ 25 %: T+, N; R45-46-60-61-21-25-26-34-42/43-48/23-50/53 10 % ≤ C < 25 %: T+, N; R45-46-60-61-22-26-34-42/43-48/23-51/53 7 % ≤ C < 10 %: T+, N; R45-46-60-61-22-26-36/37/38-42/43-48/20-51/53 5 % ≤ C < 7 %: T, N; R45-46-60-61-22-23-36/37/38-42/43-48/20-51/53 3 % ≤ C < 5 %: T, N; R45-46-60-61-22-23-42/43-48/20-51/53 2,5 % ≤ C < 3 %: T, N; R45-46-60-61-23-42/43-48/20-51/53 2,5 % ≤ C < 3 %: T, N; R45-46-60-61-23-42/43-48/20-51/53 1 % ≤ C < 2,5 %: T; R45-46-60-61-23-42/43-48/20-52/53 0,5 % ≤ C < 1 %: T; R45-46-60-61-20-42/43-52/3 0,25 % ≤ C < 0,5 %: T; R45-46-20-42/43-52/3 0,2 % ≤ C < 0,25 %: T; R45-46-20-42/43 0,1 % ≤ C < 0,2 %: T; R45-46-20</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>027-004-00-5</td>
<td>kobaltchloride</td>
<td>E</td>
<td>231-589-4</td>
<td>7646-79-9</td>
<td>Carc. Cat. 2; R49</td>
<td>T; N; R: 19-22-42/43-50/53</td>
<td>C ≥ 25 %; T; N; R49-22-42/43-50/53</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R: 42/43</td>
<td>& (2)-22-53-45-60-61</td>
<td>2,5 % ≤ C < 25 %; T; N; R49-22-42/43-51/53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N; R50-53</td>
<td>1 % ≤ C < 2,5 %; T; R49-42/43-52/53</td>
<td>0,25 % ≤ C < 0,25 %; T; R49-46-20</td>
<td></td>
</tr>
<tr>
<td>027-005-00-0</td>
<td>kobalsulfate</td>
<td>E</td>
<td>233-334-2</td>
<td>10124-43-3</td>
<td>Carc. Cat. 2; R49</td>
<td>T; N; R: 49-22-42/43-50/53</td>
<td>C ≥ 25 %; T; N; R49-22-42/43-50/53</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R: 42/43</td>
<td>S: (2)-22-53-45-60-61</td>
<td>2,5 % ≤ C < 25 %; T; N; R49-22-42/43-51/53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N; R50-53</td>
<td>1 % ≤ C < 2,5 %; T; R49-42/43-52/53</td>
<td>0,25 % ≤ C < 0,25 %; T; R49-52/53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,01 % ≤ C < 0,25 %; T; R49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>029-002-00-0</td>
<td>dikeperoxide</td>
<td>X</td>
<td>215-270-7</td>
<td>1317-39-1</td>
<td>Xn; R22</td>
<td>Xn; N</td>
<td>T: R49-22-42/43-50/53</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>kopert (tetroxide)</td>
<td></td>
<td></td>
<td></td>
<td>N; 50-53</td>
<td>R: 22-50/53</td>
<td>S: (2)-37-46-61</td>
<td>2,5 % ≤ C < 25 %; T; N; R49-22-42/43-51/53</td>
</tr>
<tr>
<td>030-001-00-1</td>
<td>zinkpoeder - zinkstof (pyrovoor)</td>
<td>X</td>
<td>231-175-3</td>
<td>7440-66-6</td>
<td>F; R15-17</td>
<td>F; N</td>
<td>C: N</td>
<td>C ≥ 25 %; C; N; R22-34-50/53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N; R50-53</td>
<td>R: 15-17-50/53</td>
<td>R: 22-34-50/53</td>
<td>10 % ≤ C < 25 %; C; N; R34-51/53</td>
</tr>
<tr>
<td>030-002-00-7</td>
<td>zinkpoeder - zinkstof (gestabiliseerd)</td>
<td>X</td>
<td>231-175-3</td>
<td>7440-66-6</td>
<td>N; R50-53</td>
<td>N; R: 50/53</td>
<td>S: 45-60-61</td>
<td>5 % ≤ C < 10 %; Xn; N; R36/37/38-51/53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C: 2; N: 22-41-50/53</td>
<td>2,5 % ≤ C < 5 %; N; R54/53</td>
<td>0,25 % ≤ C < 2,5 %; R52/53</td>
</tr>
<tr>
<td>030-003-00-2</td>
<td>zinkchloride</td>
<td>X</td>
<td>231-592-0</td>
<td>7646-85-7</td>
<td>Xn; R22</td>
<td>C; N</td>
<td>C: N; R: 22-34-50/53</td>
<td>10 % ≤ C < 25 %; C; N; R34-51/53</td>
</tr>
<tr>
<td>030-006-00-9</td>
<td>zinksulfate (mono- , hexa- en heptahydraat)</td>
<td>X</td>
<td>231-793-3</td>
<td>7733-02-0</td>
<td>Xn: R22</td>
<td>Xn: N</td>
<td>T: R22-41-50/53</td>
<td>10 % ≤ C < 25 %; C; N; R34-51/53</td>
</tr>
<tr>
<td></td>
<td>(watervrij)</td>
<td>231-793-3</td>
<td>7446-19-7</td>
<td>231-793-3</td>
<td>[1]</td>
<td>[2]</td>
<td>[1]</td>
<td>[2]</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>FC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>033-001-00-X</td>
<td>arseen</td>
<td>152/23</td>
<td>231-148-6</td>
<td>7440-38-2</td>
<td>T; R23/25 N; R50-53</td>
<td>T; N R: 23/25-50/53 S: (1/2-)20/21-28-45-60-61</td>
<td>C ≥ 25 %: T; N; R23/25-50/53 2,5 % ≤ C < 25 %: T; N; R23/25-51/53 0,25 % ≤ C < 2,5 %: T; R23/25-52/53 0,2 % ≤ C < 0,25 %: T; R23/25 0,1 % ≤ C < 0,2 %: Xn; R20/22</td>
<td>1</td>
</tr>
<tr>
<td>033-002-00-5</td>
<td>arseenverbindingen met uitzondering van de in deze bijlage met name genoemde zouten</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>T; R23/25 N; R50-53</td>
<td>T; N R: 23/25-50/53 S: (1/2-)20/21-28-45-60-61</td>
<td>C ≥ 25 %: T; N; R23/25-50/53 2,5 % ≤ C < 25 %: T; N; R23/25-51/53 0,25 % ≤ C < 2,5 %: T; R23/25-52/53 0,2 % ≤ C < 0,25 %: T; R23/25 0,1 % ≤ C < 0,2 %: Xn; R20/22</td>
<td>1</td>
</tr>
<tr>
<td>042-002-00-4</td>
<td>tetraakis(dimethyl)ditetradecylammoomium(hexa-μ-oxotetra-μ-oxodi-μ-oxotetradecaxo.octamolybdaat(4-)</td>
<td>404-760-8</td>
<td>117342-25-3</td>
<td></td>
<td>T; R23 Xn; R41 R53</td>
<td>T R: 23-41-53 S: (1/2-)26-37/39-45-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>048-001-00-5</td>
<td>cadmiumverbindingen met uitzondering van cadmiumsulfoselenide (xCdS,yCdSe) en mengsels van cadmiumsulfide met zinksulfide (xCdS,yZnS), mengsels van cadmiumsulfide met kwikzulfide (xCdS,yHgS), alsmede van in deze bijlage met name genoemde Cd-verbindingen</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>Xn; R20/21/22 N; R50-53</td>
<td>Xn; N R: 20/21/22-50/53 S: (2-)60-61</td>
<td>C ≥ 25 %: Xn; N; R20/21/22-50/53 2,5 % ≤ C < 25 %: Xn; N; R20/21/22-51/53 0,25 % ≤ C < 2,5 %: Xn; Xn; R20/21/22-52/53 0,1 % ≤ C < 0,25 %: Xn; R20/21/22</td>
<td>1</td>
</tr>
<tr>
<td>048-003-00-6</td>
<td>cadmiumdiformiaat</td>
<td>221-720-0</td>
<td>416-2-23-7</td>
<td></td>
<td>T; R23/25 R33 Xn; R68 N; R50-53</td>
<td>T; N R: 23/25-33-68-50/53 S: (1/2-)22-45-60-61</td>
<td>C ≥ 25 %: T; N; R23/25-33-50/53 10 % ≤ C < 25 %: T; N; R23/25-33-51/53 2,5 % ≤ C < 10 %: Xn; N; R20/22-33-51/53 1 % ≤ C < 2,5 %: Xn; R20/22-33-52/53 0,1 % ≤ C < 1 %: Xn; R20/22-33-52/53 0,25 % ≤ C < 0,1 %: Xn; R20/22-33-52/53</td>
<td></td>
</tr>
<tr>
<td>048-004-00-1</td>
<td>cadmiumcyanide</td>
<td>208.829.1</td>
<td>542-83-6</td>
<td></td>
<td>T; R26/27/28 R32 R33 Xn; R68 N; R50-53</td>
<td>T; N R: 20/27/28-32-33-68-50/53 S: (1/2-)28-29-45-60-61</td>
<td>C ≥ 25 %: T; N; R26/27/28-32-33-50/53 7 % ≤ C < 25 %: T; N; R26/27/28-32-33-51/53 2,5 % ≤ C < 7 %: T; N; R23/25/32-33-51/53-68</td>
<td></td>
</tr>
</tbody>
</table>

| 1 | |

Publicatieblad van de Europese Unie L 152/23 30-4-2004
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota's voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenteken</th>
<th>Concentratiegrenzen</th>
<th>Nota's voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>048-005-00-7</td>
<td>cadmiumhexafluorosilicaat(2-)</td>
<td></td>
<td>201-024</td>
<td>2-11</td>
<td>T; R23/25</td>
<td>N; R50-53</td>
<td>1 % < C < 2,5 %; T; R23/24/31-33-52/53-68</td>
<td>0,25 % < C < 1 %; N; R20/22-33-52/53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R33 Xn; R68</td>
<td>N</td>
<td>0,1 % < C < 0,25 %; Xn; R20/21-22-33-53</td>
<td></td>
</tr>
<tr>
<td>048-006-00-2</td>
<td>cadmiumfluoride</td>
<td>E</td>
<td>232-222</td>
<td>0</td>
<td>T; R45</td>
<td>N</td>
<td>C ≥ 25 %; T; N; R20/22-33-50-53</td>
<td>0,25 % < C < 1 %; N; R20/22-33-52/53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Muta; Cat. 2; Repr. Cat. 2; R60-61</td>
<td>T; R26</td>
<td>10 % < C < 2,5 %; T; N; R45-46-60-64-25-26-48/23-50/53</td>
<td>0,25 % < C < 1 %; Xn; R20/22-33-52/53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T; R25-48/23-25</td>
<td>N</td>
<td>7 % < C < 10 %; T; N; R45-46-60-64-22-26-48/23-52/53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R50-53</td>
<td></td>
<td>2,5 % < C < 7 %; T; N; R45-46-60-64-22-23-48/20-22-51/53</td>
<td></td>
</tr>
<tr>
<td>048-007-00-8</td>
<td>cadmiumiodid</td>
<td></td>
<td>232-223</td>
<td>6</td>
<td>T; R23/25</td>
<td>N</td>
<td>C ≥ 25 %; T; N; R20/22-33-50/53</td>
<td>0,25 % < C < 1 %; Xn; R20/22-33-52/53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R33 Xn; R68</td>
<td>N</td>
<td>10 % < C < 2,5 %; T; N; R23/25-33-51/53-68</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R50-53</td>
<td></td>
<td>2,5 % < C < 10 %; Xn; N; R20/22-33-51/53-68</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T; N; R; 23-25-33-68-50/53</td>
<td>S; (1/2)-22-45-60-61</td>
<td>0,25 % < C < 1 %; Xn; R20/22-33-52/53-68</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>048-008-00-3</td>
<td>cadmiumchloride</td>
<td>E</td>
<td>233-296-7</td>
<td>10108-64-2</td>
<td>Care, Cat. 2; R45 Muta. Cat. 2; R46 Repr. Cat. 2; R60-61 T; R26 T; R25-48/23/25 N; R50-53</td>
<td>T; N R; 45-46-60-64-25-26-48/23/25-50/53 S; 53-45-60-61</td>
<td>C ≥ 25 %; T; N; R45-46-60-61-25-26-48/23/25-50/53 10 % ≤ C < 25 %; T; N; R45-46-60-61-25-26-48/23/25-50/53 7 % ≤ C < 10 %; T; N; R45-46-60-61-22-26-48/23/25-50/53 2,5 % ≤ C < 7 %; T; N; R45-46-60-61-22-23-48/20/22-50/53 1 % ≤ C < 2,5 %; T; R45-46-60-61-22-23-48/20/22-50/53 0,5 % ≤ C < 1 %; T; R45-46-60-61-20/22-48/20/22-50/53 0,25 % ≤ C < 0,5 %; T; R45-46-20/22-48/20/22-50/53 0,1 % ≤ C < 0,25 %; T; R45-46-20/22-48/20/22 0,01 % ≤ C < 0,1 %; T; R45</td>
<td></td>
</tr>
<tr>
<td>048-009-00-9</td>
<td>cadmiumsulfaat</td>
<td>E</td>
<td>233-331-6</td>
<td>10124-36-4</td>
<td>Care, Cat. 2; R45 Muta. Cat. 2; R46 Repr. Cat. 2; R60-61 T; R48/23/25 T; R26 T; R25 N; R50-53</td>
<td>T; N R; 45-46-60-64-25-26-48/23/25-50/53 S; 53-45-60-61</td>
<td>C ≥ 25 %; T; N; R45-46-60-61-25-26-48/23/25-50/53 10 % ≤ C < 25 %; T; N; R45-46-60-61-25-26-48/23/25-50/53 7 % ≤ C < 10 %; T; N; R45-46-60-61-22-26-48/23/25-50/53 2,5 % ≤ C < 7 %; T; N; R45-46-60-61-22-23-48/20/22-50/53 1 % ≤ C < 2,5 %; T; R45-46-60-61-22-23-48/20/22-50/53 0,5 % ≤ C < 1 %; T; R45-46-60-61-20/22-48/20/22-50/53 0,25 % ≤ C < 0,5 %; T; R45-46-20/22-48/20/22-50/53 0,1 % ≤ C < 0,25 %; T; R45-46-20/22-48/20/22 0,01 % ≤ C < 0,1 %; T; R45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>CAS-No</td>
<td>EC-No</td>
<td>Label No</td>
<td>Koncentratiegrenzen (‰)</td>
<td>Toxisch effecten</td>
<td>Kennmerken</td>
<td>Nota voor praktijken</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>051-001/00-5</td>
<td>231-588-9</td>
<td></td>
<td>C R53</td>
<td>C: 25% T: N; N: 202/12-63-68, 1% C: 25% T: N; N: 202/12-63-68; R: 25% C: 25% T: N; R: 202/12-63-68</td>
<td>triethylverbindingen met uitzondering van de in deze bijlage niet genoemde</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>051-005/00-7</td>
<td>70465-79-8</td>
<td></td>
<td>R92, 25%</td>
<td>C: 25% T: N; N: 262/12-63-68; R: 25% C: 25% T: N; R: 262/12-63-68</td>
<td>triethylverbindingen met uitzondering van de in deze bijlage niet genoemde</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>051-006/00-2</td>
<td>31-5253</td>
<td></td>
<td>R92, 53%</td>
<td>C: 25% T: N; N: 202/12-63-68, 1% C: 25% T: N; N: 202/12-63-68; R: 25% C: 25% T: N; R: 202/12-63-68</td>
<td>triethylverbindingen met uitzondering van de in deze bijlage niet genoemde</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>050-010-00-4</td>
<td>fluortrihexylstannaan</td>
<td>Kandidaat voor uitzondering van de in deze bijlage met nummer genoemde stoffen</td>
<td>243-547-2</td>
<td>20153-50-8</td>
<td>Xn; R20/21/22 N; R50-53</td>
<td>Xn; N R: 20/21/22-50/53 S: (1/2)-26-28-60-61</td>
<td>C ≥ 25 %; Xn; N; R20/21/22-50/53 2,5 % ≤ C < 25 %; Xn; N; R20/21/22-51/53 1 % ≤ C < 2,5 %; Xn; R20/21/22-52/53 0,25 % ≤ C < 1 %; R52/53</td>
<td>1</td>
</tr>
<tr>
<td>050-011-00-X</td>
<td>trifenylinverbindingen met uitzondering van de in deze bijlage met nummer genoemde stoffen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T; N; R: 23/24/25 N; R50-53</td>
<td>Xn; N R: 23/24/25-50/53 S: (1/2)-26-27-28-45-60-61</td>
<td>C ≥ 25 %; T; N; R23/24/25-50/53 2,5 % ≤ C < 25 %; T; N; R23/24/25-51/53 1 % ≤ C < 2,5 %; T; R23/24/25-52/53 0,25 % ≤ C < 1 %; Xn; R20/21/22-52/53</td>
<td>1</td>
</tr>
<tr>
<td>050-012-00-5</td>
<td>tetracyclohexylstannaan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Xn; R20/21/22 N; R50-53</td>
<td>Xn; N R: 20/21/22-50/53 S: (1/2)-26-28-60-61</td>
<td>C ≥ 25 %; Xn; N; R20/21/22-50/53 2,5 % ≤ C < 25 %; Xn; N; R20/21/22-51/53 1 % ≤ C < 2,5 %; Xn; R20/21/22-52/53 0,25 % ≤ C < 1 %; R52/53</td>
<td>1</td>
</tr>
<tr>
<td>050-013-00-0</td>
<td>trioxylinverbindingen met uitzondering van de in deze bijlage met nummer genoemde stoffen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Xn; R36/37/38 R53</td>
<td>Xn; N R: 34-51/53 S: (1/2)-26-45-61</td>
<td>C ≥ 25 %; Xn; R36/37/38-53 1 % ≤ C < 25 %; Xn; R36/37/38-54/55</td>
<td>1</td>
</tr>
<tr>
<td>051-002-00-3</td>
<td>monooxypentachloride</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>C; R34 N; R51-53</td>
<td>C; N R: 34-51/53 S: (1/2)-26-45-61</td>
<td>C ≥ 25 %; C; N; R34-51/53 10 % ≤ C < 25 %; C; R34-52/53 5 % ≤ C < 10 %; X;</td>
<td>1</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>051-003-00-9</td>
<td>antimoonverbindingen met uitzondering van tetroxide (Sb₂O₄), peroxide (Sb₂O₃), trisulfide (Sb₂S₃), pentasulfide (Sb₂S₅) alsmede van in deze bijlage met name genoemde zouten</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>Xn; R20/22 N; R51-53</td>
<td>Xn; N R: 20/22-51/53 S: (2) 64</td>
<td>C ≥ 25 %: Xn, N; R20/22-51/53 2,5 % ≤ C < 5 %: Xn; R20/22-52/53 0,25 % ≤ C < 2,5 %: Xn; R20/22 1</td>
<td></td>
</tr>
<tr>
<td>080-002-00-6</td>
<td>anorganische kwikverbindingen, met uitzondering van kwiksulfide en van de in deze bijlage met name genoemde</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>T; R26/27/28 R33 N; R50-53</td>
<td>T; N R: 26/27/28-33-50/53 S: (1/2-) 13-28-45-60-61</td>
<td>C ≥ 25 %: T; N; R26/27/28-33-50/53 2,5 % ≤ C < 25 %: T; N; R26/27/28-33-51/53 2 % ≤ C < 2,5 %: T; N; R26/27/28-33-52/53 0,5 % ≤ C < 0,5 %: T N; R20/21/22 33 52/53 0,1 % ≤ C < 0,25 %: Xn; R20/21/22 33 52/53 1</td>
<td></td>
</tr>
<tr>
<td>080-001-00-7</td>
<td>organische kwikverbindingen met uitzondering van de in deze bijlage met name genoemde</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>T; R26/27/28 R33 N; R50-53</td>
<td>T; N R: 26/27/28-33-50/53 S: (1/2-) 13-28-36-45-60-61</td>
<td>C ≥ 25 %: T; N; R26/27/28-33-50/53 2,5 % ≤ C < 25 %: T; N; R26/27/28-33-51/53 1 % ≤ C < 2,5 %: T; N; R26/27/28-33-52/53 0,5 % ≤ C < 1 %: T; N; R23/24/25-33-52/53 0,25 % ≤ C < 0,5 %: Xn; R20/21/22 33 52/53 0,05 % ≤ C < 0,25 %: Xn; R20/21/22 33 1</td>
<td></td>
</tr>
<tr>
<td>080-007-00-3</td>
<td>dimethyalkwik</td>
<td>209-805-3</td>
<td>503-74-8</td>
<td>T; R26/27/28 R33 N; R50-53</td>
<td>T; N R: 26/27/28-33-50/53 S: (1/2-) 13-28-36-45-60-61</td>
<td>C ≥ 25 %: T; N; R26/27/28-33-50/53 2,5 % ≤ C < 25 %: T; N; R26/27/28-33-51/53 0,5 % ≤ C < 2,5 %: T; N; R26/27/28-33-52/53 0,25 % ≤ C < 0,5 %: T; N; R23/24/25 33 52/53 0,1 % ≤ C < 0,25 %: T N; R23/24/25 33 0,05 % ≤ C < 0,1 %: Xn; R20/21/22 33 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[1] dimethyalkwik
[2] diethyalkwik
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota’s voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota’s voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>082-001-00-6</td>
<td>loodverbindingen met uitzondering van de in deze bijlage met name genoemde</td>
<td>AE</td>
<td>-</td>
<td>-</td>
<td>Repr. Cat. 1; R61 Repr. Cat. 3; R62 Xn; R20/22 R33 N; R50-53</td>
<td>T; N R: 61-20/22-33-62-50/53 S: 53-45-60-61</td>
<td>C ≥ 25%; T; N; R61-20/22-33-62-50/53 5% ≤ C < 25%; T; N; R61-20/22-33-62-51/53 2,5% ≤ C < 5%; T; N; R61-20/22-33-62-51/53 1% ≤ C < 2,5%; T; R61-20/22-33-52/53 0,5% ≤ C < 1%; T; R61-33-52/53 0,25% ≤ C < 0,5%; R52/53</td>
<td>1</td>
</tr>
<tr>
<td>082-002-00-1</td>
<td>loodalkylen</td>
<td>AE</td>
<td>-</td>
<td>-</td>
<td>Repr. Cat. 1; R61 Repr. Cat. 3; R62 T; R20/27/28 R33 N; R50-53</td>
<td>T; N R: 61-26/27-28-33-62-50/53 S: 53-45-60-61</td>
<td>C ≥ 25%; T; N; R61-26/27-28-33-62-50/53 5% ≤ C < 25%; T; N; R61-26/27-28-33-62-51/53 2,5% ≤ C < 5%; T; N; R61-26/27-28-33-51/53 0,5% ≤ C < 2,5%; T; R61-26/27-28-33-52/53 0,25% ≤ C < 0,5%; T; R61-26/27-28-33-52/53 0,1% ≤ C < 0,25%; T; R61-23/24-25-33 0,05% ≤ C < 0,1%; Xn; R20/21/22-33</td>
<td>1</td>
</tr>
<tr>
<td>601-010-00-3</td>
<td>etheen ethyleen</td>
<td></td>
<td>200-815-3</td>
<td>74-85-1</td>
<td>F; R12 R67</td>
<td>F; R: 12-67 S: (2) 39-16-33-46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>601-014-00-5</td>
<td>isoprofen</td>
<td>D</td>
<td>701-143-3</td>
<td>78-70-5</td>
<td>F; R17 Carc. Cat. 2; R45 Muta. Cat. 3; R68 R52-53</td>
<td>F; T R: 45-12-68-52/53 S: 53-45-64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>601-017-00-1</td>
<td>cyclohexaan</td>
<td></td>
<td>203-806-2</td>
<td>110-82-7</td>
<td>F: R11 Xn; R65 Xi; R38 R67 N; R50-53</td>
<td>F; Xn; N R: 11-38-65-67-50/53 S: (2) 39-16-25-33-60-61-62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>601-020-00-8</td>
<td>benzeen</td>
<td>E</td>
<td>200-753-7</td>
<td>71-43-2</td>
<td>F: R11 Carc. Cat. 1; R45 Muta. Cat. 2; R46 T; R18/24/25 Xn; R65 Xi; R38/3/38</td>
<td>F; T R: 45-46-11-36/38-48/23/24/25-65 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>601-021-00-3</td>
<td>toleene</td>
<td></td>
<td>203-625-9</td>
<td>108-88-3</td>
<td>F: R11 F; Xn</td>
<td></td>
<td>4, 6</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------</td>
<td>----------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>601-025-00-5</td>
<td>mesityleen</td>
<td>203-604-4</td>
<td>108-67-8</td>
<td></td>
<td>R:10</td>
<td>Xi: N</td>
<td>C ≥ 25 %: Xi, N; R37-51/53</td>
<td>2,5 % ≤ C < 25 %: R52/53</td>
</tr>
<tr>
<td>601-027-00-6</td>
<td>2-fenylpropeen</td>
<td>202-705-0</td>
<td>98-83-9</td>
<td></td>
<td>R:10</td>
<td>Xi: N</td>
<td>C ≥ 25 %: Xi, N; R36-37-51/53</td>
<td>2,5 % ≤ C < 25 %: R52/53</td>
</tr>
<tr>
<td>601-028-00-1</td>
<td>2-methylstyreen</td>
<td>210-256-7</td>
<td>611-15-4</td>
<td></td>
<td>Xn: R20</td>
<td>R: N</td>
<td>C ≥ 25 %: Xn, N; R20-51/53</td>
<td>2,5 % ≤ C < 25 %: R52/53</td>
</tr>
<tr>
<td>601-041-00-2</td>
<td>dibenzo[a,j]pyraceen</td>
<td>200-181-8</td>
<td>53-70-3</td>
<td></td>
<td>T: N</td>
<td>R: 45-50/53</td>
<td>C ≥ 25 %: T, N; R45-50/53</td>
<td>2,5 % ≤ C < 25 %: T, N; R45-51/53</td>
</tr>
<tr>
<td>601-048-00-0</td>
<td>chryseen</td>
<td>205-923-4</td>
<td>218-01-9</td>
<td></td>
<td>T: N</td>
<td>R: 45-68-50/53</td>
<td>C ≥ 25 %: T, N; R45-50/53</td>
<td>2,5 % ≤ C < 25 %: T, N; R45-51/53</td>
</tr>
<tr>
<td>601-052-00-2</td>
<td>nafthaleen</td>
<td>202-649-5</td>
<td>91-20-3</td>
<td></td>
<td>Xn: R40</td>
<td>Xn: N</td>
<td>C ≥ 25 %: T, N; R45-50/53</td>
<td>2,5 % ≤ C < 25 %: T, N; R45-51/53</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>602-003-00-8</td>
<td>dibroommethaan</td>
<td></td>
<td>200-824-2</td>
<td>74-95-3</td>
<td>Xn; R20</td>
<td>R52-53</td>
<td>C ≥ 25 %; Xn; R20/52-53</td>
<td></td>
</tr>
<tr>
<td>602-005-40-5</td>
<td>koostofftetrachloride</td>
<td></td>
<td>202-262-8</td>
<td>56-23-5</td>
<td>T; N</td>
<td>R5-23; 24/25-48/23 R52-53; N; R59</td>
<td>C ≥ 25 %; T; N; R23/24/25-48/23-52</td>
<td>1 % < C ≤ 25 %; T; N; R23/24/25-48/23-52</td>
</tr>
<tr>
<td>602-010-00-6</td>
<td>1,2-dibroommethaan</td>
<td>E</td>
<td>203-444-5</td>
<td>106-93-4</td>
<td>T; N</td>
<td>R5-23/24/25-36/37/38-51/53 S; 53-45-61</td>
<td>C ≥ 25 %; T; N</td>
<td>R45-23/24/25-36/37/38/51/53</td>
</tr>
<tr>
<td>602-011-00-1</td>
<td>1,1-dichloorethaan</td>
<td></td>
<td>200-863-5</td>
<td>75-34-3</td>
<td>T; Xi</td>
<td>R22; R51-38 R52-53</td>
<td>C ≥ 25 %; Xn; R22; 36/37-52/53</td>
<td>20 % < C ≤ 25 %; Xn; R22-36/37</td>
</tr>
<tr>
<td>602-014-00-8</td>
<td>1,1,2-trichloorethaan</td>
<td></td>
<td>201-166-9</td>
<td>79-00-5</td>
<td>Xn; R20/21/22 R66</td>
<td>C ≥ 5 %; Xn; R20/21/22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>602-015-00-3</td>
<td>1,1,2,2-tetrachloorethaan</td>
<td></td>
<td>201-197-8</td>
<td>79-34-5</td>
<td>T; R5-3 R51-53</td>
<td>C ≥ 25 %; T; N; R26/27-51/53</td>
<td>7 % < C ≤ 25 %; T; N; R26/27-52/53</td>
<td></td>
</tr>
</tbody>
</table>

N: niet geldig; Xi: inactieve ingrediënt; T: toenemende toxiciteit.
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota's voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota's voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>602-016-00-9</td>
<td>1,1,2,2-tetrabroometheen</td>
<td></td>
<td>201-191-5</td>
<td>79-27-6</td>
<td>T; R26 Xi; R36 R52-53</td>
<td>T; R: 26-36-52/53 S: (1/2)24-27-45-61</td>
<td>C ≥ 25 %: T; R26-36-52/53 20 % ≤ C < 25 %: T; R26-36 7 % ≤ C ≤ 20 %: T; R26 1 % ≤ C < 7 %: T; R23 0,1 % ≤ C < 1 %: Xn; R20</td>
<td></td>
</tr>
<tr>
<td>602-017-00-4</td>
<td>pentachlooretheen</td>
<td></td>
<td>200-925-1</td>
<td>76-01-7</td>
<td>Carec. Cat. 3; R40 T; R48/23 N; R51-53</td>
<td>T; N R: 40-48/23-51/53 S: (1/2)23-36/37-45-61</td>
<td>C ≥ 25 %: T; N; R40-48/23-51/53 2,5 % ≤ C < 25 %: T; R40-48/23-52/53 1 % ≤ C < 2,5 %: T; R40-48/23 0,2 % ≤ C < 1 %: Xn; R48/20</td>
<td></td>
</tr>
<tr>
<td>602-019-00-5</td>
<td>1-propylbromide</td>
<td></td>
<td>203-445-0</td>
<td>106-94-5</td>
<td>F; R11 Rep. Cat. 2; R60 Rep. Cat. 3; R63 Xn; R48/20 Xn; R36/37/38 R67</td>
<td>T; F R: 60-11-36/37/38-48/20-63-67 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>602-025-00-8</td>
<td>1,1-dichlooretheen dichloorethyleen D</td>
<td></td>
<td>200-864-0</td>
<td>75-35-4</td>
<td>F; R12 Carec.Cat.3; R40 Xn; R20</td>
<td>F; Xn R: 12-20-40 S: (2)-7-16-29-36/37-46</td>
<td>C ≥ 12,5 %: Xn; R20-40 1 % ≤ C < 12,5 %: Xn; R40</td>
<td></td>
</tr>
<tr>
<td>602-029-00-X</td>
<td>3-chloorpropoeno allychloride</td>
<td></td>
<td>203-457-6</td>
<td>107-05-1</td>
<td>F; R11 Carec.Cat.3; R40 Mutac.Cat.3; R68 Xn; R20/21/22-48/20 Xn; R36/37/38 N; R50</td>
<td>F; Xn N: R11-20/21/22-36/37/38-40/48/20-68-50 S: (2)-16-25-26-36/37-46-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>602-033-00-1</td>
<td>chloorebenzeen</td>
<td></td>
<td>203-628-5</td>
<td>108-90-7</td>
<td>R10 Xn; R20 N; R51-53</td>
<td>Xn; N R: 10-20-51/53 S: (2)-224/25-61</td>
<td>C ≥ 25 %: Xn, N; R20-51/53 5 % ≤ C < 25 %: Xn, N; R20-52/53 2,5 % ≤ C < 5 %: R52/53</td>
<td></td>
</tr>
<tr>
<td>602-034-00-7</td>
<td>1,2-dichloorebenzeen</td>
<td></td>
<td>202-425-9</td>
<td>95-50-1</td>
<td>Xn; R22 Xn; R36/37/38 N; R50-53</td>
<td>Xn; N R: 22-36/37/38-50/53 S: (2)-23-60-61</td>
<td>C ≥ 25 %: Xn, N; R22-36/37/38/50/53 20 % ≤ C < 25 %: Xn, N; R22-36/37/38/51/53 5 % ≤ C < 20 %: Xn, N; R22-51/53</td>
<td></td>
</tr>
<tr>
<td>Index-No</td>
<td>echemische naam</td>
<td>CAS-No</td>
<td>FC No</td>
<td>Lijst voor levering</td>
<td>Lijst voor preparaten</td>
<td>Concentratiegrenzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------</td>
<td>--------</td>
<td>-------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>602-045-0-2</td>
<td>1,4-dichloorbenzen</td>
<td>203-46-7</td>
<td>096-46-7</td>
<td>1,4-Dichlorehydrobenzen</td>
<td>1,4-Dichlorbenzen</td>
<td>0.25% ≤ C < 5%: N: R15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
</tbody>
</table>
| 603-006-00-7 | pentanolisomeren, met uitzondering van de elders in deze bijlage vermelde isomeren | C | 250-378-8 | 30899-19-5 | R10
| | | | | | Xn; R20
| | | | | | Xi; R37
| | | | | | R66
| | | | | | Xn
| | | | | | R: 10-20-37-66
| | | | | | S: (2)-346 |
| 603-007-00-2 | 2-methylbutan-2-ol tert-pentanol | 200-908-9 | 75-85-4 | F: R11
| | | | | | Xn; R20
| | | | | | Xi; R37/38
| | | | | | F: Xn
| | | | | | R: 11-20-37-38
| | | | | | S: (2)-346 |
| 603-029-00-2 | 2,2'-dichloorethylether | 203-870-1 | 111-44-4 | R10
| | | | | | Care Cat.3; R40
| | | | | | T;; R26/27/28
| | | | | | T+
| | | | | | R: 10-26/27/28-40
| | | | | | S: (1/2)-27/29-27-38-37-45
| | | | | | C: 7 %; T+; R26/27/28-40
| | | | | | 1 % ≤ C < 7 %; T; R23/24/25-40
| | | | | | 0,1 % ≤ C < 1 %; Xn; R20/21/22
| 603-030-00-8 | 2-amino-ethanol ethanslamine | 205-483-3 | 141-43-5 | Xn; R20/21/22
| | | | | | C
| | | | | | R: 20/21/22-34
| | | | | | S: (1/2)-26-36/37/39-45
| | | | | | C ≥ 25 %; C; R20/21/22-34
| | | | | | 10 % ≤ C < 25 %; C; R34
| | | | | | 5 % ≤ C < 10 %; Xi; R36/37/38
| 603-031-00-3 | 1,2-dimethoxyethaan ethyleenglycoldimethylether | 203-794-9 | 110-71-4 | Repr Cat.2; R60
| | | | | | Repr Cat.2; R61
| | | | | | F; R11
| | | | | | R19
| | | | | | Xn; R20
| | | | | | F: T
| | | | | | R: 60-61-11-19-20
| | | | | | S: 53-45
| | | | | | C: 10 %; Xi; R36/37/38
| 603-051-00-9 | di n butylether | 205 575-3 | 112-96-1 | R10
| | | | | | X: R36/37/38
| | | | | | R52-53
| | | | | | X: R: 10-36/37/38-52/53
| | | | | | S: (2)-346 |
| 603-063-00-8 | 2,3-epoxypropaan-1-ol | E | 209-128-3 | 556-52-5 | Care Cat. 2; R45
| | | | | | Muta Cat. 3; R68
| | | | | | Repr Cat. 2; R60
| | | | | | T; R23
| | | | | | Xn; R21/22
| | | | | | Xi; R36/37/38
| | | | | | T
| | | | | | R: 45-60/21-22-23-36/37/38-68
| | | | | | S: 53-45
| 603-066-00-4 | 1-epoxyethyl-3,4-epoxycyclohexaan vinylcyclohexandiepoxide | 203-437-7 | 106-87-6 | T
| | | | | | R: 23/24/25
| | | | | | Xn; R68
| | | | | | T
| | | | | | R: 23/24/25-68
| | | | | | S: (1/2)-23-24-45
| | | | | | C: 1 %; T; R23/24/25-68
| | | | | | 0,1 % ≤ C < 1 %; Xn; R20/21/22
| 603-067-00-X | phenylglycelidether | E | 204-557-2 | 122-60-1 | Care Cat. 2; R45
| | | | | | Muta Cat. 3; R68
| | | | | | Xn; R20
| | | | | | Xi; R37/38
| | | | | | T
| | | | | | R: 45-20-37/38-43-68-52/53
<p>| | | | | | S: 53-45-64 |</p>
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota’s voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota’s voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>603-070-00-6</td>
<td>2-amino-2-methylpropanol</td>
<td></td>
<td>204-709-8</td>
<td>124-68-5</td>
<td>Xi; R36/38 R52-53</td>
<td>Xi; R; 36/38-52/53 S; (2)-36/52-61</td>
<td>C ≥ 25 %; Xi; R36/38-52/53 10 % ≤ C < 25 %; Xi; R36/38</td>
<td></td>
</tr>
<tr>
<td>603-074-00-8</td>
<td>reactieproduct: bisfenol-A-epichloorhydrine epoxyhars (gemiddeld moleculaargewicht ≤ 700)</td>
<td></td>
<td>500-033-5</td>
<td>25068-38-6</td>
<td>Xi; R36/38 R34 N; R51-53</td>
<td>Xi; N; R; 36/38-43-51/53 S; (2)-28-37-39-61</td>
<td>C ≥ 25 %; Xi; N; R36/38-43-51/53 5 % ≤ C < 25 %; Xi; R36/38-43-52/53 2,5 % ≤ C < 5 %; Xi; R43-52/53 1 % ≤ C < 2,5 %; Xi; R43</td>
<td></td>
</tr>
<tr>
<td>603-076-00-9</td>
<td>but-2-yn-1,4-diol 2-butyln-1,4-diol</td>
<td>D</td>
<td>203-788-6</td>
<td>110-65-6</td>
<td>C; R34 T; R23/25 Xn; R21-48/22 R43</td>
<td>C; T R; 21-23/25-34-43-48/22 S; (1/2)-25-26-36/37/39-46</td>
<td>C ≥ 50 %; T; C; R21-23/25-34-48/22-43 25 % ≤ C < 50 %; T; R21-23/25-36/38-48/22-43 10 % ≤ C < 25 %; Xn; R20/22-48/22-43 3 % ≤ C < 10 %; Xn; R20/22-48/22-43 1 % ≤ C < 3 %; Xi; R43</td>
<td></td>
</tr>
<tr>
<td>603-095-00-2</td>
<td>2-(propoxy)ethanol</td>
<td></td>
<td>220-548-6</td>
<td>2807-30-9</td>
<td>Xn; R21 Xi; R36</td>
<td>Xn R; 21-36 S; (2)-26-36/37-46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-105-00-5</td>
<td>furan</td>
<td>E</td>
<td>203-727-3</td>
<td>110-00-9</td>
<td>Fe; R12 R19 Carc. Cat. 2; R45 Muta. Cat. 3; R68 Xn; R20/22-48/22 Xi; R38 R52-53</td>
<td>Fe; T R; 45-12-19-20/22-38-48/22-68-52/53 S; 53-15-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>604-001-00-2</td>
<td>fenol</td>
<td></td>
<td>203-632-7</td>
<td>108-95-2</td>
<td>Muta. Cat.3; R68 T; R23/24/25 Xn; R46/20/21/22 C; R34</td>
<td>T; C R; 23/24/25-34-48/20/21/22-68 S; (1/2)-24/25-26-28-36/37/39-45</td>
<td>C ≥ 10 %; T; R23/24-25/48/20/21/22-34-68 3 % ≤ C < 10 %; C; Xn; R20/21/22-34-68 1 % ≤ C < 3 %; Xn; R36/38-68</td>
<td></td>
</tr>
<tr>
<td>604-009-00-6</td>
<td>pyrogallol</td>
<td></td>
<td>201-762-9</td>
<td>87-66-1</td>
<td>Muta. Cat. 3; R68 Xn; R20/21/22 R52-53</td>
<td>Xn R; 20/21/22-68-52/53 S; (2)-36/37/64</td>
<td>C ≥ 25 %; Xn; R20/21/22-68-52/53 10 % ≤ C < 25 %; Xn; R20/21/22-68 1 % ≤ C < 10 %; Xn; R68</td>
<td></td>
</tr>
<tr>
<td>604-010-00-1</td>
<td>resorcinal 1,3-benzeendiol</td>
<td></td>
<td>203-585-2</td>
<td>108-46-3</td>
<td>Xn; R22 Xi; R36/38</td>
<td>Xn; N R; 22-36/38-50</td>
<td>C ≥ 25 %; Xn; N; R22-36/38-50</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>604-012-00-2</td>
<td>4-chloor-α-kresol</td>
<td></td>
<td>216-381-3</td>
<td>1570-64-5</td>
<td>T; R23 C; R35 N; R50</td>
<td>S; (2)-26-61</td>
<td>20 % ≤ C < 25 %: Xn; R22-36/38 10 % ≤ C < 20 %: Xn; R22</td>
<td></td>
</tr>
<tr>
<td>604-013-00-8</td>
<td>2,3,4,6-tetrachloorfenol</td>
<td></td>
<td>200-402-8</td>
<td>58-90-2</td>
<td>T; R25 Xi; R36/38 N; R50-53</td>
<td>T; N R: 25-36/38-50/53 S; (1/-2)-26-28-37-45-60/61</td>
<td>C > 25 %: T; N; R25-38-50/53 20 % ≤ C < 25 %: T; N; R25-51/53 5 % ≤ C < 20 %: T; N; R25-36/38-51/53 2,5 % ≤ C < 5 %: Xn; N; R22-51/53 0,5 % ≤ C < 2,5 %: Xn; R22-52/53 0,25 % ≤ C < 0,5 %: R52/53</td>
<td></td>
</tr>
<tr>
<td>604-014-00-3</td>
<td>chloorkresol</td>
<td></td>
<td>200-431-6</td>
<td>59-50-7</td>
<td>Xi; R21/22 Xi; R41 R43 N; R50</td>
<td>Xn; N R: 21-22-41-43-50 S; (2)-26-36/37/39-61</td>
<td>C > 25 %: Xn; N; R21-22-41-43-50 10 % ≤ C < 25 %: Xn; R21-22-41-43 5 % ≤ C < 10 %: Xn; R21-22-36-43 1 % ≤ C < 5 %: X; R43</td>
<td></td>
</tr>
<tr>
<td>604-015-00-9</td>
<td>2,2'-methyleen bis- (3,4,6-trichloorfenol) hexachlorofen</td>
<td></td>
<td>200-733-8</td>
<td>70-30-4</td>
<td>T; R24/25 N; R50-53</td>
<td>T; N R: 24/25-50/53 S; (1/-2)-20-37-45-60-61</td>
<td>C > 25 %: T; N; R24/25-50/53 2,5 % ≤ C < 25 %: T; N; R24/25-51/53 2 % ≤ C < 2,5 %: T; N; R24/25-52/53 0,25 % ≤ C < 2 %: Xn; R21/22-52/53 0,2 % ≤ C < 0,25 %: Xn; R21/22</td>
<td></td>
</tr>
<tr>
<td>604-017-00-X</td>
<td>2,4,5-trichloorfenol</td>
<td></td>
<td>202-467-8</td>
<td>95-95-4</td>
<td>Xi; R22 Xi; R36/38 N; R50-53</td>
<td>Xn; N R: 22-36/38-50/53 S; (2)-26-28-60-61</td>
<td>C > 25 %: Xn; N; R22-36/38-50/53 20 % ≤ C < 25 %: Xn; N; R22-36/38-51/53 5 % ≤ C < 20 %: Xn; N; R26/38-51/53 2,5 % ≤ C < 5 %: N; R51/53 0,25 % ≤ C < 2,5 %: R52/53</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>604-030-00-0</td>
<td>4,4'-isopropylidenedifenol</td>
<td></td>
<td>201-245-8</td>
<td>80-05-7</td>
<td>Repr. Cat. 3; R62 Xi; R37:41 R43</td>
<td>Xi</td>
<td>R; 37-41-43-62 S; (2-1)-26-36-37-39-46</td>
<td></td>
</tr>
<tr>
<td>605-002-00-0</td>
<td>1,3,5-trioxan trioxymethyleen</td>
<td></td>
<td>203-812-5</td>
<td>110-88-3</td>
<td>F; R11 Repr.Cat. 3; R63 Xi; R37</td>
<td>F; Xn</td>
<td>R; 11-37-63 S; (2-1)36/37-36</td>
<td></td>
</tr>
<tr>
<td>605-016-00-7</td>
<td>glyoxal, %</td>
<td>B</td>
<td>203-474-9</td>
<td>107-22-2</td>
<td>Mata. Cat. 3; R68 Xn; R20 Xi; R36/38 R43</td>
<td>Xn</td>
<td>R; 20-36/38-43-68 S; (2-1)36/37</td>
<td>C ≥ 10 %; Xn; R20/36-38-43-68 1 % ≤ C < 10 %; Xn; R43-68</td>
</tr>
<tr>
<td>605-020-00-9</td>
<td>safrool 5-allyl-1,3-benzodioxool</td>
<td>E</td>
<td>202-345-4</td>
<td>94-59-7</td>
<td>Carc. Cat. 2; R45 Mata. Cat. 3; R68 Xn; R22</td>
<td>T</td>
<td>R; 45-22-68 S; 53-45</td>
<td></td>
</tr>
<tr>
<td>605-022-00-X</td>
<td>glutaraaldehyd</td>
<td></td>
<td>203-856-5</td>
<td>111-30-8</td>
<td>T; R23/25 C; R34 R42/43 N; R50</td>
<td>T; N</td>
<td>R; 23/25-34-42/43-50 S; (1-1)-26-36/37-39-45-61</td>
<td>C ≥ 50 %; T; N; R23/25-34-42/43-50 25 % ≤ C < 50 %; T; R22-23-34-42/43 10 % ≤ C < 25 %; C; R20/22-34-42/43 2 % ≤ C < 10 %; Xn; R20/22-37/38-42/43 1 % ≤ C < 2 %; Xn; R36/37-38/42/43 0,5 % ≤ C < 1 %; Xi; R36/37-38/43</td>
</tr>
<tr>
<td>605-025-00-6</td>
<td>chlooreacetaaldehyde</td>
<td></td>
<td>203-472-8</td>
<td>107-20-0</td>
<td>Carc. Cat. 3; R40 T+; R26 T; R24/25 C; R34 N; R50</td>
<td>T+; N</td>
<td>R; 24/25-26-34-40-50 S; (1-1)-26-28-30/37/39-45-61</td>
<td>C ≥ 25 %; T+; N; R24/25-26-34-40-50 10 % ≤ C < 25 %; T+; R21/22-26-34-40 7 % ≤ C < 10 %; T+; R21/22-26-37/38-40 5 % ≤ C < 7 %; T+; R21/22-23-36/37/38-40 3 % ≤ C < 5 %; T+; R21/22-23-40 1 % ≤ C < 3 %; T; R23-40 0,1 % ≤ C < 1 %; Xn; R20</td>
</tr>
<tr>
<td>606-037-00-4</td>
<td>triadimenon (ISO) 1-(4-chloorfenoxyl)-3,3-dimethyl-1-(1,2,4-triazoold-1-yl)butanon</td>
<td></td>
<td>256-103-8</td>
<td>43121-43-3</td>
<td>Xn; R22 R43 N; R51-53</td>
<td>Xn; N</td>
<td>R; 22-43-51/53 S; (2-1)24-37-61</td>
<td></td>
</tr>
<tr>
<td>606-048-00-4</td>
<td>2'-amino-3'-methyl-6'-</td>
<td></td>
<td>406-480-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>607-004-00-7</td>
<td>trichloezijnzuur</td>
<td>TCA</td>
<td>200-927-2</td>
<td>76-03-9</td>
<td>C; R53</td>
<td>C; N; R35-50/53; S; (1/2)-26-36/37/39-45/60-61</td>
<td>C ≥ 25 %; C; N; R35-50/53</td>
<td>10 % ≤ C < 25 %; C; N; R35-51/53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 % ≤ C < 10 %; C; N; R34-51/53</td>
<td>2,5 % ≤ C < 5 %; Xi; N; R36/37/38/51/53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R36/37/38/52/53; 0,25 % ≤ C < 1 %; R52/53</td>
<td></td>
</tr>
<tr>
<td>607-019-00-9</td>
<td>methylchloorformiaat</td>
<td></td>
<td>201-187-3</td>
<td>79-22-1</td>
<td>F; R11</td>
<td>F; T+; R34</td>
<td>C; N; R21/22</td>
<td>C; R34; R21/22-26-26-34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S; (1/2)-26-14-28-36/37/39-45-60-63</td>
<td></td>
</tr>
<tr>
<td>607-049-00-2</td>
<td>meprop (ISO) 2-4-chloor-o-tolyloxypropionzuur (RS)-2-4-chloor-o-tolyloxypropionzuur</td>
<td></td>
<td>230-386-8</td>
<td>7083-19-0</td>
<td>Xn; R22</td>
<td>Xn; N; R22-38-41-50/53</td>
<td>C ≥ 25 %; Xn; N; R22-38-41-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 % ≤ C < 25 %; Xi; N; R36-41-50-53</td>
<td>10 % ≤ C < 20 %; Xi; N; R41-50-53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 % ≤ C < 10 %; Xi; N; R36-50-53</td>
<td>0,25 % ≤ C < 5 %; N; R50-53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,025 % ≤ C < 0,25 %; N; R51-53</td>
<td>0,0075 % ≤ C < 0,025 %; R52-53</td>
</tr>
<tr>
<td>607-053-00-4</td>
<td>MCPB (ISO) 4-(4-chloor-o-tolyloxy)boterzuur</td>
<td></td>
<td>202-365-3</td>
<td>94-81-5</td>
<td>N; R50-53</td>
<td>N; R50-53</td>
<td>C ≥ 25 %; C; N; R20/21/22-35-50</td>
<td>10 % ≤ C < 25 %; C; R35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 % ≤ C < 10 %; C; R34</td>
<td>1 % ≤ C < 5 %; Xi; R36/37/38-51/53</td>
</tr>
<tr>
<td>607-061-00-8</td>
<td>acrylzuur</td>
<td>D</td>
<td>201-177-9</td>
<td>79-10-7</td>
<td>R10</td>
<td>C; N; R10/20/21/22</td>
<td>C; R35; N; R50</td>
<td>C ≥ 25 %; C; N; R20/21/22-35-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 % ≤ C < 25 %; C; R35</td>
<td>5 % ≤ C < 10 %; C; R34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 % ≤ C < 5 %; Xi; R36/37/38-51/53</td>
<td></td>
</tr>
<tr>
<td>607-064-00-4</td>
<td>benzylchloorformiaat</td>
<td></td>
<td>207-925-0</td>
<td>501-53-1</td>
<td>C; R34</td>
<td>C; N; R34-50/53; S; (1/2)-26-45-60-61</td>
<td>C ≥ 25 %; C; N; R34-50/53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 % ≤ C < 25 %; C; N; R34-51/53</td>
<td>5 % ≤ C < 10 %; Xi; N; R36/37/38-51/53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,5 % ≤ C < 5 %; N; R54/53</td>
<td>0,25 % ≤ C < 2,5 %; R52/53</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>607-072-00-8</td>
<td>2-hydroxyethylacrylaat</td>
<td>D</td>
<td>212-454-9</td>
<td>R18-61-1</td>
<td>T; R24 C; R34 R43 N; R50</td>
<td>T; N R: 24-34-43-50 S: (1/2) 26-36-39-45-61</td>
<td>C ≥ 25 %; T: R24-34-43-50 10 % ≤ C < 25 %; T; R24-34-43 5 % ≤ C < 10 %; T; R24-36-38-43 2 % ≤ C < 5 %; T; R24-43 0,2 % ≤ C < 2 %; Xn; R21-43</td>
<td></td>
</tr>
<tr>
<td>607-086-00-4</td>
<td>diallylftulaat</td>
<td>205-916-3</td>
<td>131-17-9</td>
<td>Xn; R22 N; R50-53</td>
<td>Xn; N R: 22-50/53 S: (2-2) 64-60-61</td>
<td>C ≥ 25 %; Xn; N; R22-50/53 2,5 % ≤ C < 25 %; N; R51/53 0,25 % ≤ C < 2,5 %; R52/53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-091-00-1</td>
<td>trifluorazijnuur . . . %</td>
<td>B</td>
<td>200-929-3</td>
<td>76-05-1</td>
<td>Xn; R20 C; R35 R52-53</td>
<td>C R: 20-35-52/53 S: (1/2-3) 26-27-28-45-61</td>
<td>C ≥ 25 %; C; R20-35-52/53 10 % ≤ C < 25 %; C; R20-35 5 % ≤ C < 10 %; C; R34 1 % ≤ C < 5 %; XI; R36/38</td>
<td></td>
</tr>
<tr>
<td>607-094-00-8</td>
<td>perazijnuur . . . %</td>
<td>201-186-8</td>
<td>79-21-0</td>
<td>R10 O; R7 Xn; R20/21/22 C; R35 N; R50</td>
<td>O: C R: 7-10-20/21/22-35-50 S: (1/2-3) 3/7-14-36/37/39-45-61</td>
<td>C ≥ 25 %; C; N; R20/21/22-35-50 10 % ≤ C < 25 %; C; R20/21/22-35 5 % ≤ C < 10 %; C; R34 1 % ≤ C < 5 %; XI; R36/38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-107-00-7</td>
<td>2-ethylhexylacrylaat</td>
<td>D</td>
<td>203-080-7</td>
<td>103-11-7</td>
<td>Xi; R37/38 R43</td>
<td>Xi R: 37/38-43 S: (2-3) 36/37/46</td>
<td>C ≥ 25 %; Xi; N; R36/37/38-43-50 20 % ≤ C < 25 %; Xi; R36/37/38-43 1 % ≤ C < 20 %; Xi; R43</td>
<td></td>
</tr>
<tr>
<td>607-113-00-X</td>
<td>isobutylmethacrylaat</td>
<td>D</td>
<td>202-613-0</td>
<td>97-86-9</td>
<td>R10 Xi; R36/37/38 R43 N; R50</td>
<td>Xi; N R: 10-36/37/38-43-50 S: (2-3) 3/7-14-61</td>
<td>C ≥ 25 %; Xi; N; R36/37/38-43-50 20 % ≤ C < 25 %; Xi; R36/37/38-43 1 % ≤ C < 20 %; Xi; R43</td>
<td></td>
</tr>
<tr>
<td>607-116-00-6</td>
<td>cyclohexylacrylaat</td>
<td>D</td>
<td>221-319-3</td>
<td>3066-71-5</td>
<td>Xi; R37/38 N; R51-53</td>
<td>Xi; N R: 37/38-51/53 S: (2-3) 61</td>
<td>C ≥ 25 %; Xi; N; R37/38-51/53 10 % ≤ C < 25 %; Xi; R37/38-52/53 2,5 % ≤ C < 10 %; R52/53</td>
<td></td>
</tr>
<tr>
<td>607-133-00-9</td>
<td>monoalkyl of monoaryl of monoalkylaryl esters van acrylaat met uitzondering van deze met name genoemd in deze bijlage</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>Xi; R36/37/38 N; R51-53</td>
<td>Xi; N R: 36/37/38-51/53 S: (2-3) 26-28-61</td>
<td>C ≥ 25 %; Xi; N; R36/37/38-51/53 10 % ≤ C < 25 %; Xi; R36/37/38-52/53 2,5 % ≤ C < 10 %; R52/53</td>
<td></td>
</tr>
<tr>
<td>607-151-00-7</td>
<td>propargite (ISO) 2-(4-tert-butylenoxy) cyclohexylprop-2-ynylvalriet</td>
<td>219.006-1</td>
<td>2312-35-8</td>
<td>Carc.Cat.3; R40 T; R23 Xi; R38-41 N; R50-53</td>
<td>T; N R: 23-38-40-41-50/53 S: (1/2-3) 26-36/37/39-45-60-61</td>
<td>C ≥ 25 %; T; N; R23-38-40-41-50/53 20 % ≤ C < 25 %; Xn; N; R20-38-40-41-50-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>607-189-00-4</td>
<td>trimethylendiaminetraazijnzuur</td>
<td>400-400-9</td>
<td>1939-36-2</td>
<td>Xi; R22 Xi; R41 N; R50-53</td>
<td>Xi; N R; 22-41-50/53 S; (2)-22-26-39-60-61</td>
<td>10% ≤ C < 20%: Xn; N; R20-40-41-50-53
5% ≤ C < 10%: Xn; N; R20-40-36-50-53
3% ≤ C < 5%: Xn; N; R20-40-50-53
2.5% ≤ C < 3%: Xn; N; R40-50-53
1% ≤ C < 2.5%: Xn; N; R40-51-53
0.25% ≤ C < 1%: N; R51-53
0.025% ≤ C < 0.25%: R52-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-241-00-2</td>
<td>isooctylacrylaat</td>
<td>249-707-8</td>
<td>29590-42-9</td>
<td>Xi; R36/37/38 N; R50-53</td>
<td>Xi; N R; 36/37/38-50/53 S; (2)-36-28-60-61</td>
<td>C ≥ 25%: Xi, N; R36/37/38-50/53
10% ≤ C < 25%: Xi, N; R36/37/38-51/53
2.5% ≤ C < 10%: N; R51/53
0.25% ≤ C < 2.5%: R52/53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-245-00-8</td>
<td>tert-butylacrylaat</td>
<td>D</td>
<td>216-768-7</td>
<td>1663-39-4</td>
<td>F; R11 Xi; R20/21/22 Xi; R37/38 R43 N; R52-53</td>
<td>F; Xn R; 11-20/21/22-37/38-43-52/53 S; (2)-16-25-37-61</td>
<td>C ≥ 25%: Xi; R20/21/22-37/38-43-52-53
20% ≤ C < 25%: Xi; R37/38-43
1% ≤ C < 20%: Xi; R43</td>
<td></td>
</tr>
<tr>
<td>607-247-001-9</td>
<td>4-ethylmethacrylaat</td>
<td>706-570-6</td>
<td>147-09-5</td>
<td>Xi; R36/37/38 N; R50-53</td>
<td>Xi; N R; 36/37/38-50/53 S; (2)-36-28-60-61</td>
<td>C ≥ 25%: Xi, N; R36/37/38-50/53
10% ≤ C < 25%: Xi, N; R36/37/38-51/53
2.5% ≤ C < 10%: N; R51/53
0.25% ≤ C < 2.5%: R52/53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-249-00-X</td>
<td>(1-methyl-1,2-ethandiyli)biss[(oxy(methyl-2,1-ethanandiyli)diacrylaat</td>
<td>256-032-2</td>
<td>42978-66-5</td>
<td>Xi; R36/37/38 R43 N; R51-53</td>
<td>Xi; N R; 36/37/38-43-51/53 S; (2)-24-37-61</td>
<td>C ≥ 25%: Xi, N; R36/37/38-43-51/53
10% ≤ C < 25%: Xi, R36/37/38-43-52/53
2.5% ≤ C < 10%: Xi; R43-52/53
1% ≤ C < 2.5%: Xi; R43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>608-003-00-4</td>
<td>acrylnitril</td>
<td>D E</td>
<td>203-466-5</td>
<td>107-13-1</td>
<td>F; R11 Carc. Cat. 2; R45 T; R23/24/25 Xi; R37/38-41</td>
<td>F; T; N R; 15-11-23/24/25-37/38-41-43-51/53 S; 9-16-53-45-61</td>
<td>C ≥ 25%: T; N; R45-23/24/25-37/38-41-43-52/53
20% ≤ C < 25%: T; R45-23/24/25-37/38-41-43-52/53</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>608-006-00-0</td>
<td>bromoxynil (ISO) 3,5-dibromo-4-hydroxybenzonitril</td>
<td></td>
<td>216-882-7</td>
<td>1689-84-5</td>
<td>Repr. Cat. 3; R63 T; R26 T; R25 R43 N; R50-53</td>
<td>T+; N R: 25-26-43 63-50-53 S: (1/2-3)/7/28 36-37-45/63-60-61</td>
<td>C ≥ 25 %; T+; N; R25-26-43-63-50-53 7 % ≤ C < 25 %; T+; N; R22-26-43-63-50-53 5 % ≤ C < 7 %; T; N; R22-23-43-63-50-53 3 % ≤ C < 5 %; T; N; R22-23-43-50-53 2,5 % ≤ C < 3 %; T; N; R23-43-50-53 1 % ≤ C < 2,5 %; T; N; R23-43-51-53 0,25 % ≤ C < 1 %; Xn; N; R20-51-53 0,1 % ≤ C < 0,25 %; Xn; R20-52-53 0,025 % ≤ C < 0,1 %; R52-53</td>
<td></td>
</tr>
<tr>
<td>608-007-00-6</td>
<td>isoxynil (ISO) 4-hydroxy-3,5-dijodo-benzonitril</td>
<td></td>
<td>216-881-1</td>
<td>1689-83-4</td>
<td>Repr. Cat. 3; R63 T; R23/25 Xn; R21-48/22 Xi; R36 N; R50-53</td>
<td>T; N R: 21-23/25 36-48/23 63-50-53 S: (1/2 3)/6/37 45-60-61</td>
<td>C ≥ 25 %; T; N; R21-23-25-36-48/22-63-50-53 20 % ≤ C < 25 %; Xn; N; R20-22-36-48/22-63-50-53 10 % ≤ C < 20 %; Xn; N; R20-22-48/22 63 50-53 5 % ≤ C < 10 %; Xn; N; R20-22-63-50-53 3 % ≤ C < 5 %; Xn; N; R20/22-50-53 2,5 % ≤ C < 3 %; N; R50-53 0,25 % ≤ C < 2,5 %; N; R51-53 0,025 % ≤ C < 0,25 %; R52-53</td>
<td></td>
</tr>
<tr>
<td>608-010-00-2</td>
<td>methacrylonitril 2-methyl-2-propenonitril</td>
<td>D</td>
<td>204-817-5</td>
<td>126-98-7</td>
<td>F; R11 T; R23/24/25 R43</td>
<td>F; T R: 11-23/24/25-43 S: (1/2 3)/9/16-18-29-45</td>
<td>C ≥ 1 %; T; R23/24/25-43 0,2 % ≤ C < 1 %; Xn; N; R20/21-43</td>
<td></td>
</tr>
<tr>
<td>608-014-00-4</td>
<td>chlorothalonil (ISO) tetrachloethoflanonitril</td>
<td></td>
<td>217-588-1</td>
<td>1897-43-6</td>
<td>Care. Cat. 3; R40 T+; R26</td>
<td>T+; N R: 26-37-40-41-43</td>
<td>C ≥ 20 %; T+; N; R26-37-40-41-43-50-53</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>---------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>608-017-00-0</td>
<td>2,6-dibrom-4-cyaanfenyloctaanouat</td>
<td></td>
<td>216-885-3</td>
<td>1689-99-2</td>
<td>XI; R41</td>
<td>S: (2-)28-36/37/39-45-60-61</td>
<td>10 % ≤ C < 20 %: T+N; R26-40-41-43-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XI; R37</td>
<td></td>
<td>7 % ≤ C < 10 %: T+N; R26-40-36-43-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R43</td>
<td></td>
<td>5 % ≤ C ≤ 7 %: T; N; R23-40-36-43-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N; R50-53</td>
<td></td>
<td>2,5 % ≤ C ≤ 5 %: T; N; R23-40-43-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T; N</td>
<td>1 % ≤ C ≤ 2,5 %: T; N; R23-40-43-51-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R; 22-23-43-63-50-53</td>
<td>0,25 % ≤ C ≤ 1: Xn; N; R20-51-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S: (1/-)36/37-45-63-60-61</td>
<td>0,1 % ≤ C < 0,25 %: Xn; R20-52-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,025 % ≤ C < 0,1 %: R52-53</td>
<td></td>
</tr>
<tr>
<td>608-018-00-6</td>
<td>4-cyaan-2,6-dijodfenyloctaanouat</td>
<td></td>
<td>223-375-4</td>
<td>3861-47-0</td>
<td>Repr. Cat. 3; R63</td>
<td>T; R25</td>
<td>C ≥ 25 %: T; N; R22-23-43-63-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XI; R36</td>
<td></td>
<td>5 % ≤ C ≤ 25 %: Xn; N; R20-43-63-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R43</td>
<td></td>
<td>3 % ≤ C ≤ 5 %: Xn; N; R20-43-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N; R50-53</td>
<td></td>
<td>2,5 % ≤ C ≤ 3 %: XI; N; R13-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T; N</td>
<td>1 % ≤ C ≤ 2,5 %: XI; N; R43-51-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R; 25-36-43-63-50-53</td>
<td>0,25 % ≤ C ≤ 1 %: N; R51-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S: (1/-)26-36/37-45-60-61</td>
<td>0,025 % ≤ C < 0,25 %: R52-53</td>
<td></td>
</tr>
<tr>
<td>608-021-00-2</td>
<td>3-(2-(diaminomethyleneamino)thiazoo 1-4-methylthio)propononitril</td>
<td></td>
<td>403-710-2</td>
<td>76823-93-3</td>
<td>Repr. Cat. 3; R63</td>
<td>T; R25</td>
<td>C ≥ 35 %: T; N; R25-36-43-63-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XI; R36</td>
<td></td>
<td>20 % ≤ C ≤ 25 %: Xn; N; R22-36-43-63-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R43</td>
<td></td>
<td>5 % ≤ C ≤ 20 %: Xn; N; R22-43-63-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T; N</td>
<td>3 % ≤ C ≤ 5 %: Xn; N; R22-43-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R; 25-36-43-63-50-53</td>
<td>2,5 % ≤ C ≤ 3 %: N; R43-50-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S: (1/-)26-36/37-45-60-61</td>
<td>1 % ≤ C ≤ 2,5 %: N; R43-51-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,25 % ≤ C ≤ 1 %: N; R51-53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,025 % ≤ C < 0,25 %: R52-53</td>
<td></td>
</tr>
<tr>
<td>609-007-00-9</td>
<td>2,4-dinitrotoluene</td>
<td></td>
<td>E</td>
<td>204-450-0</td>
<td>Care. Cat. 2; R45</td>
<td>T; N</td>
<td>R; 45-23/24/25-48/22-62-68-51/53</td>
<td></td>
</tr>
<tr>
<td>609-007-00-9</td>
<td>dinitrotoluene, technisch</td>
<td></td>
<td></td>
<td>246-836-1</td>
<td>Mut. Cat. 3; R68</td>
<td></td>
<td>S: 53-45-61</td>
<td></td>
</tr>
<tr>
<td>609-007-00-9</td>
<td>dinitrotoluene</td>
<td></td>
<td></td>
<td>[1] 25321-14-6</td>
<td>Repr. Cat. 3; R62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>---------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>609-023-00-6</td>
<td>dinocap (ISO)</td>
<td>E</td>
<td>254-408-0</td>
<td>39300-45-3</td>
<td>Repr. Cat. 2; R61 Xn; R20/48/22 Xi; R36 R43 N; R50-53</td>
<td>T; N R: 61-20; 22-38; 43-48/22-50/53 S: 53-45-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609-043-00-5</td>
<td>chinitozen (ISO)</td>
<td>E</td>
<td>201-435-0</td>
<td>82-08-8</td>
<td>Repr. Cat. 2; R61 Xn; R20/48/22 Xi; R36 R43 N; R50-53</td>
<td>T; N R: 43-50/53 S: (2-13) 24-37-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609-049-00-8</td>
<td>2,6-dinitrotoluëen</td>
<td>E</td>
<td>210-106-0</td>
<td>606-20-2</td>
<td>Carec. Cat. 2; R45 Muta. Cat. 3; R68</td>
<td>T; R: 45-23/24/25-48/22-62-68-32/53 S: 53-45-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609-050-00-3</td>
<td>2,3-dinitrotoluëen</td>
<td>E</td>
<td>210-013-5</td>
<td>602-01-7</td>
<td>Carec. Cat. 2; R45 Muta. Cat. 3; R68</td>
<td>T; N R: 45-23/24/25-48/22-62-68-32/53 S: 53-45-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609-051-00-9</td>
<td>3,4-dinitrotoluëen</td>
<td>E</td>
<td>210-222-1</td>
<td>610-39-9</td>
<td>Carec. Cat. 2; R45 Muta. Cat. 3; R68</td>
<td>T; N R: 45-23/24/25-48/22-62-68-51/53 S: 53-45-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609-052-00-4</td>
<td>3,5-dinitrotoluëen</td>
<td>E</td>
<td>210-566-2</td>
<td>618-85-9</td>
<td>Carec. Cat. 2; R45 Muta. Cat. 3; R68</td>
<td>T; R: 15-23/24/25-48/22-62-68-52/53 S: 53-45-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609-055-00-0</td>
<td>2,5-dinitrotoluëen</td>
<td>E</td>
<td>210-581-4</td>
<td>619-15-8</td>
<td>Carec. Cat. 2; R45 Muta. Cat. 3; R68</td>
<td>T; N R: 15-23/24/25-48/22-62-68-51/53 S: 53-45-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609-056-00-6</td>
<td>2,2-dibromo-2-nitroethanol</td>
<td>E</td>
<td>412-380-9</td>
<td>60904-18-4</td>
<td>Carec. Cat. 3; R40</td>
<td>T; C; N R: 2 22-35 40-43 C ≥ 25 %; C; N: 22-35-40-43-48/22-50/53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>611-005-00-5</td>
<td>1-chloor-4-nitrobenzen</td>
<td></td>
<td>202-809-6</td>
<td>100-00-5</td>
<td>Carc. Cat. 3;R40</td>
<td>48/22-50/53</td>
<td>10 % ≤ C < 25 %; C; N: R22-35-40-43-48/22-51/53</td>
<td></td>
</tr>
<tr>
<td>611-001-00-6</td>
<td>azobenzeen</td>
<td>E</td>
<td>203-102-5</td>
<td>103-33-3</td>
<td>Carc. Cat. 2; R45</td>
<td>T; N</td>
<td>23/24/25-48/20/21-68-51/53</td>
<td></td>
</tr>
<tr>
<td>611-060-00-8</td>
<td>Mengsel van: natrium-5-[[8-[4-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>612-008-00-7</td>
<td>aniline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T; N</td>
<td>R ≤ 45 10 % ≤ C ≤ 25 %: T; R20/21/22 40-41-43-48/23/24/25 50-68</td>
<td></td>
</tr>
<tr>
<td>612-009-00-2</td>
<td>zouten van aniline</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>T; N</td>
<td>R ≤ 45 10 % ≤ C ≤ 25 %: T; R20/21/22 40-41-43-48/23/24/25 50-68</td>
<td></td>
</tr>
<tr>
<td>612-010-00-8</td>
<td>chloroanilines (met uitzondering van de elders in deze bijlage vermelde anilines)</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>T; R23/24/25 R33 N; R50</td>
<td>C ≥ 5 %: T; N; R23/24/25 40-41-43-48/23/24/25 50-68</td>
<td></td>
</tr>
<tr>
<td>612-025-00-X</td>
<td>nitroeluidine</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>T; R23/24/25 R33 N; R51-53</td>
<td>T; N: R ≥ 45/23/24/25-36/37/39/45-61/66</td>
<td></td>
</tr>
<tr>
<td>612-035-00-4</td>
<td>2-methoxy-aniline</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>T</td>
<td>T; R23/24/25 R33 N; R51-53</td>
<td>T; N: R ≥ 45/23/24/25-36/37/39/45-61/66</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>612-042-00-2</td>
<td>benzidine</td>
<td>E</td>
<td>202-199-1</td>
<td>92-87-5</td>
<td>Carc. Cat. 1; R45 Xn; R22 N; R50-53</td>
<td>T; N R: 15-22-50/53 S: 53-45-60-64</td>
<td>C ≥ 25 %; T; N; R45-22-50/53 2,5 % ≤ C < 25 %; T; N; R45-51/53 0,01 % ≤ C < 2,5 %; T; R45</td>
<td></td>
</tr>
<tr>
<td>612-051-00-1</td>
<td>4,4’-diaminodifenylmethaan</td>
<td>E</td>
<td>202-974-4</td>
<td>[01-77-9]</td>
<td>Carc. Cat. 2; R45 Muta. Cat. 3; R68 T; R39/23/24/25 Xn; R46/20/21/22 R43 N; R51-53</td>
<td>T; N R: 45-39/23/24/25-43-68/51/53 S: 53-45-64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-054-00-8</td>
<td>N,N-diethylaniline</td>
<td></td>
<td>202-088-8</td>
<td>91-66-7</td>
<td>T; R23/24/25 R33 N; R51-53</td>
<td>T; N R: 23/24/25-33-51/53 S: (1/2)-28-37-45-61</td>
<td>C ≥ 25 %; T; N; R23/24/25-33-51/53 5 % ≤ C < 25 %; T; R23/24/25-33-52/53 2,5 % ≤ C < 5 %; Xn; R20/21/22-33-52/53 1 % ≤ C < 2,5 %; Xn; R20/21/22-33</td>
<td></td>
</tr>
<tr>
<td>612-059-00-5</td>
<td>1,8-diamino-3,6-diazaoctaam triethyleentetramine</td>
<td></td>
<td>203-950-6</td>
<td>112-24-3</td>
<td>Xn; R21 C; R34 R43 R52-53</td>
<td>C R: 21-34-43-52/53 S: (1/2)-26/36/37/39-45-61</td>
<td>C ≥ 25 %; C; R21-34-43-52/53 10 % ≤ C < 25 %; C; R34-43 5 % ≤ C < 10 %; Xn; R36/38-43 1 % ≤ C < 5 %; Xn; R43</td>
<td></td>
</tr>
<tr>
<td>612-060-00-0</td>
<td>1,11-diamino-3,6,9-triazaundecaan tetraethylpentamine</td>
<td></td>
<td>203-986-2</td>
<td>112-57-2</td>
<td>Xn; R21/22 C; R34 R43 N; R51-53</td>
<td>C; N R: 21/22-34-43-51/53 S: (1/2)-26-36/37/39-45-61</td>
<td>C ≥ 25 %; C; N; R21-22-34-43-51/53 10 % ≤ C < 25 %; C; R34-43 5 % ≤ C < 10 %; Xn; R36/38-43-52/53 2,5 % ≤ C < 5 %; Xn; R43-52/53 1 % ≤ C < 2,5 %; Xn; R43</td>
<td></td>
</tr>
<tr>
<td>612-064-00-2</td>
<td>1,14-diamino-3,6,9,12-tetraazadodecaan pentaaethylhexamine</td>
<td></td>
<td>223-775-9</td>
<td>4067-16-7</td>
<td>C; R34 R43 N; R50-53</td>
<td>C; N R: 34-43-50/53 S: (1/2)-26-36/37/39-45-61</td>
<td>C ≥ 25 %; C; N; R34-43-50/53 10 % ≤ C < 25 %; C; N; R34-43-51/53</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>612-065-00-8</td>
<td>polyethylenepolyamine met uitzondering van de in deze bijlage met name genoemde</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td>d5-60-61</td>
<td>5 % ≤ C < 10 %: X1, N; R36/38-43-51/53 <5% ≤ C < 2,5 %: X1; R43-51/53</td>
<td>0,25 % ≤ C < 1 %: R52/53</td>
</tr>
<tr>
<td>612-066-00-3</td>
<td>dicyclohexylamine</td>
<td>202-980-7</td>
<td>101-83-7</td>
<td></td>
<td></td>
<td></td>
<td>C ≥ 25 %: C, N; R21/22-34-43-50/53 ≤ 10% ≤ C < 25 %: C, N; R34-43-51/53 ≤ 5% ≤ C < 10 %: X1, N; R36/38-43-51/53 ≤ 1% ≤ C < 2,5 %: X1; R43-52/53 0,25 % ≤ C < 2 %: R52/53</td>
<td></td>
</tr>
<tr>
<td>612-067-00-9</td>
<td>3-aminomethyl-3,5,5-trimethylcyclohexylamine</td>
<td>220-666-8</td>
<td>2855-13-2</td>
<td></td>
<td></td>
<td></td>
<td>C ≥ 25 %: C, N; R21/22-34-50/53 ≤ 10% ≤ C < 25 %: C, N; R34-51/53 ≤ 2,5% ≤ C < 10 %: X1, N; R36/38-51/53 2% ≤ C < 2,5 %: X1; R36/38-52/53 0,25 % ≤ C < 2 %: R52/53</td>
<td></td>
</tr>
<tr>
<td>612-077-00-3</td>
<td>dimethylnitrosourine</td>
<td>E</td>
<td>200-549-8</td>
<td>62-75-9</td>
<td></td>
<td></td>
<td>C ≥ 25 %: T4; N; R45-25-26-48/25-51/53 ≤ 10% ≤ C < 25 %: T4; R45-22-26-48/25-52/53 ≤ 7% ≤ C < 10 %: T4; R45-22-26-48/52/53 ≤ 3% ≤ C < 7 %: T4; R45-22-23-48/22-52/53 2,5 % ≤ C < 3 %: T4; R45-23-48/22-52/53 1 % ≤ C < 2,5 %: T4; R45-23-48/22 0,1 % ≤ C < 1 %: T4; R45-20 0,001 % ≤ C < 0,1 %: T4; R45</td>
<td></td>
</tr>
<tr>
<td>612-086-00-2</td>
<td>amitraz (ISO)</td>
<td>251-375-4</td>
<td>33089-61-1</td>
<td></td>
<td></td>
<td></td>
<td>C ≥ 25 %: X1, N; R22-48/22</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>612-087-00-8</td>
<td>guazzatine</td>
<td>236-855-3</td>
<td>13516-27-3</td>
<td>T +; R26</td>
<td>N; R50-53</td>
<td>R: 22-43-48/22-50/53; S: (1-2)22-60-24-61-36/37</td>
<td>40/22-50-53; 10 % ≤ C < 25 %: N; R43-48/22-50-53; 2,5 % ≤ C < 10 %: N; R43-50-53; 1 % ≤ C < 2,5 %: N; R43-51-53; 0,25 % ≤ C < 1 %: N; R51-53; 0,025 % ≤ C < 0,25 %: R52-53</td>
<td></td>
</tr>
<tr>
<td>612-121-00-1</td>
<td>aminen, polyetyleenpoly-HEPA</td>
<td>208-626-9</td>
<td>68131-73-7</td>
<td>N; R21/22 C; R34 R43 N; R50-53</td>
<td>C; N</td>
<td>R: 21-22-34-43-50/53; S: (1-2)26-36/37/39-45-60-61</td>
<td>C ≥ 25 %: N; R21/22-34-43-50/53; 10 % ≤ C < 25 %: C; N; R34-43-51/53; 5 % ≤ C < 10 %: N; R36/38-43-51/53; 2,5 % ≤ C < 5 %: N; R43-51/53; 1 % ≤ C < 2,5 %: N; R43-53/53; 0,25 % ≤ C < 1 %: R52/53</td>
<td></td>
</tr>
<tr>
<td>612-136-00-3</td>
<td>N'-fenyl-N'-isopropyl-p-fenyleendiamine</td>
<td>202-969-7</td>
<td>101-72-4</td>
<td>Xn; R22 R43 N; R50-53</td>
<td>Xn; N</td>
<td>R: 22-43-50/53; S: (1-2)24-37-60-61</td>
<td>C ≥ 25 %: N; R22-43-50/53; 2,5 % ≤ C < 25 %: N; R43-51/53; 0,25 % ≤ C < 2,5 %: N; R13-52/53; 0,1 % ≤ C < 0,25 %: N; R43</td>
<td></td>
</tr>
<tr>
<td>612-151-00-5</td>
<td>diaminotoluëen</td>
<td>E</td>
<td>25376-45-8</td>
<td>Carb. Cat. 2; R45 T; R25 Xn; R20/21 Xl; R36 R43 N; R51-53</td>
<td>T; N</td>
<td>R: 45-20/21-25-36-43-51/53; S: 53-45-61</td>
<td>T; C</td>
<td>C ≥ 25 %: T; R22-26-34-43</td>
</tr>
<tr>
<td>613-009-00-5</td>
<td>2,4,6-trichloore-1,3,5-triazine</td>
<td>203-614-9</td>
<td>108-77-0</td>
<td>T +; R26 T +; C</td>
<td>C ≥ 25 %: T +; R22-26-34-43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>613-011-00-6</td>
<td>amitrol (ISO) 1,2,4-triazooool-5-ylamine</td>
<td>200-521-5</td>
<td>61-82-5</td>
<td></td>
<td>R(14-22-26-34-43) S((1/2)-26-28-36/37-39-45-46-63)</td>
<td>10 % ≤ C < 25 %; T; R(26-34-43) 7 % ≤ C < 10 %; T; R(26-36/37-38-43) 5 % ≤ C < 7 %; T; R(23-36/37-38-43) 1 % ≤ C < 5 %; T; R(23-43) 0,1 % ≤ C < 1 %; Xn; R(20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-033-00-6</td>
<td>2-methylaziridine</td>
<td>E 200-878-7</td>
<td>75-55-8</td>
<td></td>
<td>F; R(11 Carc. Cat. 2; R(45 T; R(26/27/28)) Xn; R(41 N; R(51, 53)</td>
<td>F; T; N R(45-11-26/27/28-41-51/53 S; 53-45-64)</td>
<td>C ≥ 25 %; T; N; R(45-26/27/28-41-51/53) 10 % ≤ C < 25 %; T; R(45-26/27/28-41-52/53) 7 % ≤ C < 10 %; T; R(45-26/27/28-36-52/53) 5 % ≤ C < 7 %; T; R(45-23/248/25-36-52/53 2,5 % ≤ C < 5 %; T; R(45-23/248/25-52/53 1 % ≤ C < 2,5 %; T; R(45-23/248/25 0,1 % ≤ C < 1 %; T; R(45-20/21/22 0,01 % ≤ C < 0,1 %; T; R(45</td>
<td></td>
</tr>
<tr>
<td>613-040-00-4</td>
<td>azaconazol (ISO) 1-[(7-3,4-dichloorphenyl)-1,3- dioxolan-2-yl] (methyl)-1H-1,2,4-triazol</td>
<td>262-102-3</td>
<td>60207-31-0</td>
<td></td>
<td>Xn; R(22) Xn N (1-77 S (2-46)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-048-00-8</td>
<td>carbandazin (ISO) methylbenzimidazool-2- ylearbanaat</td>
<td>234-232-0</td>
<td>10605-21-7</td>
<td></td>
<td>Muta. Cat. 2; R(46 Repr. Cat. 2; R(60-61 N; R(50, 53</td>
<td>T; N R(46-60-61-50/53 S; 53-45-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-049-00-3</td>
<td>benomyl (ISO) methyl-1-</td>
<td>241-775-7</td>
<td>17804-35-2</td>
<td></td>
<td>Muta. Cat. 2; R(46 Repr. Cat. 2; R(60-61 T; N R(46-60-61-37/38-43-50-53</td>
<td>C ≥ 20 %; T; N; R(46-60-61-37/38-43-50-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>--------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>613-051-00-4</td>
<td>methyl (ISO) 5-ethyl-1-perhydroazepinioniouat</td>
<td>218-661-0</td>
<td>221-67-1</td>
<td>Carc. Cat 3; R 40</td>
<td>T; N</td>
<td>R: 20/22-40-43-48/22-63-50/53</td>
<td>C ≥ 25 %: Xn; N; R: 20/22-40-43-48/22-62-50/53</td>
<td>0.25 % ≤ C < 0.25 %: N; R 50-53</td>
</tr>
<tr>
<td>613-058-00-2</td>
<td>n-phenoxycarboxy-3-(2,2-dichloormethyl)-2,2-dimethylcyclopropaen-carboxylaat</td>
<td>258-067-9</td>
<td>526-45-53</td>
<td>Xn; R: 20/22</td>
<td>T; N</td>
<td>R: 20/22-43-50/53</td>
<td>C ≥ 25 %: Xn; N; R: 20/22-43-50/53</td>
<td>0.025 % ≤ C < 0.025 %: R 50-53</td>
</tr>
<tr>
<td>613-075-00-5</td>
<td>1,2-dichloorm-5-ethyl-5-methylimidazolidine-2,4-dion</td>
<td>401-570-7</td>
<td>894-15-87-2</td>
<td>O; R: 8</td>
<td>O; T</td>
<td>R: 22-31-34-43-30</td>
<td>C ≥ 25 %: Xn; N; R: 22-31-34-43-30</td>
<td>0.025 % ≤ C < 0.025 %: N; R 50-53</td>
</tr>
<tr>
<td>613-088-00-6</td>
<td>1,2-benzisothiazool-3(2H)-on</td>
<td>220-120-9</td>
<td>2634-33-5</td>
<td>Xn; R: 22</td>
<td>Xn; N</td>
<td>R: 22-38-41-43-50</td>
<td>C ≥ 25 %: Xn; N; R: 22-38-41-43-50</td>
<td>0.05 % ≤ C < 5 %: Xn; R: 43</td>
</tr>
</tbody>
</table>

L 152/50
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota's voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota's voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>613-112-00-5</td>
<td>2-ethyl-2H-isothiazol-3-on</td>
<td>247-761-7</td>
<td>26530-20-1</td>
<td>T; R23/24; Xn; R22; C; R34; R43; N; R50-53</td>
<td>T; N; R; 22-23/24; 34-43; 50/53; S; (1/2)-26-36/37/39-45-66-61</td>
<td>C ≥ 25 %; T; N; R22-23/24-34-43-50/53; 10 % ≤ C < 25 %; C; N; R20/21-34-43-51/53; 5 % ≤ C < 10 %; Xn; N; R20/21-36/38-43-51/53; 3 % ≤ C ≤ 5 %; Xn; N; R20/21-43-51/53; 2,5 % ≤ C < 5 %; Xn; N; R30-51/53; 0,25 % ≤ C ≤ 2,5 %; Xn; R43-52/53; 0,05 % ≤ C < 0,25 %; Xn; R43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-124-00-0</td>
<td>fenpropimorph</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>613-129-00-8</td>
<td>4-amino-3-methyl-6-fenyl-1,2,4-triazine 5-on</td>
<td>255-349-3</td>
<td>41394-05-2</td>
<td>Xn; R22; N; R50</td>
<td>Xn; N; R; 22-50; S; (2)-51/53</td>
<td>C ≥ 25 %; T; N; R23/24-25-34-43-50/53; 3 % ≤ C < 25 %; C; N; R20/21-22; 34-43-51/53; 2,5 % ≤ C < 3 %; C; N; R34-43-51/53; 0,6 % ≤ C < 2,5 %; Xn; R34-43-52/53; 0,75 % ≤ C < 0,6 %; Xn; R50-53/52/53; 0,06 % ≤ C < 0,25 %; Xn; R36/38-43; 0,0015 % ≤ C < 0,06 %; Xn; R43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-167-00-5</td>
<td>mengsel van; 5-chloor-2-methyl-2H-isothiazol-3-on [EC no: 247.500.7] en 2-methyl-2H-isothiazol-3-on [EC no: 220-239-6] (5:1)</td>
<td>55965-84-9</td>
<td>-</td>
<td>T; R23/24; C; R34; R43; N; R50-53</td>
<td>T; N; R; 23/24; 25-34-43-50/53; S; (1/2)-26-28-36/37/39-45-66-61</td>
<td>C ≥ 25 %; T; N; R23/24-25-34-43-50/53; 3 % ≤ C < 25 %; C; N; R20/21-22; 34-43-51/53; 2,5 % ≤ C < 3 %; C; N; R34-43-51/53; 0,6 % ≤ C < 2,5 %; Xn; R34-43-52/53; 0,75 % ≤ C < 0,6 %; Xn; R53/38-43; 0,06 % ≤ C < 0,25 %; Xn; R36/38-43; 0,0015 % ≤ C < 0,06 %; Xn; R43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-175-00-9</td>
<td>(2RS,3SR)-3-(2-chloorfenyl)-2-(4-fluorenyl)]-[1H-1,2,4-triazool-1-yl)methyl]oxiraan</td>
<td>406-850-2</td>
<td>133855-98-8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>615-001-00-7</td>
<td>methylisocyanuaat</td>
<td>210-866-3</td>
<td>624-83-9</td>
<td>Fe; R12; Repr.Cat.3; R63; T; R26; T; R24/25; R42/43; Xi; R37/38-41</td>
<td>Fe; T; R; 12-24/25-26-37/38-41-42/43-63; S; (1/2)-26/27/28-36/37/39-45-63</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>615-004-00-3</td>
<td>zouten van thiocyaanzuur</td>
<td>A</td>
<td>-</td>
<td></td>
<td></td>
<td>Xn; R20/21/22 R32 R52-53</td>
<td>Xn; R: 20/21/22-32-52/53 S: (2) 1-3-61</td>
<td></td>
</tr>
<tr>
<td>615-008-00-5</td>
<td>3-isocyanatomethyl-3,5,5-trimethylcyclohexylisocyanaat</td>
<td>1 [1] 209-544-5</td>
<td>223-861-6</td>
<td>4198-71-9</td>
<td>T; R22 Xn: R36/37/38 R42/43 N; R51-53</td>
<td>T; N R: 23-36/37/38-40-42/43-51/53 S: (1/2-26)-28-38-45-61</td>
<td>C ≥ 25 %; T; N; R23-36/37/38-42/43-51/53 20 % ≤ C < 25 %; T; R23-36/37/38-42/43-52/53 2,5 % ≤ C < 20 %; T; R23-42/43-52/53 2 % ≤ C < 2,5 %; T; R23-42/43 0,5 % ≤ C < 2 %; T; Xn; R20-42/43</td>
<td></td>
</tr>
<tr>
<td>615-015-00-3</td>
<td>1,7,7-trimethylbicyclo(2,2,1)hept-2-ylisocyanatoacetaat</td>
<td>1 [1] 209-544-5</td>
<td>204-081-5</td>
<td>115-31-1</td>
<td>Xn; R22 N; R50-53</td>
<td>Xn; N R: 22-30/53 S: (2)-24/25-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-015-00-6</td>
<td>alachloor (ISO)</td>
<td>2-chloor-2',4'-diethoxy-N-(methoxymethyl)acetamid</td>
<td>240-110-8</td>
<td>15972-60-8</td>
<td>Carc. Cat. 3; R40 Xn: R22 R43 N: R51-51</td>
<td>Xn; N R: 22-40-43-50/53 S: (2)-36/37-46-60-61</td>
<td>C ≥ 25 %; Xn, N; R22-40-43-50/53 1 % ≤ C < 25 %; Xn, N; R40-43-50/53 0,25 % ≤ C < 1 %; Xn, N; R50-53 0,025 % ≤ C < 0,25 %; Xn, N; R51-53 0,0025 % ≤ C < 0,025 %; R52-53</td>
<td></td>
</tr>
<tr>
<td>616-024-00-5</td>
<td>2-(4,4-dimethyl-2,5-dioxooxaizolidine-1-yli)-2-chloor-5-(2,4-di-tetrapentylenoxy)butyranid-4,4-dimethyl-3-oxoalkanoamide</td>
<td>402-260-4</td>
<td>-</td>
<td>R53</td>
<td>R: 53 S: 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>617-004-00-9</td>
<td>1,2,3,4-tetrahydro-1-methylhydroperoxide</td>
<td></td>
<td>212-230-0</td>
<td>771-29-9</td>
<td>O; R7</td>
<td>Xn; R22</td>
<td>C; R34</td>
<td>N; R50-53</td>
</tr>
<tr>
<td>648-043-00-X</td>
<td>creesootolie, acenaafteenfractie, acenaafteenvrij benzool-wasolie, destillaat De olie die resteert na verwijdering door een kristallisatieproces van acenaafteen uit acenaafteenoliefuit koolteer. Voornamelijk samengesteld uit naftaleen en alkylnaftalen.</td>
<td>H</td>
<td>292-606-9</td>
<td>906-00-85-0</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45</td>
<td>S: 53-45</td>
</tr>
<tr>
<td>648-080-00-1</td>
<td>residuen (koolteer), kroesootolie destillatie-Benzool-wasolie, destillaat Het residu van de gefractioneerde destillatie van spoelolie, met een kooltraject van ongeveer 270°C tot 330°C. Restaat voornamelijk uit dinucleaire aromatische en heterocyclische koolwaterstoffen.</td>
<td>H</td>
<td>295-506-3</td>
<td>92061-93-3</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45</td>
<td>S: 53-45</td>
</tr>
<tr>
<td>648-098-00-X</td>
<td>creesootolie, acenaafteenfractie Benzool-wasolie Een complexe verzameling koolwaterstoffen die wordt gevormd door de distillatie van koolteer, met een kooltraject van ongeveer 240°C tot 280°C. Voornamelijk samengesteld uit acenaafteen, naftaleen en alkylnaftalen.</td>
<td>H</td>
<td>292-605-3</td>
<td>906-00-84-9</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45</td>
<td>S: 53-45</td>
</tr>
<tr>
<td>648-099-00-5</td>
<td>creesootolie Een complexe verzameling koolwaterstoffen verkregen door</td>
<td>H</td>
<td>263-047-8</td>
<td>61789-28-4</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45</td>
<td>S: 53-45</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>648-100-00-9</td>
<td>creosootolie, hoogkoken destillaat</td>
<td>H</td>
<td>274-565-9</td>
<td>70321-79-8</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45</td>
<td>S: 53-45</td>
</tr>
<tr>
<td>648-101-00-4</td>
<td>creosoot</td>
<td>H</td>
<td>232-287-5</td>
<td>8001-58-9</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45</td>
<td>S: 53-45</td>
</tr>
<tr>
<td>648-102-00-X</td>
<td>extractieresidu (kool), creosootolie zure</td>
<td>H</td>
<td>310-189-4</td>
<td>122384-77-4</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45</td>
<td>S: 53-45</td>
</tr>
<tr>
<td>648-138-00-6</td>
<td>creosootolie, laagkoken destillaat Benzol-wasolie</td>
<td>H</td>
<td>274-566-4</td>
<td>70321-80-1</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45</td>
<td>S: 53-45</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-001-00-3</td>
<td>extracten (aardolie), lichte naaieenhoudend distillaat-solvent</td>
<td>H</td>
<td>265-102-1</td>
<td>64742-03-6</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-002-00-9</td>
<td>extracten (aardolie), zwaar paraffineenhoudend distillaat-solvent</td>
<td>H</td>
<td>265-103-7</td>
<td>64742-04-7</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-003-00-4</td>
<td>extracten (aardolie), lichte paraffineenhoudend distillaat-solvent</td>
<td>H</td>
<td>265-104-2</td>
<td>64742-05-8</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-004-00-X</td>
<td>extracten (aardolie), zwaar naaieenhoudend distillaat-solvent</td>
<td>H</td>
<td>265-111-0</td>
<td>64742-11-6</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-005-00-5</td>
<td>extracten (aardolie), lichte vacuümlaagssolvent</td>
<td>H</td>
<td>205-211-7</td>
<td>91995-78-7</td>
<td>Carc. Cat. 2; R15</td>
<td>T</td>
<td>R: 45 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-006-00-0</td>
<td>koolwaterstoffen, C25-55, rijk aan aromaten</td>
<td>H</td>
<td>307-753-7</td>
<td>97722-04-8</td>
<td>Carc. Cat. 2; R45</td>
<td>T</td>
<td>R: 45 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-006-00-6</td>
<td>gassen (aardolie), katalytisch gekraakte nafta depropanator topdruktaken, C5-rijke zuurvrije Petroleumgassen</td>
<td>H</td>
<td>270-755-0</td>
<td>68477-73-6</td>
<td>Carc. Cat. 1; R45</td>
<td>Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-063-00-1</td>
<td>gassen (aardolie), katalytsche kraker Petroleumgas [Een complexe verzameling koolwaterstoffen, verkregen door de destillatie van de producten van een katalytisch kraakproces. Bestaat voornamelijk uit alifatische koolwaterstoffen, overwegend C1 tot en met C8]</td>
<td>H K</td>
<td>270-756-6</td>
<td>06477-74-7</td>
<td>Carec. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>649-064-00-7</td>
<td>gassen (aardolie), katalytsche kraker, C13-rijk Petroleumgas [Een complexe verzameling koolwaterstoffen, gevormd door de destillatie van de producten van een katalytisch kraakproces. Bestaat uit alifatische koolwaterstoffen, C1 tot en met C8, overwegend C2 tot en met C5]</td>
<td>H K</td>
<td>270-757-1</td>
<td>06477-75-8</td>
<td>Carec. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>649-065-00-2</td>
<td>gassen (aardolie), katalytsche gepolimeriseerde naafs- stabilisator topfruitje, C8,4-rijk Petroleumgas [Een complexe verzameling koolwaterstoffen, verkregen door de fractioneringsstabilisatie van katalytisch gepolimeriseerde naafs. Bevat alifatische koolwaterstoffen, C5 tot en met C8, overwegend C2 tot en met C5]</td>
<td>H K</td>
<td>270-758-7</td>
<td>06477-76-9</td>
<td>Carec. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>649-066-00-8</td>
<td>gassen (aardolie), katalytsche reformator, C13-rijk Petroleumgas [Een complexe verzameling koolwaterstoffen, gevormd door destillatie van de producten uit een katalytisch reformeringsproces. Bestaat uit koolwaterstoffen, C1 tot en met C8, overwegend C1 tot en met C5]</td>
<td>H K</td>
<td>270-760-8</td>
<td>06477-79-2</td>
<td>Carec. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>649-067-00-3</td>
<td>gassen (aardolie), C13-olefinische en paraffinische alkylersgrondstof Petroleumgas [Een complexe verzameling van</td>
<td>H K</td>
<td>270-765-5</td>
<td>06477-83-8</td>
<td>Carec. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-068-00-9</td>
<td>gassen (aardolie), C3-rijk Petroleumgas</td>
<td>[Een complexe verzameling koolwaterstoffen, gevormd door destillatie van produkten uit een katalytisch fractioneringsproces. Bestaat uit alifatische koolwaterstoffen, C1 tot en met C4, hoofdzakelijk C3.]</td>
<td>H K</td>
<td>270-767-6</td>
<td>68477-55-0</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-069-00-4</td>
<td>gassen (aardolie), deethanisator-topprodukten Petroleumgas</td>
<td>[Een complexe verzameling koolwaterstoffen, gevormd door destillatie van de gas- en gasolinfrajecties uit het katalytische kraakproces. Bevat voornamelijk ethaan en ethyleen.]</td>
<td>H K</td>
<td>270-768-1</td>
<td>68477-86-1</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-070-00-X</td>
<td>gassen (aardolie), desisbutanisator-toppk brillen Petroleumgas</td>
<td>[Een complexe verzameling koolwaterstoffen, gevormd door de atmosferische destillatie van een butaan-butyleenstroom. Bestaat uit alifatische koolwaterstoffen, overwegend C1 tot en met C4.]</td>
<td>H K</td>
<td>270-769-7</td>
<td>68477-87-2</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 3; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-071-00-5</td>
<td>gassen (aardolie), depropanisator droog, propeen-rijk Petroleumgas</td>
<td>[Een complexe verzameling koolwaterstoffen, gevormd door de destillatie van produkten uit een katalytisch kraakproces. Bestaat voornamelijk uit propyleen met</td>
<td>H K</td>
<td>270-772-3</td>
<td>68477-90-7</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>649-072-00-0</td>
<td>gassen (aardolie), depropanisator-topprodukten Petroleumgas [Een complexe verzameling koolwaterstoffen, gevormd door distillatie van producten van de gas- en gaselinfracties van een katalytisch kraakproces. Bestaat uit alifatische koolwaterstoffen, overwegend C₃ tot en met C₅.]</td>
<td>H K</td>
<td>270-773-9</td>
<td>68477-91-8</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-073-00-6</td>
<td>gassen (aardolie), gaswinningsinstallatie depropanisator-topprodukten Petroleumgas [Een complexe verzameling koolwaterstoffen, verkregen door de fractionering van verscheidene koolwaterstofbronnen. Bestaat voornamelijk uit koolwaterstoffen, C₁ tot en met C₄, voornamelijk propaan.]</td>
<td>H K</td>
<td>270-777-0</td>
<td>68477-94-1</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-074-00-1</td>
<td>gassen (aardolie), Girbatol-installatie-grondstof Petroleumgas [Een complexe verzameling koolwaterstoffen die wordt gebruikt als grondstof in een Girbatol-installatie om waterstofzuur te verwijderen. Bestaat uit alifatische koolwaterstoffen, overwegend C₃ tot en met C₄.]</td>
<td>H K</td>
<td>270-778-6</td>
<td>68477-95-2</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-075-00-7</td>
<td>gassen (aardolie), geïsoleernde naftafractie, rijk aan C₅, vrij van waterstofzuur Petroleumgas</td>
<td>H K</td>
<td>270-782-8</td>
<td>68477-99-6</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-076-00-2</td>
<td>restgas (aardolie), katalytisch gekraakte geklaarde olie en thermisch gekraakte vacuüminresidu fractioneringsterugloosvat Petroleumgas [Een complexe verzameling</td>
<td>H K</td>
<td>270-802-5</td>
<td>68478-21-7</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-077-00-8</td>
<td>restgas (aardolie), katalytisch gekraakte raffinaatstabiliseringsabsorborator Petroleumgas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen uit de stabilisering van katalytisch gekraakte raffina, Bestaat voornamelijk uit koolwaterstoffen, overwegend C<sub>1</sub> tot en met C<sub>4</sub></td>
<td>H K</td>
<td>270-803-0</td>
<td>68478-22-8</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-078-00-3</td>
<td>restgas (aardolie), fractionator van gecombineerde produkten uit katalytische kruker, katalytische reformator en waterstofontzwaavelaar Petroleumgas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen door de fractionering van produkten uit katalytische kruker, katalytische reformering- en waterstofontzwaavelingsprocessen en behandelde om zuure onzichtbaarheden te verwijderen. Bestaat voornamelijk uit koolwaterstoffen, overwegend C<sub>1</sub> tot en met C<sub>4</sub></td>
<td>H K</td>
<td>270-804-6</td>
<td>68478-24-0</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-079-00-9</td>
<td>restgas (aardolie), katalytisch geëronomerde nafta-fractioneringsstabilisator Petroleumgas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen uit de fractionering/stabilisatie van katalytisch geëronomeren nafta. Bestaat voornamelijk uit koolwaterstoffen, overwegend C<sub>1</sub> tot en met C<sub>4</sub></td>
<td>H K</td>
<td>270-806-7</td>
<td>68478-26-2</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam, vervolg</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
</tbody>
</table>
| 649-080-00-4 | restgas (aardolie), verzadigd-gas- installatie gemengde stroom, rijk aan C₄ Petroleumgas [Een complexe verzameling koolwaterstoffen die wordt verkregen uit de fractioneringsstabilisatie van resgas van de destillatie van nafta verkregen door directe fractionering en katalytisch gereformed nafta-stabilisator-resgas. Bestaat uit koolwaterstoffen, C₁ tot en met C₄, overwegend butaan en isobutaan.]
H K | 270-813-5 | 68478-32-0 | Carc. Cat. 1; R45 Mutu. Cat. 2; R46 | T R 45-46 S 53-45 |
| 649-081-00-X | restgas (aardolie), verzadigd-gas- herwinningsinstallatie, rijk aan C₄ Petroleumgas [Een complexe verzameling koolwaterstoffen die wordt verkregen uit de fractionering van destillatie-restgas, door directe fractionering verkregen nafta, katalytisch gereformed nafta-stabilisator-restgas. Bestaat voornamelijk uit koolwaterstoffen, C₁ tot en met C₄, overwegend metaan en ethaan.]
H K | 270-814-0 | 68478-33-1 | Carc. Cat. 1; R45 Mutu. Cat. 2; R46 | T R 45-46 S 53-45 |
| 649-082-00-5 | restgas (aardolie), thermische vacuümsresiduomkraker- Petroleumgas [Een complexe verzameling koolwaterstoffen, verkregen uit het thermische kraken van vacuümsresiduen. Bestaat uit koolwaterstoffen, overwegend C₁ tot en met C₄.]
H K | 270-815-6 | 68478-34-2 | Carc. Cat. 1; R45 Mutu. Cat. 2; R46 | T R 45-46 S 53-45 |
| 649-083-00-0 | koolwaterstoffen, C₄₊-rij, aardolie destillaat Petroleumgas [Een complexe verzameling koolwaterstoffen, gevormd door destillatie en condensatie van]
H K | 270-990-9 | 68512-91-4 | Carc. Cat. 1; R45 Mutu. Cat. 2; R46 | T R 45-46 S 53-45 |
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota's voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota's voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>649-081-00-6</td>
<td>gassen (aardolie), toelaat bereik door directe fractionering verkregen nafta - dehexanizeruitstoot-Petroleumgas</td>
<td>ruwe olie, Bestaat uit koolwaterstoffen, C₅ tot en met C₆, overwegend C₅ tot en met C₆.</td>
<td>H K</td>
<td>271-000-8</td>
<td>68513-15-5</td>
<td>Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-085-00-1</td>
<td>gassen (aardolie), waterstofcraken-depropanisatoruitstoot, koolwaterstoffijk Petroleumgas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen door de destilatie van produkten van een waterstofcrackproces, Bestaat voornamelijk uit koolwaterstoffen, overwegend C₅ tot en met C₆, Kan ook kleine hoeveelheden waterstof en waterstofzuur bevatten.</td>
<td>H K</td>
<td>271-001-3</td>
<td>68513-16-6</td>
<td>Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-086-00-7</td>
<td>gassen (aardolie), lichte door directe fractionering verkregen nafta stabilisator-uitstoot-Petroleum-gas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen door de stabilisering van lichte door directe fractionering verkregen nafta, Bestaat uit verzadigde alifatische koolwaterstoffen, overwegend C₅ tot en met C₆.</td>
<td>H K</td>
<td>271-002-9</td>
<td>68513-17-7</td>
<td>Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-087-00-2</td>
<td>residaen (aardolie), alkyleringssplitter, C₉ rijk Petroleumgas</td>
<td>Een complex residu, afkomstig uit de destilatie van stromen uit uiteenlopende zuiveringsbewerkingen, Bestaat</td>
<td>H K</td>
<td>271-010-2</td>
<td>68513-66-6</td>
<td>Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-088-00-8</td>
<td>koolwaterstoffen, C<sub>1</sub> to en met C<sub>4</sub>, overwegend butaan en met een kooktraject van ongeveer -11,7°C tot 27,8°C.</td>
<td>H K</td>
<td>271-032-2</td>
<td>68514-31-8</td>
<td>Carc. Cat 1; R45 Mut. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-089-00-3</td>
<td>koolwaterstoffen, C<sub>1</sub>-<sub>4</sub>, stankvrij gemaakt Petroleumgas</td>
<td>H K</td>
<td>271-038-5</td>
<td>68514-36-3</td>
<td>Carc. Cat 1; R45 Mut. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-090-00-9</td>
<td>koolwaterstoffen, C<sub>1</sub>-<sub>3</sub>, Petroleumgas</td>
<td>H K</td>
<td>271-259-7</td>
<td>68527-16-2</td>
<td>Carc. Cat 1; R45 Mut. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-091-00-4</td>
<td>koolwaterstoffen, C<sub>1</sub>-<sub>4</sub>, debutanisator-fracie Petroleumgas</td>
<td>H K</td>
<td>271-261-8</td>
<td>68527-19-5</td>
<td>Carc. Cat 1; R45 Mut. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-092-00-X</td>
<td>gassen (aardolie), C<sub>5</sub>-<sub>11</sub>, nat Petroleumgas</td>
<td>H K</td>
<td>271-624-0</td>
<td>68602-83-5</td>
<td>Carc. Cat 1; R45 Mut. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-193-00-5</td>
<td>koolwaterstoffen, C₃-5 Petroleumsas</td>
<td>H K</td>
<td>271-734-9</td>
<td>68606-25-7</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 15-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-194-00-0</td>
<td>koolwaterstoffen, C₅-7 Petroleumsas</td>
<td>H K</td>
<td>271-735-4</td>
<td>68606-26-8</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 15-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-195-00-6</td>
<td>gassen (aardolie), alklyleringsinvoer Petroleumsas</td>
<td>H K</td>
<td>271-737-5</td>
<td>68606-27-9</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 15-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-196-00-1</td>
<td>gassen (aardolie), depธรپaronstofbodenfracties fractioneringsuitootoot Petroleumsas</td>
<td>H K</td>
<td>271-742-2</td>
<td>68606-34-8</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-197-00-7</td>
<td>gassen (aardolie), raffinage-meng- Petroleumsas</td>
<td>H K</td>
<td>272-183-7</td>
<td>68783-07-3</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-198-00-2</td>
<td>gassen (aardolie), katalytisch kraken Petroleumsas</td>
<td>H K</td>
<td>272-203-4</td>
<td>68783-64-2</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>Chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-099-00-8</td>
<td>gassen (aardolie), C_3-17, stankvrij gemaakte Petroleums</td>
<td>voornamelijk uit koolwaterstoffen, overwegend C_1 tot en met C_6</td>
<td>H K</td>
<td>272-205-5</td>
<td>68783-65-3</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-100-00-1</td>
<td>gassen (aardolie), ruwe oliefractionering uitstoot Petroleums</td>
<td>[Een complexe verzameling koolwaterstoffen die wordt verkregen door het onderwerpen van een aardoliedestillaat aan een stankverwijderend proces waarbij mercaptanen worden omgezet of zure onzuiverheden worden verwijderd. Bestaat voornamelijk uit verzadigde en onverzadigde koolwaterstoffen, overwegend C_1 tot en met C_6, met een kooktraject van ongeveer -51°C tot -34°C.]</td>
<td>H K</td>
<td>272-871-7</td>
<td>68918-99-0</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-101-00-7</td>
<td>gassen (aardolie), dehexanizeruitstoot Petroleums</td>
<td>[Een complexe verzameling koolwaterstoffen die wordt verkregen door de fractionering van gecombineerde naftastromen. Bestaat uit verzadigde alifatische koolwaterstoffen, overwegend C_1 tot en met C_6.]</td>
<td>H K</td>
<td>272-872-2</td>
<td>68919-00-6</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-102-00-2</td>
<td>gassen (aardolie), stabilisatoruitstootgassen uit de fractionering van door fractionering verkregen lichte gasoline Petroleums</td>
<td>[Een complexe verzameling koolwaterstoffen die wordt</td>
<td>H K</td>
<td>272-878-5</td>
<td>68919-05-1</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-103-00-8</td>
<td>gassen (aardolie), nafta-uminer-ontzwaveling stripperafstoot-Petroleumgas</td>
<td>H K</td>
<td>272-879-0</td>
<td>68919-06-2</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>649-104-00-3</td>
<td>gassen (aardolie), direct door fractionering verkregen nafta katalytische reformersafstoot-Petroleumgas</td>
<td>H K</td>
<td>272-882-7</td>
<td>68919-09-5</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>649-105-00-9</td>
<td>gassen (aardolie), gehydroiseerde katalytische kraker-splinteropprodukt-Petroleumgas</td>
<td>H K</td>
<td>272-893-7</td>
<td>68919-20-0</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>649-106-00-4</td>
<td>gassen (aardolie), directe fractioneringsstabilisatorafstoot-Petroleumgas</td>
<td>H K</td>
<td>272-883-2</td>
<td>68919-10-8</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-107-00-X</td>
<td>gassen (aardolie), katalytisch gekraakte nafta debutanisator-Petroleums-gas</td>
<td>Een complexe verzameling koolwaterstoffen die wordt verkregen uit de fractionering van katalytisch gekraakte nafta. Bestaat uit koolwaterstoffen, overwegend C1 tot en met C3.</td>
<td>H K</td>
<td>273-169-3</td>
<td>68952-76-1</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-108-00-5</td>
<td>restgas (aardolie), katalytisch gekraakte destillaat en nafta stabilisator Petroleums-gas</td>
<td>Een complexe verzameling koolwaterstoffen die wordt verkregen door de fractionering van katalytisch gekraakte nafta en destillaat. Bestaat voornamelijk uit koolwaterstoffen, overwegend C1 tot en met C3.</td>
<td>H K</td>
<td>273-170-9</td>
<td>68952-77-2</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-109-00-0</td>
<td>restgas (aardolie), thermisch gekraakt destillaat, gasolie en nafta absorptie-gas</td>
<td>Een complexe verzameling koolwaterstoffen die wordt verkregen uit de scheiding van thermisch gekraakte destillaten, nafta en gasolie. Bestaat voornamelijk uit koolwaterstoffen, overwegend C1 tot en met C3.</td>
<td>H K</td>
<td>273-175-6</td>
<td>68952-81-8</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-110-00-6</td>
<td>restgas (aardolie), thermisch gekraakte koolwaterstof-fractioneringstabilisator, aardolieverkoolkoking Petroleums-gas</td>
<td>Een complexe verzameling koolwaterstoffen die wordt verkregen uit de fractioneringstabilisatie van</td>
<td>H K</td>
<td>273-176-1</td>
<td>68952-82-9</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemicke naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>649-111-00-1</td>
<td>gassen (aardolie), lichte stoomgekraakte, butadieenconcentraat Petroleumgas</td>
<td>[Een complexe verzameling koolwaterstoffen die wordt gevormd door de destillatie van produkten van een thermisch kraakproces. Bestaat uit koolwaterstoffen, overwegend C₄ tot en met C₆]</td>
<td>H K</td>
<td>273-265-5</td>
<td>68955-28-2</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R; 45-46 S; 53-45</td>
<td></td>
</tr>
<tr>
<td>649-112-00-7</td>
<td>gassen (aardolie), direct door fractionering verkregen nafta-katalytische reformator-stabilisatorendproducten Petroleumgas</td>
<td>[Een complexe verzameling koolwaterstoffen die wordt verkregen door de katalytische reformering van direct door fractionering verkregen nafta en de fractionering van de totale uitstroom. Bestaat uit verzadigde alifatische koolwaterstoffen, overwegend C₄ tot en met C₆]</td>
<td>H K</td>
<td>273-270-2</td>
<td>68955-34-0</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R; 45-46 S; 53-45</td>
<td></td>
</tr>
<tr>
<td>649-113-00-2</td>
<td>koolwaterstoffen, C₄- Petroleumgas</td>
<td>H K</td>
<td>289-339-5</td>
<td>87741-01-3</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R; 45-46 S; 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>649-114-00-8</td>
<td>alkanen, C₄+, rijk aan C₅ Petroleumgas</td>
<td>H K</td>
<td>292-456-4</td>
<td>90622-55-2</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R; 45-46 S; 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>649-115-00-3</td>
<td>gassen (aardolie), stoomkraaker C₅-rijker Petroleumgas</td>
<td>[Een complexe verzameling koolwaterstoffen die wordt gevormd door de destillatie van produkten uit een stoomkraakproces. Bestaat voornamelijk uit propyleen met</td>
<td>H K</td>
<td>295-404-9</td>
<td>92015-22-2</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R; 45-46 S; 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-116-00-9</td>
<td>koolwaterstoffen, C₄⁻ stoomkraakdestillaat Petroleumgas</td>
<td>[Een complexe verzameling koolwaterstoffen die wordt gevormd door de destillatie van de producten uit een stoomkraakproces. Bestaat voornamelijk uit C₄⁻ koolwaterstoffen, overwegend 1-buteen en 2-buteen, bevat ook butaan en isobutaan en heeft een kooktraject van ongeveer -70°C tot 0°C.]</td>
<td>H K</td>
<td>295-405-4</td>
<td>92015-23-3</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-117-00-4</td>
<td>aardoliegassen, vloeibaar gemaakt, van tank ontdaan, C₄⁻ fractie Petroleumgas</td>
<td>[Een complexe verzameling koolwaterstoffen die wordt verkregen door een vloeibaar gemaakt aardolie gassenproces aan een tankreinigingsproces te onderwerpen om mercaptanen te oxideren of om zure onzuiverheden te verwijderen. Bestaat voornamelijk uit C₄⁻ verzadigde en onverzadigde koolwaterstoffen.]</td>
<td>HKS</td>
<td>295-463-0</td>
<td>92045-80-2</td>
<td>F; R12 Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>F; T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-119-00-5</td>
<td>raffinaten (aardolie), stoomgekraakte C₄⁻ fraktie naar cuproammoniumacetaaextractie, C₃₅⁻ en C₃₅⁻ onverzadigd, butadieenvrij Petroleumgas</td>
<td></td>
<td>H K</td>
<td>307-769-4</td>
<td>97722-19-5</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-120-00-0</td>
<td>gassen (aardolie), aminesysteem voedings-Raffinaderijgasa</td>
<td>[Het voedingsgas naar het aminesysteem voor de verwijdering van waterstofsulfide. Bestaat uit waterstof. Koelmomoxide,</td>
<td>H K</td>
<td>270-746-1</td>
<td>68477-65-6</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>Chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-121-00-6</td>
<td>gassen (aardolie), benzene-installatie-waterstofontzwevend afgassen</td>
<td>H K</td>
<td>270-747-7</td>
<td>08477-66-7</td>
<td>Carc. Cat. 1; R45</td>
<td>T</td>
<td>R: 45-46</td>
<td>S: 53-45</td>
</tr>
<tr>
<td>649-122-00-1</td>
<td>gassen (aardolie), benzene-installatie-terugvoer, rijk aan waterstof</td>
<td>H K</td>
<td>270-748-2</td>
<td>08477-67-8</td>
<td>Carc. Cat. 1; R45</td>
<td>T</td>
<td>R: 45-46</td>
<td>S: 53-45</td>
</tr>
<tr>
<td>649-123-00-7</td>
<td>gassen (aardolie), mengolie, rijk aan waterstof en stikstof</td>
<td>H K</td>
<td>270-749-8</td>
<td>08477-68-9</td>
<td>Carc. Cat. 1; R45</td>
<td>T</td>
<td>R: 45-46</td>
<td>S: 53-45</td>
</tr>
<tr>
<td>649-124-00-2</td>
<td>gassen (aardolie), katalytisch geverifieerde nafta strippertopprodukten</td>
<td>H K</td>
<td>270-759-2</td>
<td>08477-77-0</td>
<td>Carc. Cat. 1; R45</td>
<td>T</td>
<td>R: 45-46</td>
<td>S: 53-45</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-125-00-8</td>
<td>gassen (aardolie), C₆₋₉⁺</td>
<td>katalytische reformator terugvoer Raffinaderijgas</td>
<td>H K</td>
<td>270-761-3</td>
<td>68477-80-5</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-126-00-3</td>
<td>gassen (aardolie), C₆₋₉⁺</td>
<td>katalytische reformator Raffinaderijgas</td>
<td>H K</td>
<td>270-762-9</td>
<td>68477-81-6</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-127-00-9</td>
<td>gassen (aardolie), C₅⁺</td>
<td>katalytische reformator terugvoer, rijk aan waterstof Raffinaderijgas</td>
<td>H K</td>
<td>270-763-4</td>
<td>68477-82-7</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-128-00-4</td>
<td>gassen (aardolie), C₅-terugsrom Raffinaderijgas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen door de extractie van waterstof uit een gasstroming die voornamelijk bestaat uit waterstof met kleine hoeveelheden stikstof, koolmonoxide, methaan, etaan en ethyleen. Bevat voornamelijk koolwaterstoffen als methaan.</td>
<td>H K</td>
<td>270-766-0</td>
<td>68477-84-9</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-129-00-X</td>
<td>gassen (aardolie), droge zure, gasconcentratie-installatie-uitstoot- Raffinaderijgas</td>
<td>[De complexe verzameling droge gassen die wordt verkregen uit een gasconcentratie-installatie, Bestaat uit waterstof, waterstofsulfide en koolwaterstoffen, overwegend C1 tot en met C4.]</td>
<td>H K</td>
<td>270-774-4</td>
<td>68477-92-9</td>
<td>Carc. Cat. 1; R45</td>
<td>Muta. Cat. 2; R46</td>
<td>T</td>
</tr>
<tr>
<td>649-130-00-5</td>
<td>gassen (aardolie), gasconcentratie-herabsorbeerder- destillatie Raffinaderijgas</td>
<td>[Een complexe verzameling koolwaterstoffen die wordt gevormd door destillatie van produkten van gecombineerde gasstroomen in een gasconcentratie-herabsorbeerder. Bestaat voornamelijk uit waterstof, koolmonoxide, kooldioxide, stikstof, waterstofsulfide en koolwaterstoffen. C1 tot en met C4.]</td>
<td>H K</td>
<td>270-776-5</td>
<td>68477-93-0</td>
<td>Carc. Cat. 1; R45</td>
<td>Muta. Cat. 2; R46</td>
<td>T</td>
</tr>
<tr>
<td>649-131-00-0</td>
<td>gassen (aardolie), waterstofsorbator-uitstoot- Raffinaderijgas</td>
<td>[Een complexe combinatie die wordt verkregen door het absorberen van waterstof uit een waterstofrijke stroom. Het bestaat uit waterstof, koolmonoxide, stikstof en natrium met kleine hoeveelheden C1- koolwaterstoffen.]</td>
<td>H K</td>
<td>270-779-1</td>
<td>68477-96-3</td>
<td>Carc. Cat. 1; R45</td>
<td>Muta. Cat. 2; R46</td>
<td>T</td>
</tr>
<tr>
<td>649-132-00-6</td>
<td>gassen (aardolie), waterstof-riek Raffinaderijgas</td>
<td>[Een complexe combinatie die wordt afgescheiden als een gas uit diverse koolwaterstofgassen door H K</td>
<td>270-780-7</td>
<td>68477-97-4</td>
<td>Carc. Cat. 1; R45</td>
<td>Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-133-00-1</td>
<td>gassen (aardolie), waterstofbehandelde-mengolie-terugvoer-rijk aan waterstof en stikstof Raffinaderijgass</td>
<td>H K</td>
<td>270-781-2</td>
<td>68477-98-5</td>
<td>Carc. Cat. 1; R45 Mutu. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-134-00-7</td>
<td>gassen (aardolie), terugvoer-, waterstof-rijk Raffinaderijgass</td>
<td>H K</td>
<td>270-783-3</td>
<td>68478-00-2</td>
<td>Carc. Cat. 1; R45 Mutu. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-135-00-2</td>
<td>gassen (aardolie), reformator-verzamel-, waterstof-rijk Raffinaderijgass</td>
<td>H K</td>
<td>270-784-9</td>
<td>68478-01-3</td>
<td>Carc. Cat. 1; R45 Mutu. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-136-00-8</td>
<td>gassen (aardolie), reformerende waterstofbehandelde Raffinaderijgass</td>
<td>H K</td>
<td>270-785-4</td>
<td>68478-02-4</td>
<td>Carc. Cat. 1; R45 Mutu. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>Chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>649-137-00-3</td>
<td>gassen (aardolie), reformerende waterstofbehandelaar, rijk aan waterstof en methaan</td>
<td>Een complexe combinatie die wordt verkregen uit het reformerende waterstofbehandelingsproces. Bestaat voornamelijk uit waterstof, methaan en ethaan met diverse kleine hoeveelheden waterstofsulfide en alifatische koolwaterstoffen, overwegend C₁ tot en met C₃.</td>
<td>H K</td>
<td>270-787-5</td>
<td>68478-03-5</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-138-00-9</td>
<td>gassen (aardolie), reformerende waterstofbehandelaar aanvullings-, waterstof-rijk Raffinaderijgas</td>
<td>Een complexe combinatie die wordt verkregen uit het reformerende waterstofbehandelingsproces. Bestaat voornamelijk uit waterstof en methaan met diverse kleine hoeveelheden koolmonoxide, kooldioxide, stikstof en verzadigde alifatische koolwaterstoffen, overwegend C₁ tot en met C₃.</td>
<td>H K</td>
<td>270-788-0</td>
<td>68478-04-6</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-139-00-4</td>
<td>gassen (aardolie), thermisch kraken-distillatie- Raffinaderijgas</td>
<td>Een complexe combinatie die wordt gevormd door distillatie van producten van een thermisch kraakproces. Bestaat uit waterstof, waterstofsulfide, koolmonoxide, kooldioxide en koolwaterstoffen, overwegend C₁</td>
<td>H K</td>
<td>270-789-6</td>
<td>68478-05-7</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>---------------------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-140-00-X</td>
<td>restgas (aardolie), katalytische kraker-refractioneringsabsorbutor Raffinaderijgas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen door refractionering van producten uit een katalytisch kruikproces. Bestaat uit waterstof en koolwaterstoffen, overwegend C<sub>1</sub> tot en met C<sub>4</sub>.</td>
<td>HK</td>
<td>270-805-1</td>
<td>68478-25-1</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-141-00-5</td>
<td>restgas (aardolie), katalytisch gegreeformeerde nafla-afschneider Raffinaderijgas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen uit de katalytische reformering van door directe fractionering verkregen nafta. Bestaat uit waterstof en koolwaterstoffen, overwegend C<sub>1</sub> tot en met C<sub>4</sub>.</td>
<td>HK</td>
<td>270-807-2</td>
<td>68478-27-3</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-142-00-0</td>
<td>restgas (aardolie), katalytisch gegreeformeerde nafla-stabilisator Raffinaderijgas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen uit de stabilisatie van katalytisch gegreeformeerde nafta. Bestaat uit waterstof en koolwaterstoffen, overwegend C<sub>1</sub> tot en met C<sub>4</sub>.</td>
<td>HK</td>
<td>270-808-8</td>
<td>68478-28-4</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-143-00-6</td>
<td>restgas (aardolie), gekraakt destillaat waterstofbehandelaarsafscheider Raffinaderijgas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen door de behandeling van gekraakte destillaten met waterstof in de aanwezigheid van een katalysator. Bestaat uit waterstof en verzadigde alifatische koolwaterstoffen, overwegend C<sub>1</sub> tot en met C<sub>4</sub>.</td>
<td>HK</td>
<td>270-809-3</td>
<td>68478-29-5</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-144-00-1</td>
<td>restgas (aardolie),</td>
<td>HK</td>
<td>270-810-9</td>
<td>68478-30-8</td>
<td>Carc. Cat. 1; R45</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>649-145-00-7</td>
<td>gassten (aardolie), topprodukten uit stabilisator van katalytisch geroformeerd door directe fractionering verkregen nafta Raffinaderijgas [Een complexe verzameling koolwaterstoffen, verkregen uit de waterstofontswaveling van door directe fractionering verkregen nafta. Bestaat uit waterstof en verzadigde alifatische koolwaterstoffen, overwegend C₁ tot en met C₅.]</td>
<td>H K</td>
<td>270-999-8</td>
<td>68513-14-4</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45–46 S: 53–45</td>
<td></td>
</tr>
<tr>
<td>649-146-00-2</td>
<td>gassten (aardolie), reformatoruitstroom hoge druk afdampvuutoest- Raffinaderijgas [Een complexe combinatie die wordt gevormd door het af dampen onder hoge druk van de uitstroom uit de reformeringsreactor. Bestaat voornamelijk uit waterstof met uiteenlopende kleine hoeveelheden methaan, ethaan en propaan.]</td>
<td>H K</td>
<td>271-003-4</td>
<td>68513-18-8</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45–46 S: 53–45</td>
<td></td>
</tr>
<tr>
<td>649-147-00-8</td>
<td>gassten (aardolie), reformator-uitstroom lage druk afdampvat uitstoot- Raffinaderijgas [Een complexe combinatie die wordt gevormd door het af dampen onder lage druk van de uitstroom uit de reformeringsreactor. Bestaat</td>
<td>H K</td>
<td>271-005-5</td>
<td>68513-19-9</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45–46 S: 53–45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-148-00-3</td>
<td>gassen (aardolie), olieaffraagegasdestillatie uitvloeistoffen- Raffinaderijgas</td>
<td>voornamelijk uit waterstof met uiteenlopende kleine hoeveelheden methaan, etaan en propaan,</td>
<td>H K</td>
<td>271-258-1</td>
<td>68527-15-1</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-149-00-9</td>
<td>gassen (aardolie), benzeen- installatie waterstofbehandelaar depentanisator-topprodukten Raffinaderijgas</td>
<td>voornamelijk uit waterstof, etaan en propaan met verschillende kleine hoeveelheden stikstof, koolmonoxide, koolmonoksidoxyde en koolwaterstoffen,</td>
<td>H K</td>
<td>271-623-5</td>
<td>68602-82-4</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-150-00-4</td>
<td>gassen (aardolie), secundaire absorbeerder-uitstoot - fractionator van topprodukten uit fluid katalytische kraker Raffinaderijgas</td>
<td>voornamelijk uit waterstof, etaan en propaan met verschillende kleine hoeveelheden stikstof, koolmonoxide, koolmonoksidoxyde en koolwaterstoffen,</td>
<td>H K</td>
<td>271-625-6</td>
<td>68602-84-6</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-151-00-X</td>
<td>aardolieprodukten, raffinagegassen</td>
<td>Raffinaderijgassen [Een complexe verzameling, die voornamelijk bestaat uit waterstof met verschillende kleine hoeveelheden metaan, ethaan en propaan.]</td>
<td>H K</td>
<td>271-750-6</td>
<td>68607-11-4</td>
<td>Carc. Cat. 1; R45</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-152-00-5</td>
<td>gassen (aardolie), waterstofkrakken lage-drukafscheider</td>
<td>Raffinaderijgassen [Een complexe combinatie die wordt verkregen door de vloeistof-damp-scheiding van de uitstroom uit de waterstofmakprocesreacter. Bestaat voornamelijk uit waterstof en verzuurde koolwaterstoffen, overwegend C\textsubscript{1} tot en met C\textsubscript{4}.]</td>
<td>H K</td>
<td>272-182-1</td>
<td>68783-06-2</td>
<td>Carc. Cat. 1; R45</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-153-00-0</td>
<td>gassen (aardolie), raffinage</td>
<td>Raffinaderijgassen [Een complexe combinatie die wordt verkregen uit verschillende aardolieraffinage-operaties. Bestaat uit waterstof en koolwaterstoffen, overwegend C\textsubscript{1} tot en met C\textsubscript{4}.]</td>
<td>H K</td>
<td>272-338-9</td>
<td>68814-67-5</td>
<td>Carc. Cat. 1; R45</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-154-00-6</td>
<td>gassen (aardolie), platinareformatorproduktenafschepider-uitstoot-</td>
<td>Raffinaderijgassen [Een complexe combinatie die wordt verkregen uit de chemische reformering van naften tot aromaten. Bestaat uit waterstof en verzuurde alifatische koolwaterstoffen, overwegend C\textsubscript{1} tot en met C\textsubscript{4}.]</td>
<td>H K</td>
<td>272-343-6</td>
<td>68814-90-4</td>
<td>Carc. Cat. 1; R45</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-155-00-1</td>
<td>gassen (aardolie), uitstootgassen</td>
<td></td>
<td>H K</td>
<td>272-775-5</td>
<td>68911-58-0</td>
<td>Carc. Cat. 1; R45</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>--------</td>
<td>------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-156-00-7</td>
<td>gassen (aardolie), waterstofbehandelde stinkende kerosine-afdampvat Raffinaderijgas</td>
<td>Een complexe combinatie die wordt verkregen uit het afdampvat van de installatie waarin stinkende kerosine in de aanwezigheid van een katalysator met waterstof wordt behandeld. Bestaat voornamelijk uit waterstof en methaan alsmede variërende kleine hoeveelheden stikstof, waterstoffsulfide, koolmonoxide en koolwaterstoffen, overwegend C₂ tot en met C₄.</td>
<td>H K</td>
<td>272-776-0</td>
<td>68911-59-1</td>
<td>Carc. Cat. 1; R45</td>
<td>T</td>
<td>R: 45-46</td>
</tr>
<tr>
<td>649-157-00-2</td>
<td>gassen (aardolie), destillaat-ontwaveling stripperuitstoot Raffinaderijgas</td>
<td>Een complexe combinatie gestript van het vloeibare produkt van het unifiner-ontwavelingsproces. Bestaat uit waterstoffsulfide, methaan, ethaan en propaan.</td>
<td>H K</td>
<td>272-873-8</td>
<td>68919-01-7</td>
<td>Carc. Cat. 1; R45</td>
<td>T</td>
<td>R: 45-46</td>
</tr>
<tr>
<td>649-158-00-8</td>
<td>gassen (aardolie), gefluïdeerde katalytische kokers- fractioneringstripuitstoot-Raffinaderijgas</td>
<td>Een complexe combinatie die wordt gevormd door de</td>
<td>H K</td>
<td>272-874-3</td>
<td>68919-02-8</td>
<td>Carc. Cat. 1; R45</td>
<td>T</td>
<td>R: 45-46</td>
</tr>
<tr>
<td>Index No</td>
<td>Chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>649-159-00-3</td>
<td>Gassen (aardolie), gefluidificeerde katalytische kraakproces, Bestaat uit waterstof, waterstofsulfide, stikstof en koolwaterstoffen, overwegend C3 tot en met C6</td>
<td>H K</td>
<td>272-875-9</td>
<td>68919-03-9</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-160-00-9</td>
<td>Gassen (aardolie), zwaar destillaat waterstofbehandelingssontzweeli ng stripper uitstoot: Raffinaderijgas</td>
<td>H K</td>
<td>272-876-4</td>
<td>68919-04-0</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-161-00-4</td>
<td>Gassen (aardolie), platinareformatorstabilisatoruitstoot-, fractionering van lichte eindfractions</td>
<td>H K</td>
<td>272-880-6</td>
<td>68919-07-3</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-162-00-X</td>
<td>Gassen (aardolie), voorafraapingsstoomuitstoot, ruwe destillatie Raffinaderijgas</td>
<td>H K</td>
<td>272-881-1</td>
<td>68919-08-4</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-163-00-5</td>
<td>gassen (aardolie), teersripperuitsoot- Raffinaderijgas [Een complexe verzameling die wordt verkregen door de fractionering van gereduceerde rauwe olie. Bestaat uit waterstof en koolwaterstoffen, overwegend C_{5} tot en met C_{9}.]</td>
<td>H K</td>
<td>272-884-8</td>
<td>68919-11-9</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-164-00-0</td>
<td>gassen (aardolie), umifiner- strippenuitsoot- Raffinaderijgas [Een combinatie van waterstof en metaan die wordt verkregen door fractionering van de produkten uit de umifineerinstallatie.]</td>
<td>H K</td>
<td>272-885-3</td>
<td>68919-12-0</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-165-00-6</td>
<td>restgas (aardolie), katalytisch met waterstof onttweefde nafta afscheider Raffinaderijgas [Een complexe verzameling koolwaterstoffen die wordt verkregen door de waterstofontzweveling van nafta. Bestaat uit waterstof, metaan, ethaan en propaan.]</td>
<td>H K</td>
<td>273-173-5</td>
<td>68952-79-4</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-166-00-1</td>
<td>restgas (aardolie), direct door fractionering verkregen nafta- waterstofontzweevlaar Raffinaderijgas [Een complexe combinatie die wordt verkregen door de waterstofontzweveling van nafta die direct door fractionering is verkregen. Bestaat uit waterstof en koolwaterstoffen, overwegend C_{5} tot en met C_{9}.]</td>
<td>H K</td>
<td>273-174-0</td>
<td>68952-80-7</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-167-00-7</td>
<td>gassen (aardolie), sponsabsorptievat-uitsoot-, topproduktfractievan gemaakt katalytische kraker en gasolie-ontwavelaar Raffinaderijgas</td>
<td>Een complexe combinatie die wordt verkregen door de fractievan produkten uit de gemaakt katalytische kraker en gasolie-ontwavelaar. Bestaat uit waterstof en koolwaterstof, overwegend C₁ tot en met C₅.</td>
<td>H K</td>
<td>273-269-7</td>
<td>69895-33-9</td>
<td>Carec. Cat. 1; R45</td>
<td>Mut. Cat. 2; R46</td>
<td>T
R: 45-46
S: 53-45</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-171-00-9</td>
<td>gassen (aardolie), gasolie waterstofontzwaalingsreinigings - Raffinaderijg as</td>
<td>[Een complexe verzameling gassen die wordt verkregen uit de reformatoren en uit de gezuiverde fraktionen uit de hydrogeneringsreactoren. Bestaat voornamelijk uit waterstof en alifatische koolwaterstoffen, overwegend C1 tot en met C4.]</td>
<td>H K</td>
<td>295-399-3</td>
<td>92045-17-5</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45–46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-172-00-4</td>
<td>gassen (aardolie), hydogenatoruitstroom- afdampvatuitstoot- Raffinaderijgas</td>
<td>[Een complexe verzameling gassen die wordt verkregen uit afdampen van de uitstroomfracties na de hydrogeneringsreactie. Bestaat voornamelijk uit waterstof en alifatische koolwaterstoffen, overwegend C1 tot en met C4.]</td>
<td>H K</td>
<td>295-400-7</td>
<td>92045-18-6</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45–46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-173-00-X</td>
<td>gassen (aardolie), stoomkraken van nafta onder hoge druk residu- Raffinaderijg as</td>
<td>[Een complexe combinatie die wordt verkregen als een mengsel van de niet-condenseerbare delen uit het product van een nafta- stoomkrakenproces evenals residuagassen die worden verkregen tijdens de bereiding van daaruit voortkomende producten. Bestaat voornamelijk uit waterstof en paraffinische en olefinische koolwaterstoffen, overwegend C1 tot en met C4, waarneer aardgas ook kan worden gemengd.]</td>
<td>H K</td>
<td>295-401-2</td>
<td>92045-19-7</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45–46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-174-00-5</td>
<td>gassen (aardolie), residu- viscositeitsreductie-uitstoot- Raffinaderijgas</td>
<td></td>
<td>H K</td>
<td>295-402-8</td>
<td>92045-20-0</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45–46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-177-00-1</td>
<td>gassen (aardolie), C_4+</td>
<td>[Een complexe combinatie die wordt verkregen uit de reductie van de viscositeit van residuen in een oven. Bestaat voornamelijk uit waterstofuitde en parafinistische en olefinistische koolwaterstoffen, overwegend C_4 tot en met C_6]</td>
<td>H K</td>
<td>268-629-5</td>
<td>68131-75-9</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-178-00-7</td>
<td>restgas (aardolie), uit fractioneringsabsorptievat katalytisch gekraakt destillaat en katalytisch gekraakte nafta</td>
<td>[De complexe verzameling koolwaterstoffen, verkregen uit de destillatie van de producten van katalytisch gekraakte destillaten en katalytisch gekraakte nafta. Bestaat voornamelijk uit koolwaterstoffen, overwegend C_4 tot en met C_6]</td>
<td>H K</td>
<td>269-617-2</td>
<td>68307-98-2</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-179-00-2</td>
<td>restgas (aardolie), uit fractioneringsstabilisator katalytische polymerisatie van nafta</td>
<td>[Een complexe verzameling koolwaterstoffen, verkregen uit de fractioneringsstabilisatie-producten van de polymerisatie van nafta. Bestaat voornamelijk uit koolwaterstoffen, overwegend C_4 tot en met C_6]</td>
<td>H K</td>
<td>269-618-8</td>
<td>68307-99-3</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-180-00-8</td>
<td>restgas (aardolie), uit</td>
<td></td>
<td>H K</td>
<td>269-619-3</td>
<td>68308-00-9</td>
<td>Carc. Cat. 1; R45</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-181-00-3</td>
<td>resgas (aardolie), gekraakt destillaat waterstofbehandelingsstripper Petroleumgas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen uit fractioneringstabilisatie van katalytisch gereformeerd nafta, waar waterstofzulfide door amine-behandeling uit verwijderd is. Bestaat voornamelijk uit koolwaterstoffen, overwegend C<sub>1</sub> tot en met C<sub>4</sub>.</td>
<td>H K</td>
<td>269-620-9</td>
<td>06308-01-0</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
</tr>
<tr>
<td>649-182-00-9</td>
<td>resgas (aardolie), waterstofontzwevend direct uit fractionering verkregen destillaat, waterstofzulfidevrij Petroleumgas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen door katalytische waterstofontzweving van, direct uit fractionering verkregen, destillaten, waaruit waterstofzulfide door amine-behandeling is verwijderd. Bestaat voornamelijk uit koolwaterstoffen, overwegend C<sub>1</sub> tot en met C<sub>4</sub>.</td>
<td>H K</td>
<td>269-630-3</td>
<td>06308-10-1</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
</tr>
<tr>
<td>649-183-00-4</td>
<td>resgas (aardolie), absorptieval bij katalytisch kraken van gasolie Petroleumgas</td>
<td>Een complexe verzameling koolwaterstoffen, verkregen uit de destillatie van produkten van</td>
<td>H K</td>
<td>269-623-5</td>
<td>06308-03-2</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-184-00-X</td>
<td>restgas (aardolie), gasherwinningsinstallatie Petroleumgas [Een complexe verzameling koolwaterstoffen, verkregen uit de destillatie van producten van gemengde koolwaterstofstromen, Bevat voornamelijk koolwaterstoffen, overwegend C\textsubscript{1} tot en met C\textsubscript{3}]</td>
<td>H K</td>
<td>269-624-0</td>
<td>08308-04-3</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-185-00-5</td>
<td>restgas (aardolie), gasherwinningsfabriek-deethanisator Petroleumgas [Een complexe verzameling koolwaterstoffen die wordt verkregen door de destillatie van producten uit verschillende koolwaterstofstromen. Bestaat uit koolwaterstoffen, overwegend C\textsubscript{1} tot en met C\textsubscript{3}]</td>
<td>H K</td>
<td>269-625-6</td>
<td>08308-05-4</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-186-00-0</td>
<td>restgas (aardolie), uit fraccioneerder van waterstofontwavelde destillaat en waterstofontwavelde nafta, zuurvrij Petroleumgas [Een complexe verzameling koolwaterstoffen, verkregen door fractionering van waterstofontwavelde nafta- en destillaatkoolwaterstofstromen, en behandeld om zure onzuiverheden te verwijderen. Bestaat voornamelijk uit koolwaterstoffen, overwegend C\textsubscript{1} tot en met C\textsubscript{3}]</td>
<td>H K</td>
<td>269-626-1</td>
<td>08308-06-5</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-187-00-6</td>
<td>restgas (aardolie), stripper van waterstofontwendele gasolie uit vacuumsdestillatie, waterstoffsulfdievrij Petroleumgas</td>
<td>H K</td>
<td>269-627-7</td>
<td>08308-07-6</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-188-00-1</td>
<td>restgas (aardolie), stabilisator lichte direct uit fractionering verkregen nafta, waterstof sulfidevrij Petroleums</td>
<td>[Een complexe verzameling koolwaterstoffen, verkregen uit de stabilisatie door strippen van katalytisch waterstofontzwaalde gasolie uit vacuümdestillatie, waaruit waterstof sulfide is verwijderd door amine-behandeling. Bestaat voornamelijk uit koolwaterstoffen, overwegend C\textsubscript{1} tot en met C\textsubscript{4}.]</td>
<td>H K</td>
<td>269-629-8</td>
<td>68308-09-8</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-189-00-7</td>
<td>restgas (aardolie), propaan-propleenalkylersuitsvoer preparatieve deethanisator Petroleums</td>
<td>[Een complexe verzameling koolwaterstoffen die wordt verkregen door de destillatie van de reactieproducten van propaan met propyleen. Bestaat uit koolwaterstoffen, overwegend C\textsubscript{1} tot en met C\textsubscript{4}]</td>
<td>H K</td>
<td>269-631-9</td>
<td>68308-11-2</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-190-00-2</td>
<td>restgas (aardolie), waterstofontzwaalde gasolie uit vacuümdestillatie, waterstof sulfidevrij Petroleums</td>
<td>[Een complexe verzameling koolwaterstoffen, verkregen uit katalytische waterstofontzwaaling van, door vacuümdestillatie verkregen, gasolie, waaruit waterstof sulfide door amine-behandeling is verwijderd. Bestaat voornamelijk]</td>
<td>H K</td>
<td>269-632-4</td>
<td>68308-12-3</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-191-00-8</td>
<td>gassen (naar olie), katalytisch gekraakte topfracties Petroleumgas</td>
<td>Een complexe verzameling koolwaterstoffen, gevormd door de destillatie van produkten van een katalytisch knaptproces. Bestaat uit koolwaterstoffen, overwegend C₂ tot en met C₄, met een kooktraject van -48°C tot 32°C.</td>
<td>H K</td>
<td>270-071-2</td>
<td>68409-99-4</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 15-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-193-00-9</td>
<td>alkansen, C₃₋ Petroleumgas</td>
<td></td>
<td>H K</td>
<td>270-651-5</td>
<td>68475-57-0</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 15-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-194-00-4</td>
<td>alkansen, C₃₋ Petroleumgas</td>
<td></td>
<td>H K</td>
<td>270-652-0</td>
<td>68475-58-1</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 15-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-195-00-X</td>
<td>alkansen, C₃₋ Petroleumgas</td>
<td></td>
<td>H K</td>
<td>270-653-6</td>
<td>68475-59-2</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 15-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-196-00-5</td>
<td>alkansen, C₃₋ Petroleumgas</td>
<td></td>
<td>H K</td>
<td>270-654-1</td>
<td>68475-60-5</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 15-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-197-00-0</td>
<td>brandstofgassen Petroleumgas</td>
<td>Een combinatie van lichte gassen, bestaande voornamelijk uit waterstof en/of koolwaterstof met een laag moleculegewicht.</td>
<td>H K</td>
<td>270-667-2</td>
<td>68476-26-6</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 15-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-198-00-6</td>
<td>brandstofgassen, destillaten van ruwe olie Petroleumgas</td>
<td>Een complexe verzameling lichte gassen, gevormd door destillatie van ruwe olie en door katalytische reformering van nafte. Bestaat uit waterstof en koolwaterstoffen, overwegend C₁ tot en met C₄, met een kooktraject van ongeveer -217°C tot -12°C.</td>
<td>H K</td>
<td>270-670-9</td>
<td>68476-29-9</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-199-00-1</td>
<td>koolwaterstoffen, C₃₋ Petroleumgas</td>
<td></td>
<td>H K</td>
<td>270-681-9</td>
<td>68476-40-4</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-200-00-5</td>
<td>koolwaterstoffen, C₆₅⁻</td>
<td>H K</td>
<td>270-682-4</td>
<td>68476-42-6</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-201-00-0</td>
<td>koolwaterstoffen, C₅₋₆ rijk aan C₅ Petroleumgas</td>
<td>H K</td>
<td>270-689-2</td>
<td>68476-49-3</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-202-00-6</td>
<td>aardoliegassen, vloeibaar gemaakt Petroleumgas [Een complexe verzameling koolwaterstoffen, gevormd door de destillatie van rauwe olie. Bestaat uit koolwaterstoffen, overwegend C₃ tot en met C₅, met een kooktraject van ongeveer -40 °C tot 80 °C.]</td>
<td>HKS</td>
<td>270-704-2</td>
<td>68476-85-7</td>
<td>F₄; R12 Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>F₄; T</td>
<td>R: 12-45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-203-00-1</td>
<td>aardoliegassen, vloeibaar gemaakt, stankvrij gemaakt Petroleumgas [Een complexe verzameling koolwaterstoffen, verkregen door het onderwerpen van een vloeibaar gemaakt aardoliegasmengsel aan een stankvrijmakingsproces, om mercaptanen om te zetten of zure onzuiverheden te verwijderen. Bestaat uit koolwaterstoffen, overwegend C₃ tot en met C₅, met een kooktraject van ongeveer -40 °C tot 80 °C.]</td>
<td>HKS</td>
<td>270-705-8</td>
<td>68476-86-8</td>
<td>F₄; R12 Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>F₄; T</td>
<td>R: 12-45-46 S: 45-53</td>
<td></td>
</tr>
<tr>
<td>649-204-00-7</td>
<td>gassen (aardolie), C₃₋₄, rijk aan isobutana Petroleumgas [Een complexe verzameling koolwaterstoffen, verkregen bij de destillatie van verzwijgende en onverzwijgende koolwaterstoffen, gewoonlijk C₅ tot en met C₆, overwegend butaan en isobutana. Bestaat uit verzwijgende en onverzwijgende koolwaterstoffen, C₃ tot en met C₅, voornamelijk isobutana.]</td>
<td>H K</td>
<td>270-724-1</td>
<td>68477-33-8</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-205-00-2</td>
<td>destillaten (aardolie), Cₓ₋₄ rijk aan piperileen</td>
<td>H K</td>
<td>270-726-2</td>
<td>68477-35-0</td>
<td>Carc. Cat. 1; R45 Muta. Cat. 2; R46</td>
<td>T</td>
<td>R: 45-46</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-206-00-8</td>
<td>gassen (aardolie), butaansplittertopprodukten</td>
<td>[Een complexe verzameling koolwaterstoffen, verkregen uit de destillatie van verzadigde en onverzadigde alifatische koolwaterstoffen, gewoonlijk C_1 tot en met C_9. Bestaat uit verzadigde en onverzadigde koolwaterstoffen, C_1 tot en met C_9, voornamelijk piperyleen.]</td>
<td>H K</td>
<td>270-750-3</td>
<td>68477-69-0</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>649-207-00-3</td>
<td>gassen (aardolie), C_5</td>
<td>Petroleums</td>
<td>[Een complexe verzameling koolwaterstoffen, verkregen uit de destillatie van de butaanstroom. Bestaat uit alifatische koolwaterstoffen, overwegend C_1 tot en met C_9.]</td>
<td>H K</td>
<td>270-751-9</td>
<td>68477-70-3</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
</tr>
<tr>
<td>649-208-00-9</td>
<td>gassen (aardolie), heetdief fracties uit de propaneisator van katalytisch gekraakte gasolie, C_5-rijk zuurvrij</td>
<td>Petroleums</td>
<td>[Een complexe verzameling koolwaterstoffen, verkregen door de fractionering van katalytisch gekraakte gasolie koolwaterstofstromen en behandeld om waterstofzout en andere zure stoffen te verwijderen. Bestaat uit koolwaterstoffen, C_1 tot en met C_9, hoofdzakelijk C_6.]</td>
<td>H K</td>
<td>370-752-4</td>
<td>68477-71-4</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
</tr>
<tr>
<td>649-209-00-4</td>
<td>gassen (aardolie), katalytisch gekraakte nafta onderste debutanisatorfracties, C_{35}-rijk</td>
<td>Petroleums</td>
<td>[Een complexe verzameling]</td>
<td>H K</td>
<td>270-754-5</td>
<td>68477-72-5</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>649-210-00-X</td>
<td>restgas (aardolie), geïsommeriseerde nafta</td>
<td>fractioneringsstabilisator Petroleumbas</td>
<td>6H 6-528-2</td>
<td>68308-08-7</td>
<td>Carc. Cat. 1; R45 Mut. Cat. 2; R46</td>
<td>T R: 45-46 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>649-224-00-6</td>
<td>brandstoffen, diesel-Gasolie - niet gespecificeerd</td>
<td></td>
<td>6H 8-227-7</td>
<td>68334-30-5</td>
<td>Carc. Cat. 3; R40</td>
<td>Xn R:40 S:-(2)-36/37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>005-009-00-3</td>
<td>tetrabutyllumonium butyltrifenyloborat</td>
<td></td>
<td>418-080-4</td>
<td>120307-06-4</td>
<td>R 43; N; R50-53</td>
<td>Xi; N R: 43-50/53 S: (2)-24-37-36-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>005-010-00-9</td>
<td>N,N-dimethylliniumtetrakis(pentafluorofenyl)borat</td>
<td></td>
<td>422-050-6</td>
<td>118612-00-3</td>
<td>Carc.Cat.3; R40 Xn; R22 Xr; R38-41</td>
<td>Xn R: 22-38-40-41 S: (2)-22-26-36(37/39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>005-012-00-X</td>
<td>diëthyl[4-[1,5,5-tris(4-diëthylaminotetra) enyl] penta-2,4-diënyleen] (cyclohexa-2,5- diënyleen) ammonium butyltrifenyloborat (1-)</td>
<td></td>
<td>418-070-1</td>
<td>141714-54-7</td>
<td>R 43; N; R50-53</td>
<td>Xi; N R: 43-50/53 S: (2)-24-37-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>011-007-00-3</td>
<td>propoxycarbazoniatrum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>N; R50-53</td>
<td>N R: 50/53 S: 60-61</td>
<td>C ≥ 2,5 %; N; R50/53 0,25 % ≤ C < 2,5 %; N; R51/53 0,025 % ≤ C < 0,25 %; R52/53</td>
<td></td>
</tr>
<tr>
<td>013-009-00-X</td>
<td>natrium((n-butyl)x(ethyl)y)(1,5-dihydro)aluminat) x = 0,5 y = 1,5</td>
<td></td>
<td>418-720-2</td>
<td>-</td>
<td>F; R11 R14/15 R 17 Xn; R20 C; R35</td>
<td>F; C R: 11-14/15 17-20-35 S: (1/2)-6-16-26-30-36(37/39)-43-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>014-026-00-5</td>
<td>dichlor-(3-(3-chlor-4-fluorfenyl)propyl)methyleilaan</td>
<td></td>
<td>407-180-3</td>
<td>-</td>
<td>C; R35</td>
<td>C R: 35 S: (1/2)-26-36(37/39)-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>014-027-00-0</td>
<td>chloor(3-(3-chloor-4-fluorfenyl)propyl)methyleilaan</td>
<td></td>
<td>410-270-5</td>
<td>-</td>
<td>C; R35</td>
<td>C R: 35 S: (1/2)-26-28-36(37/39)-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>014-028-00-6</td>
<td>α-[3-(1-oxoprop-2-enyl)-1-oxopropyl(dimethoxy)silyloxy]-α-[3-(1-oxoprop-2-enyl)-1- oxopropyl(dimethoxy)silyl poly(dimethyloxaan)</td>
<td></td>
<td>415-290-8</td>
<td>-</td>
<td>R 43</td>
<td>Xi R: 43 S: (2)-24-37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>014-029-00-1</td>
<td>Cl₂O₂(ethenemethylosilylen)dil[(4-methylpentaan-2-on)oxime]</td>
<td></td>
<td>421-870-1</td>
<td>-</td>
<td>Repr.Cat.3; R62 Xn; R22-48/22</td>
<td>Xn R: 22-48/22-62 S: (2)-26/37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>014-030-00-7</td>
<td>[(dimethylosilylen)bis((1,2,3,3a,7 a-e)-1H-indeen-1-ylideen)]dimethylhafnium</td>
<td></td>
<td>422-060-0</td>
<td>137390-08-0</td>
<td>T+; R28</td>
<td>T+ R: 28 S: (1/2)-6-22-28-36(37/39)-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>014-031-00-2</td>
<td>bis(1-methylheyl)-dimethoxysilaan</td>
<td></td>
<td>421-540-7</td>
<td>18230-61-0</td>
<td>R 10 Xi; R18 R13 R 52-53</td>
<td>Xi R: 10-38-43-52/53 S: (2)-24-37-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>014-032-00-8</td>
<td>dicyclopentyldimethoxysilaan</td>
<td></td>
<td>404-370-8</td>
<td>126990-35-0</td>
<td>Xi; R38-41; N; R50-53</td>
<td>Xi; N; R: 38-41-50/53; S: (2)-26-37/39-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-180-00-6</td>
<td>[R-(R*,S*)]-[2-methyl]-1-(1-oxopropoxy)propoxyl-(4-fenylbuty)fosfonyl] azijnzuur, (+)-cinchomindine (1:1) zout</td>
<td></td>
<td>415-820-8</td>
<td>137590-32-0</td>
<td>Xi; R41; R 43; R 52-53</td>
<td>Xi; R: 41-43-52/53; S: (2)-52-26-37/39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-181-00-1</td>
<td>fosfine</td>
<td></td>
<td>232-260-8</td>
<td>7803-51-2</td>
<td>F=; R12; R17; T=; R26; C; R34; N; R50</td>
<td>F=; T=; N; R: 12-17-26-34-50; S: (1/2)-28-30/37-45-61-63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-184-00-8</td>
<td>zouten van glyfosaat, met uitzondering van de eiders in deze bijlage vermelde zouten</td>
<td></td>
<td>-</td>
<td>-</td>
<td>N; R51-53</td>
<td>N; R: 51-53; S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-186-00-9</td>
<td>chloopyrifos-methyl</td>
<td></td>
<td>227-011-5</td>
<td>5598-13-0</td>
<td>R43; N; R50-53</td>
<td>Xi; N; R: 43-50/53; S: (2)-58/37-60-61</td>
<td>C ≥ 1 %: N; R43-50/53 0,0025 % ≤ C ≤ 1 %: N; R50-53 0,00025 % ≤ C ≤ 0,0025 %: N; R51-53 0,000025 % ≤ C ≤ 0,00025 %: R52-53</td>
<td></td>
</tr>
<tr>
<td>015-187-00-4</td>
<td>Een mengsel van: tetranatrium[[2-hydroxyethyl]iminobis(methylamino)]bisfosfonaat, N-oxide; trinatrium[[tetrhydro-2-hydroxy-1H-1,2-oxazafosforin-4-y]-methyl]fosfonaat, N-oxide, P-oxide</td>
<td></td>
<td>417-540-1</td>
<td>-</td>
<td>Xi; R41; N; R51-53</td>
<td>Xi; N; R: 41-51/53; S: (2)-26-39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015-189-00-5</td>
<td>fenylbis(2,4,6-trimethylbenzoyl)fosfinoxide</td>
<td></td>
<td>423-340-5</td>
<td>162881-26-7</td>
<td>R43; R53</td>
<td>Xi; R: 43-53; S: (2)-22-24-37-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>016-086-00-8</td>
<td>tetranatrium:10-antino-6,13-dichloor-3-(3-(4-(2,5-disulfonaturnilino)-6-fluoro-1,3,5-triazine-2-ylamino)prop-3-ylamino)-5,12-dioxa-7,14-diazapentacoear-4,11-disulfonaat</td>
<td></td>
<td>402-590-9</td>
<td>109125-56-6</td>
<td>Xi; R41</td>
<td>Xi; R: 41; S: (2)-22-26-39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>016-087-00-3</td>
<td>Mengsel van: thiobis(4,1-fenyleen)-S,S,S',S'-tetrafluoridum phosphoniumhexafluor fosfaat difeeryl 64.</td>
<td></td>
<td>403-490-8</td>
<td>74227-35-3</td>
<td>Xi; R36; R 43; N; R50-53</td>
<td>Xi; N; R: 36-43-50/53; S: (2)-23-24-26-37-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>016-089-00-4</td>
<td>Mengsel van esters van 5,6,7,7-hexahydroxy-3,3,3′,3′-tetramethyl-1,1′-spirobenidaan en 2-diazo-1,2- dihydro-1-oxo-5-sulfoantraeen</td>
<td>5,6,7,7-hexahydroxy-3,3,3′,3′-tetramethyl-1,1′-spirobenidaan en 2-diazo-1,2- dihydro-1-oxo-5-sulfoantraeen</td>
<td>413-840-1</td>
<td>-</td>
<td>E; R2</td>
<td>R 11</td>
<td>R 53</td>
<td>E; R: 2-11-53</td>
</tr>
<tr>
<td>016-090-00-X</td>
<td>4-methyl-N-(methylsulfenyl)benzeen-sulfonamide</td>
<td>415-040-8</td>
<td>14653-91-9</td>
<td>Xin; R22</td>
<td>Xin; R37-41</td>
<td>Xin; R: 22 37-41</td>
<td>S: (2) 26-39</td>
<td></td>
</tr>
<tr>
<td>016-091-00-5</td>
<td>C12-14-tert.alkyl ammonium-1-amino-9,10-dihydro-9,10-dioxo-4-(2,4,6-trimethylbenzilo)-anthracen-2-sulfonaat</td>
<td>414-110-5</td>
<td>-</td>
<td>Xin; R41</td>
<td>Xin; R50-53</td>
<td>Xin; N</td>
<td>R: 41 50-53</td>
<td>S: (2) 26-39 60-61</td>
</tr>
<tr>
<td>016-093-00-6</td>
<td>2:1 mengsel van: 4-(7-hydroxy-2,4,4,4-trimethyl-2-chromanyl)resorcinol-4-yl-tris(6-diazo-5,6-dihydro-5-oxoantraeen-1-sulfonaat)</td>
<td>414-770-4</td>
<td>140698-96-0</td>
<td>F; R11</td>
<td>F; Xin Carc. Cat.3</td>
<td>F; Xin</td>
<td>R: 11 40</td>
<td>S: (2) 7-36/37</td>
</tr>
<tr>
<td>016-095-00-7</td>
<td>Mengsel van: reactieprodukt van 4,4′-methylenebis[2(4-hydroxybenyl)]-3,6-dimethylbenzoïl en 6-diazo-5,6-dihydro-5-oxo-naftalen-sulfonaat (1:2) Reactieprodukt van 4,4′-methylenebis[2(4-hydroxybenyl)]-3,6-dimethylbenzoïl en 6-diazo-5,6-dihydro-5-oxo-naftalen-sulfonaat (1:3)</td>
<td>417-980-4</td>
<td>-</td>
<td>F; R11 Carc. Cat.3</td>
<td>F; Xin Carc. Cat.3</td>
<td>F; Xin</td>
<td>R: 11 40</td>
<td>S: (2) 7-36/37</td>
</tr>
<tr>
<td>016-096-00-2</td>
<td>thifesulfuron-methyl</td>
<td>-</td>
<td>79277-27-3</td>
<td>N; R50-53</td>
<td>N</td>
<td>R: 50/53</td>
<td>S: 60-61</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>------------</td>
<td>--------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>017-015-00-3</td>
<td>(2- (aminomethyl)fenyl)acetylclophide</td>
<td></td>
<td>417-410-4</td>
<td>61807-67-8</td>
<td>Xn; R22; C; R35; R43</td>
<td>C; R: 22-35-43; S: (1/2)-26-36/37/39-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>017-016-00-9</td>
<td>methyltrifylfosfoniumchloride</td>
<td></td>
<td>418-400-2</td>
<td>1031-15-8</td>
<td>Xn; R21/22; Xi; R38-41; N; R51-53</td>
<td>Xn; N; R: 21-22-38-41-51/53; S: (2-)22-26-36/37/39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>017-017-00-4</td>
<td>(Z)-13-docosenyln-N,N-bis(2-hydroxyethyl)-N-methylammoniumchloride</td>
<td></td>
<td>426-210-6</td>
<td>120086-58-0</td>
<td>C; R34; N; R50-53</td>
<td>C; N; R: 34-50/53; S: (2-)26-36/37/39-45-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>017-018-00-X</td>
<td>N,N,N-trimethyl-2,3-bis(stearsoxy)propylammoniumchloride</td>
<td></td>
<td>405-660-7</td>
<td>-</td>
<td>N; R51-53</td>
<td>N; R: 51/53; S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>017-019-00-5</td>
<td>(R)-1,2,3,4-tetrahydro-6,7-dimethoxy-1-veratryloxychloride</td>
<td></td>
<td>415-110-8</td>
<td>54417-53-7</td>
<td>Xn; R22; R52-53</td>
<td>Xn; R: 22-52/53; S: (2-)22-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>017-020-00-0</td>
<td>ethylpropoxylaminiumchloride</td>
<td></td>
<td>421-790-7</td>
<td>-</td>
<td>C; R35; F; R14/15</td>
<td>C; F; R: 14/15-35; S: (1/2)-16-23-26-30-36/37/39-43-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>017-021-00-6</td>
<td>behenamidopropyl dimethyl (dihydroxypropyl) ammoniumchloride</td>
<td></td>
<td>423-420-1</td>
<td>136920-10-0</td>
<td>Xi; R41; R43; N; R50-53</td>
<td>Xi; N; R: 41-43-50/53; S: (2-)26-36/37/39-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>020-003-00-0</td>
<td>Een mengsel van: dicalcium (bis(2-hydroxy-5-tetrapropenyl)fenyl)methylamine (dihydroxide tricalcium (tris(2-hydroxy-5-tetrapropenyl)fenyl)methylamine (dihydroxide peryl)calcium (2-hydroxy-5-tetrapropenyl)fenyl)methylamine (dihydroxide)</td>
<td></td>
<td>420-470-4</td>
<td>-</td>
<td>Xi; R36/38; R43</td>
<td>Xi; R: 36/38-43; S: (2-)24-26-37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>024-019-00-9</td>
<td>Hoofdcomponent: acetoxijzuuraniilide / 3-amino-1-hydroxybenzeen (ATANMAP): trimarium (6-[2 of 3 of 4]-amino-4 of 5 of 6)-hydroxyfenylazol 5'- (fenylsulfamoyl)-3 sulfonatomelferen-2-azoazeneen-1,2'-distato-1,6'-'11'- (fenylcarbamoyl)ethylazol 5''</td>
<td></td>
<td>419-230-1</td>
<td>-</td>
<td>R 43; R52-53</td>
<td>Xi; R: 43-52/53; S: (2-)22-24-37-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>024-020-00-4</td>
<td>(fenylsulfamoyl)-3'-sulfonatofalen-2'-azobenze-1,2'-dialato chroomaat (III) bijproduct 1: acetylaspiranilide / acetoaspiranilide (ATAN-ATAN); trinitrium bis[6-(1-(fenylecarbonyl)ethylazo)-5'-fenylsulfonyl)-3'-sulfonatofalen-2-azobenze-1,2'-dialato chroomaat (III) bijproduct 2: 3'-amino-1'-hydroxyzenen / 3'-amino-1'-hydroxyzenen (MAP-MAP): trinitrium bis[6-(1,2 of 3 or 4) amino-(4 of 5 of 6)-hydroxyfenylazo]-5'-fenylsulfamoyl)-3'-sulfonatofalen-2-azobenze-1,2'-dialato chroomaat (III)</td>
<td>418-220-4</td>
<td>-</td>
<td>R43</td>
<td>R52-53</td>
<td>Xi R: 14-52/53 S: (2-22-24-37-61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>029-012-00-4</td>
<td>natrium-(N-(3-trimethylammoniopropyl)sulfamoyl)methylsulfonatofilacyaninato) koper(II)</td>
<td>407-340-2</td>
<td>124719-24-0</td>
<td>Xi; R41</td>
<td>Xi R: 41 S: (2)26-39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>029-013-00-X</td>
<td>trinitrium-(2-[(4-chloor-6-(2-(vinylsulfonyl)ethoxy)ethylamino)-1,3,5-triazine-2-yliamino)-2-oxido-5-sulfonatofenylazo)benzyldienhydrazino]-4-sulfonatobenzoato)koper(H)</td>
<td>407-580-8</td>
<td>130201-51-3</td>
<td>Xi; R41 R52-53</td>
<td>Xi R: 41-52/53 S: (2-24-37-61)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>030-011-00-6</td>
<td>trizinkbis(orthofosfaat)</td>
<td>231-944-3</td>
<td>7779-90-0</td>
<td>N; R50-53</td>
<td>N R: 50/53 S: 60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>034-003-00-3</td>
<td>natriumseletiet</td>
<td>233-267-9</td>
<td>10102-18-8</td>
<td>T; R28 T; R23 R31 R43 N; R51-53</td>
<td>T; R: N R: 23-28-31-43-51/53 S: (1/2)-28-36/37-45-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>053-005-00-5</td>
<td>(4-(1-methylfenyl)fenyl)-(4-methylfenyl)dionium tetrakis(pentfluorenoyl)beraat (1-)</td>
<td>422-960-3</td>
<td>178233-72-2</td>
<td>Xn; R21-22-48/22 N; R50-53</td>
<td>Xn; N R: 21-22-48/22-50/53 S: (2)-22-36/37-60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>601-056-00-4</td>
<td>Mengsel van isomeren van: methylfenylmethaan dimethylfenylmethaan</td>
<td>405-470-4</td>
<td>-</td>
<td>X; R38 N; R50-53</td>
<td>X; N R: 38-50/53 S: (2)-37-60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>601-057-00-X</td>
<td>N-dodecyl [(3 dimethylamino)benzenimido]-propyl(dimethylammoniumtosylaat</td>
<td>421-130-8</td>
<td>156679-11-3</td>
<td>X; R11 R43 N; R50-53</td>
<td>X; N R: 41-43-50/53 S: (2)-24-26-37/39-60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>601-058-00-5</td>
<td>di-L-paranvtheen</td>
<td>417-870-6</td>
<td>-</td>
<td>X; R38 R 43 N; R50-53</td>
<td>X; N R: 38-43-50/53 S: (2)-23-24-37-60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>601-059-00-0</td>
<td>Methyl-2-benzylideen-3-oxobutyraat</td>
<td>420-940-9</td>
<td>15768-07-7</td>
<td>X; R36/38 N; R51-53</td>
<td>X; N R: 36-38-51/53 S: (2)-26-37-39-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>601-060-00-6</td>
<td>1,2-bis[4-fluor-6-[(4-sulfo-5-(2-(4-sulfonatofenylazo)-1-hydroxy-3,6-disulfo-8-aminonafalen)-7-ylazofenylamino)-1,3,5-triazin-2-yliamino]ethaan; x natrium, y kaliumzoaten x = 7,755 y =</td>
<td>417-610-1</td>
<td>155522-09-1</td>
<td>R 43</td>
<td>X; R 43 S: (2)-22-24-37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>601-061-00-1</td>
<td>(ethyl-1,2-ethaandiy1)-2-[(2-hydroxyethyl)methylamino]aceyl</td>
<td>418-960-8</td>
<td>-</td>
<td>C; R34</td>
<td>R; 43</td>
<td>N; R51-53</td>
<td>C; N</td>
<td>R: 34-43/51-53</td>
</tr>
<tr>
<td>601-063-00-2</td>
<td>Mengsel van isomeren van verkakt tetracosaan</td>
<td>417-060-2</td>
<td>151006-61-0</td>
<td>Xn; R20</td>
<td>R53</td>
<td>Xn; R: 20-53</td>
<td>S: (2)-61</td>
<td></td>
</tr>
<tr>
<td>601-064-00-8</td>
<td>vertakt hexatriacontaan</td>
<td>417-070-7</td>
<td>151006-62-1</td>
<td>R53</td>
<td>R: 53</td>
<td>S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>601-065-00-3</td>
<td>Een mengsel van: (1’-a3'-a6'-a-2,2,3,7,7'-pentamethyilspliro[1,3-dioxaan-5.2'-norcaraan] (1’-a3',6'-a)-2,2,3,7,7'-pentamethyilspliro[1,3-dioxaan-5.2'-norcaraan]</td>
<td>416-930-9</td>
<td>-</td>
<td>Xn; R:48/22</td>
<td>R: 41</td>
<td>N; R51-53</td>
<td>Xn; N</td>
<td>R: 41-48/22-51-53</td>
</tr>
<tr>
<td>601-066-00-9</td>
<td>1-[4-(trans-4-heptylcyclohexyl)fenyl]ethaan</td>
<td>426-820-2</td>
<td>78351-60-9</td>
<td>R43</td>
<td>R53</td>
<td>X: R: 43-53</td>
<td>S: (2)-24-37-61</td>
<td></td>
</tr>
<tr>
<td>601-068-00-X</td>
<td>1,2-diacetoxybut-3-een</td>
<td>421-720-5</td>
<td>18085-02-4</td>
<td>Xn; R22</td>
<td>R: 22</td>
<td>S: (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>601-069-00-5</td>
<td>2-ethyl-1-(2’-1,3-dioxanyethyl)-pyridiniumbromide</td>
<td>422-680-1</td>
<td>-</td>
<td>R52-53</td>
<td>R: 52/53</td>
<td>S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>601-071-00-6</td>
<td>1-dimethoxyethyl-2-nitrobenzen</td>
<td>423-830-9</td>
<td>20627-73-0</td>
<td>R43</td>
<td>N; R51-53</td>
<td>Xn; N</td>
<td>R: 43-51/53</td>
<td>S: (2)-24-37-61</td>
</tr>
<tr>
<td>601-073-00-7</td>
<td>1-bromo-3,5-difluorobenzon</td>
<td>416-710-2</td>
<td>461-96-1</td>
<td>R10</td>
<td>Xn; R22-48/22</td>
<td>X: R38</td>
<td>R43</td>
<td>N; R50-53</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>--------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>602-093-00-9</td>
<td>α,α,α,4-tetrachloortolueen (p-chloorbenzo/ortochloride)</td>
<td></td>
<td>E</td>
<td>226-009-1</td>
<td>5216-25-1</td>
<td>Care: Cat.2; R45 Repr. Cat.3; R62 T: R49/23 Xn: R21/22 Xi: R37/38</td>
<td>T: R: 45-21/22-37/38-48/23-62 S: 53-45</td>
<td></td>
</tr>
<tr>
<td>602-094-00-1</td>
<td>difenylether, octabromanerivaat</td>
<td></td>
<td></td>
<td>251-087-9</td>
<td>32536-52-0</td>
<td>Repr. Cat.2; R61 Repr. Cat.3; R62 T: R: 61-62 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-167-00-3</td>
<td>3,3',5,5'-tetra-tert-butylbifenyl-2,2'-diol</td>
<td></td>
<td>407-920-5</td>
<td>6390-69-8</td>
<td>R: 53</td>
<td>R: 53 S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-168-00-9</td>
<td>3-(2-ethylhexyloxy)propaan-1,2-diol</td>
<td></td>
<td>408-080-2</td>
<td>70445-33-9</td>
<td>Xn: R41 R 52-53</td>
<td>X: R 41-52/53 S: (2-22-36-59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-170-00-X</td>
<td>Mengsel van: 2-methyl-1-(6-methylbicyclo[2,2,1][hept-5-een-2-yl]pent-1-een-3-ol 2-methyl-1-(1-methylbicyclo[2,2,1][hept-5-een-2-yl])pent-1-een-3-ol 2-methyl-1-45</td>
<td></td>
<td>415-990-3</td>
<td>67739-11-1</td>
<td>Xn: R36 N: R51-53</td>
<td>Xn: N R: 36-51/53 S: (2-22-61</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L 152/98
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota’s voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota’s voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>603-171-00-5</td>
<td>5-thiazoylethanol</td>
<td></td>
<td>414-780-9</td>
<td>38585-74-9</td>
<td>Xi; R41 R 52-53</td>
<td>Xi R: 41-52/53 S: (2)-26-39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-172-00-0</td>
<td>mono-2-[2-(64- dibenzo[b,f][1,4]thiazepin-11- yl)piperezinium-1- yl]ethoxyethanol-trans- butecendioaat</td>
<td></td>
<td>445-180-1</td>
<td>-</td>
<td>Xn; R22 Xi; R41 N; R51-53</td>
<td>Xn; N R: 22-41-51/53 S: (2)-22-26-39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-173-00-6</td>
<td>4,4-dimethyl-3,5,8- trioxabicyclo[5.1.0]octaan</td>
<td></td>
<td>421-750-9</td>
<td>57280-22-5</td>
<td>Xi; R36 R 43</td>
<td>Xi R: 36-43 S: (2)-26-36/37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-174-00-1</td>
<td>4-cyclohexyl-2-methyl-2-butanol</td>
<td></td>
<td>420-630-3</td>
<td>83926-73-2</td>
<td>Xi; R41 N; R51-53</td>
<td>Xn; N R: 41-51/53 S: (2)-26-39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-175-00-7</td>
<td>2-(2-hexoxyethoxy)ethanol DEGHE diethyleenglycolmonooleylether 3,6-dioxo-1-dodecanol hexylcarbitol</td>
<td></td>
<td>203-988-3</td>
<td>112-59-4</td>
<td>Xn; R21 Xi; R41</td>
<td>Xn R: 21-41 S: (2)-26-36/37-46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-176-00-2</td>
<td>1,2-bis(2-methoxyethoxy)ethaan TEGDME triethyleenglycoldimethylether triglyme</td>
<td></td>
<td>203-977-3</td>
<td>112-49-2</td>
<td>R19 Repr. Cat. 2; R61 Repr. Cat.3; R62</td>
<td>T R: 61-19-62 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-178-00-3</td>
<td>2-hexoxyethanol ethyleenglycolmonooleylether n-hexyglycol</td>
<td></td>
<td>203-951-1</td>
<td>112-25-4</td>
<td>Xn R21/22 C; R34</td>
<td>C R: 21-22-34 S: (1/2)-26-36/37/39-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-179-00-9</td>
<td>ergocalciferol</td>
<td></td>
<td>200-014-9</td>
<td>50-14-6</td>
<td>T+; R26 T; R24/25-48/25</td>
<td>T+ R: 24/25-26-48/25 S: (1/2)-28-36/37-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>603-181-00-X</td>
<td>tert-butylmethyl ether MTBE 2-methoxy 2-methyl propaan</td>
<td>216-653-1</td>
<td>1634-04-4</td>
<td>F; R 11</td>
<td>Xi; R 38</td>
<td>F; Xi</td>
<td>R: 11-38; S: (2)-29-16-24</td>
<td></td>
</tr>
<tr>
<td>603-183-00-0</td>
<td>2-[2-(2-butoxyethoxy)ethoxy]ethanol TEGBE triethylene glycol mono butyl ether butoxy triethylene glycol</td>
<td>205-592-6</td>
<td>143-22-6</td>
<td>Xi; R 41</td>
<td>Xi</td>
<td>R: 41; S: (2)-26-39-46</td>
<td>C ≥ 30%; Xi; R 41 20% ≤ C < 30%; Xi; R 36</td>
<td></td>
</tr>
<tr>
<td>603-184-00-6</td>
<td>2-(hydroxymethyl)-2-[(2-hydroxy-3- (isoctadecyloxy)propoxy]methyl [1,3-propandiol</td>
<td>416-380-1</td>
<td>146925-83-9</td>
<td>N; R 50-53</td>
<td>N</td>
<td>R: 50/53; S: 60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-185-00-1</td>
<td>2,4-dichloor 3-ethyl 6-nitrofenol</td>
<td>420-740-1</td>
<td>99817-36-4</td>
<td>T; R 25; Xi; R 41; R 43; N; R 50-53</td>
<td>T; N; R: 25-41-43-50/53; S: (1/2)-26-36/37-39-45-60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-186-00-7</td>
<td>trans-(5RS,6SR)-6-amino-2,2-dimethyl-1,3-dioxepaan-5-ol</td>
<td>419-050-3</td>
<td>79044-37-9</td>
<td>R 43</td>
<td>Xi</td>
<td>R: 43; S: (2)-22-24/25-26-37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-187-00-2</td>
<td>2-[(4,6-bis(4-(2-[(1-methylpyridinium-4 yl)vinyl]phenylamino)-1,3,5- triazin-2-yl)(2 hydroxyethyl)amino)ethanol dichlo ride</td>
<td>419-360-9</td>
<td>163661-77-6</td>
<td>N; R 50-53</td>
<td>N</td>
<td>R: 50/53; S: 60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-189-00-3</td>
<td>Mengsel van complexen van: titanium, 2,2-oxidoethanol, ammonium lactaat, nitrotolitris(2 propanol) en ethyleenglycol</td>
<td>405 250 8</td>
<td>N; R 51 3</td>
<td>N</td>
<td>R: 51/53; S: 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-191-00-4</td>
<td>2-[(4,6-bis(2,4-difluorophenyl)-1,3,5-triazin-2-yl)-5-(3-(2 ethylhexyl)oxy) 2 hydroxy propoxy] fenol</td>
<td>419-740-4</td>
<td>137658-79-8</td>
<td>R 53</td>
<td>R: 53; S: 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-195-00-6</td>
<td>2-[4-(4-methoxyfenyl)-6-fenyl-1,3,5-triazine-2-yl] fenol</td>
<td>430-810-3</td>
<td>154825-62-4</td>
<td>R 52-53</td>
<td>R: 52/53; S: 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-196-00-1</td>
<td>2-((7-ethyl-1H-indol-3-yl)ethanol</td>
<td>431 020-1</td>
<td>41340-36-7</td>
<td>Xu; R 22; 22-48/22 N; R 51-53</td>
<td>Xu; N</td>
<td>R: 22-48/22-51/53; S: (2)-36/37-39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>603-197-00-7</td>
<td>1-(4-chloorfenyl)-4,4'-dimethyl 3,4'-dimethoxycarbonyl-1- ylmethylpentaan-3-ol</td>
<td>403-640-2</td>
<td>107534-96-3</td>
<td>Repr.Cat.3; R63</td>
<td>Xu; R 22; N; R 51-53</td>
<td>Xu; N</td>
<td>R: 22-51/53-63; S: (2)-22-36/37-61</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>604-199-00-8</td>
<td>etoxazol</td>
<td>-</td>
<td>155233-91-1</td>
<td>N; R50-53</td>
<td>C ≥ 0.25 %; N; R50/53 0.025 % ≤ C < 0.25 %; N; R51/53 0.0025 % ≤ C < 0.025 %; R52/53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>604-165-00-1</td>
<td>4,4',4''-(1-methylpropaan-1-y1:3- yfiden)tris(2-cyclohexyl-5- methylfenol)</td>
<td>407-460-5</td>
<td>111850-25-0</td>
<td>N; R51-53</td>
<td>N R: 51/53 S: 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>604-166-00-7</td>
<td>Een mengsel van: fenol, 6-(1,1- dimethyllethyl)-4-tetrapropyl-2- [(2-hydroxy-5- tetrapropylfenyl)methyl (C41- verbinding) en methaan, 2,2'- bis(6-(1,1-dimethyllethyl)-1- hydroxy-4-tetrapropylfenylj] -fenol en 2-(1,1- dimethyllethyl)-4-tetrapropylfenol, 2,6-bis(6-(1,1-dimethyllethyl)-1- hydroxy-4-tetrapropylfenyl)fenol</td>
<td>414-550-8</td>
<td>-</td>
<td>N; R50-53</td>
<td>N R: 50/53 S: 60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>604-067-00-2</td>
<td>Een mengsel van: 2,2'-(1,1- dimethyllethyl)-iminobis(methylenej[bis(4-dodecylfenol)] formaldehyde, oligomeren met 4- dodecylfenol) en 2- aminoethanol(n = 2) formaldehyde, oligomeren met 4- dodecylfenol en 2- aminoethanol(n = 3, 4 en hoger)</td>
<td>414-520-4</td>
<td>-</td>
<td>Xi; R38-41 N; R50-53</td>
<td>Xi; N R: 38-41-50/53 S: 2-26-37/39-60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>604-068-00-8</td>
<td>(+/-)-4-[3-(4-hydroxyfenyl)- 1-methylpropyl][anilinol-1- hydroxyethyl][enolhydrochloride</td>
<td>415-170-5</td>
<td>99095-19-9</td>
<td>Xn; R20/22 R 43</td>
<td>Xn R: 20-22-43 S: 2-24-26-37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>604-069-00-3</td>
<td>2-(1-methylpropyl)-4-tert- butyfenol</td>
<td>421-740-4</td>
<td>51390-14-8</td>
<td>C; R34 N; R51-53</td>
<td>C; N R: 34-51/53 S: 1/2-26-36/37/39-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---------------------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>604-070-00-9</td>
<td>triclosan</td>
<td></td>
<td>222-182-2</td>
<td>3380-34-5</td>
<td>Xi; R36/38 N; R50-53</td>
<td>Xi; N R: 36/38-80/53 S: 26-39-46-60-61</td>
<td>C ≥ 20%; Xi; N; R36/38-80/53 0,25 % ≤ C < 20 %; N; R50/53 0,025 % ≤ C < 0,25 %; N; R51/53 0,0025 % ≤ C < 0,025 %; R52/53</td>
<td></td>
</tr>
<tr>
<td>605-031-00-9</td>
<td>Een mengsel van: 2,2-dimethoxethylal (hoewel deze component qua identiteit, structuur en samenstelling als watervrij wordt beschouwd, bestaat 2,2-dimethoxethylal ook als hydraat, 60% watervrij stelt overeen met 70,4% hydraat) water (met inbegrip van vrij water en water in gehydrateerd 2,2-dimethoxethylal)</td>
<td>421 890 0</td>
<td>-</td>
<td>R43</td>
<td>Xi R: 43 S: (2-)24-37</td>
<td>Xi R: 43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-062-00-0</td>
<td>tetrahydrothiopyraan-3-carboxaldehyde</td>
<td></td>
<td>407-330-8</td>
<td>61571-06-0</td>
<td>Repr Cat.2; R61</td>
<td>R 61-41-52/53 S: 53-45-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-063-00-6</td>
<td>(E)-3-(2-chloorfenyl)-2-(4-fluorfenyl)propaenal</td>
<td>410-980-5</td>
<td>112704-51-5</td>
<td>X: R36 R 43</td>
<td>Xi R: 36 R 43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-064-00-1</td>
<td>pregn-5-en-3,20-diambis(ethyleneketen)</td>
<td>407-450-0</td>
<td>7093-55-2</td>
<td>R 53</td>
<td>R: 53 S: 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-065-00-7</td>
<td>1-(4-morfollinafenyl)butan 1 on</td>
<td>413 790 0</td>
<td>N; R51 53</td>
<td>N R: 51/53 S: 61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-066-00-2</td>
<td>(E)-5-(4-chloorfenyl)methylen-2,2-dimethylcyclopentanion</td>
<td>410-440-9</td>
<td>131984-21-9</td>
<td>N; R51-53</td>
<td>N R: 51/53 S: 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-067-00-8</td>
<td>Mengsel van: 1-(2,3,6,7,8,9-hexahydro-1,1-dimethyl-1H-benz(g)indeen-4-y)ethanon 1-(2,3,5,6,7,8-hexahydro-1,1-dimethyl-1H-benz(f)indeen-4-y)ethanon 1-(2,3,6,7,8,9-hexahydro-1,1-dimethyl-1H-benz(g)indeen-5-y)ethanon 1-(2,3,6,7,9-fluorfenyl)-2,2-dimethylcyclopentanion</td>
<td>414-870-8</td>
<td>96792-67-5</td>
<td>N; R50-53</td>
<td>N R: 50/53 S: 60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>606-072-00-3</td>
<td>3-acetyl 1-fenylpyrrolidine 2,4-dion</td>
<td></td>
<td>421 600-2</td>
<td>719 86-8</td>
<td>Xu; R48/22 N; R51-53</td>
<td>Xu; N R: 48/22-51/53 S: (2)22-36/37-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-073-00-0</td>
<td>4,4’-bis(dimethylamino)benzofenon</td>
<td>Michler’s keton</td>
<td>202 027-5</td>
<td>90 94-8</td>
<td>Carc. Cat.2; R45 Mut. Cat.3; R68 Xi; R41</td>
<td>T R: 45-41/68 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-075-00-1</td>
<td>1-benzyl-5-ethoxyimidazolidine-2,4-dion</td>
<td></td>
<td>417 340-4</td>
<td>65855-02-9</td>
<td>Xu; R22</td>
<td>Xu R: 22 S: (2)22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-076-00-7</td>
<td>1-((2-quinoilinyl)carbonyloxy)-2,5-pyrroldinedion</td>
<td></td>
<td>418 630-3</td>
<td>136 655-99-1</td>
<td>Xi; R41 R43</td>
<td>Xi R: 41-43 S: (2)24-26/37/39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-077-00-2</td>
<td>(3S,4S)-3-hexyl-4-((R)-2-hydroxytridecyl)-2-oxetanon</td>
<td></td>
<td>418 650-2</td>
<td>104872-06-2</td>
<td>N; R50-53</td>
<td>N R: 50/53 S: 60/61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-078-00-8</td>
<td>1-octyazepin-2-on</td>
<td></td>
<td>420 040-6</td>
<td>59227-88-2</td>
<td>C; R34 R43 N; R51-53</td>
<td>C; N R: 34-43/51/53 S: (1/2)26-36/37/39-45-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-079-00-3</td>
<td>2-n-butybenzolsulfonfylaan-3-on</td>
<td></td>
<td>420 590-7</td>
<td>-</td>
<td>C; R34 R43 N; R50-53</td>
<td>C; N R: 34-43/50/53 S: (1/2)26-36/37/39/60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-080-00-9</td>
<td>Reactieproduct van: 3-hydroxy-5,7-di-tert-butybenzofuran-2-on met α-xylene</td>
<td></td>
<td>417 100-9</td>
<td>-</td>
<td>R 53</td>
<td>R 53 S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>606-081-00-4</td>
<td>(3F, 5a, 6β)-3-acetoxy-5β-brom-6-hydroxy-androstana-17-on</td>
<td></td>
<td>419 790-7</td>
<td>4229-69-0</td>
<td>R43 R52-53</td>
<td>Xi R: 43-52/53 S: (2)22-36/37-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------------------</td>
<td>--------</td>
<td>-----------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>606-082-00-X</td>
<td>Mengsel van: butaan-2-on-oxime syn-O,O'-ditButaan-2-on-oxime diethoxysilica</td>
<td></td>
<td>406-930-7</td>
<td>96-29-7</td>
<td>T; R48/22</td>
<td>R43</td>
<td>R52-53</td>
<td></td>
</tr>
<tr>
<td>606-083-00-5</td>
<td>2-chloor-5-sec-hexadecylhydroquinone</td>
<td></td>
<td>407-750-4</td>
<td>-</td>
<td>X; R36/38</td>
<td>R43</td>
<td>R52-53</td>
<td></td>
</tr>
<tr>
<td>606-084-00-0</td>
<td>1-(4-methoxy-5-benzofuranyl)-3-fenyl-1,3-propandion</td>
<td></td>
<td>414-540-3</td>
<td>484-33-3</td>
<td>N; R50-53</td>
<td>N</td>
<td>R: 50/53</td>
<td>S: 60-61</td>
</tr>
<tr>
<td>606-085-00-6</td>
<td>(1R,4S)-2-azabicyclo[2.2.1] hept-5-een-3-on</td>
<td></td>
<td>418-530-4</td>
<td>79200-56-9</td>
<td>Xn; R22</td>
<td>Xi; R41</td>
<td>R43</td>
<td></td>
</tr>
<tr>
<td>606-086-00-1</td>
<td>1-(3,3-dimethylcyclohexyl)pent-4-en-1-one</td>
<td></td>
<td>422-330-8</td>
<td>56973-87-6</td>
<td>N; R51-53</td>
<td>N</td>
<td>R: 51/53</td>
<td>S: 61</td>
</tr>
<tr>
<td>606-087-00-7</td>
<td>6 ethyl-5-fluor-4(3H) pyrimidion</td>
<td></td>
<td>422-460-5</td>
<td>137234-87-8</td>
<td>Xn; R22</td>
<td>N; R50-53</td>
<td>Xn; N</td>
<td>R: 22-50/53</td>
</tr>
<tr>
<td>606-088-00-2</td>
<td>2,4,4,7-tetramethyl-6-octeen-3-on</td>
<td></td>
<td>422-520-0</td>
<td>74338-72-0</td>
<td>Xn; R38</td>
<td>N; R51-53</td>
<td>Xn; N</td>
<td>R: 38-51/53</td>
</tr>
<tr>
<td>606-089-00-8</td>
<td>Een mengsel van: 1,4-diamo(o-2-chloor-3-fenoxynitraquinone 1,4 diamno-2,5 bis-fenoxynitraquinone</td>
<td></td>
<td>423-220-2</td>
<td>12223-77-7</td>
<td>R53</td>
<td>R: 53</td>
<td>S: 61</td>
<td></td>
</tr>
<tr>
<td>606-091-00-9</td>
<td>6-chloor-5-(2-di(hdroxyethyl)1,3-dihydroindol-2-on</td>
<td></td>
<td>421-320-0</td>
<td>118289-53-7</td>
<td>N; R50-53</td>
<td>N</td>
<td>R: 50/53</td>
<td>S: 60-61</td>
</tr>
<tr>
<td>606-092-00-4</td>
<td>Een mengsel van: (E)-oxacyclohexadec-12-een-2-on (E)-oxacyclohexadec-13-een-2-on (Z)-oxacyclohexadec-12-een-2-on en (Z)-oxacyclohexadec-13-een-2-on</td>
<td></td>
<td>422-320-3</td>
<td>111879-80-2</td>
<td>N; R50-53</td>
<td>N</td>
<td>R: 50/53</td>
<td>S: 60-61</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>607-380-00-2</td>
<td>Mengsel van: ammonium 1,2-bis(hydroxyethyl)octaansulfonaat ammonium 1-hexyloxyhexaamidocteensulfonaat ammonium 2-hexyloxyhexaamidocteensulfonaat</td>
<td>-</td>
<td>407-320-3</td>
<td>-</td>
<td>Xi; R38-41 R 52-53</td>
<td>Xi; R: 38-41-52/53 S: (2-26-37/39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-381-00-8</td>
<td>Mengsel van triesters van 2,2-bis(hydroxyethyl)butaanol met C7-alkaanzuur en 2-ethylhexaanuur</td>
<td>-</td>
<td>413-710-4</td>
<td>-</td>
<td>R 53</td>
<td>R: 53 S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-382-00-3</td>
<td>2-((4-amino-2-nitrofenyl)amino)benzoesuur</td>
<td>411-280-3</td>
<td>117907-43-4</td>
<td>Xi; R41 R 43 R 52-53</td>
<td>Xi; R: 41-43-52/53 S: (2-24-26-37/39-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-383-00-9</td>
<td>Mengsel van: 2,2,6,6-tetramethylpiperidin-4-yl-hexadecanoaat 2,2,6,6-tetramethylpiperidin-4-yl-octadecanoaat</td>
<td>415-430-8</td>
<td>86403-32-9</td>
<td>Xi; R41 R 43 N; R50-53</td>
<td>Xi; N R: 41-43-50/53 S: (2-24-26-37/39-60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-384-00-4</td>
<td>Een mengsel van esters van C14-C15-vertakte alcoholen met 3,5-di-t-butyl-4-hydroxyfenylpropaanzuur C15 vertakt en lineair alkyl, 3,5-bis(1,1-dimethylethyl)-4-hydroxybenzenepropaanzuur C13-vertakt en lineair alkyl, 3,5-bis(1,1-dimethylethyl)-4-hydroxybenzenepropaanzuur</td>
<td>413-750-2</td>
<td>171090-93-0</td>
<td>R 53</td>
<td>R: 53 S: 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-386-00-5</td>
<td>Mengsel van: tetraedeaanzuur (+2,5-47,56) poly(1-7-8)lactaat esters van</td>
<td>412-580-6</td>
<td>174591-51-6</td>
<td>Xi; R38-41 R 43 N; R50-53</td>
<td>Xi; N R: 38-41-43-50/53 S: (2-24-26-37/39-60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>607-387-00-0</td>
<td>Mengsel van: dodecancuur (35-40%)</td>
<td>poly(1-7)lactaetesters van dodecancuur (60-65%)</td>
<td>412-590-0</td>
<td>58856-63-6</td>
<td>Xi; R38-41 R 43 N; R50-53</td>
<td>Xi; N R: 38-41; 43-50/53 S: (2-2)24-26-37/39-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-388-00-6</td>
<td>4-ethylamino-3-nitrobenzezeuzuur</td>
<td></td>
<td>412-090-2</td>
<td>2788-74-1</td>
<td>Xn; R22 R 43 R 52-53</td>
<td>Xn R: 22±43-52/53 S: (2-2)22-24-37-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-389-00-1</td>
<td>trimatrium; N,N-bis(carboxymethyl)-l-3-amino-2-hydroxypropionsaure</td>
<td></td>
<td>414-130-4</td>
<td>119710-96-2</td>
<td>Xn; R22</td>
<td>Xn R: 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-390-00-7</td>
<td>1, 2, 3, 4-tetrahydro-6-nitroquinolamine</td>
<td></td>
<td>414-270-6</td>
<td>41959-35-7</td>
<td>Xn; R22 N; R51-53</td>
<td>Xu; N R: 22-51/53 S: (2-2)22-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-392-00-8</td>
<td>2-fenoxethyl-4-(5-cyaano-1, 6-dihydro-2-hydroxy-1, 4-dimethyl-6- oxo-3-pyridinyl)azaolbenzoaat</td>
<td></td>
<td>414-260-1</td>
<td>88938-37-8</td>
<td>R 53</td>
<td>R; 53 S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-393-00-3</td>
<td>3-(cix-1-propenyl)-7-amino-8- oxo-5-thia-1, arabinocyclol-1,2,0(pent-2-een-2-carboxzuur</td>
<td></td>
<td>415-750-8</td>
<td>106447-44-3</td>
<td>R 43</td>
<td>Xi R: 43 S: (2-2)22-24-37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-394-00-9</td>
<td>5-methylpyrazine-2-carboxzuur</td>
<td></td>
<td>413-260-9</td>
<td>5521-55-1</td>
<td>Xi R: 44</td>
<td>Xi R: 44 S: (2-2)26-39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-395-00-4</td>
<td>Mengsel van: natrium-1-tridecyl-4-allyl-(2 of 3)-sulfobutaandicaat natrium-1-dodecyl-4allyl-(2 of 3)-sulfobutaandicaat</td>
<td></td>
<td>410-230-7</td>
<td>-</td>
<td>C; R34 R 43 N; R51-53</td>
<td>C; N R: 34-43; 51/53 S: (1/2)26-36/37/39-45-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-396-00-X</td>
<td>bis(1, 2, 6, 6-pentamethyl-4- piperidinyl)-2-(4- methoxybenzylideen)malonzaat</td>
<td></td>
<td>414-840-4</td>
<td>147783-69-5</td>
<td>N; R50-53</td>
<td>N R: 50/53 S: 22±60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-397-00-5</td>
<td>Mengsel van: Cu salicylalaten (gemaakt C10-14 en C18-30 gealkyleerd) Cu feraten (gemaakt C10-14 en C18-30 gealkyleerd) Cu gelsulfureerde feraten (gemaakt C10-14 en C18-30 gealkyleerd)</td>
<td></td>
<td>415-930-6</td>
<td>-</td>
<td>R 43</td>
<td>Xi R: 43 S: (2-2)36-37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>607-398-00-0</td>
<td>ethyl-N-(5-chloor-3-(4- (diethylamino)-2- methyl)fenyllimino)-4-methyl-6- oxo-1,1- cyclohexadienyl)carbonsaat</td>
<td></td>
<td>444-820-5</td>
<td>125630-94-6</td>
<td>N; R50-53</td>
<td>N R: 50/53 S: 60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-399-00-6</td>
<td>2,2-dimethyl-3-methyl-3- butenylpropanoaat</td>
<td></td>
<td>415-610-6</td>
<td>104468-21-5</td>
<td>Xi; R38 R52-53</td>
<td>Xi R: 38-52/53 S: (2-)37-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-400-00-X</td>
<td>methyl-3- [(6-dibutylamino)thioxomethyl]thioil)propanoaat</td>
<td></td>
<td>414-400-1</td>
<td>32750-89-3</td>
<td>N; R50-53</td>
<td>N R: 50/53 S: 60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-401-00-5</td>
<td>ethyl-3-hydroxy-5-oxo-3- cyclohexen-1-carboxylaat</td>
<td></td>
<td>414-450-4</td>
<td>88805-65-6</td>
<td>Xi; R38-41 R 43</td>
<td>Xi R: 38-41-43 S: (2-)24-26-37/39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-402-00-0</td>
<td>methyl N-(fenyl)oxy carbonyl)-L-valinaat</td>
<td></td>
<td>414-500-5</td>
<td>153441-77-1</td>
<td>R 52-53</td>
<td>R: 52/53 S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-403-00-6</td>
<td>Mengsel van: bis(1S,2S,4S)-(1- benzyl-4-tert- butoxycarbamoilo-2-hydroxy-5- fenyl)pentylammoniumsuccinaat isopropylalcohol</td>
<td></td>
<td>414-810-0</td>
<td>-</td>
<td>Xi; R:18/22 R: 41 N; R50-53</td>
<td>Xi; N R: 41-48/22-50/53 S: (2-)22-26-36/39-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-404-00-1</td>
<td>Mengsel van: ((Z)-3,7-dimethyl-2,6- octadienyl)oxy carbonylpropanzuur di-(EE)-3,7-dimethyl-2,6 octadienyl)butandionaat di-(ZH)-3,7-dimethyl-2,6- octadienyl)butandionaat (ZH)-3,7-dimethyl-2,6-octadienyl- butanionaat (EE)-3,7-dimethyl-2,6- octadienyl)oxy carbonylpropanzuur</td>
<td></td>
<td>415-190-4</td>
<td>-</td>
<td>R 43</td>
<td>Xi R: 43 S: (2-)24-37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-405-00-7</td>
<td>2-hexyldecyl-p-hydroxybenzoaat</td>
<td></td>
<td>415-380-7</td>
<td>148348-12-3</td>
<td>N; R51-53</td>
<td>N R: 51/53 S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-406-00-2</td>
<td>kalium-2,5-dichloorbenzoaat</td>
<td></td>
<td>415-700-5</td>
<td>-</td>
<td>Xi; R22 Xi; R41</td>
<td>Xi R: 22-41 S: (2-)26-39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-407-00-8</td>
<td>ethyl-2-carboxy-3-(2- thieryl)propionaat</td>
<td></td>
<td>415-680-8</td>
<td>143468-96-6</td>
<td>Xi; R38-41 R 43</td>
<td>Xi R: 38-41-43 S: (2-)24-26-37/39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemicische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>-------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>607-608-00-3</td>
<td>kalium-N-(4-fluorenyl)glycinaat</td>
<td></td>
<td>415-710-1</td>
<td>-</td>
<td>Xu; R48/22
Xt; R41
R 43
R 52-53</td>
<td></td>
<td>Xn
R: 41-43-48/22-52/53
S: (2)22-26-36/37/39-61</td>
<td></td>
</tr>
<tr>
<td>607-609-00-9</td>
<td>Een mengsel van: (3R)-1S-(1a, 2a, 6β-(25S)-2-methyl-1-cocobutoxy)-8a,gamma.hexahydro-2,6-dimethyl-1-naphthalen</td>
<td></td>
<td>415-840-7</td>
<td>-</td>
<td>R 43
R 52-53</td>
<td></td>
<td>Xi
R: 43-52/53
S: (2)26-37-61</td>
<td></td>
</tr>
<tr>
<td>607-411-00-X</td>
<td>oxiranoxybenzoesulfonaat, (S)-</td>
<td></td>
<td>417-210-7</td>
<td>70997-78-9</td>
<td>Carc.Cat.2; R45
Muta.Cat.3; R68
Xt; R41
R 43
N; R50-53</td>
<td></td>
<td>T; N
R: 45-41-43-51/53
S: 53-15-61</td>
<td></td>
</tr>
<tr>
<td>607-412-00-5</td>
<td>ethyl-2-(1-cyanocyclohexyl)acetaat</td>
<td></td>
<td>415-970-4</td>
<td>133481-10-4</td>
<td>Xu; R22-48/22
R 52-53</td>
<td></td>
<td>Xn
R: 22-48/22-52/53
S: (2)26-37/39-61</td>
<td></td>
</tr>
<tr>
<td>607-413-00-0</td>
<td>trans-4-tetrahydroproline</td>
<td></td>
<td>416-020-1</td>
<td>96314-26-0</td>
<td>Repr.Cat.3; R62
R 43</td>
<td></td>
<td>Xu
R: 43-62
S: (2)22-36/37</td>
<td></td>
</tr>
<tr>
<td>607-414-00-6</td>
<td>tris(2-ethylhexyl)-4,4',4''-(1,3,5-triazine-2,4,6-triyl)triamino)tribenzoat</td>
<td></td>
<td>402-070-1</td>
<td>88122-99-0</td>
<td>R53</td>
<td></td>
<td>R: 53
S: 61</td>
<td></td>
</tr>
<tr>
<td>607-415-00-1</td>
<td>poly-(methylmethacrylaat)-co-(butylmethacrylaat)-co-(4-acrylicoxybutylisopropenyl-alpha,alpha,alpha-dimethylbenzylicarboxamaat)-co-(maleineanhydride)</td>
<td></td>
<td>419-590-1</td>
<td>-</td>
<td>F; R 11
R 43</td>
<td></td>
<td>F; Xi
R: 11-43
S: (2)24-37-43</td>
<td></td>
</tr>
<tr>
<td>607-416-00-7</td>
<td>4-(2-carboxyethylthio)ethoxy-1-hydroxy-5-isobutylcarboxylaminon-3-dodecylpropyli-2-naftamide</td>
<td></td>
<td>420-730-7</td>
<td>-</td>
<td>N; R50-53</td>
<td></td>
<td>N
R: 50/53
S: 60-61</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>607-418:00-8</td>
<td>2-ethylhexyl-4-aminobenzoaat</td>
<td></td>
<td>420-170-3</td>
<td>26218-04-2</td>
<td>N; R50-53</td>
<td>N</td>
<td>R; 50/53</td>
<td>S; 60-61</td>
</tr>
<tr>
<td>607-419:00-3</td>
<td>(E)-carboxymethyl 5-(2-(3-ethyl-3H-benzothiazool-2-ylideen)-1-methylethyl(ideen)-4,4'-dioxy-2'-thioxo-(2,5)thiazolidinylideen-3-yl)-azijnzuur</td>
<td>422-240-9</td>
<td>166596-68-5</td>
<td>Xi; R41 R 43</td>
<td>Xi</td>
<td>R; 41-43</td>
<td>S; (2-)26-36/37/39</td>
<td></td>
</tr>
<tr>
<td>607-420:00-9</td>
<td>2,2'-bis(hydroxymethyl)butaanzuur</td>
<td>424-090-1</td>
<td>10097-02-6</td>
<td>Xi; R41 R52-53</td>
<td>Xi</td>
<td>R; 41-52/53</td>
<td>S; (2-)26-39-61</td>
<td></td>
</tr>
<tr>
<td>607-421:00-4</td>
<td>cypermetrine cis/trans +/ - 40/60 (RS)-α-cyana-3-fenoxybenzyli (1RS,3RS)-1-(2,2-dicyclopropylvinyl)-2,2-dimethylcyclopropaancarbonyleaat</td>
<td>257.842-9</td>
<td>52315-07-8</td>
<td>Xn; R20/22 Xi; R37 N; R50-53</td>
<td>Xn; N</td>
<td>R; 20/22-37-50/53</td>
<td>S; (2-)24-36/37/39-60-61</td>
<td></td>
</tr>
<tr>
<td>607-422:00-X</td>
<td>α-cypermetrine</td>
<td>257.842-9</td>
<td>67375-30-8</td>
<td>T; R25 Xn; R48/22 Xi; R37 N; R50-53</td>
<td>T; N</td>
<td>R; 25-37-48/22-50/53</td>
<td>S; (2-)36/37/39-45-60-61</td>
<td></td>
</tr>
<tr>
<td>607-423:00-5</td>
<td>esters van mecoprop en van mecoprop-P</td>
<td>-</td>
<td>-</td>
<td>Xn; R22 R43 N; R50-53</td>
<td>Xn; N</td>
<td>R; 22-43-50/53</td>
<td>S; (2-)13-36-37-60-61</td>
<td></td>
</tr>
<tr>
<td>607-424:00-0</td>
<td>trifloxystrobin methyl-(R)-methoxyimino-(d)-α-[4,4,4-trifluoroo methyl]ethyleideenaanminooxy-cyclopropylacetaat</td>
<td>-</td>
<td>141517-21-7</td>
<td>R43 N; R50-53</td>
<td>R43 N; R50-53</td>
<td>Xn; N</td>
<td>R; 43-50/53</td>
<td>S; (2-)24-37 46 60 61</td>
</tr>
<tr>
<td>607-425:00-6</td>
<td>metlabxyl (ISO) methyl-N-(2,6-dimethylfenyl)-N-(methoxyacryl)-DL-alanaat</td>
<td>260-979-7</td>
<td>57837-19-1</td>
<td>Xn; R22 R43 R52-53</td>
<td>Xn; R22 R43 R52-53</td>
<td>Xn</td>
<td>R; 22-43-52/53</td>
<td>S; (2-)13-24-37-46-61</td>
</tr>
<tr>
<td>607-427:00-7</td>
<td>bromoxynilheptanoaat (ISO) 2,6-dibroom-4-</td>
<td>260-300-4</td>
<td>56634-95-8</td>
<td>Repr. Cat. 3; R63 Xn; R20/22</td>
<td>Xn; N</td>
<td>R; 20/22-43-63-50/53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>607-430-00-3</td>
<td>BBP</td>
<td>benzylbutylfalaat</td>
<td>201-622-7</td>
<td>85-68-7</td>
<td>Repr. Cat.2; R61</td>
<td>T; N</td>
<td>R: 61-62-50/53; S: 53-45-60-61</td>
<td></td>
</tr>
<tr>
<td>607-431-00-9</td>
<td>prallethrin</td>
<td>ETOC 2-methyl-4-oxo-3-(prop-2-ynyl)cyclopent-2-en-1-y1-2,2-dimethyl 3-(2-methylprop-1-enyl)cyclopropa carboxylaat</td>
<td>245-387-9</td>
<td>23031-36-9</td>
<td>T; R23</td>
<td>T; N</td>
<td>R: 22-23-50/53; S: (1/2)-45-60-61</td>
<td></td>
</tr>
<tr>
<td>607-432-00-4</td>
<td>S-metolachloor</td>
<td>mengsel van (S)-2-chloor-N-(2-ethyl-6-methylfenyl)-N-(2-methoxy-1-methylethyl)acetamide (80-100%)</td>
<td>-[1]</td>
<td>87392-12-9</td>
<td>R43</td>
<td>Xn; N</td>
<td>R: 43-50/53; S: (2)-24-37-60-61</td>
<td></td>
</tr>
<tr>
<td>607-433-00-X</td>
<td>cypermethrine cis/trans 4: 80/20 (RS)-a-cyano-3-fenoxycarbonyl (1R; 3R; 1S; 3S) 3-(2,2-dichlo rovinyl) 2-2-dimethylcyclopropa carboxylaat</td>
<td>257-842-9</td>
<td>52315-07-8</td>
<td>Xn; R22</td>
<td>Xn; N</td>
<td>R: 22-37/38-43-50/53; S: (2)-36/37/39-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-434-00-5</td>
<td>mecoprop-P[1] en zijn zouten (R)-2-(4-chloor-2-methylfenoxo)propionzuur</td>
<td>240-539-0</td>
<td>16484-77-8</td>
<td>Xn; R22</td>
<td>Xn; N</td>
<td>R: 22-41-51/53; S: (2)-13-26-37-49-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-435-00-0</td>
<td>2S-isopropyl-5R-methyl-1R-cyclohexyl-2,2-dihydroxyacetetaat</td>
<td>416-810-6</td>
<td>11196-64-3</td>
<td>Xn; R48/22</td>
<td>Xn; N</td>
<td>R: 41-48/22-51/53; S: (2)-22-26-36/39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-436-00-6</td>
<td>2-hydroxy-5-(2-ethyl-4-methylimidazolyl)propylnedecan oot</td>
<td>417-350-9</td>
<td>-</td>
<td>Xn; R38-41</td>
<td>Xn; N</td>
<td>R: 38-41-50/53; S: (2)-26-28-37-39-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-437-00-1</td>
<td>3-(4-aminofenyl)-2-cyano-2-propeenzaa</td>
<td>417-480-6</td>
<td>-</td>
<td>R43</td>
<td>Xn</td>
<td>R: 13-22-24-37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-438-00-7</td>
<td>methyl-2-[(aminofeny1)methyl]benzoa</td>
<td>419-010-5</td>
<td>-</td>
<td>Xn; R22</td>
<td>Xn</td>
<td>R: 22-36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>607-439-00-2</td>
<td>methylethylhydro-2-furaan-carboxylaat</td>
<td></td>
<td>420-670-4</td>
<td>37443-42-8</td>
<td>Xi; R41</td>
<td>Xi</td>
<td>R: 41</td>
<td>S: (2-22-26)</td>
</tr>
<tr>
<td>607-440-00-8</td>
<td>methyl 2-aminosulfonyl-6-(trifluormethyl)pyridine-3-carboxylaat</td>
<td></td>
<td>421-220-7</td>
<td>144740-59-0</td>
<td>R43; N; R51-53</td>
<td>Xi; N</td>
<td>R: 43-51/53</td>
<td>S: (2-22-24-37-61)</td>
</tr>
<tr>
<td>607-441-00-3</td>
<td>2-((2-dodecyl)oxy-5-methylenecarboxyl)4-hydroxy-1-methylaminepropaanzuur</td>
<td></td>
<td>421-490-6</td>
<td>167684-63-1</td>
<td>R53</td>
<td>R: 53</td>
<td>S: 57-61</td>
<td></td>
</tr>
<tr>
<td>607-442-00-9</td>
<td>benzyl-4-hydroxy-(4-fenylbutyl)fosfinylacetetaat</td>
<td></td>
<td>416-050-5</td>
<td>87460-09-1</td>
<td>Xi; R41</td>
<td>Xi</td>
<td>R: 41</td>
<td>S: (2-26-36/39)</td>
</tr>
<tr>
<td>607-443-00-4</td>
<td>bis(2,4-di-tert-butyl)-6-methylfenylichlorofosfaat</td>
<td></td>
<td>416-140-4</td>
<td>145650-60-8</td>
<td>R 53</td>
<td>R: 53</td>
<td>S: 61</td>
<td></td>
</tr>
<tr>
<td>607-444-00-X</td>
<td>Mengsel van: cis-1,4-dimethylcyclohexylbenzozaat trans-1,4-dimethylcyclohexylbenzozaat</td>
<td></td>
<td>416-230-3</td>
<td>35541-81-2</td>
<td>R 53</td>
<td>R: 53</td>
<td>S: 61</td>
<td></td>
</tr>
<tr>
<td>607-445-00-5</td>
<td>ijzer (III) tris-4-methylbenzenesulfonaat</td>
<td></td>
<td>420-960-8</td>
<td>77214-82-5</td>
<td>Xi; R41</td>
<td>Xi</td>
<td>R: 41</td>
<td>S: (2-24-26-39)</td>
</tr>
<tr>
<td>607-446-00-0</td>
<td>methyl-2-[1-(2-chloor-4-nitrofenylazo)-3-[1-oxopropylamino]fenylaminopropionaat</td>
<td></td>
<td>416-240-8</td>
<td>155522-12-6</td>
<td>R 43; R 53</td>
<td>Xi</td>
<td>R: 43-53</td>
<td>S: (2-22-24-37-61)</td>
</tr>
<tr>
<td>607-447-00-6</td>
<td>natrium-4-[4-(4-hydroxyfenylazo)fenylamino]-3-nitrobenzenesulfonaat</td>
<td></td>
<td>416-370-5</td>
<td>156738-27-1</td>
<td>R 43; R52-53</td>
<td>Xi</td>
<td>R: 43-52/53</td>
<td>S: (2-22-24-37-61)</td>
</tr>
<tr>
<td>607-448-00-1</td>
<td>2,3,5,6-tetrafluorbenzoëzuur</td>
<td></td>
<td>416-800-1</td>
<td>652-18-6</td>
<td>Xi; R38-41</td>
<td>Xi</td>
<td>R: 38-41</td>
<td>S: (2-22-26-37/39)</td>
</tr>
<tr>
<td>607-449-00-7</td>
<td>Een mengsel van: 4,4',4"-[1(2,4,6-trizooxy-1,3,5(2H,4H,6H)-triazine-1,3,5-tris(tris(methyl)en(3,5,5-trimethyl-3,1-cyclohexaandyl)aminocarbonyloxy)2,1-ethaanidyl(ethyl)amino)[trisbenze endiazoniumtrim][bis[2-methylpropyl]sulfatesulfonaat]4,4',4"-[3,5,5'-</td>
<td></td>
<td>417-000-0</td>
<td>-</td>
<td>E; R2; R43; N; R50-53</td>
<td>E; Xi; N</td>
<td>R: 2-43-50/53</td>
<td>S: (2-24-35-37-60-61)</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>607-450-00-2</td>
<td>2-mercaptobenzothiazolyl-(Z) (2-aminothiazool-4-yi)-2-(tert-butoxycarbonyl)isopropoxyiminoacetaat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-451-00-8</td>
<td>4-{4-amino-5-hydroxy-3-(4-{2-sulfoxyethylsulfonyl}-fenylazo)-2,7-disulfoenafte-6-ylazo}-6-{3-(4-amino-5-hydroxy-3-{4-{2-sulfoxyethylsulfonyl}-fenylazo)-2,7-disulfoenafte-6-ylazo}-fenylcarbonylaminobenzoesulfonzuur, natriumzuur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-453-00-9</td>
<td>4-benzyl-2,6-dihydroxy-4-azaheptyleen bis(2,2-dimethoxyethaan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-454-00-4</td>
<td>Mengsel van: trans-(1-methylthyl) 1,3-dioxaan-5-carbonzuur, cis-(1-methylthylthyl) 1,3-dioxaan-5-carbonzuur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-455-00-X</td>
<td>1-amino-4-(3-[4-chloor-6-[2,5-disulfoenafylamino]-1,3,5 triazin-2-ylamino]-2,2-dimethylpropylamino)-antraquinone-2-sulfonzuur, natrium-lichenzuur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-456-00-5</td>
<td>3-amino-4-chloorbenzoëzuur, hexadeccylster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-457-00-0</td>
<td>tetranatrium diwaterstof 1,1'-dihydroxy-8,8'-[p-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>407-458-00-6</td>
<td>Een mengsel van: 2-ethyl-1,2,6-dibromo-4-[1-3,5-dibromo-4-(2-hydroxyethoxy)fenyl]-1-methylethylfenoxypropenoat 2,2'-diethyl-(4,4'-bis(2,6-dibromofenox)fenyl)fenylethylidenpropenoat 2,2'-[fenylidencyclohexyl]fenylethanol 2,2'-[fenylethylidencyclohexyl][2,6-dibromo-4,1-fenyleen][oxy]ethanol</td>
<td>420-850-1</td>
<td>-</td>
<td>R51-53</td>
<td>N</td>
<td></td>
<td>N; R51-53</td>
<td>N: 51/53; S: 61</td>
</tr>
<tr>
<td>407-459-00-1</td>
<td>isopropyl-4-[2-(5-cyano-1,2,3,6-tetrahydro-1,2,3,4-tetrahydro-1,2-isopropanyldioxy-cbonylmethyl)-4-methyl-2,6-dioxy-3-pyridylethylidene]hydrazino]benzoat</td>
<td>418-930-1</td>
<td>-</td>
<td>R 53</td>
<td></td>
<td></td>
<td>R: 53</td>
<td>S: 61</td>
</tr>
<tr>
<td>407-461-00-2</td>
<td>Een mengsel van: pentanatrium 3-[4-[(N-methyl)-[4-[1-sulfofenyl-(2-sulfofenyloxy]-naftalen-1-ylo]-fenylamino]-6-[3-(2-sulfoethansulfonyl)-fenylamino]-1,3,5-triazin-2-yamin]benzeen-1,4-disulfoaat pentanatrium 2-[4-[3-methyl-4-[7-sulfofenyloxy]-naftalen-1-ylo]-fenylamino]-6-[3-(2-sulfoethansulfonyl)fenylamino]-1,3,5-triazin-2-yamin]benzeen-1,4-disulfoaat</td>
<td>421-160-1</td>
<td>-</td>
<td>R 52-53</td>
<td></td>
<td></td>
<td>R: 57/53</td>
<td>S: 61</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>607-463-00-3</td>
<td>4-methyl-1-pentylacetaat andere gemengde lineaire en vertakte C6 alkylacetaten</td>
<td></td>
<td>421-260-5</td>
<td>362-03-8</td>
<td>N; R51-53</td>
<td>N; R: 51/53; S: 24/25-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-464-00-9</td>
<td>Een mengsel van: 7-chloor-1-ethyl-6-fluor-1,4-dihydro-4-oxoquinoline-3-carboxzuur 5-chloor-1-ethyl-6-fluor-1,4-dihydro-4-oxoquinoline-3-carboxzuur</td>
<td></td>
<td>421-280-4</td>
<td>68077-26-9</td>
<td>R 52-53</td>
<td>R: 52/53; S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-465-00-4</td>
<td>tris(2-hydroxyethyl)ammonium 7 (4-[1-(4-cyanoamino-4-hydroxy-6-oxopyrimidin-5-ylazo)benzamido]-2-thoxyphenylazo)saftaleen-1,3-disulfonaat</td>
<td></td>
<td>421-440-3</td>
<td>-</td>
<td>R 52-53</td>
<td>R: 52/53; S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-466-00-X</td>
<td>Een mengsel van: fenyl 1-(1-(2-chloor-5-(hexadeclxylocarbonyl)fenylcarbamoyl)-3,3-dimethyl-2-oxobutyl)-1H,2,3,5a,7a-tetrahydrobenzotriazoo-5-carboxylaat fenyl 2-(1-(2-chloor-5-(hexadeclxylocarbonyl)fenylcarbamoyl)-3,3-dimethyl-2-oxobutyl)-1H,2,3,5a,7a-tetrahydrobenzotriazoo-5-carboxylaat fenyl 3-(1-(2-chloor-5-(hexadeclxylocarbonyl)fenylcarbamoyl)-3,3-dimethyl-2-oxobutyl)-1H,2,3,5a,7a-tetrahydrobenzotriazoo-5-carboxylaat</td>
<td></td>
<td>421-480-4</td>
<td>-</td>
<td>N; R51-53</td>
<td>N; R: 51/53; S: 37/39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-467-00-5</td>
<td>1,1,3,3-tetrabutyl-1,3-ditimosydicaprylaat</td>
<td></td>
<td>419-430-9</td>
<td>56533-00-7</td>
<td>Xw; R21/22-48/22 C; R34</td>
<td>C; N; R: 21/22-34-48/22-50/53; S: (1/2)26-36/37;39-45-60/61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-468-00-0</td>
<td>Een mengsel van: monenatrium 4-(4-(5-sulfonaat-2-methoxyfenylamino)-6-chloor-</td>
<td></td>
<td>419-450-8</td>
<td>-</td>
<td>R43</td>
<td>X; R: 43; S: (2-)22-24-37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>607-469-00-6</td>
<td>dinatrium-7-((4,6-bis-3-diethylaminopropylamino)-1,3,5-triazine-2-ylamino)-4-hydroxy-3-(4-sulfonaaffenyazo)fenylazo)-2-naftaleensulfonaat</td>
<td></td>
<td>419-460-2</td>
<td>120029-06-3</td>
<td>R52-53</td>
<td>R: 52/53</td>
<td>S: 61</td>
<td></td>
</tr>
<tr>
<td>607-470-00-1</td>
<td>kaliumsulfatium; 6,13-dichlore-3,10-bis(2-(4-(4-(2-hydroxyfenyloxynitrosofenyloxy)fenylamino)-6-(2,5-disulfonaaffenyloxy)fenylamino)-1,3,5-triazine-2-ylamino)jethylamino)-benzo(5,6)</td>
<td></td>
<td>414-100-0</td>
<td>-</td>
<td>Xi; R41</td>
<td>R: 41/52/53</td>
<td>S: 2-(4):22-26-61</td>
<td></td>
</tr>
<tr>
<td>607-472-00-2</td>
<td>ammonium ijzer(III)trimethylene diaminetetraacetaat hemihydraat</td>
<td></td>
<td>400-660-3</td>
<td>111687-36-6</td>
<td>N; R51-53</td>
<td>N</td>
<td>R: 51/53</td>
<td>S: 61</td>
</tr>
<tr>
<td>607-474-00-3</td>
<td>4c,4-(4-diethylaminobenzyldien-1-yl)-3-methyl-5-oxo-2-pyrazelin-1-</td>
<td></td>
<td>410-430-4</td>
<td>117573-89-4</td>
<td>R53</td>
<td>R: 53</td>
<td>S: 61</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>607-475-00-9</td>
<td>Mengsel (50/50) van: tetranatrium-7-(4-[4-chloor-6-methyl-(3-sulfonatofenyl)amino]-1,3,5-triazine-2-ylamino)-2-ureidofenylaazonaftaleen-1,3,6-trisulfonaat</td>
<td></td>
<td>412-940-2</td>
<td>148878-18-6</td>
<td>R43</td>
<td>Xi</td>
<td>R: 43</td>
<td>S: (2-)22-24-37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-476-00-4</td>
<td>trinaatrium-N,N-bis(carboxymethyl)-β-alanine</td>
<td></td>
<td>414-070-9</td>
<td>129050-62-0</td>
<td>C; R34</td>
<td>R52,53</td>
<td>C</td>
<td>R: 34-52/53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S: (1/2)-26-36/37/39-45-61</td>
<td></td>
</tr>
<tr>
<td>607-478-00-5</td>
<td>tetramethylammoniumborwasserstoff azaat</td>
<td></td>
<td>416-900-5</td>
<td>79723-02-7</td>
<td>T; R25</td>
<td>Xu, R48/22</td>
<td>N; R30</td>
<td>T: N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R: 25-48/22-50</td>
<td>S: (1/2)-125-36-45-61</td>
</tr>
<tr>
<td>607-479-00-0</td>
<td>hexadeccyl-4-chloor-3-[2-(5,5-dimethyl-2,4-dixo-1,3-oxazolidin-3-yl]-4,4-dimethyl-3-oxopentamido]benzoaat</td>
<td></td>
<td>418-550-9</td>
<td>166809-49-4</td>
<td>R53</td>
<td></td>
<td>R: 53</td>
<td>S: 61</td>
</tr>
<tr>
<td>607-480-00-6</td>
<td>1,2-benzeendicaarboxzuur di-C7-11-vertekte en lineaire alkylesters</td>
<td></td>
<td>271-084-6</td>
<td>68515-42-4</td>
<td>Repr. Cat. 2; R61</td>
<td>Repr. Cat. 3; R62</td>
<td>T</td>
<td>R: 61-62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S: 53-45</td>
<td></td>
</tr>
<tr>
<td>607-487-00-4</td>
<td>Mengsel van: dinatrium-4-(3-ethoxy carbonyl-4-(5-(3-ethoxy carbonyl)-3-hydroxy-1-(4-sulfonatofenyl)pyrazool-4-yl)penta-2,4-dienyldeen)-4,5-dihydro-5-oxopyrazool-1-ylbenzeensulfonaat</td>
<td></td>
<td>402 660-9</td>
<td>-</td>
<td>Repr. Cat.2; R61</td>
<td>R52,53</td>
<td>T</td>
<td>R: 61-52/53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S: 53-45-61</td>
<td></td>
</tr>
<tr>
<td>607-488-00-X</td>
<td>ethyl (2-acetylamino-5-fluor-4-isothiocyanatenoxy)acetat</td>
<td></td>
<td>414-210-9</td>
<td>147379-38-2</td>
<td>N; R50,53</td>
<td></td>
<td>N</td>
<td>R: 50/53</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>607-489-00-5</td>
<td>Mengsel van: 2-ethylhexylinoleaat, linoleaat en olein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-390-00-0</td>
<td>N-[2-hydroxy-3-(C12-16-alkyloxy)propyl]-N-methylglycincaat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-492-00-1</td>
<td>2-[(1,3,3-dimethyl-1-cyclohexyl)ethoxy]-2-methylpropylpropanoaat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-493-00-7</td>
<td>methyl-(3aR,4R,7aR)-2-methyl-4-(1S,2R,3-traceetoxypropyl)-3a,7a dihydro-4H-pyran[3,4-d]oxazole-6-carboxylaat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-494-00-2</td>
<td>bis(2-ethylhexyl)octylfosfoaat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-395-00-8</td>
<td>natrium 4-sulfofenyl-6-[(1-oxononyl)amino]hexanoaat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-396-00-3</td>
<td>2,2'-methylenebis(4,6-di-tert-butyfenyl)2-ethylhexylfosfiet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-497-00-9</td>
<td>cinnamoidioxidevooesteenaat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-598-00-1</td>
<td>(E)-3,7-dimethyl-2,6-octadienylhexadecanoaat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-399-00-X</td>
<td>bis(dimethyl-(2-hydroxyethyl)ammonium) 1,2-ethandiel-bis(2-hexadecenylsuccinaat)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-500-00-3</td>
<td>calcium 2,2-bis(5-tetrapropylen-2-hydroxy)fenyletheneaat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-501-00-9</td>
<td>Een mengsel van: trifenyliodosafaat en tertiaire gebutyleerde fenylderivaten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-502-00-4</td>
<td>(N-benzyl-N,N,N-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---------------------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>607-503-00-X</td>
<td>2,4,6-tri-n-propyl-2,4,6-trioxo-1,3,5,2,4,6-trioxsatriofuranacen</td>
<td></td>
<td>422-210-5</td>
<td>68957-94-8</td>
<td>C; R34</td>
<td>C; 34</td>
<td>(1/2)-26-36/37/39-45</td>
<td>61</td>
</tr>
<tr>
<td>607-505-00-0</td>
<td>pentanatrium 7-(4-(4-(5-amino-4-sulfonato-2-4-(2-(sulfonatoethoxy)sulfonil)fenylazoyl)fenylamino)-6-chloor-1,3,5-triazin-2-yl)amino-2-ureidofenylazonaftaaleen-1,3,6-trisulfonaat</td>
<td></td>
<td>422-930-1</td>
<td>171599-84-1</td>
<td>R52-53</td>
<td>R: 52/53</td>
<td>S: 22-61</td>
<td></td>
</tr>
<tr>
<td>607-506-00-6</td>
<td>Mengsel van: strontium 6-chloor-2-(4,5-dihydro-3-methyl-5-oxo-1-(3-sulfonatofenyl)-1H-pyrazolo-4-yl)azo)-5-methyl)benzeensulfonaat dinatrium-(4-chloor-2-(4,5-dihydro-3-methyl-5-oxo-1-(3-sulfonatofenyl)-1H-pyrazolo-4-yl)azo)-5-methyl)benzeensulfonaat</td>
<td></td>
<td>422-970-8</td>
<td>136248-04-9</td>
<td>N; R51-53</td>
<td>N; R: 51/53</td>
<td>S: 22-61</td>
<td></td>
</tr>
<tr>
<td>607-507-00-1</td>
<td>kalium, natrium 2,4-diamino-3-[4-(2-sulfonatoethoxy)sulfonil)fenylazo-1-5-[4-(2-sulfonatoethoxy)sulfonil)fenylazo-7-sulfonatofenylazo] benzeensulfonaat</td>
<td></td>
<td>422-980-2</td>
<td>187026-95-5</td>
<td>Xi; R41</td>
<td>Xi; R: 41</td>
<td>S: (2)-22-26-39</td>
<td></td>
</tr>
<tr>
<td>607-508-00-7</td>
<td>dinatrium 3,3'-[iminobis(sulfonil)-4,1-fenyleen (3-hydroxy-3-methylpyrazol-1,4-diy)azo-4,1-fenyleensulfonilminoo-(4-amino-6-hydroxyprimidine-2,5-diy)azo-4,1-fenyleensulfonilminoo-(4-amino-6-hydroxyprimidine-2,5-diy)azo]benzeensulfonaat</td>
<td></td>
<td>423-110-4</td>
<td>-</td>
<td>Xi; R41</td>
<td>Xi; R: 41</td>
<td>S: (2)-22-26-39</td>
<td></td>
</tr>
<tr>
<td>607-512-00-9</td>
<td>trinitrium 2,4-diamino-3,5-bis-[4-(2-sulfonatoethoxy)sulfonil)fenylazo]benzeensulfonaat</td>
<td></td>
<td>423-970-0</td>
<td>182926-43-8</td>
<td>R52-53</td>
<td>R: 52/53</td>
<td>S: 22-61</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>607-513-00-4</td>
<td>Een mengsel van: Trinitrium-4-benzoylamine-6-(6-ethene-sulfonyl-1-sulfatiazaauleen-2-ylazo)-5-hydroxy-nuzaauleen-2,7-disulfouzaaaur natriumzout van 5-(benzoatylamine)-4-hydroxy-3-((1-sulfato-6-(2-(sulfatexyethyl)sulfonyl)-2-naftyl)azonaazauleen 2,7-disulfouzaaaur</td>
<td>421-200-3</td>
<td>-</td>
<td>Xi; R41 R43 R52-53</td>
<td>Xi</td>
<td>N: R: 36-51/53</td>
<td>N: R: 22-26-36/37/39-61</td>
<td></td>
</tr>
<tr>
<td>607-515-00-5</td>
<td>Een mengsel van: Dinatriumhexyldifenyletherdisulfonaat</td>
<td>429-650-7</td>
<td>147732-60-3</td>
<td>Xi; R36 N; R51-53</td>
<td>Xi; N R: 36-51/53</td>
<td>S: R: 22-26-36/37/39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607-516-00-0</td>
<td>N,N'-bis(trifluoracetyl)-S,S'-bis-L-homoocysteine</td>
<td>429-670-6</td>
<td>105996-54-1</td>
<td>Xi; R41 R43</td>
<td>Xi</td>
<td>N: R: 41-43</td>
<td>S: (2)22-26-37/39</td>
<td></td>
</tr>
<tr>
<td>607-517-00-6</td>
<td>(S)-ß-(acenilthiobenzalcynproponouzaar</td>
<td>430-300-0</td>
<td>76932-17-7</td>
<td>Xi; R22 Xi; R41 R43</td>
<td>Xi</td>
<td>N: R: 22-41-43</td>
<td>S: (2)22-26-36/37/39</td>
<td></td>
</tr>
<tr>
<td>607-516-00-5</td>
<td>Cortap</td>
<td>-</td>
<td>1576-4-3</td>
<td>N: R50-53</td>
<td>N</td>
<td>R: 50/53</td>
<td>S: 60-61</td>
<td></td>
</tr>
<tr>
<td>607-527-00-0</td>
<td>Een mengsel van: L-((1'H,1'H,1'H,1'H-triecafluoroctyl)-12-(1'H,1'H,1'H,1'H-heptadecafluoroctyl)lodecaanidoaat l-((1'H,1'H,1'H,1'H-triecafluoroctyl)-12-(1'H,1'H,1'H,1'H-heptadecafluoroctyl)lodecaanidoaat</td>
<td>423-180-6</td>
<td>-</td>
<td>Xi; R48/22</td>
<td>Xi</td>
<td>N: R: 48-22</td>
<td>S: (2)36</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>608-031-00-7</td>
<td>2-benzyl-2-methyl-3-butenitril</td>
<td>-</td>
<td>407-870-4</td>
<td>97584-48-0</td>
<td>Xn; R22</td>
<td>R: 22-52/53</td>
<td>S: (2)-36/41</td>
<td></td>
</tr>
<tr>
<td>608-034-00-3</td>
<td>chlorofenampr 4-broom 2-(4-chloorfenyl)-1- ethoxy methyl-5-trifluoromethylpyrrol-3-carbonitril</td>
<td>-</td>
<td>122453-73-0</td>
<td>T; R23</td>
<td>T; N</td>
<td>R: 22-33-50/53</td>
<td>S: (1/-13-35)/37-45/ 60-61</td>
<td></td>
</tr>
<tr>
<td>608-035-00-9</td>
<td>(+)-x-[2-acetyl-5-methylfenyl]- amin0-2,6-dichloorbenzen- azo-nitril</td>
<td>-</td>
<td>419-290-9</td>
<td>-</td>
<td>R43</td>
<td>R53</td>
<td>Xn</td>
<td>R: 43-53</td>
</tr>
<tr>
<td>608-036-00-4</td>
<td>3-[(2-4-12-(4- cyanofenyl)vinyl]fenyl]vinylben zonitril</td>
<td>-</td>
<td>419-060-8</td>
<td>79026-02-1</td>
<td>R 53</td>
<td>-</td>
<td>R: 53</td>
<td>S: 61</td>
</tr>
<tr>
<td>608-038-00-5</td>
<td>2,2,4-trimethyl-4- fenybutaanitril</td>
<td>-</td>
<td>422-580-8</td>
<td>75490-39-0</td>
<td>Xn; R22</td>
<td>N; R51-53</td>
<td>Xn; N</td>
<td>R: 22-51/53</td>
</tr>
<tr>
<td>608-039-00-0</td>
<td>2-fenyhexaamontil</td>
<td>-</td>
<td>423-460-8</td>
<td>3508-98-3</td>
<td>Xn; R22</td>
<td>N; R50-53</td>
<td>Xn; N</td>
<td>R: 22-50/53</td>
</tr>
<tr>
<td>608-040-00-6</td>
<td>4,4'-dithiobi(5-amin0-1-(2,6- dichloor-4-(trifluormethyl)fenyl)-</td>
<td>-</td>
<td>423-490-1</td>
<td>130755-46-3</td>
<td>N; R50-53</td>
<td>N</td>
<td>R: 50/53</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------------------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>608-041-00-1</td>
<td>4-[((2-buty1-4-oxo-1,3- diazaspicro[4,4][non-1-een-3- yt]methyl)(1,1'-bifeny1)-2- carbonitril)</td>
<td></td>
<td>423-500-4</td>
<td>138401-24-8</td>
<td>N; R50-53</td>
<td>N; R: 50/53; S: 60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>608-043-00-2</td>
<td>3-(cis-3-hexenyloxy)propaanitril</td>
<td></td>
<td>415 220-6</td>
<td>142653-61-0</td>
<td>T; R23; Xnr; R22; N; R50-53</td>
<td>T; N; R: 22-23-50/53; S: (1/2)-13-36/37-45-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609-064-00-X</td>
<td>mesotrion</td>
<td></td>
<td></td>
<td>1041206-82-8</td>
<td>N; R50-53</td>
<td>N; R: 50/53; S: 60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609-066-00-0</td>
<td>lithiummormium-3-amino-10-(4- (10-amino-6,13-dichloor-4,11- disulfonaatbenz[5,6][1,4]oxazino) 2,3-b) triazin-2-ylamino]-6- [methyl-(2-sulfonaatethyl)amino]-1,3,5-triazine-2-ylamino]-6,13- dichloorbenz[5,6][1,4]oxazino[2,3-b]fenoxazin-4,11-disulfonaat</td>
<td></td>
<td>418-870-9</td>
<td>154212-58-5</td>
<td>Xnr; R:20/21/22-68/20/21/22</td>
<td>Xnr; R: 20/21/22-68/20/21/22</td>
<td>(2-)36/37</td>
<td></td>
</tr>
<tr>
<td>609-067-00-6</td>
<td>natrium- en kalium-4-(3- aminopropylamino)-2,6-bis[3-(4- methoxy-2-sulfenylazo)-4- hydroxy-2-sulfo-7-nitroazinylamino]-1,3,5-triazine</td>
<td></td>
<td>416-280-6</td>
<td>156769-97-0</td>
<td>R 43</td>
<td>R: 43; S: (2-)22-24-37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609-068-00-1</td>
<td>muskus-xyleen</td>
<td></td>
<td>201 329-4</td>
<td>81 15-2</td>
<td>Carc. Cat. 3; R:40</td>
<td>R; R:3; N; R50-53</td>
<td>E; Xnr; N; R: 2-50/53; S: (2)-36/37-46-60-61</td>
<td></td>
</tr>
<tr>
<td>609-070-00-2</td>
<td>1,4-dichloor-2-(1,2,3,3,3- hexafluorpropoxy)-5- nitrobenzenenz</td>
<td></td>
<td>415-580-4</td>
<td>130841-23-5</td>
<td>Xnr; R22; R 43; N; R50-53</td>
<td>Xnr; N; R: 22-43-50/53; S: (2)-36/37-39-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609-071-00-8</td>
<td>Een mengsel van 2- methylsulfanyl-4,4,6-bis-(2- hydroxy-4-methoxyfenyl)-1,3,5- triazine-2-(4,6-bis-methylsulfanyl-1,3,5- triazin-2-yl)-5-methoxyfenol</td>
<td></td>
<td>423-520-3</td>
<td>156137-33-6</td>
<td>R43</td>
<td>R: 43; S: (2-)22-24-37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-099-00-0</td>
<td>(methylidenbis[4,1-fenylenazono[1- (3-(dimethylaminopropyl)-1,2- dithiroydro-6-hydroxy-4-methyl-2- oxopyridine-5,3-diy]])-1,1- dipyridimundichloridethydrocl</td>
<td></td>
<td>401-500-5</td>
<td>-</td>
<td>Carc. Cat.2; R45; N; R51-53</td>
<td>T; N; R: 45-51/53; S: 53-45-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>611-100-00-4</td>
<td>kaliummatrium-3,3′-(3(of64)-methil-1,2-fenyleenbis(minot(6-chloor)-1,3,5-triazine-4,2-diylminot2-acetamido-5-methoxy)-4,1-fenyleenazo)dinafloaleen-1,5-disulfonaat</td>
<td></td>
<td>403-810-6</td>
<td>140876-13-7</td>
<td>Xi; R41</td>
<td>Xi R: 41</td>
<td>S: (2-326-39)</td>
<td></td>
</tr>
<tr>
<td>611-101-00-X</td>
<td>2′-(4-chloor-3-cyaan-5-formyl-1,2-thiénylenazo)-5-diethylaminosceetanilide</td>
<td></td>
<td>405-200-5</td>
<td>104366-25-8</td>
<td>R43</td>
<td>Xi R: 43</td>
<td>S: (2-224-24-37)</td>
<td></td>
</tr>
<tr>
<td>611-103-00-0</td>
<td>trinitrium (1-(3-carboxylato-2-oxido-5-sulfonatofenylenazo)-5-hydroxy-7-sulfonatofenylenazo-2-amido)nichel(II)</td>
<td></td>
<td>407-110-1</td>
<td>-</td>
<td>Xi; R41</td>
<td>R 43; N: RS1-53;</td>
<td>Xi; N R: 41-43-51/53; S:(2-242-37/39-61)</td>
<td></td>
</tr>
<tr>
<td>611-104-00-6</td>
<td>Mengsel van: trinitrium-(2,4(af 2,6 af 4,6)-bis(3,5-dinitro-2-oxidoferenylazo)-5-hydroxyfenolato)(2(af 4 af 6)- (3,5 dinitro-2-oxidoferenylazo)-5-hydroxy-4(af 2 af 6)-4(4-nitro-2-sulfonatofenolato)fenolato of)erraat(1-); trinitrium-bis(2,4(af 2,6 af 4,6)-bis(3,5 dinitro-2-oxidoferenylazo)-5-hydroxyfenolato)erraat(1-); trinitrium-(2,4(af 2,6 af 4,6)-bis(3,5-dinitro-2-oxidoferenylazo)-5-hydroxyfenolato)(2(af 4 af 6)-(3,5-dinitro-2-oxidoferenylazo)-5-hydroxy-4(af 2 af 6)-(4-nitro-2-sulfonatofenolato)fenolato)erraat(1-); trinitrium-(2,4(af 2,6 af 4,6)-bis(3,5-dinitro-2-oxidoferenylazo)-5-hydroxyfenolato)(2(af 4 af 6)-(3,5-dinitro-2-oxidoferenylazo)-5-hydroxy-4(af 2 af 6)-(3,5-sulfonatofenolato)fenolato)erraat(1-); dinatrium 3,3′-(2,4-dihydroxy-1,3(af 1,3 af 3,5)-fenyleendiazio)dibenzeesulfonaat</td>
<td></td>
<td>406-870-1</td>
<td>-</td>
<td>R 43; N: RS1-53;</td>
<td>Xi; N R: 43-51/53;</td>
<td>S: (2-242-37-61)</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>611-106-00-7</td>
<td>hexanatrium-4,6-di(hydroxy-3,3'-bis[2-sulfonato-4-(4-sulfonatofenylazo)-fenylazo]-7,7'[p-fenyleenbis][minino(6-chloor-1,3,5-triazine-4,2-diyl)iminoo]dinaftaene)-2-sulfonaat</td>
<td></td>
<td>410-180-6</td>
<td>-</td>
<td>Xi; R 41</td>
<td>Xi</td>
<td>R: 43; S: (2-)22-24-37; 61</td>
<td></td>
</tr>
<tr>
<td>611-107-00-2</td>
<td>kaliun natrium 4-(4-chloor-6-(3,6-disulfonato-7,5,8-disulfonato-sulfaleen-2-ylazo)-8-hydroxy-nafthaene-1-ylmino)-1,3,5-triazen-2-ylmino)-5-hydroxy-6(4-(2-sulfato-ethaanalsulfonflyl)-fenylazo)-nafthaene-1,7-disulfonaat</td>
<td></td>
<td>412-490-7</td>
<td>-</td>
<td>R 43</td>
<td>Xi</td>
<td>R: 43; S: (2-)22-24-37</td>
<td></td>
</tr>
<tr>
<td>611-108-00-8</td>
<td>dinatrium-5-((4-(4-chloor-3-sulfonatofenylazo)-1-nafthylazo)-8(fenylamino)-1-nathaleensulfonaat</td>
<td></td>
<td>413-600-6</td>
<td>6527-62-4</td>
<td>R 52-53</td>
<td>R: 52/53; S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-109-00-3</td>
<td>Reactieprodukten van: koper(I)sulfat en tetranatrium-2,4-bis(6-(2-methoxy-5-sulfonatofenylazo)-5-hydroxy-7-sulfonato-2-nafthylamino)-6-(2-hydroxyetylelamino)-1,3,5-triazen-2(l)</td>
<td></td>
<td>407-710-3</td>
<td>-</td>
<td>N; R 51-53</td>
<td>N</td>
<td>R: 51/53; S: 61</td>
<td></td>
</tr>
<tr>
<td>611-110-00-9</td>
<td>tetra-natrium/lithium-4,4'-bis-(8-amino-3,5-disulfonato-1-naftol-2-ylazo)-3-methylazobenzeen</td>
<td></td>
<td>408-210-8</td>
<td>124605-82-9</td>
<td>R 43; N; R 51-53</td>
<td>Xi; N</td>
<td>R: 43; S: (2-)24-28-37; 61</td>
<td></td>
</tr>
<tr>
<td>611-111-00-4</td>
<td>dinatrium-2-(4-(4-chloor-1-sulfato-3-cummylsulfonfly)feyl)-5-(2-hydroxy-5-sulfato-3-cummylsulfonfly)-fenylazo)-4-sulfobenzoxo(3)cupraat(1-)</td>
<td></td>
<td>414-230-8</td>
<td>-</td>
<td>R 43</td>
<td>Xi</td>
<td>R: 43; S: (2-)22-24-37</td>
<td></td>
</tr>
<tr>
<td>611-112-00-X</td>
<td>tetranatrium-4-hydroxy-5-[4-[3-2-sulfatethaanalsulfonflyfeylaminio-[6-morfolin-4-yl]-1,3,5-triazen-2-]</td>
<td></td>
<td>413-070-6</td>
<td>-</td>
<td>R 43</td>
<td>Xi</td>
<td>R: 43; S: (2-)22-24-37</td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>611-113-00-5</td>
<td>lithium natrium (2-((5-((2,5- dichloofeny1)azo)-2- hydroxyfenyl)methylamino)benzotriazol-2-yl)methyl-5-oxo-1-fenyl-1H-pyrazool-4-ylazo)-5-sulfofenzoato(3-)) chromaat(2-)</td>
<td>414-280-0</td>
<td>149626-00-6</td>
<td>N; R51-53</td>
<td>N; R: 51/53 S: 24/25-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-114-00-0</td>
<td>lithium natrium (4-((5-chloor-2-hydroxyfenyl)azo)-2,4-dihydro-5-methyl-3H-pyrazool-3-onato(2-))((3-((4,5-dihydro-2-methyl-1,4-methylfenyl)-5-oxo-1H-pyrazool-4-ylazo)-4-hydroxy-5-nitrobenzensulfonato(3-)) chromaat(2-)</td>
<td>414-250-7</td>
<td>149564-66-9</td>
<td>Xn; R22 Xr; R41 R 52-53</td>
<td>Xn R: 22-41-52/53 S: (2-222-26-39-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-115-00-6</td>
<td>trilithiumbis(4-((4- (diethylamino)-2- hydroxyfenyl)azo)-3-hydroxy-1-nafteleensulfonato(3-))chromaat(3-)</td>
<td>414-290-5</td>
<td>149564-65-8</td>
<td>Xn; R22 R 52-53</td>
<td>Xn R: 22-52/53 S: (2-222-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-116-00-1</td>
<td>Een mengsel van trinitrium 5- (4-chloor-6-[(2,6-dichloof-5-cyanopyrimidin-4-ylamino)propylamino]-1,3,5-triazin-2-ylamino]4-hydroxy-3-(1-sulfononaftaleen-2-ylano)naftaleen 2,7-disulfonaat trinitrium 5-[(4-chloor-6-2][2,6-dichloof-5-cyanopyrimidin-4-ylamino]-1-methylethylamino]-1,3,5-triazin-2-ylamino]-4-hydroxy-3-(1-sulfononaftaleen-2-ylazo)naftaleen 2,7-disulfonaat trinitrium 5-[(4-chloor-6)-2][2,6- dichloor-5-cyanopyrimidin-2-ylamino]propylamino]-1,3,5-triazin-2-ylamino]-4-hydroxy-3-(1-sulfononaftaleen-2-ylazo)naftaleen 2,7-disulfonaat trinitrium 5-[(4-chloor-6)-2][2,4,6- dichloor-5-cyanopyrimidin-2-ylamino]propylamino]-1,3,5-triazin-2-ylamino]-4-hydroxy-3-(1-sulfononaftaleen-2-ylazo)naftaleen 2,7-disulfonaat</td>
<td>414-620-8</td>
<td>-</td>
<td>Xr; R41 R 43</td>
<td>Xr R: 41-43 S: (2-222-24-26-37/39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemicale naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>611-117-00-7</td>
<td>1,3-bis(6-fluor-4-[1,5-disulfo-4-(3-aminocarbonyl-1-ethyl-6-hydroxy-4-methyl-pyrid-2-carboxylato)phenyl]-2-yminio]-1,3,5-triazin-2-ylamino)-propaan, lithium/natriumzout</td>
<td>415-100-3</td>
<td>149850-29-3</td>
<td>R 43</td>
<td>Xi R: 43 S: (2)22-24-37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-118-00-2</td>
<td>natrium 1,2-bis{4-[4-(4-sulfophenylazo)-2-sulfophenylazo]-2-amido-fenylamino}-6-fluor-1,3,5-triazin-2-ylamino)-propaan, natriumzout</td>
<td>413-990-8</td>
<td>149850-31-7</td>
<td>R 43</td>
<td>Xi R: 43 S: (2)22-24-37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-119-00-8</td>
<td>tetranatrium 4-[4-cloor-6-[4-methyl-2-sulfophenylamino]-1,3,5-triazin-2-ylamino]-6-[4,4-dimethyl-2-sulfophenylazo]-5-hydroxy-nafalene-2,7-disulfonaat</td>
<td>415-400-4</td>
<td>148878-22-2</td>
<td>Xi; R41 R 43</td>
<td>Xi R: 41-43 S: (2)22-24-26-37/39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-120-00-3</td>
<td>5-{-4-[5-amino-2-[4-(2-sulfophenyldifluoryl)phenylazo]-4-sulfophenylamino]-6-chloor-1,3,5-triazin-2-ylamino]-4-hydroxy-3-(1-sulfo-nafalene-2-yloxy)-nafalene-2,7-disulfonzuur, natriumzout</td>
<td>418-340-7</td>
<td>157707-94-3</td>
<td>Xi; R41 R 52-53</td>
<td>Xi R: 41-52/53 S: (2)22-26-39-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-121-00-9</td>
<td>Hoofdcomponent 6 (isomeer): asym. 1,2 Cr(III)-complex van: A: 3-hydroxy-4-[2-hydroxy-nafalene-1-ylazo]-nafalene-1-sulfoxzuur, Na-zout en B: 1-[2-hydroxy-5-(4-methoxyfenylazo)-fenylazo]-nafalene-2-ol Hoofdcomponent 8 (isomeer): asym. 1,2 Cr-complex van: A: 3-hydroxy-4-[2-hydroxy-nafalene-1-ylazo]-nafalene-1-sulfoxzuur, Na-zout en B: 1-[2-hydroxy-5-(4-methoxyfenylazo)-fenylazo]-nafalene-2-ol</td>
<td>417-280-9</td>
<td>30785-74-1</td>
<td>Xi; R41 N; R50-53</td>
<td>Xi; N R: 11-50/53 S: (2)26-39-60/61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-122-00-4</td>
<td>hexanatrium (di)-N-[3-(4-[5-amino-3-methyl-1-phenylpyrazo-4 ylazo]-2,4-disulfo-nafaline-6-chloor-1,3,5-triazin-2-ylamino]-fenyl)-</td>
<td>417-250-5</td>
<td>151436-99-6</td>
<td>Xi; R41 R 43</td>
<td>Xi R: 41-43 S: (2)22-24-26-37/39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>611-123-00-X</td>
<td>3-(2,4-bis-(4-(5-(4,6-bis(2-aminopropanylamino)-1,3,5-triazin-2-ylamino)-4-hydroxy-2,7-disulfonaftalen-3-ylazo)fenylamino)-1,3,5-triazin-6-ylamino)propyldiethylammonium lactaat</td>
<td>424-310-4</td>
<td>178452-66-9</td>
<td>Xi; R41</td>
<td>Xi R: 41 S: (2-)26-39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-124-00-5</td>
<td>Een mengsel van: pentanatrium 5-amino-3-(5-(14-chloor-6-14-(2-sulfoxyethoxy)sulfonato)fenylamino)-1,3,5-triazin-2-ylamino)-2-sulfonatofenylazo)-6-(2,3-dibromo-propionylamino)-2-sulfonatofenylazo)-4-hydroxyanaftalen-2,7-disulfonaat pentanatrium 5-amino-6-(2-broonacryloylamino)-2-sulfonatofenylazo)-3-(5-(14-chloor-6-14-(2-sulfoxyethoxy)sulfonato)fenylamino)-1,3,5-triazin-2-ylamino)-2-sulfonatofenylazo)-4-hydroxyanaftalen-2,7-disulfonaat tetrnanatrium 5-amino-3-(15-(14-chloor-6-14-(vinylsulfonyl)fenylamino)-1,3,5-triazin-2-ylamino)-2-sulfonatofenylazo)-6-(2,3-dibromo-propionylamino)-2-sulfonatofenylazo)-4-hydroxyanaftalen-2,7-disulfonaat</td>
<td>424-320-9</td>
<td>180778-23-8</td>
<td>Xi; R41 N; R51-53</td>
<td>Xi; N R: 41-51/53 S: (2-)26-39-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-125-00-0</td>
<td>Een mengsel van: dinatrium 4-(18-oxido-7-(2-oxido-4-ethenylsulfonyl)-5-(methoxyfenylazo)-6-sulfonatanaftalen-2-ylazo)-5-oxo-1-(4-sulfonatofenyli)-4,5-dihydro-1H-pyrazool-3-carbonzuur koper (II) complex dinatrium 4-(18-oxido-7-(2-oxido-4-(2-hydroxyethysulfonyl)-5-(methoxyfenylazo)-6-sulfonatanaftalen-2-ylazo)-5-oxo-1-(4-sulfonatofenyli)-4,5-dihydro-1H-pyrazool-3-carbonzuur koper (II) complex</td>
<td>423 940-7</td>
<td>423 940-7</td>
<td>Xi; R41 N; R51-53</td>
<td>Xi; N R: 41-51/53 S: (2-)26-39-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>611-126-06-0</td>
<td>2,6-bis-(2-(4-(4-aminofenylnamino)-fenylazo)-1,3-dimethyl-3H-imidazo[4,5-c]pyrazol-3-carbonzuur koper (II) complex</td>
<td>424-120-1</td>
<td>17451-06-8</td>
<td>Xi: R41 N: R50-53</td>
<td>Xi: N R: 41-50/53 S: (2-)26-39/60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-127-00-1</td>
<td>pentanatrium 4-amino-6-(5-(4-(2-ethylfenylamino)-6-(2-sulfatoethaansulfonyl)-1,3,5-triazin-2-ylamino)-2-sulfonatofenylazo)-5-hydroxy-3-(4-(2-sulfatoethaansulfonyl)fenylazo)naftalen 2,7-disulfonaat</td>
<td>423-790-2</td>
<td>-</td>
<td>R 5 X: R41 R 43 R 52-53</td>
<td>Xi R: 5-41-43-52/53 S: (2-)22-26-36/37/39-41-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-128-00-7</td>
<td>N,N'-bis[6-chloor-4-(6-(4-vinylsulfonato)fenylazo)-2,7-disulfonaart 5-hydroxy-4,1-ylaminol-1,3,5-triazin-2-yli-N-(2-hydroxyethyl)ethaan-1,2-diamine, natriumzout</td>
<td>419-500-9</td>
<td>171599-85-2</td>
<td>X: R41 R 43</td>
<td>Xi R: 41-43 S: (2-)22-24-26-37/39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-132-00-9</td>
<td>pentanatrium bis[7-[4-(1-boruyl-5-cyano)-1,2-dihydro-2-hydroxy-4-methyl-6-oxo-3</td>
<td>419-210-2</td>
<td>-</td>
<td>X: R41 R 52-53</td>
<td>X: R: 41-52/53 S: (2-)26-39-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>611-133-00-4</td>
<td>pyridylazo[1-fenylsulfonylarnino]-5'-nitro-3,3'-disulfonato[afalen)-2-azobenzen-1,2'-diolato]chroomaat (III)</td>
<td></td>
<td>419-260-5</td>
<td>-</td>
<td>Xi; R41 N; R51-53</td>
<td>Xi; N R: 41-51/53 S: (2-)26-39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-134-00-X</td>
<td>Product-by-process ijzercomplex van azo-kleurstoffen verkregen door koppeling van een mengsel van gedaartzperd 2-amino-1-hydroxybenzo-3-sulfanilide en 2-amino-1-hydroxybenzo-4-safonamide met resorcin, waarna het verkregen mengsel wordt onderworpen aan een tweede koppelingsexactie met een mengsel van gedaartzperd 3-aminobenzo-1-safonzuur (metanilzuur) en 4-amino-4-nitro-1,1'-difenyllamine-2-safonzuur en metalisatie met ferrichloride, natriumzout</td>
<td>trinitraat 2-[[2-hydroxy-3-[4-chloor-6-[[4-(2,3-dibrooompropionylarnino)-2-safonato)fenyllarnino]-1,3,5-triazin-2-ylarnino]-5-safonato[fenyllarnino]-benzyldienehydratino]-4-safonatobenzonzuur, kopercomplex</td>
<td>423-770-3</td>
<td>-</td>
<td>Xi; R41 N; R51-53</td>
<td>Xi; N R: 41-51/53 S: (2-)22-26-39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-135-00-5</td>
<td>Reactieproduct van: 2-[[4-amino-2-areidofenyllarnino]-5-[[2-(sulfoxy)ethyl]sulfonfyl][benzeen azafonzuur met 2,4,6-trifluoropyrimidine en partiële hydrolyse tot het overeenkomstige vinylsulfonylderivaat, gemengd kalium-natriumzout</td>
<td></td>
<td>424-250-9</td>
<td>-</td>
<td>Xi; R41 R52-53</td>
<td>Xi R: 41-52/53 S: (2-)26-39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-136-00-0</td>
<td>2-[[4-(2-ammoniospropionylarnino)-6-[4-hydroxy-3-[5-methyl-2-methoxy-4-sulfamoylphenylarnino]-2-safonatameth-7-ylarnino]-1,3,5-triazin-2-ylarnino]-2-ammoniospropionyl formaat</td>
<td></td>
<td>424-260-3</td>
<td>-</td>
<td>Repr.Cat.3; R62 Xi; R41 N; R51-53</td>
<td>Xiv; N R: 41-62-51/53 S: (2-)22-26-36/37/39-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>611-137-00-6</td>
<td>6-tet-butyl-7-chloor-3-tridecyl-</td>
<td></td>
<td>419-870-1</td>
<td>150038-16-1</td>
<td>R 53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>611-138-00-1</td>
<td>2-(4-aminofenyl)-6-tert-butyl-1H-pyrazolo[1,2,3-c]pyrazole</td>
<td>-</td>
<td>415-910-7</td>
<td>152826-25-6</td>
<td>R43 N R51-53</td>
<td>Xi N R 43-51/53 S 2-22-24-37-61</td>
<td>Ci >0,025 %: N R50/53 0,0025 % ≤ C < 0,025 %: N R51/53 0,00025 % ≤ C < 0,0025 %: R52/53</td>
<td></td>
</tr>
<tr>
<td>612-184-00-5</td>
<td>6'-[dibutylaminio]-3'-methyl-2'- (fenylaminio)spiro[so benzeoofuran -1(3H),9(9H)-xantheen]-3'-on</td>
<td>-</td>
<td>402-830-5</td>
<td>89331-94-2</td>
<td>R 52-53</td>
<td>N R 52/53 S 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-185-00-0</td>
<td>1 H-3-(4-(heptadecafluorononyloxy)- benzanilid)[propyl]-NNN- trimethylammoniumjodide</td>
<td>-</td>
<td>407-400-8</td>
<td>59493-72-0</td>
<td>Xi R41 N N R50-53</td>
<td>Xi N R 41-50/53 S 2-26-39-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-186-00-6</td>
<td>bis(N-(7-hydroxy-6-methyl-5-fenylfenazin 3-yliden)dimethylammonium)sulfate</td>
<td>-</td>
<td>406-770-8</td>
<td>149057-64-7</td>
<td>Xi R18/22 Xi R41 R 43 N R50-53</td>
<td>Xi N R 41-43 48/22 50/53 S 2-22-26-36(37)39-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-188-00-7</td>
<td>4,4'-9H-fluoreen-9-yliden)bis(2-chloraniline)</td>
<td>-</td>
<td>407-560-9</td>
<td>107934-68-9</td>
<td>N R51-53</td>
<td>N R 51/53 S 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-189-00-2</td>
<td>4-amino-2- (aminomethyl)fenoldihydrochloride</td>
<td>-</td>
<td>412-510-4</td>
<td>135043-64-0</td>
<td>Xi R22 R 43 N R50-53</td>
<td>Xi N R 22-43 50/53 S 2-22-24-37-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-190-00-8</td>
<td>4,4'-methylenebis(2-isopropyl-6- methylpyridine)</td>
<td>-</td>
<td>415-150-6</td>
<td>16298-38-7</td>
<td>Xi R18/22 N R51-53</td>
<td>Xi N R 48/22-51/53 S 2-26-36-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-191-00-3</td>
<td>Polymeer van allylaminmethyhydrochloride</td>
<td>-</td>
<td>415-050-2</td>
<td>71550-12-4</td>
<td>Xi R22 R 43</td>
<td>Xi N R 22-43 S 2-26-36/37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-192-00-9</td>
<td>2-isopropyl-4-(N-methyl)aminomethylthiazole</td>
<td>-</td>
<td>414-800-6</td>
<td>154212-60-9</td>
<td>Xi R21/22 Xi R38-41 N R51-53</td>
<td>Xi N R 21/22-38-41 51/53 S 2-26-36(37)39-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-193-00-4</td>
<td>3-methylaminomethylfenylamine</td>
<td>-</td>
<td>414-570-7</td>
<td>18759-96-1</td>
<td>Xi R21/22</td>
<td>C N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>612-191-00-0</td>
<td>2-hydroxy-3-([2-hydroxyethyl]-2,4,6-tri(oxetetraacyl)amino)ethylamino]-N,N,N-trimethyl-1-propaanammoniumchloride</td>
<td></td>
<td>414-670-0</td>
<td>141890-30-4</td>
<td></td>
<td>C; R34</td>
<td>R: 21/22-34-43-50/53</td>
<td>S: (1/2)-26-36/37/39-45-60-61</td>
</tr>
<tr>
<td>612-195-00-5</td>
<td>bis[tributyl(4-methylbenzyl)ammonium]-1,5-naftaleendisulfonaat</td>
<td></td>
<td>415-210-1</td>
<td>-</td>
<td></td>
<td>Xr; R22</td>
<td>R: 22-41-50/53</td>
<td>S: (2)-26-39-60-61</td>
</tr>
<tr>
<td>612-198-00-1</td>
<td>4,4-dithiodiamine [1] en zijn zouten</td>
<td>E</td>
<td>205-370-9</td>
<td>139-65-1</td>
<td></td>
<td>Carc.-Cat.2; R45 Xr; R22 N; R51-53</td>
<td>T; N R: 45-22-51/53 S: 53-45-61</td>
<td></td>
</tr>
<tr>
<td>612-199-00-7</td>
<td>4,4'-oxydiamine [1] en zijn zouten p-aminoxyloothor</td>
<td>E</td>
<td>202-977-0</td>
<td>101-80-4</td>
<td></td>
<td>Carc.-Cat.2; R45 Muta.-Cat.2; R46 Repro.-Cat.3; R62 T; R23/24/25 N; R51-53</td>
<td>T; N R: 45-46/23/24-25-62-51/53 S: 53-45-61</td>
<td></td>
</tr>
<tr>
<td>612-201-00-6</td>
<td>N,N,N'-tetramethyl-4,4'-methyleendiamine</td>
<td></td>
<td>202-959-2</td>
<td>101-61-1</td>
<td></td>
<td>Carc.-Cat.2; R45 N; R50-53</td>
<td>T; N R: 45-50/53 S: 53-45-60-61</td>
<td></td>
</tr>
<tr>
<td>612-202-00-1</td>
<td>3,4-dichlooramine</td>
<td></td>
<td>202-448-4</td>
<td>95-76-1</td>
<td></td>
<td>T; R23/24/25 Xr; R41 R43 N; R50-53</td>
<td>T; N R: 23/24/25-41-43-50/53 S: (1/2)-26-36/37/39-45-60-61</td>
<td></td>
</tr>
<tr>
<td>612-204-00-2</td>
<td>C.I. Basic Violet 3 4,4'-bis(dimethylamino)</td>
<td></td>
<td>208-953-6</td>
<td>548-62-9</td>
<td></td>
<td>Carc.-Cat.3; R40 Xr; R22</td>
<td>Xr; N R: 22-40-41-50/53</td>
<td></td>
</tr>
</tbody>
</table>

20.4.2004

Publicatieblad van de Europese Unie

L 132/130
<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota's voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota's voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>612-205-00-8</td>
<td>C.I. Basic Violet 3 met ≥ 0,1% Miecher's keton (EC nr. 202-027-5)</td>
<td>E</td>
<td>208-953-6</td>
<td>548-62-9</td>
<td>Carc. Cat.2; R45 Xn; R22 Xr; R41 N; R50-53</td>
<td>T; N R: 45-22-41-50/53 S: 53-45-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-206-00-3</td>
<td>farnoxadon 3-aniline-5-methyl-5-(4-fenoxyfenyl)-1,3-oxazolidine-2,4-dion</td>
<td>-</td>
<td>131807-57-3</td>
<td>Xn; R48/22 N; R50-53</td>
<td>Xn; N R: 48-22-50/53 S: (2-46-60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-209-00-X</td>
<td>6-methoxy-α-toluidine ρ-cresidine</td>
<td>E</td>
<td>204-419-1</td>
<td>120-71-8</td>
<td>Carc. Cat.2; R45 Xn; R22</td>
<td>T R: 45-22 S: 53-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-211-00-0</td>
<td>N-[(benzotriazole-1-yl)methyl]-4-carboxybenzoesulfonamide</td>
<td>416-470-9</td>
<td>-</td>
<td>Xn; R36 N; R51-53</td>
<td>Xn; N R: 36-51/53 S: (2-26-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-212-00-6</td>
<td>2,6-dichloor-4-trifluormethylamine</td>
<td>416-430-0</td>
<td>24279-39-8</td>
<td>Xn; R20/22 Xr; R38 R43 N; R50-53</td>
<td>Xn; N R: 20/22-38-43-50/53 S: (2-24-37-60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-213-00-1</td>
<td>isobutyldiën (2(2-isopropyl-4,4-dimethoxyazolidin-3-yl)-1,1-dimethyl)lamine</td>
<td>419-850-2</td>
<td>148348-13-4</td>
<td>C; R34 R52-53</td>
<td>C R: 34-52/53 S: (1/2)-23-26-36/37/39-45-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-215-00-2</td>
<td>3-chloor-2-isopropylthio)ami ne</td>
<td>421 700-6</td>
<td>179104-32-6</td>
<td>Xr; R38 N; R51-53</td>
<td>Xr; N R: 38-51/53 S: (2-237-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-217-00-3</td>
<td>1-methoxy-2-propylamine</td>
<td>422-550-4</td>
<td>37143-54-7</td>
<td>F; R11 C; R34 Xn; R22 R52-53</td>
<td>F; C R: 11-22-34-52/53 S: (1/2)-19-26-36/37/39-45-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-181-00-1</td>
<td>5,5-dimethyl-perhydro-pyrimidin-2-amin (4-(4-trifluormethylstazyryl)-)a- (4-</td>
<td>405-000-9</td>
<td>67485-29-4</td>
<td>T; R48/25 Xn; R22 Xr; R36</td>
<td>T; N R: 22-36-48/25-50/53 S: (1/2)-22-26-36/37-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---------------------</td>
<td>--------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>613-182-00-7</td>
<td>1-((1-naftylethyl)chinoliniumchloride</td>
<td>-</td>
<td>405-22-0-7</td>
<td>65322-65-8</td>
<td>Carc. Cat.3; R40</td>
<td>Xn; R: 23-18-0-41-52/53-68</td>
<td>S: (2) 22-26-36/37/39-61</td>
<td></td>
</tr>
<tr>
<td>613-183-00-2</td>
<td>Mengsel van: 5-(N-methylperfluorocyclohexanesulfonyl)-methyl-3-octadecyl-1,3-oxazolidin-2-on</td>
<td>-</td>
<td>413-640-4</td>
<td>-</td>
<td>Xn; R: 48/22</td>
<td>N; R50-53</td>
<td>Xn; N: R: 38/22-50/53</td>
<td>S: (2) 36-60-61</td>
</tr>
<tr>
<td>613-184-00-8</td>
<td>metiltriethylammoniumpropaan-2-ol-2-ethylhexaan</td>
<td>-</td>
<td>413-670-8</td>
<td>-</td>
<td>Xi; R: 36</td>
<td>R: 43</td>
<td>Xi; R: 36-43</td>
<td>S: (2) 24-26-37</td>
</tr>
<tr>
<td>613-185-00-3</td>
<td>3,3,5,6-tetrahydro-2-methyl-2H-cyclopenta[d]: 1,2 thiazol-3-on</td>
<td>-</td>
<td>407-630-9</td>
<td>82633-79-2</td>
<td>T; R: 25</td>
<td>Xi; R: 41</td>
<td>R: 43; N; R50-53</td>
<td>T; N: R: 25-41-43/50/53</td>
</tr>
<tr>
<td>613-186-00-9</td>
<td>(2R,3R):3-((R)-1-tert-butyldimethylsiloxy)ethyl)-4-oxaazetidin-2-ylactaat</td>
<td>-</td>
<td>408-050-9</td>
<td>76855-69-1</td>
<td>Xi; R: 36</td>
<td>R: 43; N; R51-53</td>
<td>Xi; N: R: 36-43-51/53</td>
<td>S: (2) 24-26-37-61</td>
</tr>
<tr>
<td>613-188 00 X</td>
<td>1-((1-fluorfenoxypyrapyl)-3 methoxy-4-piperidinon</td>
<td>-</td>
<td>411-500-7</td>
<td>116256-11-2</td>
<td>N; R: 23</td>
<td>Xi; R: 41</td>
<td>R: 43; N; R51-53</td>
<td>N; R: 22-41-43-51/53</td>
</tr>
<tr>
<td>613-189-00-5</td>
<td>1,4,7,10-tetraakis(p-toluenesulfonyl) 1,4,7,10-tetraazacyclododecaan</td>
<td>-</td>
<td>414-030-0</td>
<td>52667-88-8</td>
<td>R: 43; N; R50-53</td>
<td>Xi; N: R: 43-50/53</td>
<td>S: (2) 24-37-60-61</td>
<td></td>
</tr>
<tr>
<td>613-190-00-0</td>
<td>dinatrium 1-amino-4-(2-(5-chloor-6-fluor-pyrimidin-4-ylamino)methyl)-4-methyl-6-salphenylamino)-9,10-dioxo-9,10 dihydro-antraceen-2-sulfozaat</td>
<td>-</td>
<td>414-040-5</td>
<td>149530-93-8</td>
<td>Xi; R: 22</td>
<td>R: 43</td>
<td>Xi</td>
<td>R: 22-43</td>
</tr>
<tr>
<td>613-191-00-6</td>
<td>3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine</td>
<td>-</td>
<td>421-150-7</td>
<td>143860-04-2</td>
<td>Repr Cat.2; R60</td>
<td>C: R: 34</td>
<td>N; R50-53</td>
<td>T; N: R: 60-34-50/53</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-------------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>613-193-00-7</td>
<td>penta-1-{(dimethylammonio)propylsulfamoyl}-1-(6-hydroxy-4,8,8-tetramethyl-1,8-diazoniamidecaan-1,11-diyl)sulfamoyl)[(thiolscyanine koper(II)] heptalaactaat</td>
<td></td>
<td>414-930-3</td>
<td>-</td>
<td>N; R51-53</td>
<td>N</td>
<td>R: 51/53</td>
<td>S: 61</td>
</tr>
<tr>
<td>613-194-00-2</td>
<td>6,13-dichloor-3,10-bis-[2,14-fluor-6-(2-sulfenylamino)-1,3,5-triazin-2-ylamino]-propylamino][benzo[5,6][1,4]oxazin]-2,3-b,[fenoxazine-4,11-disulfonzuur, lithium-, natriumzout.</td>
<td></td>
<td>418-000-8</td>
<td>163062-28-0</td>
<td>Xi; R41</td>
<td>Xi</td>
<td>R: 41</td>
<td>S: (2)22-26-39</td>
</tr>
<tr>
<td>613-195-00-8</td>
<td>2,2-(1,4-fenyleen)bis[(4H-3,1-benzoazin-4-on)]</td>
<td></td>
<td>418-280-1</td>
<td>18600-59-4</td>
<td>R43</td>
<td>R53</td>
<td>Xi</td>
<td>R: 43-53</td>
</tr>
<tr>
<td>613-196-00-3</td>
<td>5-[(4-chloor-6-[[2-[(4-fluor-6-[[5-hydroxy-6-[4-methoxy-2-sulfenyl]azol]-7-sulfo-2-naftalenyl]amino]-1,3,5-triazin-2-yl]amino]-1-methylethyl]amino]-1,3,5-triazin-2-yl]amino]-3-[(4-ethoxybutyloxy)fenyl]azol]-4-hydroxy-naftalen-2,7-disulfonzuur, natriumzout</td>
<td></td>
<td>418-380-5</td>
<td>168113-78-8</td>
<td>Xi; R41</td>
<td>Xi</td>
<td>R: 41</td>
<td>S: (2)26-39</td>
</tr>
<tr>
<td>613-197-00-9</td>
<td>Mengsel van: 2,4,6-tri(butylicarboxyl)]-1,3,5-triazine 2,4,6-tri(methylcarbamoyl)]-1,3,5-triazine 2-butylicarboxyl)]-1,3,5-triazine (2,4-dibutyl-6-methyltricarboxamoyl)]-1,3,5-triazine</td>
<td></td>
<td>120-300-1</td>
<td>18757-17-16-2</td>
<td>R43</td>
<td>N; R51-53</td>
<td>Xi; N</td>
<td>R: 43-51/53</td>
</tr>
<tr>
<td>613-199-00-X</td>
<td>Mengsel van: 1,3,5-tris(3-aminomethylfenyl)]-1,3,5-(1H,3H,5H)-triazine 2,4,6-trion Mengsel van oligomeren van 3,5-bis(3-aminomethylfenyl)]-1-poly(3,5-bis(3-aminomethylfenyl)]-2,4,6-triexo-1,3,5-(1H,3H,5H)-triazin-1-yl</td>
<td></td>
<td>421-550-1</td>
<td>-</td>
<td>Carc. Cat.2; R45 Repr. Cat.2; R61 R53 R52-53</td>
<td>T</td>
<td>R: 45-61-43-52/53</td>
<td>S: 53-45-61</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>----------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>613-200-00-3</td>
<td>Reactieproduct van koper, (2H,3H)-dialoxaminato(2)-N29,N30,N31,N32)-chloorwavelzuur en 3-(2-sulfoxyethyl)sulfonyl)amine, natriumzouten</td>
<td>1,3,5-(1H,3H,5H)-triazine-2,4,6-trione</td>
<td>420-980-7</td>
<td>-</td>
<td>Xi; R41</td>
<td>Xi</td>
<td>R: 41</td>
<td>S: (2-)22-26-39</td>
</tr>
<tr>
<td>613-202-00-4</td>
<td>pymetroxine (R):4,5-dihydro-6-methyl-4-(3-pyridmethylennamino)-1,2,4-triazin 3(2H)-on</td>
<td>123312-89-0</td>
<td>-</td>
<td>-</td>
<td>Carc.Cat3; R40</td>
<td>R52-53</td>
<td>Xn; R: 40/52/53</td>
<td>S: (2-)36/37-61</td>
</tr>
<tr>
<td>613-204-00-5</td>
<td>oxadiargyl 3-(2,4-dichloor-5-(2-propoxyxylfenyl)-5-(1,1-dimethylhexyl)-1,3,1-oxadiazoool 2(3H)-on 5-tert-butyl-3-(2,4-dichloor-5-(prop-2-nyloxy)fenyl)-1,3,1-oxadiazoool 2(3H)-on</td>
<td>254-637-6</td>
<td>39807-15-3</td>
<td>-</td>
<td>Repr.Cat.3; R63</td>
<td>Xn; R48/22</td>
<td>Xn; N</td>
<td>R: 48/22-63-50/53</td>
</tr>
<tr>
<td>613-205-00-0</td>
<td>propiconazool (+)-1-[2-(2,4-dichloorfenyl)-4-propyl-1,3-dioxolaan-2-ylmethyl]-1H-1,2,4-triazool</td>
<td>262-104-4</td>
<td>60207-90-1</td>
<td>-</td>
<td>Xn; R22</td>
<td>R43; N; R50-53</td>
<td>Xn; N</td>
<td>R: 22-43-50/53</td>
</tr>
<tr>
<td>613-206-00-6</td>
<td>fenamidon (5S)-5-methyl-2-methylthio-5-fenyl-3-fenylamino-3,5-dihydroimidaazool-4-on</td>
<td>161326-34-7</td>
<td>-</td>
<td>-</td>
<td>N; R50-53</td>
<td>N</td>
<td>R: 50/53</td>
<td>S: 60/61</td>
</tr>
<tr>
<td>613-207-00-1</td>
<td>imazalibsaftaat, waterige oplossing 1-[2-(allyloxy)ethyl]-2-(2,4-</td>
<td>261-351-5</td>
<td>58594-72-2</td>
<td>-</td>
<td>Xn; R22</td>
<td>C; R34; R43</td>
<td>C; N</td>
<td>R: 22-34-43-50/53</td>
</tr>
<tr>
<td>613-208-00-0</td>
<td>fenamadrid</td>
<td>281-291-3</td>
<td>85918-57-4</td>
<td>-</td>
<td>-</td>
<td>N; R22-34-43-50/53</td>
<td>Xn; N; R22</td>
<td>C; R34; R43</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>613-208-00-7</td>
<td>imazamox</td>
<td>-</td>
<td>114311-32-9</td>
<td>N; R50-53</td>
<td>N</td>
<td>R: 50/53</td>
<td>38-41-43-50-53</td>
<td>25 % ≤ C ≤ 30 %: Xn; N; R22-41-43-50-53</td>
</tr>
<tr>
<td>613-209-00-2</td>
<td>cis-1-(3-chloorpropyl)-2,6-dimethyl-piperidine hydrochloride</td>
<td>417-430-3</td>
<td>63645-17-0</td>
<td>T; R25</td>
<td>N</td>
<td>R: 25-43-48/22-51/53</td>
<td>38-41-43-50-53</td>
<td>25 % ≤ C ≤ 30 %: Xn; N; R22-41-43-50-53</td>
</tr>
<tr>
<td>613-210-00-8</td>
<td>2-(3-chloorpropyl)-2,5,5-trimethyl-1,3-dioxaan</td>
<td>417-650-1</td>
<td>88128-57-8</td>
<td>Xn; R43/22</td>
<td>N; R51-53</td>
<td>N</td>
<td>38-41-43-50-53</td>
<td>25 % ≤ C ≤ 30 %: Xn; N; R22-41-43-50-53</td>
</tr>
<tr>
<td>613-211-00-3</td>
<td>N-methyl-4-(p-formylstyryl)pyridiniummethysulfonfylaat</td>
<td>418-240-3</td>
<td>74401-04-0</td>
<td>R43</td>
<td>N</td>
<td>R: 22-50/53</td>
<td>38-41-43-50-53</td>
<td>25 % ≤ C ≤ 30 %: Xn; N; R22-41-43-50-53</td>
</tr>
<tr>
<td>613-212-00-9</td>
<td>4-4-(2-ethylhexyloxy)fenyl</td>
<td>418-320-8</td>
<td>133467-41-1</td>
<td>Xn; R22</td>
<td>N; R50-53</td>
<td>N</td>
<td>38-41-43-50-53</td>
<td>25 % ≤ C ≤ 30 %: Xn; N; R22-41-43-50-53</td>
</tr>
<tr>
<td>613-213-00-4</td>
<td>cis-1-benzoyl-4-[4-methylsulfonyloxy]-1-proline</td>
<td>416-040-0</td>
<td>120807-02-5</td>
<td>R52-53</td>
<td>R</td>
<td>52/53</td>
<td>38-41-43-50-53</td>
<td>25 % ≤ C ≤ 30 %: Xn; N; R22-41-43-50-53</td>
</tr>
<tr>
<td>613-214-00-X</td>
<td>N,N-di-n-butyl-2-(1,2-dihydroxy-6-isopropyl-2-chinolyldeenen)-1,3-dioxaandaan-5-carbonsuurde</td>
<td>416-260-7</td>
<td>147613-95-4</td>
<td>R53</td>
<td>R</td>
<td>53</td>
<td>38-41-43-50-53</td>
<td>25 % ≤ C ≤ 30 %: Xn; N; R22-41-43-50-53</td>
</tr>
<tr>
<td>613-215-00-5</td>
<td>2-chloormethyl-3,4-dimethoxy-pyridiniumchloride</td>
<td>416-440-5</td>
<td>72830-09-2</td>
<td>Xn; R21/22-48/22</td>
<td>N; R51-53</td>
<td>N</td>
<td>38-41-43-50-53</td>
<td>25 % ≤ C ≤ 30 %: Xn; N; R22-41-43-50-53</td>
</tr>
<tr>
<td>613-216-00-0</td>
<td>6-tert-butyl-7-(6-diethylamino-2-methylen-3-pyridyliminoo)-3-(3-methyl-phenyl)pyrazolo[3,2- c][1,2,4]triazole</td>
<td>416-490-8</td>
<td>-</td>
<td>N; R50-53</td>
<td>N</td>
<td>R: 50/53</td>
<td>38-41-43-50-53</td>
<td>25 % ≤ C ≤ 30 %: Xn; N; R22-41-43-50-53</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>613-217-00-6</td>
<td>4-[(3,5-di-tert-butyl-4-hydroxyfenyl)propionyloxy]-1-[2,1,3]-(3,5-di-tert-butyl-4-hydroxyfenyl)propionyloxy[ethyl]-2,2,6,6-tetramethylpipеридине</td>
<td></td>
<td>416-770-4</td>
<td>73754-27-5</td>
<td>R 53</td>
<td>R: 53 N: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-218-00-1</td>
<td>6-hydroxyindool</td>
<td></td>
<td>417-020-4</td>
<td>2380-86-1</td>
<td>Xn; R:22 Xr: R:41 R:43 N: R:51-53</td>
<td>Xn; N R: 22-41-43-51/53 S: (2-24-26-37/59-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-219-00-7</td>
<td>7a-ethyl-3,5-bis(1-methylthethyl)-2,3,4,5-tetrahydroazazolo[3,4-c]-2,3,4,5-tetrahydroazazol</td>
<td></td>
<td>417-140-7</td>
<td>79185-77-6</td>
<td>Xn; R:38 N: R:51-53</td>
<td>Xn; N R: 38-51/53 S: (2-37-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-220-00-2</td>
<td>trans-4(5,6H)-5,6-dihydro 6-methyl-4H-thieno[2,3-b]thiopyraan-4-ol, 7,7-dioxide</td>
<td></td>
<td>417-290-3</td>
<td>147086-81-5</td>
<td>Xn; R:22 R: 22 S: (2-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-221-00-8</td>
<td>2-chloor-5-methylpyridine</td>
<td></td>
<td>418-050-0</td>
<td>18368-64-4</td>
<td>Xn; R:21/22 Xr: R:38 R:52-53</td>
<td>Xn R: 21/22-38-51/53 S: (2-23-25-36/37-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-222-00-3</td>
<td>4-(1-oxo-2-propenyl)-merfoline</td>
<td></td>
<td>418-140-1</td>
<td>5117-12-4</td>
<td>Xn; R:22-48/22 Xr: R:41 R:43 R: 22-41-43-48/22 S: (2-23-26-37/39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-223-00-9</td>
<td>N-isopropyl-3-[4-fluorfenyl]-1H-indol</td>
<td></td>
<td>418-790-4</td>
<td>93057-49-4</td>
<td>R 53</td>
<td>R: 53 S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-224-00-4</td>
<td>2,5 dimethoxipropylethyl-1,4 diethaan</td>
<td></td>
<td>419-770-8</td>
<td>136122-15-1</td>
<td>Xn; R:22 C: R:34 R:43 N: R:50-53</td>
<td>C; N R: 22-34-43-50/53 S: (1/2-126-36/37/39-45-60/61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-225-00-X</td>
<td>Een mengsel van;2-(antraquinon-1-yamine)-6-[(5-benzoylamino)-antraquinon-1-yaminoo-4-feny]-1,3,5-triazine 2,6-bis-[6-benzoylamino]-antraquinon-1 yaminoo-4-feny]-1,3,5-triazine.</td>
<td></td>
<td>421-290-9</td>
<td>-</td>
<td>Xn; R:48/22 R:53</td>
<td>Xn R: 48/22 S: (2-22-36-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-226-00-5</td>
<td>1-{2-(ethyl)4-(4-(4-(4-(4-(ethyl)-2-pyridinoethyl)amino)-2-methylfenylazo)benzoylamino)-fenylazo-3-methylfenylamino}ethylpyridiniun iodide</td>
<td></td>
<td>420-950-3</td>
<td>163831-67-2</td>
<td>Xr: R:41 N: R:50-53</td>
<td>Xr; N R: 41-50/53 S: (2-26-39-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>613-227-00-0</td>
<td>(+/-)-[R<sup>3</sup>,R<sup>4</sup>]-6-fluor-3,4-dihydro-2-oxiran-2H-1-benzopyraam</td>
<td>-</td>
<td>419-600-2</td>
<td>-</td>
<td>R: 43; N: R51-53</td>
<td>Xi; N</td>
<td>R: 43-51/53; S: 2-24-28-36-37-61</td>
<td></td>
</tr>
<tr>
<td>613-228-00-06</td>
<td>(+/-)-[R<sup>3</sup>,S<sup>4</sup>]-6-fluor-3,4-dihydro-2-oxiran-2H-1-benzopyraam</td>
<td>-</td>
<td>419-630-6</td>
<td>-</td>
<td>N: R51-53</td>
<td>N</td>
<td>R: 51/53; S: 24-61</td>
<td></td>
</tr>
<tr>
<td>613-230-00-7</td>
<td>Florafalam</td>
<td>-</td>
<td>145701-23-1</td>
<td>N: R50-53</td>
<td>N</td>
<td>R: 50-53; S: 60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>613-233-00-3</td>
<td>4,4'-oxy-(bisnethyleen)-bis-1,3-dioxozaan</td>
<td>423-230-7</td>
<td>56552-15-9</td>
<td>Xi; R41</td>
<td>Xi</td>
<td>R: 41; S: 2-26-39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>614-028-00-1</td>
<td>Mengsel van: 2-ethylhexyloximo-D-glucopyranoside 2-ethylhexyl-di-D-glucopyranoside</td>
<td>414-420-0</td>
<td>-</td>
<td>Xi; R41</td>
<td>Xi</td>
<td>R: 41; S: 2-26-39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>614-029-00-7</td>
<td>Constitutionele isomeren van penta-O-allyl-β-D-fructofuranosyl α-D-glucopyranoside Constitutionele isomeren van hexa-O-allyl-β-D-fructofuranosyl α-D-glucopyranoside Constitutionele isomeren van hepta-O-allyl-β-D-fructofuranosyl α-D-glucopyranoside</td>
<td>419-640-0</td>
<td>68784-14-5</td>
<td>Xn; R22</td>
<td>Xn</td>
<td>R: 22; S: 2 ()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>615-030-00-5</td>
<td>alkali/zouten, alkali-aardzouten en andere zouten van thiocyaanzuur die niet elders in deze bijlage worden vermeld</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>Xn; R20/21/22 R32 R52-53</td>
<td>Xn</td>
<td>R: 20/21/22-32-52/53; S: 2-13-61</td>
<td></td>
</tr>
<tr>
<td>615-031-00-0</td>
<td>Thalliumzout van thiocyaanzuur</td>
<td>A</td>
<td>222-571-7</td>
<td>3535-84-0</td>
<td>Xn; R20/21/22 R32 N: R51-53</td>
<td>Xn</td>
<td>N R: 20/21/22-32-51/53; S: 2-13-61</td>
<td></td>
</tr>
<tr>
<td>615-032-00-6</td>
<td>Metaalzouten van thiocyaanzuur die niet elders in deze bijlage worden vermeld</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>Xn; R20/21/22 R32 N: R50-53</td>
<td>Xn</td>
<td>N R: 20/21/22-32-50/53; S: 2-13-60-61</td>
<td></td>
</tr>
<tr>
<td>616-092-00-6</td>
<td>Polymeerreactieproduct van</td>
<td>404-035-6</td>
<td>-</td>
<td>R: 43</td>
<td>Xi</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index No</th>
<th>chemische naam</th>
<th>Nota’s voor stoffen</th>
<th>EC No</th>
<th>CAS No</th>
<th>Indeling</th>
<th>Kenmerken</th>
<th>Concentratiegrenzen</th>
<th>Nota’s voor preparaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>616-093-00-1</td>
<td>Reaktieprodukten van: condensaat van aniline, tereftalaldehyde en o-toluïdine met maléïnezuuranihydride</td>
<td>406-620-1</td>
<td>129217-90-9</td>
<td>R 43</td>
<td>N; R51-53</td>
<td>Xi; N</td>
<td>R: 43-51/53</td>
<td>S: (2-24-37-61)</td>
</tr>
<tr>
<td>616-094-00-7</td>
<td>3,3’-dicyclohexyl-1,1’-methylenbis(4,1-fenyleen)diureum</td>
<td>406-370-3</td>
<td>58090-25-8</td>
<td>R 43</td>
<td>R 53</td>
<td>Xi</td>
<td>R: 43-53</td>
<td>S: (2-24-37-61)</td>
</tr>
<tr>
<td>616-095-00-2</td>
<td>3,3’-dioxidacetyl-1,1’-methylenbis(4,1-fenyleen)diureum</td>
<td>406-690-3</td>
<td>43136-14-7</td>
<td>R 53</td>
<td></td>
<td>R: 53</td>
<td>S: 61</td>
<td></td>
</tr>
<tr>
<td>616-096-00-8</td>
<td>N-(3-hexadecyloxy-2-hydroxyprop-1-y)-N-(2-hydroxyethyl)palmamide</td>
<td>408-110-4</td>
<td>110483-07-3</td>
<td>R 53</td>
<td></td>
<td>R: 53</td>
<td>S: 61</td>
<td></td>
</tr>
<tr>
<td>616-097-00-3</td>
<td>N,N’1,4-fenyleenbis(2-(2-methoxy-4-nitrofenylazo)-3-oxobutanamid</td>
<td>411-840-6</td>
<td>83372-55-8</td>
<td>R 53</td>
<td></td>
<td>R: 53</td>
<td>S: 61</td>
<td></td>
</tr>
<tr>
<td>616-098-00-9</td>
<td>1-[4-chloor-3-((2,2,3,3,3-pentfluorpropoxy)methyl)fenyl]-5-fenyl-1H-1,2,4-triaazool-3-carboxamid</td>
<td>411-750-7</td>
<td>119126-15-7</td>
<td>N; R51-53</td>
<td></td>
<td>N</td>
<td>R: 51/53</td>
<td>S: 61</td>
</tr>
<tr>
<td>616-099-00-4</td>
<td>2-[4-[4-(4-hydroxyfenyl)sulfonyl]fenoxyl-4,4-dimethyl-N-[5-[(methyl)sulfonyl]amino]-2,14-(1,1,3,3-tetramethylbutyl)fenoxy][fenyl]-3-oxopentaanamid</td>
<td>444-170-2</td>
<td>135937-20-1</td>
<td>R 53</td>
<td></td>
<td>R: 53</td>
<td>S: 61</td>
<td></td>
</tr>
<tr>
<td>616-100-00-8</td>
<td>1,3-dimethyl-1,3-bis(trimethylisofiyl)ureum</td>
<td>444-180-7</td>
<td>10218-17-4</td>
<td>Xu; R22</td>
<td>Xu; R38</td>
<td>Xu</td>
<td>R: 22-38</td>
<td>S: (2-26/37)</td>
</tr>
<tr>
<td>616-101-00-3</td>
<td>(S)-N-tert-buty-1,2,3,4-tetrahydro-3-isochinaolincarbonamid</td>
<td>414-600-9</td>
<td>149182-72-9</td>
<td>Xu; R22</td>
<td>R 52-53</td>
<td>Xu</td>
<td>R: 22-52/53</td>
<td>S: (2-26)</td>
</tr>
<tr>
<td>616-102-00-9</td>
<td>Een mengsel van: α-[3-(3-mercaptopropanoxy carbonylamin) methyl[fenylaminocarbonyl]-α-[3,4-mercaptopropanoxy carbonylamin</td>
<td>415-870-0</td>
<td>-</td>
<td>R 43</td>
<td>N; R51-53</td>
<td>Xi; N</td>
<td>R: 43-51/53</td>
<td>S: (2-36/37-61)</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------------------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>616-103-00-4</td>
<td>o-[methyl(fenylniminocarbonyloxy)-poly(oxyethylene-co-oxopyrrolene)] 1,2-(of 1,3,5-tliset)-mercaptooxpentamidin-methyl(fenylniminocarbonyloxy)-oxy-poly(oxyethylene-co-oxopyrrolene)]-3-(of 2-)propaol 1,2,5-tris[a-(3-mercaptooxpentamidin-methyl(fenylniminocarbonyloxy)]-oxy-poly(oxyethylene-co-oxopyrrolene)]-propaan</td>
<td></td>
<td>415-030-3</td>
<td>120298-38-6</td>
<td>R43; N; R50-53</td>
<td>XI; N R: 43-50/53 S: (2)24-37-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-104-00-X</td>
<td>(S,S)-trans-4-(acetylamino)-5,6-dihydro-6-methyl-7,7-dieno-4H-thienen-2,3-biisopiraam-2-sulfonamide</td>
<td></td>
<td>275-726-7</td>
<td>71626-11-4</td>
<td>N; R50-53</td>
<td>N R: 50/53 S: 60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-105-00-5</td>
<td>chloorturon 3-(3-chloor-o-poly)-1,1-dimethylureum</td>
<td></td>
<td>239-592-2</td>
<td>15545-48-9</td>
<td>Carc. Cat: 3; R40 Repr. Cat: 3; R63 N: R50-53</td>
<td>XI; N R: 46-63 50/53 S: (2)36/37-26-46-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-106-00-0</td>
<td>fenmedamfam (ISO) methyl 3-(3-methylcarbamoxyloxy)carbamilaat</td>
<td></td>
<td>237-199-0</td>
<td>13684-63-4</td>
<td>N; R50-53</td>
<td>N R: 50/53 S: 60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-108-00-1</td>
<td>joodsafronmethylaminatium</td>
<td></td>
<td>-</td>
<td>144550-36-7</td>
<td>N; R50-53</td>
<td>N R: 50/53 S: 60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-109-00-7</td>
<td>safsafruron 1-(4,6-dimethoxy pyrimidine-2-yl)-3-(2-ethylaminoimidazo[1,2-a]pyridine-4-yl)safronlureum</td>
<td></td>
<td>-</td>
<td>141776-32-1</td>
<td>N; R50-53</td>
<td>N R: 50/53 S: 60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-110-00-2</td>
<td>cyclanilide 1-(2,4-dichloorunilcarbonyloxy)cyclopropaunilcarbonuur</td>
<td></td>
<td>419-150-7</td>
<td>113136-77-9</td>
<td>Xyr: R22 N: R51-53</td>
<td>XI; N R: 22-51/53 S: (2)-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-111-00-8</td>
<td>fenhexamid</td>
<td></td>
<td>422-530-5</td>
<td>120633-17-8</td>
<td>N; R51-53</td>
<td>N R: 51/53 S: 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-112-00-3</td>
<td>oxasulfuron</td>
<td></td>
<td>-</td>
<td>144651-06-9</td>
<td>Xyr: R48/22</td>
<td>Xyr: N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>616-113-00-9</td>
<td>desmedifam ethyl-3-fenylcarbomylxoyfeny carbamate</td>
<td>oxetaan-3-yl-2-[4,6-dimethylpyrimidine-2-yl]- carbamoylsulfonyle]benzoate</td>
<td>237-198-5</td>
<td>13684-56-5</td>
<td>N; R50-53</td>
<td>R; 4022-50/53 S; (2)46-60-61</td>
<td>C ≥ 2,5 %; N; R50/53 0,25 % ≤ C < 2,5 %; N; R51/53 0,025 % ≤ C < 0,25 %; R52/53</td>
<td></td>
</tr>
<tr>
<td>616-114-00-4</td>
<td>doodecanamide, N,N-(997,1010-tetrahydro-997,1010-tetraoxo1,1-biantracen)-4,4-diybis</td>
<td>418-010-2</td>
<td>136897-58-0</td>
<td>R53</td>
<td>R; 53 S; 22-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-115-00-X</td>
<td>N-(3-acetyl-2-hydroxyfenyl)-4-(1-fenylbutoxy)benzamide</td>
<td>416-150-9</td>
<td>136450-06-1</td>
<td>R 53</td>
<td>R; 53 S; 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-116-00-5</td>
<td>N-(4-dimethylaminopyridinium)-3-methoxy-4-(1-methyl-5-nitroindol-3-yilmethy)-N-(o-tolyl)safonyl]benzamidaat</td>
<td>416-790-9</td>
<td>-</td>
<td>R 53</td>
<td>R; 53 S; 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-117-00-0</td>
<td>N-[2-(3-acetyl-5-nitrofenofen-2-ylo)]-5-diethylaminofenylecteetamide</td>
<td>416-860-9</td>
<td>-</td>
<td>Repr.Cat.3; R62 R43 N; R50-53</td>
<td>Xn; N R; 43-62-50/53 S; (2)22-36-37-60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-118-00-6</td>
<td>N-(2,6-dimethylfenyl)2-piperidinecarbouamide hydrochloride</td>
<td>417-950-0</td>
<td>65797-42-4</td>
<td>Xn; R22 R52-53</td>
<td>Xn R; 22-52/53 S; (2)22-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-119-00-1</td>
<td>2-(1 butyl 3,5 Dioso 2 fenyl (1,2,5-triazolin-4-yl)-4,4-dimethyl-3-exo-N-(2-methoxy-5-(2-(dodecyl-1-saftonyl)])propionylaminofenyl]-fenyl)-pentanamide</td>
<td>418-060-5</td>
<td>118020-93-2</td>
<td>R 53</td>
<td>R: 53 S: 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-120-00-7</td>
<td>Een mengsel van: N-(3-dimethylaminio-4-methylfenyl)-benzamide N-(3-dimethylaminio-2-methylfenyl)-benzamide N-(3-dimethylaminio-3-methylfenyl)-benzamide</td>
<td>420-600-1</td>
<td>-</td>
<td>Xn; R48/22 N; R51-53</td>
<td>Xn; N R; 48/22-51/53 S; (2)36/37-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-121-00-2</td>
<td>2,4-di(hydroxy-N-(2-methoxyfenyl)benzamide</td>
<td>419-090-1</td>
<td>129205-19-2</td>
<td>R 43 N; R51-53</td>
<td>Xn; N R; 43-51/53 S; (2)24-37-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-123-00-3</td>
<td>N-[3-[(4-diethylaminio)-2-</td>
<td>414-740-0</td>
<td>96141-86-5</td>
<td>N; R50-53</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>616-124-00-9</td>
<td>lithium-bis(trifluoromethyl)sulfonimid</td>
<td>415.300-0</td>
<td>90076-65-6</td>
<td>T; R24/25 C; R31 R 52-53</td>
<td>T; R: 24/25; 34; 52/53 S: (1/2)-22-26-36/37/39-45/61</td>
<td>S: 60/61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-125-00-4</td>
<td>3-cyan-N-(1,1-dimethylbutyl)androst-3,5-diene-17β-carboxamide</td>
<td>415.730-9</td>
<td>151338-11-3</td>
<td>N; R50-53</td>
<td>N</td>
<td>S: 60/61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-127-00-5</td>
<td>Een mengsel van: N,N'-ethaan-1,2-diylbis(decanamide) 12-hydroxy-N-[2-[1-oxodecyllamino]ethyl]octadecanamide N,N'-ethaan-1,2-diylbis(12-hydroxyoctadecanamide</td>
<td>430.050-2</td>
<td>-</td>
<td>R43 N; R51-53</td>
<td>X; N R: 43-51/53 S: (2)-24-37/64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-128-00-0</td>
<td>N-[2-(4-allyl-4,5-dicyanoimidazol-2-ylazo)-5-(dipropyraminofenyl)acetamide</td>
<td>417.530-7</td>
<td>123590-00-1</td>
<td>R53</td>
<td>R: 53 S: 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-129-00-6</td>
<td>N,N'-bis(2,2,6,6-tetramethyl-4-piperidinyl)isofthalamid</td>
<td>419.710-0</td>
<td>42774-15-2</td>
<td>Xn; R22 Xh; R36</td>
<td>Xn R: 22-36 S: (2)-22-25-26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-130-00-1</td>
<td>N-[3-[2-(4,4-dimethyl-2,5-dioxoimidazol-1-yl)-4,4-dimethyl-3-oxopentanoylamino]-4-methoxyfenyl]-octadecanamide</td>
<td>421.780-2</td>
<td>150919-56-5</td>
<td>R53</td>
<td>R: 53 S: 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-132-00-2</td>
<td>N-[4-(4-cyan-2-furfuryl)deeen-2,5-dihydro-5-oxo-3-fenyl]-fenyl)-butaan-1-sulfonamide</td>
<td>423.250-6</td>
<td>130016-98-7</td>
<td>N; R50-53</td>
<td>N</td>
<td>R: 50/53 S: 60/61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-133-00-8</td>
<td>N-cyclohexyl-S,S-dioxobenziltofoen-2-carboxamide</td>
<td>423.990-1</td>
<td>149118-66-1</td>
<td>Xn; R22 Xh; R41 N; R50-53</td>
<td>Xn; N R: 22/41; 50/53 S: (2)-22-26-39/60-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-134-00-3</td>
<td>3,3'-bis(dioctyloxyhiofosfinylthio)-N,N'-oxybis(methylene)dipropionamid</td>
<td>401.820-5</td>
<td>-</td>
<td>R52-53</td>
<td>R: 52/53 S: 61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616-135-00-9</td>
<td>(3S,4aS,8aS)-2-[(2R,3S)-3-amino-2-hydroxy-4-fernybutyl]-N-tert-butyleicacalo-</td>
<td>430.230-0</td>
<td>136522-17-3</td>
<td>Xn; R22 R52-53</td>
<td>Xn R: 22-52/53 S: (2)-22-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>616-142-00-7</td>
<td>1,3-bis(vinylsulfonylacetamido)propaan</td>
<td></td>
<td>428-350-3</td>
<td>93629-90-4</td>
<td>Muta.Cat.3; R68</td>
<td>Xn</td>
<td>R: 41-43-68-52-53; S: (2)22-26-36/37/39/61</td>
<td></td>
</tr>
<tr>
<td>616-143-00-2</td>
<td>N,N'-dihexadecyl-N,N'-bis(2-hydroxyethyl)propaanamid</td>
<td></td>
<td>422-560-9</td>
<td>149591-38-8</td>
<td>Xn; Repr. Cat. 3; R62</td>
<td>Xn</td>
<td>R: 62-36-53; S: (2)26-36/37-61</td>
<td></td>
</tr>
<tr>
<td>617-018-00-5</td>
<td>Mengsel van: 1-methyl-1-(3-(1-methylethyl)fenyl)ethyl-1-methyl-1-phenylperoxide; 63 gewichtsprocent 1-methyl-1-(4-(1-methylethyl)fenyl)ethyl-1-methyl-1-phenylperoxide; 31 gewichtsprocent</td>
<td></td>
<td>410-840-3</td>
<td>71566-50-2</td>
<td>O; R7; N: R51-53</td>
<td>O; N</td>
<td>R: 7-51/53; S: (2)7-14/36/37/39-61</td>
<td></td>
</tr>
<tr>
<td>617-019-00-0</td>
<td>6-(italimid)peroxyhexaanzuur</td>
<td></td>
<td>410-850-8</td>
<td>128275-31-0</td>
<td>O; R7; X: R41; N: R50</td>
<td>O; X: N</td>
<td>R: 7-41-50; S: (2)3-7-14/26-36/37/39-61</td>
<td></td>
</tr>
<tr>
<td>617-020-00-6</td>
<td>1,3-di(prop-2,2-diyl)benzenbis(necodecanoylperoxide)</td>
<td></td>
<td>420-060-5</td>
<td>117663-11-3</td>
<td>R10</td>
<td>O; R7; N: R51-53</td>
<td>O; N</td>
<td>R: 7-10-51/53; S: (2)7-14/36/37/39-61</td>
</tr>
<tr>
<td>650-042-00-4</td>
<td>Reactieproduct van: polyethyleenpolyamine-(C16-C18) alkylamiden met monothio (C2)-alkylformate</td>
<td></td>
<td>417-450-2</td>
<td>-</td>
<td>X: R36/38</td>
<td>R10</td>
<td>O; X: R36/38; R43; N: R52-53</td>
<td>X: R: 36/38-43/52/53; S: (2)21-26/37-61</td>
</tr>
<tr>
<td>650-043-00-X</td>
<td>Reactieproduct van: 3,5-bis-tert-butylsaicyzuur en aluminiumsulfaat</td>
<td></td>
<td>420-310-3</td>
<td>-</td>
<td>X: R22; N: R50-53</td>
<td>X: N</td>
<td>R: 22-50/53; S: (2)22-56-60-61</td>
<td></td>
</tr>
<tr>
<td>650-045-00-0</td>
<td>Reactieproduct van: 1,2,3-propaanecarbonzuur, 2-hydroxy, diethylster, 1-propanol en zirkonium tetra-n-propanoaat</td>
<td></td>
<td>417-110-3</td>
<td>-</td>
<td>F; R11</td>
<td>X: R38-41; N: R51-53</td>
<td>F; X: N</td>
<td>R: 11-38-41-51/53; S: (2)39-16-26-37/39-61</td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota's voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota's voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---</td>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>650-047-00-1</td>
<td>dibenzylfenylsulfonium hexafluorantimonaat</td>
<td>N29,N30,N31,N32;disulfonamide disulfonaat, koper (II) complex, derivaten</td>
<td>417-760-8</td>
<td>134164-24-2</td>
<td>T; R18/25 Xe; R22 Xe; R41 R43 N; R51-53</td>
<td>T; N R; 22-41-43-48/25-51/53 S; (1/2-)22-26-36/37/39-45-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>650-048-00-7</td>
<td>Reactieproduct van borax, waterstofperoxide, azijnzuurantimonhydride en azijnzuur</td>
<td>-</td>
<td>420-070-1</td>
<td>-</td>
<td>O; R7 Xe; R20/21/22 C; R35 N; R50</td>
<td>O; C; N R; 7-20/21/22-35-50 S; (1/2-)37-14-26-36/37/39-45-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>650-049-00-2</td>
<td>2-alkoxy(oxethyl) waterstofmaleaat, waarbij alkoyl staat voor 70 tot 85% onverzadigd octadecoyl, 0,5 tot 10% verzadigd octadecoyl en 2 tot 18% verzadigd hexadecoyl (in gewichtsprocenten)</td>
<td>-</td>
<td>417-960-5</td>
<td>-</td>
<td>Xe; R38-41 R43 N; R50-53</td>
<td>Xe; N R; 38-41-43-50/53 S; (2-)24-26-37/39-60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>650-050-00-8</td>
<td>1,3-butaandiol bis[3-(3,5'-(1,1-dimethylethyl)-4'-hydroxyfenyl]propionaat] isomeren</td>
<td>-</td>
<td>423-600-8</td>
<td>-</td>
<td>N; R51-53</td>
<td>N R; 51/53 S; 61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>650-055-00-5</td>
<td>zilversilicium/zirconiumwaterstof oxfaat</td>
<td>-</td>
<td>422-570-3</td>
<td>N</td>
<td>R50-53</td>
<td>N R; 50/53 S; 60-61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index No</td>
<td>chemische naam</td>
<td>Nota’s voor stoffen</td>
<td>EC No</td>
<td>CAS No</td>
<td>Indeling</td>
<td>Kenmerken</td>
<td>Concentratiegrenzen</td>
<td>Nota’s voor preparaten</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------</td>
<td>---------------------</td>
<td>-------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>048-002-00-0</td>
<td>cadmium (gestabiliseerd) [1]</td>
<td></td>
<td>E</td>
<td>231-152-8 [1]</td>
<td>Carc. Cat. 2; R45</td>
<td>T; N</td>
<td>R: 45-26-48/23/25-62/63</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cadmiumoxide (gestabiliseerd) [2]</td>
<td></td>
<td></td>
<td>1306-19-0 [2]</td>
<td>Muta. Cat. 3; R68</td>
<td></td>
<td>68.50/53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Repr. Cat. 3; R62.63 T; R48/25/25</td>
<td></td>
<td>S: 53-45-60-61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T+; R26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N; R50-53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>048-011-00-X</td>
<td>cadmium (pyrofor)</td>
<td></td>
<td>E</td>
<td>231-152-8</td>
<td>Carc. Cat. 2; R45</td>
<td>F; T+; N</td>
<td>R: 45-17-26-48/23/25-62/63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7440-43-9</td>
<td>Muta. Cat. 3; R68</td>
<td></td>
<td>68.50/53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Repr. Cat. 3; R62.63 T; R48/25/25</td>
<td></td>
<td>S: 53-45-78-43-60-61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T+; R26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F; R17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N; R50-53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>609-006-00-3</td>
<td>2-nitrotoluëen</td>
<td></td>
<td>C</td>
<td>202-808-0</td>
<td>99-90-0</td>
<td>T; N</td>
<td>R: 23/24/25-33-51/53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R33 N; R51/53</td>
<td></td>
<td>S: (1/2)28.37-45.61</td>
<td></td>
</tr>
<tr>
<td>609-005-00-5</td>
<td>2-nitrotoluëen</td>
<td></td>
<td>E</td>
<td>201-853-3</td>
<td>88-72-2</td>
<td>T; N</td>
<td>R: 45-46-22-62-51/53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carc. Cat. 2; R45</td>
<td></td>
<td>S: 53-45-61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Muta. Cat. 2; R46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Repr. Cat. 3; R62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Xn, R22 N; R51-53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>612-039-00-6</td>
<td>2-acetoxy-aniline</td>
<td></td>
<td>C</td>
<td>202-356-4</td>
<td>94-70-2</td>
<td>T; R23/24/25</td>
<td>R: 23/24/25-25.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>α-fenetidine</td>
<td></td>
<td></td>
<td></td>
<td>R33</td>
<td></td>
<td>S: (1/2)28-36.37.45</td>
<td></td>
</tr>
<tr>
<td>612-207-00-9</td>
<td>4-acetoxyaniline</td>
<td></td>
<td></td>
<td>205-855-5</td>
<td>156-43-4</td>
<td>Muta. Cat. 3; R68 Xn, R20/21/22 Xn, R36</td>
<td>R: 20/21/22-36-43-68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p-fenetidine</td>
<td></td>
<td></td>
<td></td>
<td>R43</td>
<td></td>
<td>S: (2-3)6/37-46</td>
<td></td>
</tr>
</tbody>
</table>
BIJLAGE 2A
A.21. OXIDERENDE EIGENSCHAPPEN (VLOEISTOFFEN)

1. METHODE

1.1 INLEIDING

Deze testmethode is bedoeld om te meten in hoeverre een vloeistof de verbrandingssnelheid of verbrandingsintensiteit van een brandbare stof kan verhogen of met een brandbare stof een mengsel kan vormen dat spontaan onbrandt wanneer beide stoffen grondig worden gemengd. De test is gebaseerd op de test voor oxiderevende vloeistoffen van de VN (1) en is hiernaar gelijkwaardig. Aangezien deze methode A.21 echter in de eerste plaats is bedoeld om te voldoen aan de vereisten van Richtlijn 67/548/EEG, is slechts een vergelijking met één referentiestof vereist. Testen en vergelijken met bijkomende referentiestoffen kan nodig zijn wanneer het waarschijnlijk is dat de testresultaten voor andere doeleinden worden gebruikt.

Deze test hoeft niet te worden uitgevoerd wanneer op grond van de structuurformule met afdoende zekerheid kan worden vastgesteld dat de stof niet exotherm kan reageren met een brandbare stof.

Het is nuttig om, voordat deze test wordt uitgevoerd, te beschikken over gegevens over de mogelijke explosieve eigenschappen van de te onderzoeken stof.

Deze test is niet toepasbaar op vaste stoffen, gassen, explosieve of licht ontvlambare stoffen of organische peroxidén.

Deze test hoeft eventueel niet te worden uitgevoerd wanneer voor de te onderzoeken stof al resultaten beschikbaar zijn van de test voor oxiderevende vloeistoffen van de VN (1).

1.2 DEFINITIES EN EENHEDEN

Gemiddelde stijgtijd van de druk: het gemiddelde van de gemeten tijden waarin een mengsel tijdens de test een drukstijging veroorzaakt van 690 kPa tot 2.070 kPa boven de atmosferische druk.

1.3 REFERENTIESTOF

Als referentiestof wordt een waterige oplossing van 65 gewichtsprocent salpeterzuur (analytisch zuiver) gebruikt.

Wanneer de experimentator verwacht dat de testresultatenwellicht voor andere doeleinden worden gebruikt, kan het wenselijk zijn de test met bijkomende referentiestoffen uit te voeren.

1.4 PRINCIPE VAN DE TESTMETHODE

De testvloeistof wordt in een massaverhouding van 1:1 met cellulosevezel gemengd en in een drukvat gebracht. Indien tijdens het mengen of vullen spontane onbranding optreedt, is verder testen niet nodig.

Indien geen spontane onbranding optreedt, wordt de volledige test uitgevoerd. Het mengsel wordt in een drukvat verwarmd en de gemiddelde tijd waarin de druk stijgt van 690 kPa tot 2.070 kPa boven de atmosferische druk, wordt gemeten. Deze tijd wordt vergeleken met de gemiddelde stijgtijd voor de druk voor het 1:1-mengsel van de referentiestoffen en cellulose.

1.5 KWALITEITSCRITERIA

In een reeks van vijf proeven met dezelfde stof mag geen van de resultaten meer dan 30% afwijken van het rekenkundig gemiddelde. Resultaten die meer dan 30% van het gemiddelde afwijken, moeten worden verworpen, de meng- en vulprocedure moet worden verbeterd en de test moet worden herhaald.

1 Bijvoorbeeld in het kader van de vervoersvoorschriften van de VN.
2 Het zuur moet vóór de test worden geritineerd om de concentratie ervan te bevestigen.
3 In referentie 1 wordt bijvoorbeeld gebruik gemaakt van 50 gewichtsprocent perchloorzuur en 40 gewichtsprocent natriumchloraat.
1.6 BESCHRIJVING VAN DE METHODE

1.6.1 Voorbereiding

1.6.1.1 Brandbare stof

Als brandbare stof wordt droge cellulose met een vezellengte tussen 50 en 250 μm en een gemiddelde diameter van 25 μm gebruikt. Dit wordt gedurende 4 uur in een laag van ten hoogste 25 mm dik bij 105°C gedroogd tot constant gewicht en in een exsiccator met droogmiddel bewaard totdat de vezel is afgekoeld en wordt gebruikt. Het watergehalte van de gedroogde cellulose moet minder zijn dan 0,5% van de droge massa. Zo nodig dient de droogtijd te worden verlengd tot deze waarde is bereikt. Gedurende de hele test wordt een en dezelfde batch cellulose gebruikt.

1.6.1.2 Apparatuur

1.6.1.2.1 Drukvat

Voor de test wordt gebruik gemaakt van een drukvat. Dit is een cilindrisch stalen drukvat met een lengte van 89 mm en een uitwendige diameter van 60 mm (zie figuur 1). De cilinder wordt zo bewerkt dat aan de buitenkant recht tegenover elkaar twee vlakke zijden ontstaan (waardoor de doorsnede van het vat wordt gereduceerd tot 50 mm) zodat de cilinder gemakkelijk kan worden gemontageerd wanneer de ontstekingsplug en ontluchtingsplug worden aangebracht. Het vat, dat een inwendige diameter van 20 mm heeft, wordt aan beide uiteinden met een diepte van 19 mm opgeruimd en voorzien van een schroefdraad voor 1” British Standard Pipe (BSP) of het metrische equivalent daarvan. Op 35 mm van een van de uiteinden wordt op 90° van de vlakke oppervlakken in het gebogen oppervlak van het vat een zijbuis geschroeld om de druk op te nemen. Daarvoor wordt een 12 mm diep gat geboord dat wordt voorzien van schroefdraad voor de 1/2” BSP (of metrisch equivalent) schroefdraad op het uiteinde van de zijbuis. Zo nodig wordt een inerte pakking aangebracht om een gasdichte verbinding te bekomen. De zijbuis steekt 55 mm buiten het drukvat uit en heeft een inwendige diameter van 6 mm. Het uiteinde van de zijbuis wordt opgeruimd en voorzien van een schroefdraad voor een membraanmanometer. Elk type manometer mag worden gebruikt, op voorwaarde dat de manometer bestand is tegen de hete gassen of onledingsproducten en kan reageren op een drukstijging van 690-2,070 kPa in maximaal 5 ms.

Het uiteinde van het drukvat dat het verstuiver is van de zijbuis, wordt afgesloten met een ontstekingsplug met twee elektrodes, de ene geïsoleerd van de plug, de andere via de plug met de massa verbonden. Het andere uiteinde van het drukvat wordt afgesloten met een breekplaat (barstdruk ongeveer 2,200 kPa) die op zijn plaats wordt gehouden met een bevestigingsplug met een inwendige diameter van 20 mm. Zo nodig wordt voor de ontstekingsplug een inerte pakking gebruikt om een gasdichte verbinding te bekomen. Het drukvat wordt tijdens het gebruik in de juiste positie gehouden met een statief (figuur 2). Dit bestaat doorgaans uit een zachttalen grondplaat van 235 mm x 184 mm x 6 mm en een 185 mm lange vierkante buis van 70 mm x 70 mm x 4 mm.

Van twee tegenover elkaar gelegen zijkanten van de vierkante buis wordt een deel verwijderd zodat een buis van 86 mm lengte overbleeft die uitloopt in twee vlakke benen. De uiteinden van deze vlakke benen worden onder een hoek van 60° ten opzichte van de as van de buis afgekort en op de grondplaat gelast. Aan de bovenkant van de vierkante buis wordt in één zijkant een gat van 22 mm breed x 46 mm diep uitgehouwen, zodat de zijbuis in de geefl valt wanneer het drukvat met de ontstekingsplug naar beneden in de vierkante buis wordt geplaatst. Op de onderste binnenzijde van de vierkante buis wordt een stuk staal van 30 mm breed en 6 mm dik gelast als afstandstuk. In de tegenoverliggende zijde worden twee 7 mm vleugelschroeven gedraaid om het drukvat stevig op zijn plaats te houden. Om het drukvat van onderen te steunen worden op de zijkanten die doorlopen naar de basis van het statief, twee steken van 12 mm breed en 6 mm dik staal gelast.

4 Bijvoorbeeld Whatman Column Chromatographic Cellulose Powder CF 11, catalogue no 4021 050.
5 Bevestigd met (bijvoorbeeld) Karl-Fisher titratie.
6 Een andere mogelijkheid om dit watergehalte te bereiken is (bijv.) verhitting bij 105°C onder vacuum gedurende 24 uur.
1.6.1.2.2 Ontstekingsysteem

Het ontstekingsysteem bestaat uit een 25 cm lange Ni/Cr-draad met een diameter van 0,6 mm en een weerstand van 3,85 ohm/m. De draad wordt om een staaf met een diameter van 5 mm tot een spool gewikkeld en met de elektrodes van de ontstekingsplug verbonden. De spool moet een van de in figuur 3 aangegeven configuraties hebben. De afstand tussen de bodem van het vat en de onderzijde van de ontstekingsspoeel moet 20 mm bedragen. Wanneer de elektroden niet instabiel zijn, moeten de einden van de ontstekingsdraad tussen de spool en de bodem van het vat met een keramische mantel worden geïsoleerd. De draad wordt verhit met een voeding die een constante stroom van ten minste 10 A kan leveren.

1.6.2 Uitvoering van de test

Het toestel wordt met manometer en verhittingssysteem, maar zonder de breekplaat, met de ontstekingsplug naar beneden neergezet. In een glazen beker worden met een glazen roerstaaf 2,5 g testvloeistof en 2,5 g gediurrogeerde cellulose gemengd. Om veiligheidsoorden moet tijdens het mengen een veiligheidsschild tussen de experimentator en het mengsel zijn geplaatst. Indien het mengsel tot onbranding komt tijdens het mengen of vullen, zijn geen verdere tests nodig. Het mengsel wordt in kleine hoeveelheden tegelijk in het drukvat gegoten, terwijl tegen het drukvat wordt geklopt om ervoor te zorgen dat het mengsel de ruimte rond de ontstekingspoel vult en daarmee goed contact maakt. Het is belangrijk dat de spool tijdens het vullen niet verbuigt, aangezien dit tot foutieve resultaten kan leiden. De breekplaat wordt op zijn plaats gebracht en de bevestigingsplug wordt stevig vastgeschoord. Het gevulde drukvat wordt met de breekplaat naar boven in het statief geplaatst. De gehele opstelling moet zich in een geschikte gewapende afzuigkast of ontstekingskast bevinden. De voeding wordt aangesloten op de uitwendige aansluitingen van de ontstekingsplug. De stroomsterkte bedraagt 10 A. De tijd tussen het begin van het mengen en het inschakelen van de voeding mag niet langer zijn dan 10 minuten.

Het signaal van de manometer wordt geregistreerd met een systeem waarmee het drukverloop kan worden geanalyseerd en continu kan worden geregistreerd (bijv. een transmittencorder gekoppeld aan een papierschrijver). Het mengsel wordt verwarmd tot de breekplaat breekt of totdat ten minste 60 seconden zijn verstreken. Als de breekplaat niet breekt, moet het mengsel afkloven voordat het toestel voorzichtig wordt geopend, waarbij de nodige voorzorgen worden getroffen voor het geval een plotseling drukstijging optreedt. Er worden vijf proeven uitgevoerd met de teststof en de referentiestof(pen). De tijd waarin de druk stijgt van 690 kPa tot 2.070 kPa boven de atmosferische druk, wordt genoteerd. Vervolgens wordt de gemiddelde stijgtijd van de druk berekend.

In sommige gevallen kunnen stoffen een (te hoge of te lage) drukstijging veroorzaken als gevolg van chemische reacties die niet relevant zijn voor de oxidiserende eigenschappen van de stof. In die gevallen kan het nodig zijn de test te herhalen met een inere stof, bijvoorbeeld diatomiet (kieselgoehr), in plaats van cellulose, om het karakter van de reactie te bepalen.

7 Mengsels van oxidierende stoffen en cellulose kunnen explosief zijn en moeten met de nodige voorzichtigheid worden behandeld.
8 In de praktijk kan dit worden gedaan door een grotere hoeveelheid testvloeistof en cellulose te mengen in een verhouding 1:1 en vervolgens 5 ± 0,1 g van het mengsel in het drukvat te brengen. Het mengsel moet voor elke proef vers worden bereid.
9 Met name moet contact tussen opeenvolgende wikkelingen van de spool worden vermeden.
2 GEGEVENS

Stijgtijd voor de test-stof en voor de referentiestof(fen).
Stijgtijd voor de tests met een inerte stof, indien uitgevoerd.

2.1 VERWERKING VAN DE RESULTATEN

De gemiddelde stijgtijden van de druk voor de teststof en de referentiestof(fen) worden berekend.
De gemiddelde stijgtijd voor de tests met een inerte stof (indien uitgevoerd) wordt berekend.

Tabel 1 bevat enkele voorbeelden van resultaten

<table>
<thead>
<tr>
<th>Stof c)</th>
<th>Gemiddelde stijgtijd voor een 1:1 mengsel met cellulose (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammoniumdichromaat, verzadigde waterige oplossing</td>
<td>20800</td>
</tr>
<tr>
<td>Calciumnitraat, verzadigde waterige oplossing</td>
<td>6700</td>
</tr>
<tr>
<td>IJzer(III)nitraat, verzadigde waterige oplossing</td>
<td>4133</td>
</tr>
<tr>
<td>Lithiumperchlorraat, verzadigde waterige oplossing</td>
<td>1686</td>
</tr>
<tr>
<td>Magnesiumperchlorraat, verzadigde waterige oplossing</td>
<td>777</td>
</tr>
<tr>
<td>Nikkelnitraat, verzadigde waterige oplossing</td>
<td>6250</td>
</tr>
<tr>
<td>Salpeterzuur, 65%</td>
<td>4767 b)</td>
</tr>
<tr>
<td>Perchlorzuur, 51%</td>
<td>121 c)</td>
</tr>
<tr>
<td>Perchlorzuur, 55%</td>
<td>59</td>
</tr>
<tr>
<td>Kaliumnitraat, 30% waterige oplossing</td>
<td>26690</td>
</tr>
<tr>
<td>Zilvernitraat, verzadigde waterige oplossing</td>
<td>2)</td>
</tr>
<tr>
<td>Natriumchlorraat, 40% waterige oplossing</td>
<td>2555 b)</td>
</tr>
<tr>
<td>Natriumnitraat, 45% waterige oplossing</td>
<td>4133</td>
</tr>
</tbody>
</table>

Inerte stof
Water/cellulose

a) Gemiddelde waarde van vergelijkende interlaboratoriumproeven
b) Maximumdruk van 2,070 kPa niet bereikt
c) Verzadigde oplossingen worden bij 20°C bereid
d) Zie referentie (1) voor indeling volgens de vervoersvoorschriften van de VN.
3 RAPPORTAGE

3.1 VERSLAG VAN DE PROEFNEMINGEN

In het verslag moeten de volgende gegevens worden opgenomen:

— identiteit, samenstelling, zuiverheid, enz. van de teststof;
— concentratie van de teststof;
— procedure voor het drogen van de cellulose;
— watergehalte van de gebruikte cellulose;
— de meetresultaten;
— eventuele resultaten van tests met een inerte stof;
— berekende gemiddelde stijgtijden van de druk;
— eventuele afwijkingen van deze methoden en redenen daarvoor;
— alle verdere informatie of opmerkingen die van belang zijn voor de interpretatie van de resultaten.

3.2 INTERPRETATIE VAN DE RESULTATEN

De testresultaten worden beoordeeld op grond van:

a) de vraag of het mengsel van teststof en cellulose spontaan ontbrand; en

b) een vergelijking van de gemiddelde stijgtijd voor de druk van 690 KPa naar 2.070 kPa met die voor de referentiestof(fen).

Een vloeistof wordt aangemerkt als een oxiderende stof wanneer:

a) een mengsel in een 1:1 massa verhouding van de stof en cellulose spontaan ontbrand, of

b) een mengsel in een massa verhouding van 1:1 van de stof en cellulose een gemiddelde stijgtijd oplevert kleiner dan of gelijk aan de gemiddelde stijgtijd van de druk van een mengsel in een 1:1 massa verhouding van een waterige oplossing van 65 gewichtsprocent salpeterzuur en cellulose.

Om vals-positieve resultaten te vermijden, moet bij de interpretatie van de resultaten zo nodig ook rekening worden gehouden met resultaten verkregen bij het testen van de stof gemengd met inert materiaal.

4 REFERENTIES

10 Zie referentie 1 voor de interpretatie van de resultaten onder de vervoersvoorschriften van de VN met verschillende referentiestoffen.
Figuur 1

Drukvat

(A) Drukvat
(D) Zachtlooden pakking
(G) Manometerkop
(K) Geaarde elektrode
(N) Groef voor pakking

(B) Bevestigingsplug breekplaat
(E) Breekplaat
(H) Pakking
(L) Isolatie

(C) Ontstekingsplug
(F) Zijbuis
(J) Geïsoleerde elektrode
(M) Stalen conus
Figuur 2

Statief
Figuur 3
Ontstekingssysteem

(A) Ontstekingsspoeel (B) Isolatie (C) Elektroden (D) Ontstekingsplug

Opmerking: Beide ontstekingssystemen kunnen worden gebruikt.
BIJLAGE 2B
B.1 bis. ACUTE ORALE TOXICITEIT: PROCEDURE MET VASTE DOSES

1 METHODE

Deze methode is gelijkwaardig aan TG 420 (2001) van de OESO.

1.1 INLEIDING

Bij klassieke methoden voor de bepaling van de acute toxiciteit wordt de dood van dieren als eindpunt gebruikt. In 1984 is door de British Toxicology Society een nieuwe aanpak voor acute toxiciteitstests voorgesteld op basis van de toediening van een reeks vaste doses (1). Deze aanpak gebruikt niet meer de dood van dieren als eindpunt, maar berust op de observatie van duidelijke toxiciteitsverschijnselen bij één van een reeks vaste doses. Na in vivo valideringsonderzoek in het VK (2) en in internationaal verband (3) is deze procedure in 1992 als testmethode goedgekeurd. Vervolgens zijn de statistische eigenschappen van de procedure met vaste doses bij een reeks onderzoeken met behulp van matematische modellen geëvalueerd (4)(5)(6). Met de combinatie van in vivo onderzoek en modellen is aangetoond dat de procedure reproduceerbaar is, minder dieren gebruikt en minder leed veroorzaakt dan de klassieke methoden en stoffen op een vergelijkbare wijze kan rangschikken als de andere testmethoden voor acute toxiciteit.

Richtlijnen voor de keuze van de meest geschikte testmethode voor een bepaald doel worden gegeven in de leidraad voor tests op acute orale toxiciteit (7). Deze leidraad bevat ook aanvullende informatie over de uitvoering en interpretatie van testmethode B.1bis.

De methode heeft als beginpunt dat bij het hoofdonderzoek slechts beperkt toxische doses worden gebruikt en dat de toediening van doses waarvan wordt verwacht dat ze dodelijk zijn, moet worden vermeden. Ook doses waarvan bekend is dat ze door een bijtende of sterk irriterende werking hevige pijn en leed veroorzaken, behoeven niet te worden toegediend. Stervende dieren of dieren die duidelijk pijn hebben of tekenen van hevig en voortdurend leed vertonen, worden op humane wijze gedood en worden bij de interpretatie van de testresultaten op dezelfde manier behandeld als dieren die tijdens de test gestorven zijn. Er is een aparte leidraad met criteria om te bepalen of stervende of hevig lijdende dieren moeten worden gedood en richtlijnen om voorspelbare of ophanden zijnde sterf te herkennen (8).

De methode levert informatie over de gevaarlijke eigenschappen op en maakt het mogelijk de stof te rangschikken en in te delen aan de hand van het “Globally Harmonised System” (GHS) voor de indeling van chemische stoffen die acute toxiciteit veroorzaken (9).

Het testlaboratorium moet vóór de uitvoering van het onderzoek alle beschikbare informatie over de teststof in overweging nemen. Hierbij gaat het om informatie als de identiteit en de chemische structuur van de stof, de fysische-chimische eigenschappen, de resultaten van andere met de stof uitgevoerde toxiciteitstests in vivo of in vitro, toxicologische gegevens over qua structuur verwante stoffen en de voorgenomen toepassing(en) van de stof. Deze informatie is nodig om alle betrokkenen ervan te overtuigen dat de test relevant is voor de bescherming van de gezondheid van de mens en helpt tevens bij de keuze van een geschikte aanvanksdosis.

1.2 DEFINITIES

Acute orale toxiciteit: de schadelijke effecten die zich voordoen na orale toediening van één dosis van een stof of verschillende doses die binnen 24 uur worden toegediend.

Vertraagde sterfte: houdt in dat een dier niet binnen 48 uur sterft of stervende is maar later gedurende de observatieperiode van 14 dagen sterft.

Dosis: de toegediende hoeveelheid test-stof. De dosis wordt uitgedrukt als gewicht van de teststof per gewichtseenheid van het proefdier (bijvoorbeeld mg/kg).

Manifeste toxiciteit: een algemene term die zodanige duidelijke toxiciteitverschijnselen na de toediening van de teststof beschrijft (zie (3) voor voorbeelden), dat bij de eerstvolgende vaste dosis hevige pijn en blijvende verschijnselen van ernstig leed, stervende dieren (zie de leidraad voor humane eindpunten (8) voor criteria) of waarschijnlijke sterfte bij de meeste dieren kunnen worden verwacht.
GHS: het "Globally Harmonised Classification System" voor chemische stoffen en mengsels. Een samenwerkingsproject van de OESO (gezondheid van de mens en milieu), het Comité van deskundigen voor het vervoer van gevaarlijke goederen van de VN (fysisch-chimische eigenschappen) en de ILO (communicatie van gevaren) dat wordt gecoördineerd door het Gezamenlijk programma voor een verantwoord beheer van chemische stoffen (IONMC).

Ophanden zijnde sterfte: wanneer vóór het eerstvolgende geplande observatietijdstip een sterfde toestand of sterfte wordt verwacht. Voorbeelden van indicaties voor deze toestand bij knaagdieren zijn convulsies, zijligging, liggende positie en tremors (zie de leidraad voor humane eindpunten (8) voor meer bijzonderheden).

L'D₉₀ (mediaan van de letale dosis): een statistisch afgeleide enkelvoudige dosis van een stof waarvan kan worden verwacht dat 50% van de dieren waaronder deze dosis oraal wordt toegediend, sterft. De L'D₉₀ wordt uitgedrukt als gewicht van de teststof per gewichtseenheid van het proefdier (mg/kg).

Limiedosist: een dosis die bij tests als bovengrens wordt gehanteerd (2000 of 5000 mg/kg).

Stervende toestand: een toestand waarop de dood volgt of waarin overleven onmogelijk is, zelfs wanneer het dier wordt behandeld (zie de leidraad voor humane eindpunten (8) voor meer bijzonderheden).

Voorspelbare sterfte: een toestand met klinische verschijnselen die wijzen op sterfte op een bekend tijdstip in de toekomst vóör het geplande einde van het experiment, bijvoorbeeld wanneer het dier geen water of voer kan bereiken (zie de leidraad voor humane eindpunten (8) voor meer bijzonderheden).

1.3 PRINCIPE VAN DE TESTMETHODE

Groepen met dieren van hetzelfde geslacht krijgen stapsgewijs de vaste doses 5, 50, 300 en 2000 mg/kg toegediend (bij wijze van uitzondering, omdat een extra vaste dosis van 5000 mg/kg worden overwogen; zie punt 1.6.2). Op basis van een verkenningstest wordt de aanvangsdosis gekozen, waarvan wordt verwacht dat er enige toxiciteitsverschijnselen optreden zonder dat er sprake is van ernstige toxische effecten of sterfte. Klinische verschijnselen en situaties die gepaard gaan met pijn, leed en ophanden zijnde sterfte, worden gedetailleerd in een aparte OESO-leidraad beschreven (8). Afhankelijk van het al dan niet optreden van toxiciteitsverschijnselen of sterfte kan er aan andere groepen dieren een hogere of lagere dosis worden toegediend. Deze procedure wordt gestaakt zodra de dosis wordt bepaald waarbij manifeste toxiciteit optreedt of ten hoogste één dier sterft, of wanneer blijkt dat er bij de hoogste dosis geen effecten worden geconstateerd of bij de laagste dosis dieren sterven.

1.4 BESCHRIJVING VAN DE TESTMETHODE

1.4.1 Keuze van de diersoort

Bij voorkeur wordt de rat gebruikt, maar ook andere knaagdiersoorten kunnen worden gebruikt. Normaal gesproken worden vrouwtjes gebruikt (7), omdat uit literatuuronderzoek van klassieke LD₉₀-tests blijkt dat er meestal weinig verschil in gevoeligheid tussen mannetjes en vrouwtjes is, maar wanneer er een verschil wordt geconstateerd, zijn vrouwtjes meestal iets gevoeliger (10). Als echter uit kennis omtrent de toxicologische of toxicokinetische eigenschappen van qua structuur verwante chemische stoffen blijkt dat mannetjes waarschijnlijk gevoeliger zijn, moeten mannetjes worden gebruikt. Wanneer de test bij mannetjes wordt uitgevoerd, moet hiervoor een afdoende motivering worden gegeven. Er worden gezonde jonge volwassen dieren van gangbare laboratoriumstammen gebruikt. De vrouwtjes mogen nog geen jongen hebben gehad en mogen niet drachtig zijn. Elk dier moet bij de eerste toediening 8 tot 12 weken oud zijn en het lichaamsgewicht mag niet meer dan ±20% afwijken van het gemiddelde gewicht van dieren waaraan al eerder een dosis is toegediend.

1.4.2 Huissvesting en voeding

De temperatuur in de proefdierruimte dient 22°C (±3°C) te zijn. Hoewel de relatieve vochtigheid minimaal 30% en bij voorkeur niet hoger dan 70% (behalve bij het reinigen van de ruimte) dient te zijn, moet worden gestreefd naar 50-60%. Verlichting gebeurt met kunstlicht met een ritme van 12 uur licht en 12 uur donker. Als voeding mag het gewone laboratoriumvoer worden gebruikt met een onbeperkte hoeveelheid drinkwater. De dieren mogen per dosis in groepen worden gehuisvest, maar het aantal dieren per kooi mag niet zo groot zijn dat een duidelijke observatie van elk dier wordt gestoord.
1.4.3 Voorbereiding van de dieren

De dieren worden aselect ingedeeld, gemerkt om elk dier afzonderlijk te kunnen identificeren en vóór het begin van de toediening gedurende minimaal 5 dagen in hun koot gehouden om ze aan de omstandigheden in het laboratorium te laten wennen.

1.4.4 Bereiding van de dosis

In het algemeen worden alle dosen van de teststof in het hele testbereik in een constant volume toegediend door de concentratie van de toegediende dosis te variëren. Wanneer echter een vloeibaar eindproduct of mengsel wordt getest, kan het voor de latere risicobeoordeling van die stof zinvol zijn de teststof onverdund, d.w.z. met een constante concentratie, te gebruiken en sommige regelgevende instanties hebben dit verplicht gesteld. Het maximaal toe te dieren volume mag echter in geen geval worden overschreden. Het is afhankelijk van de grootte van het proefdier welk volume vloeistof in één keer kan worden toegediend. Bij knaagdieren mag het volume normaal gesproken niet groter zijn dan 1 ml/100 g lichaamsgewicht. Bij een watterige oplossing kan echter 2 ml/100 g lichaamsgewicht worden overwogen. Voor de formulering van de dosis wordt waar mogelijk het gebruik van een watterige oplossing/suspensie/emulsie aanbevolen, in volgorde van voorkeur gevolgd door een oplossing/suspensie/emulsie in olie (bijvoorbeeld maïsolie) en eventueel een oplossing in een ander medium. Wanneer een ander medium dan water wordt gebruikt, moeten de toxicologische kenmerken van het medium bekend zijn. De dosis moet kort vóór de toediening worden bereid, tenzij de stabiliteit van het preparaat gedurende de gebruiksteriode bekend is en is aangetoond dat deze aanvaardbaar is.

1.5 PROCEDURE

1.5.1 Toediening van de dosis

De teststof wordt in één dosis toegediend met een maagsonde of een geschikte katheter. In het uitzonderlijke geval dat één dosis niet mogelijk is, kan de dosis in kleinere porties worden verdeeld die in de loop van maximaal 24 uur worden toegediend.

De dieren moeten vóór de toediening vandien (ratten mogen bijvoorbeeld de nacht vóór de toediening geen voer maar wel water krijgen en muizen gedurende 3-4 uur). Na de vasteriode worden de dieren gewogen en wordt de teststof toegediend. Na de toediening van de stof kan men ratten nog eens 3-4 uur en muizen nog eens 1-2 uur laten vandien. Wanneer een dosis in de loop van de tijd in porties wordt toegediend, kan het afhankelijk van de lengte van de periode nodig zijn de dieren voer en water te geven.

1.5.2 Verkennende test

De verkennende test is bedoeld om de juiste aanvangsdosis voor het hoofdonderzoek te kunnen kiezen. De teststof wordt overeenkomstig het stroomschema in bijlage 1 achtereenvolgens tellers aan één dier toegediend. De verkennende test is afgelegd wanneer er een beslissing kan worden genomen over de aanvangsdosis voor het hoofdonderzoek (of als er bij de laagste vaste dosis een dier sterft).

Als aanvangsdosis voor de verkennende test wordt uit de vaste doses 5, 50, 300 en 2000 mg/kg de dosis gekozen waarvan wordt verwacht dat er manifeste toxiciteit optreedt, waar mogelijk op basis van gegevens uit in vitro en in vivo onderzoek met dezelfde chemische stof en andere qua structuur verwante chemische stoffen. Wanneer deze informatie niet beschikbaar is, wordt 300 mg/kg als aanvangsdosis gebruikt.

Er wordt ten minste 24 uur gewacht voordat een dosis aan het volgende dier wordt toegediend. Alle dieren worden gedurende ten minste 14 dagen geobserveerd.

Bij wijze van uitzondering kan alleen met een motivering op basis van specifieke regelgevingsvereisten daarnaast het gebruik van een hogere vaste dosis van 5000 mg/kg worden overwogen (zie bijlage 3). Met het oog op het welzijn van dieren zijn dierproeven in GHS-categorie 5 tot 2000-5000 mg/kg niet wenselijk en moeten deze alleen worden overwogen wanneer er een grote kans is dat de resultaten van die test van direct belang zijn voor de bescherming van de gezondheid van mensen of dieren of het milieu.
Wanneer een dier waaraan bij de verkennende test de laagste vaste dosis (5 mg/kg) is toegediend, sterft, is de normale procedure dat de test wordt afgebroken en de stof wordt ingedeeld in GHS-categorie 1 (zie bijlage 1). Als de indeling echter moet worden bevestigd, kan de volgende facultatieve aanvullende procedure worden uitgevoerd. De dosis van 5 mg/kg wordt aan een tweede dier toegediend. Als dit tweede dier sterft, is de indeling in GHS-categorie 1 bevestigd en wordt het onderzoek onmiddellijk beëindigd. Als het tweede dier blijft leven, wordt de dosis van 5 mg/kg aan ten hoogste nog eens drie dieren toegediend. Omdat er een hoog risico op sterfte zal zijn, moet de dosis met het oog op het welzijn van dieren achtereenvolgens aan telkens één dier worden toegediend. Vóór de toediening aan het volgende dier moet lang genoeg worden gewacht om vast te kunnen stellen dat het vorige dier waarschijnlijk zal blijven leven. Als er een tweede dier sterft, wordt de toediening onmiddellijk gestaakt en worden er geen dieren meer gebruikt. Een tweede dier dat sterft, levert (ongeacht het aantal dieren dat bij beëindiging is getest) het resultaat A op (2 of meer dode dieren), zodat de indelingsregel van bijlage 2 bij de vaste dosis van 5 mg/kg wordt gevolgd (categorie 1 als er 2 of meer dode dieren zijn en categorie 2 als er niet meer dan één dood dier is). Daarnaast geeft bijlage 4 een leidraad voor de indeling in het EU-systeem totdat het nieuwe GHS ingevoerd is.

1.5.3 Hoofdonderzoek

1.5.3.1 Aantal dieren en dosisniveaus

Het stroomschema in bijlage 2 geeft aan wat er na de test op het aanvangsniveau moet gebeuren. Er zijn drie mogelijkheden: de test wordt gestaakt en de daarbij betreffende gevaren-indelingscategorie wordt toegekend, de test wordt bij een hogere vaste dosis voortgezet of de test wordt bij een lagere vaste dosis voortgezet. Met het oog op de bescherming van dieren wordt een dosisniveau dat bij de verkennende test een dood dier oplevert, bij het hoofdonderzoek niet opnieuw getest (zie bijlage 2). De ervaring heeft geleerd dat het meest waarschijnlijke resultaat bij de aanvangsdosis is dat de stof kan worden ingedeeld en dat er geen verdere tests nodig zijn.

Normaal gesproken worden er voor elk dosisniveau in totaal vijf dieren van hetzelfde geslacht gebruikt, namelijk het dier dat deze dosis bij de verkennende test toegediend heeft gekregen en nog eens vier dieren (behalve wanneer bij wijze van uitzondering een dosisniveau van het hoofdonderzoek niet in de verkennende test was opgenomen).

Het tijdsverloop tussen de toediening op elk niveau wordt bepaald door de aanvang, de duur en de ernst van de toxiciteitsverschijnselen. Met de toediening van een volgende dosis wordt gewacht totdat men er zeker van is dat de eerder geteste dieren blijven leven. Indien nodig wordt een periode van drie of vier dagen tussen de toediening op elk dosisniveau aanbevolen om observatie van vertraagde toxiciteit mogelijk te maken. Dit interval kan indien gewenst worden aangepast, bijvoorbeeld bij een onduidelijke reactie.

Wanneer het gebruik van een hoogst vaste dosis van 5000 mg/kg wordt overwogen, moet de procedure van bijlage 3 worden gevolgd (zie ook punt 1.6.2).

1.5.3.2 Limiettest

De limiettest wordt voornamelijk uitgevoerd wanneer er informatie is die erop wijst dat het testmateriaal waarschijnlijk niet toxic is c.q. alleen toxic is in hogere doses dan de limieten in de regelgeving. Informatie over de toxiciteit van het testmateriaal kan afkomstig zijn van kennis omtrent vergelijkbare geteste verbindingen of vergelijkbare geteste mengsels of producten, waarbij rekening wordt gehouden met de identiteit en het percentage van de bestanddelen waarvan bekend is dat ze in toxicologisch opzicht relevant zijn. Wanneer er weinig of geen informatie over de toxiciteit van het testmateriaal is of wordt verwacht dat het toxic is, moet het hoofdonderzoek worden uitgevoerd.

De limiettest voor deze testmethode wordt volgens de normale procedure uitgevoerd met een verkennende test met een aanvangsdosis van 2000 mg/kg (of in uitzonderingsgevallen 5000 mg/kg), gevolgd door de toediening van deze dosis aan nog eens vier dieren.

1.6 OBSERVATIE

De dieren worden gedurende de eerste 30 minuten na de toediening ten minste één maal elk afzonderlijk geobserveerd, gedurende de eerste 24 uur periodiek met bijzondere aandacht voor de eerste vier uur en vervolgens dagelijks gedurende in totaal 14 dagen, behalve wanneer ze met het oog op het welzijn van dieren uit het onderzoek moeten worden genomen en op humane wijze moeten worden gedood of dood aangetroffen worden. De observatieduur is echter geen regel waarvan niet kan worden afgeweken. Deze moet worden bepaald aan de hand van de toxicische reacties, het tijdstip waarop ze beginnen en de duur van de herstelperiode en kan dus worden verlengd indien dit nodig wordt geacht. Het is belangrijk op welk tijdstip de toxiciteitsverschijnselen verschijnen en verdwijnen, vooral als er een neiging is tot vertraging toxiciteitsverschijnselen (11). Alle observaties worden systematisch geregistreerd en voor elk dier wordt een apart verslag bijgehouden.
Als de dieren toxiciteitsverschijnselen blijven vertonen, is aanvullende observatie nodig. Bij de observatie wordt gekeken naar veranderingen in de huid en de vacht, de ogen en de slijmvliezen, de ademhalingsorganen, de bloedsomloop, het autonome en centrale zenuwstelsel, de somatomotorische activiteit en het gedragspatroon. Er moet worden gelet op de observatie van tremors, convulsies, speekselafscheiding, diarree, lethargie, slaap en coma. Er moet rekening worden gehouden met de beginselen en criteria in de leidraad voor humane eindpunten (8). Dieren die stervend worden aangetroffen en dieren die hevige pijn hebben of blijvende tekenen van ernstig leed vertonen, worden op humane wijze gedood. Wanneer dieren op humane wijze worden gedood of dood worden aangetroffen, wordt zo nauwkeurig mogelijk geregistreerd op welk tijdstip ze zijn gestorven.

1.6.1 Lichaamsgewicht

Kort vóór de toediening van de teststof en vervolgens ten minste wekelijks wordt het gewicht van elk dier bepaald. De gewichtsverandering wordt berekend en geregistreerd. Aan het einde van de test worden de dieren die nog leven gewogen en vervolgens op humane wijze gedood.

1.6.2 Pathologie

Op alle proefdieren (ook degene die tijdens de test sterven of met het oog op het welzijn van dieren uit het onderzoek worden genomen) wordt macroscopische obductie uitgevoerd. Alle macroscopische pathologische veranderingen worden voor elk dier geregistreerd. Microscopisch onderzoek van organen die tekenen van macroscopische pathologische veranderingen vertonen bij dieren die 24 uur of langer na de toediening nog leven, kan ook worden overwogen aangezien dit nuttige informatie kan opleveren.

2 GEGEVENS

Er worden voor elk dier apart gegevens verstrekt. Daarnaast worden alle gegevens in tabellvorm samengevat met voor alle testgroepen vermelding van het gebruikte aantal dieren, het aantal dieren dat toxiciteitsverschijnselen vertoonde, het aantal dieren dat tijdens de test dood is aangetroffen of op humane wijze is gedood, het tijdstip waarop elk dier is gestorven, een beschrijving van de toxische effecten met het verloop en de omkeerbaarheid en de obductiebevindingen.

3 RAPPORTAGE

3.1 TESTVERSLAG

In het testverslag wordt indien van toepassing de volgende informatie opgenomen:

Teststof:
- de fysische aard, de zuiverheid en indien relevant de fysisch-chemische eigenschappen (v.h. de isomeren-
samenstelling);
- identificatiegegevens, zoals het CAS-nr.

Medium (indien van toepassing):
- een motivering voor de keuze van het medium als een ander medium dan water wordt gebruikt.

Proefdieren:
- de gebruikte soort/stam;
- de microbiologische status van de dieren, indien deze bekend is: het aantal dieren, hun leeftijd en hun geslacht (indien van toepassing een motivering voor het gebruik van mannetjes in plaats van vrouwtjes);
- de herkomst, de huisvesting, de voeding enz.

Testomstandigheden:
- gedetailleerde gegevens over de formulering van de teststof met bijzonderheden over de fysische vorm van het toegediende materiaal;
- gedetailleerde gegevens over de toediening van de teststof met vermelding van het toegediende volume en het toedieningstijdstip;
- gedetailleerde gegevens over het voer en het water (met vermelding van de aard/herkomst van het voer en de herkomst van het water);
- de motivering voor de keuze van de aanvangsdois.
Resultaten:
— een tabel met gegevens over de respons en de dosis voor elk dier (b.v. dieren met toxiciteitsverschijnselen of sterfte en de aard, de hevigheid en de duur van de effecten);
— een tabel met het lichamsgewicht en de veranderingen in het lichamsgewicht;
— het gewicht van de dieren op de toedieningsdag, daarna een keer per week en tenslotte wanneer ze sterven of gedood worden;
— de datum en het tijdstip waarop de dieren sterven, als die eerder gebeurdt dan gepland;
— voor elk dier de aanvang en het verloop van de toxiciteitsverschijnselen en of ze reversibel waren;
— voor elk dier de obductie bevindingen en de histopathologische bevindingen, indien beschikbaar.

Bespreking en interpretatie van de resultaten.

Conclusies

REFERENTIES

BIJLAGE 1: STROOMSCHEMA VOOR DE VERKENNENDE TEST

Aanvangsdosis: 5 mg/kg

START

1 dier
5 mg/kg

A B C

Indeling GHS
Categorie 1*

Aanvangsdosis
hoofdonderzoek (mg/kg) 5

5 50

1 dier
50 mg/kg

A B C

1 dier
300 mg/kg

A B C

1 dier
2000 mg/kg

A B C

Aanvangsdosis: 50 mg/kg

START

1 dier
5 mg/kg

A B C

Indeling GHS
Categorie 1*

Aanvangsdosis
hoofdonderzoek (mg/kg) 5 5

5 50

50

1 dier
50 mg/kg

A B C

1 dier
300 mg/kg

A B C

1 dier
2000 mg/kg

A B C

Resultaat

A Sterfte

B Manifeste toxiciteit

C Geen manifeste toxiciteit en geen sterfte

* Voor resultaat A bij 5 mg/kg is er een facultatieve aanvullende procedure om de GHS-indeling te bevestigen: zie punt 1.5.2.
BIJLAGE 1: STROOMSCHEMA VOOR DE VERKENNENDE TEST

Aanvingsdosis: 300 mg/kg

Indeling GHS Categorie 1

Aanvingsdosis hoofdonderzoek (mg/kg):

1 dier 5 mg/kg
1 dier 50 mg/kg
1 dier 300 mg/kg
1 dier 2000 mg/kg

Aanvingsdosis: 2000 mg/kg

Indeling GHS Categorie 1

Aanvingsdosis hoofdonderzoek (mg/kg):

5 5 50 50 300 300 2000 2000

Resultaat

A Sterfte
B Manifeste toxiciteit
C Geen manifeste toxiciteit en geen sterfte

* Voor resultaat A bij 5 mg/kg is er een facultatieve aanvullende procedure om de GHS-indeling te bevestigen: zie punt 1.5.2.
BIJLAGE 2: STROOMSCHEMA VOOR HET HOOFDONDERZOEK

Aanvangsdosis: 5 mg/kg

START

5 dieren
5 mg/kg

A B C

5 dieren
50 mg/kg

A B C

5 dieren
300 mg/kg

A B C

5 dieren
2000 mg/kg

A B C

Indeling GHS categorie

| 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | S/geen indeling |

Aanvangsdosis: 50 mg/kg

START

5 dieren
5 mg/kg

A B C

5 dieren
50 mg/kg

A B C

5 dieren
300 mg/kg

A B C

5 dieren
2000 mg/kg

A B C

Indeling GHS categorie

| 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | S/geen indeling |

Resultaat

- A: ≥ 2 dode dieren
- B: ≥ 1 met manifeste toxiciteit en/of 1 dood dier
- C: Geen manifeste toxiciteit en geen dode dieren

Groepsomvang

Elk dier dat tijdens de verkennende test bij een bepaalde dosis is getest, telt mee voor de 5 dieren in de desbetreffende groep van het hoofdonderzoek.

* Voordrang dierenwelzijn

Als deze dosis bij de verkennende test sterfte veroorzaakte, worden er geen dieren meer getest. Ga direct naar resultaat A.

A
BIJLAGE 2: STROOMSCHEMA VOOR HET HOOFDONDERZOEK

Aanvangsdosis: 300 mg/kg

START

5 dieren
5 mg/kg

Indeling GHS categorie
1 2 2

Indeling GHS categorie
4

5 dieren
50 mg/kg

A B C

A B C

5 dieren
300 mg/kg

A B C

5 dieren
2000 mg/kg*

A B C

Indeling GHS categorie
4

5

5/geen indeling

Aanvangsdosis: 2000 mg/kg

START

5 dieren
5 mg/kg

Indeling GHS categorie
1 2 2

Indeling GHS categorie
3

5 dieren
50 mg/kg

A B C

A B C

5 dieren
300 mg/kg

A B C

5 dieren
2000 mg/kg

A B C

Indeling GHS categorie
4

4

5 5/geen indeling

Resultaat

A \geq 2 dode dieren

B \geq 1 met manifeste toxiciteit en/of 1 dood dier

C Geen manifeste toxiciteit en geen dode

Groepsomvang

Elk dier dat tijdens de verkennende test bij een bepaalde dosis is getest, telt mee voor de 5 dieren in de desbetreffende groep van het hoofdonderzoek.

* Voorrang dierenwelzijn

Als deze dosis bij de verkennende test sterfte veroorzaakte, worden er geen dieren meer getest. Ga direct naar resultaat A.
BIJLAGE 3

CRITERIA VOOR DE INDELING VAN TESTSTOFFEN MET EEN VERWACHTE LD₅₀ DIE HOGER LIGT DAN 2000 MG/KG ZODAT ER TESTS BEHOEVEN TE WORDEN UITGEVOERD

De criteria voor de gevarencategorie 5 zijn bedoeld om teststoffen te kunnen signaleren die een betrekkelijk geringe acute toxiciteit hebben, maar onder bepaalde omstandigheden een gevaar voor kwetsbare bevolkingsgroepen kunnen opleveren. Van deze stoffen wordt verwacht dat ze een orale of dermale LD₅₀ tussen 2000 en 5000 mg/kg hebben of een vergelijkbare toxiciteit voor andere routes. Deze teststoffen kunnen in de volgende gevallen in de gevarencategorie 2000 mg/kg < LD₅₀ < 5000 mg/kg worden ingedeeld (categorie 5 in het GHS):

a) als ze via een van de testschema's van bijlage 2 op basis van de sterftecijfers in deze categorie terechtkomen;
b) als er al betrouwbaar bewijsmateriaal beschikbaar is waaruit blijkt dat de LD₅₀ binnen het interval van categorie 5 valt of als uit ander onderzoek bij dieren of toxische effecten bij de mens blijkt dat er sprake is van een risico voor de gezondheid van de mens van acute aard;
c) via extrapolatie, raming of meling van gegevens als in dienst is een gevaarlijkere categorie niet terecht is en

— er betrouwbare informatie beschikbaar is die wijst op significante toxische effecten bij de mens of
— bij tests tot waarden van categorie 4 langs orale weg sterfte wordt waargenomen of
— wanneer het oordeel van deskundigen bevestigt dat er bij tests tot waarden voor categorie 4 significante klinische toxiciteitsverschijnselen zijn, met uitzondering van diarree, pilo-erectie of een onverzorgd uiterlijk of
— wanneer het oordeel van deskundigen betrouwbare informatie bevestigt die op grond van andere dierproeven op mogelijke significante acute effecten wijst.

TESTEN BIJ DOSES VAN MEER DAN 2000 MG/KG

Bij wijze van uitzondering kan alleen met een motivering op basis van specifieke regelgevingsvereisten daarnaast het gebruik van een hogere vaste dosis van 5000 mg/kg worden overwogen. Met het oog op het welzijn van dieren zijn dierproeven bij 5000 mg/kg niet wenselijk en moeten deze alleen worden overwogen wanneer er een grote kans is dat de resultaten van die proeven van direct belang zijn voor de bescherming van de gezondheid van dieren of mensen (9).

Verkennende test

De beslissingsregels voor de verkennende procedure van bijlage 1 worden uitgebreid met een dosis van 5000 mg/kg. Dit betekent dat wanneer er bij een verkennende test een aanvanksdosis van 5000 mg/kg wordt gebruikt die resultaat A (sterfte) oplevert, een tweede dier bij 2000 mg/kg wordt getest; bij resultaat B of C (manifeste toxiciteit of geen toxiciteit) wordt 5000 mg/kg als aanvanksdosis voor het hoofdonderzoek gekozen. Als een andere aanvanksdosis dan 5000 mg/kg wordt gebruikt, wordt de test bij resultaat B of C met 2000 mg/kg voortgezet met 5000 mg/kg; wanneer vervolgens 5000 mg/kg resultaat A oplevert, wordt 2000 mg/kg als aanvanksdosis voor het hoofdonderzoek gekozen en bij resultaat B of C wordt 5000 mg/kg als aanvanksdosis gekozen.

Hoofdonderzoek

De beslissingsregels voor de verkennende procedure van bijlage 2 worden uitgebreid met een dosis van 5000 mg/kg. Dit betekent dat wanneer er bij het hoofdonderzoek een aanvanksdosis van 5000 mg/kg wordt gebruikt die resultaat A (≥ 2 dode dieren) oplevert, een tweede groep bij 2000 mg/kg wordt getest; bij resultaat B (manifeste toxiciteit en/of ≤ 1 dood dier) of C (geen toxiciteit) wordt de stof niet volgens het GHS ingedeeld. Als een andere aanvanksdosis dan 5000 mg/kg wordt gebruikt, wordt de test bij resultaat C met 2000 mg/kg voortgezet met 5000 mg/kg; wanneer vervolgens 5000 mg/kg resultaat A oplevert, wordt de stof ingedeeld in categorie 5 van het GHS en bij resultaat B of C wordt de stof niet ingedeeld.
BIJLAGE 4:
TESTMETHODE B.1 bis – Leidraad voor de indeling in het EU-systeem gedurende de overgangsperiode totdat het "Globally Harmonised Classification System" (GHS) volledig is ingevoerd (overgenomen uit referentie (8))

Aanvangstdosis: 5 mg/kg

START

- 5 dieren
 - 5 mg/kg
 - A, B, C

Indeling EU: T+ T+

Aanvangstdosis: 50 mg/kg

START

- 5 dieren
 - 5 mg/kg
 - A, B, C

Indeling EU: T+ T+ T+

RESULTAAT

<table>
<thead>
<tr>
<th>Letter</th>
<th>Beschrijving</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≥ 2 dode dieren</td>
</tr>
<tr>
<td>B</td>
<td>≥ 1 met manifeste toxiciteit en/of 1 dood dier</td>
</tr>
<tr>
<td>C</td>
<td>Geen manifeste toxiciteit en geen dode dieren</td>
</tr>
</tbody>
</table>

Uitslag

| T+ | T | T+ | T+ | H | U | U |

- **TS = meer giftig**
- **T = giftig**
- **H = schadelijk**
- **U = niet ingedeeld**

Dieromslag

Als deze dosis bij de verkennende test sterfte veroorzaakte, worden er geen dieren meer getest. Ga direct naar resultaat **A**.

Groepsomvang

Elk dier dat tijdens de verkennende test bij een bepaalde dosis getest, telt mee voor de 5 dieren in de desbetreffende groep van het hoofdonderzoek.
BIJLAGE 4:
TESTMETHODE B.1 bis – Leidraad voor de indeling in het EU-systeem gedurende de overgangsperiode totdat het "Globally Harmonised Classification System" (GHS) volledig is ingevoerd (overgenomen uit referentie (8))

Aanvangstoxiciteit: 300 mg/kg

START

Indeling EU: T+ T+ T+ T T H H U U

Aanvangstoxiciteit: 2000 mg/kg

START

Indeling EU: T+ T+ T+ T T H H U U

Resultaat:

A ≥ 2 dode dieren
B ≥ 1 met manifeste toxiciteit en/of 1 dood dier
C Geen manifeste toxiciteit en geen dode dieren

Groepsomvang:
Elk dier dat tijdens de verkennende test bij een bepaalde dosis is getest, telt mee voor de 5 dieren in de desbetreffende groep van het hoofdonderzoek.

* Voorrang dierenwelzijn:
Als deze dosis bij de verkennende test sterfte veroorzaakte, worden er geen dieren meer getest. Ga direct naar resultaat A.
BIJLAGE 2C
B.1 ter. ACUTE ORALE TOXICITEIT: METHODE TER BEPALING VAN DE ACUTE-
TOXICITEITSKLASSE

1

METHODE

Deze methode is gelijkwaardig aan TG 423 (2001) van de OESO.

1.1

INLEIDING

De in deze test beschreven methode ter bepaling van de acute-toxiciteitsklasse (1) is een stapsgewijze procedure waarbij voor iedere stap drie dieren van hetzelfde geslacht worden gebruikt. Afhankelijk van het aantal dode en/of sterrende dieren kunnen er gemiddeld twee tot vier stappen nodig zijn om uitspraak over de acute toxiciteit van de teststof te kunnen doen. Deze procedure is reproduceerbaar, gebruikt heel weinig dieren en kan stoffen op een vergelijkbare wijze rangschikken als de andere testmethoden voor acute toxiciteit. De methode ter bepaling van de acute-toxiciteitsklasse is gebaseerd op biometrische evaluaties (2a)(3)(4)(5) met vaste doses, die ver genoeg uiteenliggen om een stof met het oog op de indeling en de bepaling van de gevaren te kunnen rangschikken. De in 1996 goedgekeurde methode is zowel op nationaal (6) als op internationaal (7) niveau uitgebreid in vivo gevalideerd in vergelijking met LD₉₀-gegevens uit de literatuur.

Richtsnoeren voor de keuze van de meest geschikte testmethode voor een bepaald doel worden gegeven in de leidraad voor tests op acute orale toxiciteit (8). Deze leidraad bevat ook aanvullende informatie over de uitvoering en interpretatie van testmethode B.1 ter.

Teststoffen behoeven niet te worden toegediend in doses waarvan bekend is dat ze door een bijtende of sterk irriterende werking hevige pijn en leed veroorzaken. Stervende dieren of dieren die duidelijk pijn hebben of tekenen van hevig en voortdurend leed vertonen, worden op humane wijze gedood en worden bij de interpretatie van de testresultaten op dezelfde manier behandeld als dieren die tijdens de test overleden zijn. Er is een aparte leidraad met criteria om te bepalen of sterrende of hevig lijdende dieren moeten worden gedood en richtsnoeren om voorspelbare of op healthelijke sterfte te herkennen (9).

Bij de methode worden vooraf bepaalde doses gebruikt en de resultaten maken het mogelijk de stof te rangschikken en in te delen aan de hand van het "Globally Harmonised System" voor de indeling van chemische stoffen die acute toxiciteit veroorzaken (10).

De methode is in principe niet bedoeld om de berekening van een exacte LD₉₀ mogelijk te maken, maar er kan wel een zeker blootstellingsinterval worden bepaald waar sterfte te verwachten valt, aangezien sterfte van een deel van de dieren het belangrijkste eindpunt van deze test blijft. Een LD₉₀ kan met deze methode alleen worden bepaald wanneer ten minste twee doses een sterfte tussen 0% en 100% opleveren. Het gebruik van een aantal vooraf bepaalde doses, ongeacht de teststof, waarbij de indeling expliciet wordt gekoppeld aan het aantal dieren waarbij uiteenlopende toestanden worden geobserveerd, biedt betere mogelijkheden voor consistentie en herhaalbaarheid bij rapportage door verschillende laboratoria.

Het testlaboratorium moet vóór de uitvoering van het onderzoek alle beschikbare informatie over de teststof in overweging nemen. Hierbij gaat het om informatie als de identiteit en de chemische structuur van de stof, de fysisch-chemische eigenschappen, het resultaat van andere met de stof uitgevoerde toxiciteitstests in vivo of in vitro, toxicologische gegevens over de qua structuur verwante stoffen en de voorgenomen toepassing(en) van de stof. Deze informatie is nodig om alle betrokkenen ervan te overtuigen dat de test relevant is voor de bescherming van de gezondheid van de mens en helpt tevens bij de keuze van de geschikte aanvangsdosis.
1.2 DEFINITIES

Acute orale toxiciteit: de schadelijke effecten die zich voordoen na orale toediening van één dosis van een stof of verschillende doses die binnen 24 uur worden toegediend.

Vertraagde sterfte: houdt in dat een dier niet binnen 48 uur sterft of stervende is maar later gedurende de observatieperiode van 14 dagen sterft.

Dosis: de toegediende hoeveelheid teststof. De dosis wordt uitgedrukt als gewicht van de teststof per gewichtseenheid van het proefdier (bijvoorbeeld mg/kg).

GHS: het "Globally Harmonised Classification System" voor chemische stoffen en mengsels. Een samenwerkingsproject van de OESO (gezondheid van de mens en milieu), het Comité van deskundigen voor het vervoer van gevaarlijke goederen van de VN (fysisch-chemische eigenschappen) en de ILO (communicatie van gevaren) dat wordt gecoördineerd door het Gezamenlijk programma voor een verantwoord beheer van chemische stoffen (OMC).

Ophanden zijnde sterfte: wanneer vóór het eerstvolgende geplande observatietijdstip een stervende toestand of sterfte wordt verwacht. Voorbeelden van indicaties voor deze toestand bij knaagdieren zijn convulsies, zjligging, liggende positie en tremors (zie de leidraad voor humane eindpunten (9) voor meer bijzonderheden).

LD₅₀ (mediana van de orale letale dosis): een statistisch afgeleide enkelvoudige dosis van een stof waarvan kan worden verwacht dat 50% van de dieren waaraan deze dosis oraal wordt toegediend, sterft. De LD₅₀ wordt uitgedrukt als gewicht van de teststof per gewichtseenheid van het proefdier (mg/kg).

Limietdosis: een dosis die bij tests als bovengrens wordt gehanteerd (2000 of 5000 mg/kg).

Stervende toestand: een toestand waarop de dood volgt of waarin overleven onmogelijk is, zelfs wanneer het dier wordt behandeld (zie de leidraad voor humane eindpunten (9) voor meer bijzonderheden).

Voorspelbare sterfte: een toestand met klinische verschijnselen die wijzen op sterfte op een bekend tijdstip in de toekomst vóór het geplande einde van het experiment, bijvoorbeeld wanneer het dier geen water of voer kan bereiken (zie de leidraad voor humane eindpunten (9) voor meer bijzonderheden).

1.3 PRINCIPE VAN DE TEST

Het principe van de test is dat op basis van een stapsgewijze procedure, waarbij per stap een zo klein mogelijk aantal dieren wordt gebruikt, volledige informatie over de acute toxiciteit van de teststof wordt verkregen om deze in te kunnen delen. Een van de vaste doses van de stof wordt oraal aan een groep proefdieren toegediend. De stof wordt stapsgewijs getest en bij elke stap worden drie dieren van hetzelfde geslacht (normaal gesproken vrouwtjes) gebruikt. Het resultaat van de stap (dieren die ten gevolge van de toediening van de stof sterven of niet) is bepalend voor de volgende stap, namelijk:

- de test kan worden gestaakt,
- dezelfde dosis wordt aan nog eens drie dieren toegediend of
- de eerstvolgende hogere of lagere dosis wordt aan drie andere dieren toegediend.

Bijlage I bevat een gedetailleerde beschrijving van de testprocedure. Met deze methode kan een uitspraak worden gedaan over de indeling van de teststof in een van de toxiciteitsklassen die elk worden begrensd door vaste LD₅₀ waarden.
1.4 **BESCHRIJVING VAN DE METHODE**

1.4.1 **Keuze van de diersoort**

Bij voorkeur wordt de rat gebruikt, maar ook andere knaagdersoorten kunnen worden gebruikt. Normaal gesproken worden vrouwtjes gebruikt (9), omdat uit literatuuronderzoek van klassieke LD₅₀-tests blijkt dat er weliswaar meestal weinig verschil in gevoeligheid tussen mannetjes en vrouwtjes is, maar dat vrouwtjes meestal iets gevoelier zijn dan zijn bij verschillen worden gemonstreerd (11). Als echter uit kennis omtrent de toxicologische of toxicokinetiesche eigenschappen van qua structuur verwante chemische stoffen blijkt dat mannetjes waarschijnlijk gevoeliger zullen zijn, moeten mannetjes worden gebruikt. Wanneer de test bij mannetjes wordt uitgevoerd, moet hiervoor een afdoende motivering worden gegeven.

Er worden gezonde jonge volwassen dieren van gangbare laboratoriumstammen gebruikt. De vrouwtjes mogen nog geen jongen hebben gehad en mogen niet drachtig zijn. Elk dier moet bij de eerste toediening 8 tot 12 weken oud zijn en het lichaamsgewicht mag niet meer dan ± 20% afwijken van het gemiddelde gewicht van dieren waaraan al eerder een dosis is toegevoegd.

1.4.2 **Huisvesting en voeding**

De temperatuur in de proefruimte dient 22°C (± 3°C) te zijn. Hoewel de relatieve vochtigheid minimaal 30% en bij voorkeur niet hoger dan 70% (behalve bij het reinigen van de ruimte) dient te zijn, moet worden gestreefd naar 50-60%. Verlichting gebeurt met kunstlicht met een ritme van 12 uur licht en 12 uur donker. Als voeding mag het gewone laboratoriumvoer worden gebruikt met een onbeperkte hoeveelheid drinkwater. De dieren mogen per dosis in groepen worden gehuisvest, maar het aantal dieren per kooi mag niet zo groot zijn dat een duidelijke observatie van elk dier wordt gestoord.

1.4.3 **Voorbereiding van de dieren**

De dieren worden aselect ingedeeld, gemerkt om elk dier afzonderlijk te kunnen identificeren en vóór de toediening gedurende minimaal 5 dagen in hun kooi gehouden om ze aan de omstandigheden in het laboratorium te laten wennen.

1.4.4 **Bereiding van de dosis**

In het algemeen worden alle doses van de teststof in het hele testbereik in een constant volume toegevoegd door de concentratie van de toegediende dosis te variëren. Wanneer echter een vloeibare eindproduct of mengsel wordt getest, kan het voor de latere risicobeoordeling van die stof zinvol zijn de teststof onverdund, d.w.z. met een constante concentratie, te gebruiken en sommige regelgevende instanties hebben dit verplicht gesteld. Het maximale toe te dienen volume mag echter in geen geval worden overschreden. Het is afhankelijk van de grootte van het proefdier welk volume vloeistof in één keer kan worden toegevoegd. Bij knaagdieren mag het volume normaal gesproken niet groter zijn dan 1 ml/100 g lichaamsgewicht. Bij een waterige oplossing kan echter 2 ml/100 g lichaamsgewicht worden overwogen. Voor de formulering van de dosis wordt waar mogelijk het gebruik van een waterige oplossing/suspensie/emulsie aanbevolen, in volgorde van voorkeur gevolgd door een oplossing/suspensie/emulsie in olie (bijvoorbeeld maïsolie) en eventueel een oplossing in een ander medium. Wanneer een ander medium dan water wordt gebruikt, moeten de toxicologische kenmerken van het medium bekend zijn. De dosis moet kort vóór de toediening worden bereid, tenzij de stabiliteit van het preparaat gedurende de gebruikspériode bekend is en is aangenomen dat deze aanvaardbaar is.

1.5 **PROCEDURE**

1.5.1 **Toediening van de dosis**

De teststof wordt in één dosis toegevoegd met een maagsonde of een geschikte katheter. In het uitzonderlijke geval dat één dosis niet mogelijk is, kan de dosis in kleinere porties worden verdeeld die in de loop van maximaal 24 uur worden toegevoegd.
De diernen moeten vóór de toediening vasten (ratten mogen bijvoorbeeld de nacht vóór de toediening geen voer maar wel water krijgen en muizen gedurende 3-4 uur). Na de vaste periode worden de diernen gewogen en wordt de teststof toegediend. Na de toediening van de stof kan men ratten nog eens 3-4 uur en muizen nog eens 1-2 uur laten vasten. Wanneer een dosis in de loop van de tijd in porties wordt toegediend, kan het afhankelijk van de lengte van de periode nodig zijn de dieren voer en water te geven.

1.5.2 Aantal dieren en hoogte van de doses

Voor elke stap worden er drie diernen gebruikt. Een van de vier vaste doses 5, 50, 300 en 2000 mg/kg lichaamsgewicht wordt als aanvangsdosis gekozen. Als aanvangsdosis wordt de dosis gekozen waarbij naar alle waarschijnlijkheid enkele dieren zullen sterven. In de stroomschema's van bijlage 1 wordt de procedure beschreven die bij elk van de aanvangsdoses moet worden gevolgd. Daarnaast bevat bijlage 4 een leidraad voor de indeling in het EU-systeem totdat het nieuwe GHS is ingevoerd.

Wanneer de beschikbare informatie erop wijst dat er bij de hoogste aanvangsdosis (2000 mg/kg lichaamsgewicht) waarschijnlijk geen dieren zullen sterven, moet er een limiettest worden uitgevoerd. Wanneer er geen informatie over een te testen stof is, wordt met de oog op het welzijn van dieren aanbevolen 300 mg/kg lichaamsgewicht als aanvangsdosis te gebruiken.

Het tijdsoverloop tussen de toediening aan de verschillende groepen wordt bepaald door de aanvang, de duur en de ernst van de toxiciteitsverschijnselen. Met de toediening van een volgende dosis moet worden gewacht totdat men er zeker van is dat de eerder geteste dieren blijven leven.

Bij wijze van uitzondering kan alleen met een motivering op basis van specifieke regelgevingsvereisten daarnaast het gebruik van een hogere vaste dosis van 5000 mg/kg lichaamsgewicht worden overwogen (zie bijlage 2). Met het oog op het welzijn van dieren zijn dierproeven in GHS-categorie 5 (2000-5000 mg/kg) niet wenselijk en moeten deze alleen worden overwogen wanneer er een grote kans is dat de resultaten van die test van direct belang zijn voor de bescherming van de gezondheid van mens of dier of het milieu.

1.5.3 Limiettest

De limiettest wordt voornamelijk uitgevoerd wanneer er informatie is die erop wijst dat het testmateriaal waarschijnlijk niet toxisch is c.q. alleen toxisch is in hogere doses dan de limieten in de regelgeving. Informatie over de toxiciteit van het testmateriaal kan afkomstig zijn van kennis omtrent vergelijkbare geteste verbindingen of vergelijkbare geteste mengsels of producten, waarbij rekening wordt gehouden met de identiteit en het percentage van de bestanddelen waarvan bekend is dat ze in toxicologisch opzicht relevant zijn. Wanneer er weinig of geen informatie over de toxiciteit van het testmateriaal is of wordt verwacht dat het toxisch is, moet het hoofdonderzoek worden uitgevoerd.

Er kan een limiettest met één dosisniveau van 2000 mg/kg worden uitgevoerd met zes dieren (drie dienen per stap). Bij wijze van uitzondering kan er een limiettest met één dosisniveau van 5000 mg/kg worden uitgevoerd met drie dieren (zie bijlage 2). Als er dieren vanwege de toediening van de stof sterven, kan het nodig zijn de test bij de eerstvolgende lagere dosis voort te zetten.

1.6 OBSERVATIE

De diernen worden gedurende de eerste 30 minuten na de toediening ten minste één maal elk afzonderlijk geobserveerd, gedurende de eerste 24 uur periodiek met bijzondere aandacht voor de eerste vier uur en vervolgens dagelijks gedurende in totaal 14 dagen, behalve wanneer ze met het oog op het welzijn van dieren uit het onderzoek moeten worden genomen en op humane wijze moeten worden gedood of dood aangetroffen worden. De observatieduur is echter geen regel waarvan niet kan worden afgeweken. Deze moet worden bepaald aan de hand van de toxische reacties, het tijdstip waarop ze beginnen en de duur van de herstelperiode en kan dus worden verlengd indien dit nodig wordt geacht. Het is belangrijk op welk tijdstip de toxiciteitsverschijnselen versijnden en verdwijnen, voordat er een reinging is tot vertraagde toxiciteitsverschijnselen (12). Alle observaties worden systematisch geregistreerd en voor elk dier wordt een apart verslag bijgehouden.
Als de dieren toxiciteitsverschijnselen blijven vertonen, is aanvullende observatie nodig. Bij de observatie wordt gekeken naar veranderingen in de huid en de vacht, de ogen en de slijmvliezen, de ademhalingsorganen, de bloedsomloop, het autonome en centrale zenuwstelsel, de somatomotorische activiteit en het gedragspatroon. Er moet worden gelet op de observatie van tremors, convulsies, speekselafscheiding, diarree, lethargie, slaap en coma. Er moet rekening worden gehouden met de beginselen en criteria in de leidraad voor humane eindpunten (9). Dieren die stervend worden aangetroffen en dieren die hevige pijn hebben of blijvende tekenen van ernstig leed vertonen, worden op humane wijze gedood. Wanneer dieren op humane wijze worden gedood of dood worden aangetroffen, wordt zo nauwkeurig mogelijk geregistreerd op welk tijdstip ze zijn gestorven.

1.6.1 Lichaamsgewicht

Kort vóór de toediening van de teststof en vervolgens ten minste wekelijks wordt het gewicht van elk dier bepaald. De gewichtsverandering wordt berekend en geregistreerd. Aan het einde van de test worden de dieren die nog leven gewogen en op humane wijze gedood.

1.6.2 Pathologie

Op alle proefdieren (ook degene die tijdens de test sterven of met het oog op het welzijn van dieren uit het onderzoek worden genomen) wordt macroscopische obductie uitgevoerd. Alle macroscopische pathologische veranderingen worden voor elk dier geregistreerd. Microscopisch onderzoek van organen die tekenen van macroscopische pathologische veranderingen vertonen bij dieren die na 24 uur of langer nog leven, kan ook worden overwogen aangezien dit nuttige informatie kan opleveren.

2 GEGEVENS

Er worden voor elk dier apart gegevens verstrekt. Daarnaast worden alle gegevens in tabelvorm samengevat met voor alle testgroepen vermelding van het gebruikte aantal dieren, het aantal dieren dat toxiciteitsverschijnselen vertoonde, het aantal dieren dat tijdens de test dood is aangetroffen of op humane wijze is gedood, het tijdstip waarop elk dier is gestorven, een beschrijving van de toxische effecten met het verloop en de omkeerbaarheid en de obductiebevindingen.

3 RAPPORTAGE

3.1 TESTVERSLAG

In het testverslag wordt indien van toepassing de volgende informatie opgenomen:

Teststof:
— de fysische aard, de zuiverheid en indien relevant de fysisch-chemische eigenschappen (b.v. de isomeer-
samenstelling);
— identificatiegegevens, zoals het CAS-nr.

Medium (indien van toepassing):
— een motivering voor de keuze van het medium als een ander medium dan water wordt gebruikt.

Proefdieren:
— de gebruikte soort/soort;
— de microbiologische status van de dieren, indien deze bekend is;
— het aantal dieren, hun leeftijd en hun geslacht (indien van toepassing een motivering voor het gebruik van
nummers in plaats van vrouwtjes);
— de herkomst, de huisvesting, de voeding enz.
Testomstandigheden:

- gedetailleerde gegevens over de formulering van de teststof met bijzonderheden over de fysische vorm van het toegediende materiaal;
- gedetailleerde gegevens over de toediening van de teststof met vermelding van het toegediende volume en het toedieningstijdstip;
- gedetailleerde gegevens over het voer en het water (met vermelding van de aard/herkomst van het voer en de herkomst van het water);
- de motivering voor de keuze van de aanvangsdosis.

Resultaten:

- een tabel met gegevens over de respons en de dosis voor elk dier (b.v. dieren met toxiciteitsverschijnselen of sterfte en de aard, de hevigheid en de duur van de effecten);
- een tabel met het lichaamsgewicht en de veranderingen in het lichaamsgewicht;
- het gewicht van de dieren op de toedieningsdag, daarna een keer per week en teneinde wanneer ze sterven of gedood worden;
- de datum en het tijdstip waarop de dieren sterven, als dit eerder gebeurde dan gepland;
- voor elk dier de aanvang en het verloop van de toxiciteitsverschijnselen en of ze reversibel waren;
- voor elk dier de obductiebevindingen en de histopathologische bevindingen, indien beschikbaar.

Bespreking en interpretatie van de resultaten.

Conclusies

REFERENCES

BIJLAGE I

PROCEDURE VOOR ELKE AANVANGSDOSIS

ALGEMENE OPMERKINGEN

In de stroomschema's in deze bijlage wordt voor elke aanvangsdosis de te volgen procedure geschetst:

— Bijlage 1 A: Aanvangsdosis 5 mg/kg lichaamsgewicht
— Bijlage 1 B: Aanvangsdosis 50 mg/kg lichaamsgewicht
— Bijlage 1 C: Aanvangsdosis 300 mg/kg lichaamsgewicht
— Bijlage 1 D: Aanvangsdosis 2000 mg/kg lichaamsgewicht

De pijlen geven, afhankelijk van het aantal gestorven of op humane wijze gedode dieren, de te volgen procedure aan.
BIJLAGE 1A
TESTPROCEDURE MET EEN AANVANGSDOSIS VAN 5 MG/KG LICHAAMSGEWICHT

- per stap worden 3 dieren van hetzelfde geslacht (normaal vrouwtjes) gebruikt
- 0, 1, 2, 3: aantal dode of stervende dieren bij elke stap
- GHS: Globally Harmonised Classification System (mg/kg lkg)

- ∞: niet ingedeeld
- testen bij 5000 mg/kg lkg: zie bijlage 2
BIJLAGE 1B
TESTPROCEDURE MET EEN AANVANGSDOSIS VAN 50 MG/KG LICHAMSGEWICHT

Start

5 mg/kg
3 dieren

2.3
△
2.3
△
2.3
△
2.3
△

50 mg/kg
3 dieren

△
△
△
△
△
△

300 mg/kg
3 dieren

△
△
△
△
△
△

2000 mg/kg
3 dieren

△
△
△
△
△
△

GHS

Categorie 1
> 0 - 5

Categorie 2
> 5 - 50

Categorie 3
> 50 - 300

Categorie 4
> 300 - 2000

Categorie 5
> 2000 - 5000

∞

Grens LD₅₀
mg/kg lg

5
25
30
50
200
300
500
1000
2000
2500
5000
∞

- per stap worden 3 dieren van hetzelfde geslacht (normaal vrouwtjes) gebruikt
- 0, 1, 2, 3: aantal dode of stervende dieren bij elke stap
- GHS: Globally Harmonised Classification System (mg/kg lg)

- ∞ : niet ingedeeld
- testen bij 5000 mg/kg lg: zie bijlage 2
BIJLAGE 1 C
TESTPROCEDURE MET EEN AANVANGSDOSIS VAN 300 MG/KG LICHAMSGEWICHT

Start

\[\begin{align*}
5 \text{ mg/kg} & \quad 3 \text{ dieren} \\
2.3 & \quad 0.1 \\
5 \text{ mg/kg} & \quad 3 \text{ dieren} \\
2.3 & \quad 0.1 \\
50 \text{ mg/kg} & \quad 3 \text{ dieren} \\
2.3 & \quad 0.1 \\
500 \text{ mg/kg} & \quad 3 \text{ dieren} \\
2.3 & \quad 0.1 \\
2000 \text{ mg/kg} & \quad 3 \text{ dieren} \\
2.3 & \quad 0.1 \\
2000 \text{ mg/kg} & \quad 3 \text{ dieren} \\
2.3 & \quad 0.1 \\
20000 \text{ mg/kg} & \quad 3 \text{ dieren} \\
2.3 & \quad 0.1 \\
\ldots & \quad \ldots
\end{align*} \]

GHS

Categorie 1
> 0 - 5
Categorie 2
> 5 - 50
Categorie 3
> 50 - 300
Categorie 4
> 300 - 2000
Categorie 5
> 2000 - 5000
\(\infty \)

\[\begin{align*}
3 \text{ (bij 50)} & \quad \text{bij de eerste stap} \\
\text{anders} & \quad \text{anders} \\
3 \text{ (bij 300)} & \quad \text{bij de eerste stap} \\
\text{anders} & \quad \text{anders} \\
3 & \quad 2 \\
2 & \quad 1 \\
0 & \quad 0 \\
\end{align*} \]

Grens \(LD_{50}\)
mg/kg lg

- 5
- 25
- 30
- 50
- 200
- 300
- 500
- 1000
- 2000
- 2500
- 5000
- \(\infty \)

- per stap worden 3 dieren van hetzelfde geslacht (normaal vrouwtjes) gebruikt
- 0, 1, 2, 3: aantal dode of stervende dieren bij elke stap
- GHS: Globally Harmonised Classification System (mg/kg lg)
- \(\infty \): niet ingedeeld
- testen bij 5000 mg/kg lg; zie bijlage 2
BIJLAGE 1 D
TESTPROCEDURE MET EEN AANVANGSDOSIS VAN 2000 MG/KG LICHAMSGEWICH

Start

5 mg/kg
3 dieren

5 mg/kg
3 dieren

50 mg/kg
3 dieren

50 mg/kg
3 dieren

2000 mg/kg
3 dieren

2000 mg/kg
3 dieren

300 mg/kg
3 dieren

300 mg/kg
3 dieren

23
0.1

23
0.1

23
0.1

23
0.1

0

0

GHS

Categorie 1
> 0 - 5

Categorie 2
> 5 - 50

Categorie 3
> 50 - 300

Categorie 4
> 300 - 2000

Categorie 5
> 2000 - 5000

∞

Grens LD₅₀
mg/kg lg

5
25
30
50
200
300
500
1000
2000
2500
5000
∞

- per stap worden 3 dieren van hetzelfde geslacht (normaal vrouwtjes) gebruikt
- 0, 1, 2, 3: aantal dode of sterfende dieren bij elke stap
- GHS: Globally Harmonised Classification System (mg/kg lg)

- ∞: niet ingedeeld
- testen bij 5000 mg/kg lg: zie bijlage 2
BIJLAGE 2

CRITERIA VOOR DE INDELING VAN TESTSTOFFEN MET EEN VERWACHTE LD₅₀ DIE HIGER LIGT DAN 2000 MG/KG ZONDER DAT ER TESTS BEHOEVEN TE WORDEN UITGEVOERD

De criteria voor de gevaarncategorie 5 zijn bedoeld om teststoffen te kunnen signaleren die een betrekkelijk geringe acute toxiciteit hebben, maar onder bepaalde omstandigheden een gevaar voor kwetsbare bevolkingsgroepen kunnen opleveren. Van deze stoffen wordt verwacht dat ze een orale of dermale LD₅₀ tussen 2000 en 5000 mg/kg hebben of een vergelijkbare toxiciteit voor andere routes. Deze teststoffen moeten in de volgende gevallen in de gevaarncategorie 2000 mg/kg ≤ LD₅₀ < 5000 mg/kg worden ingedeeld (categorie 5 in het GHS):

a) als ze via een van de testschema’s van bijlage 1A - 1D op basis van de sterftecijfers in deze categorie terechtkomen;

b) als er al betrouwbaar bewijsmateriaal beschikbaar is waaruit blijkt dat de LD₅₀ binnen het interval van categorie 5 valt of als uit ander onderzoek bij dieren of toxische effecten bij de mens blijkt dat er sprake is van een risico voor de gezondheid van de mens van acute aard;

c) via extrapolatie, raming of meting van gegevens als indeling in een gevaarlikkere categorie niet terecht is en

— er betrouwbare informatie beschikbaar is die wijst op significante toxische effecten bij de mens of
— bij tests tot waarden van categorie 4 langs orale weg sterfte wordt waargenomen of
— wanneer het oordeel van deskundigen bevestigt dat er bij tests tot waarden voor categorie 4 significante klinische toxiciteitsverschijnselen zijn, met uitzondering van diarree, pilo-erectie of een onverzorgd uiterlijk of
— wanneer het oordeel van deskundigen betrouwbare informatie bevestigt die op grond van andere dierproeven op mogelijke significante acute effecten wijst.

TESTEN BIJ DOSES VAN MEER DAN 2000 MG/KG

Met het oog op het welzijn van dieren zijn dierproeven in categorie 5 (5000 mg/kg) niet wenselijk en moeten deze alleen worden overwogen wanneer er een grote kans is dat de resultaten van die test van direct belang zijn voor de bescherming van de gezondheid van mens of dier (10). Er dienen geen verdere tests bij hogere doses te worden uitgevoerd.

Wanneer testen met een dosis van 5000 mg/kg nodig is, wordt er slechts één stap (d.w.z. drie dieren) uitgevoerd. Als het eerste dier na toediening stervt, gaat de toediening verder met 2000 mg/kg volgens de stroomschema’s van bijlage 1. Als het eerste dier blijft leven, wordt een tweede dieren 5000 mg/kg toegediend. Als slechts één van de drie dieren stervt, wordt ervan uitgegaan dat de LD₅₀ hoger is dan 5000 mg/kg. Als beide dieren sterven, gaat de toediening verder met 2000 mg/kg.
BIJLAGE 3
TESTMETHODE B.1 ter: Leidraad voor de indeling in het EU-systeem gedurende de overgangsperiode totdat het "Globally Harmonised Classification System" (GHS) volledig is ingevoerd (overgenomen uit referentie (8))

![Diagram of the test method for classifying substances in the EU system during the transition period until the "Globally Harmonised Classification System" (GHS) is fully implemented, based on reference (8)].

- per stap worden 3 dieren van hetzelfde geslacht (normaal vrouwjes) gebruikt
- 0, 1, 2, 3: aantal overleden of stervende dieren bij elke stap
- α: niet ingedeeld
- GHS: Globally Harmonised Classification System (mg/kg lg)
BIJLAGE 3 (vervolg 1)
TESTMETHODE B.1 ter: Leidraad voor de indeling in het EU-systeem gedurende de overgangsperiode totdat het "Globally Harmonised Classification System" (GHS) volledig is ingevoerd (overgenomen uit referentie (8))

GHS

<table>
<thead>
<tr>
<th>Categorie 1</th>
<th>Categorie 2</th>
<th>Categorie 3</th>
<th>Categorie 4</th>
<th>Categorie 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0 - 5</td>
<td>> 5 - 50</td>
<td>> 50 - 3000</td>
<td>> 300 - 2000</td>
<td>> 2000 - 5000</td>
</tr>
</tbody>
</table>

- **Grens LD₅₀ mg/kg kg**
 - 5
 - 25
 - 30
 - 50
 - 200
 - 300
 - 500
 - 1000
 - 2000
 - 2500
 - 5000
 - ∞

- **EU/chemischeën vloeibare pesticiden**
 - 25
 - 200
 - 2000
 - ∞

- **EU vaste pesticiden**
 - 5
 - 500
 - ∞

- **VN vaste stoffen**
 - 5
 - 50
 - 500
 - ∞

- **VN vloeistoffen**
 - 5
 - 50
 - 200
 - ∞

- **Zwitsersland**
 - 5
 - 50
 - 500
 - 2000
 - 5000
 - ∞

- **VS EPA crk**
 - 25
 - ∞

- **Japan PDSCA**
 - 30
 - 300
 - ∞

- **Canada/WHMIS/US OSHA**
 - 50
 - 500
 - ∞

- **US EPA pesticiden**
 - 50
 - 500
 - 5000
 - ∞

- **US CPSC**
 - 50
 - 500
 - 1000
 - 2000
 - 5000
 - ∞

- **Canada pesticiden**
 - 50
 - 500
 - 1000
 - 2000
 - 5000
 - ∞

- per stap worden 3 dieren van hetzelfde geslacht (normaal vrouwtjes) gebruikt
- 0, 1, 2, 3: aantal dode of stervende dieren bij elke stap
- ∞: niet ingedeeld
- °: bij eerste stap
- GHS: Globally Harmonised Classification System (mg/kg kg)
BIJLAGE 3 (vervolg 2)
TESTMETHODE B.1 ter: Leidraad voor de indeling in het EU-systeem gedurende de overgangsperiode totdat het "Globally Harmonised Classification System" (GHS) volledig is ingevoerd (overgenomen uit referentie (8))

- per stap worden 3 dieren van hetzelfde geslacht (normaal vrouwtjes) gebruikt
- 0, 1, 2, 3: aantal dode of stervende dieren bij elke stap
- \(\infty\): niet ingedeeld
- \(^*\): bij eerste stap
- GHS: Globally Harmonised Classification System (mg/kg l.i.)
BIJLAGE 3 (vervolg 3)

TESTMETHODE B.1 ter: Leidraad voor de indeling in het EU-systeem gedurende de overgangsperiode totdat het “Globally Harmonised Classification System” (GHS) volledig is ingevoerd (overgenomen uit referentie (8))

<table>
<thead>
<tr>
<th>Categorie 1</th>
<th>Categorie 2</th>
<th>Categorie 3</th>
<th>Categorie 4</th>
<th>Categorie 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 0 - 5</td>
<td>> 5 - 50</td>
<td>> 50 - 1000</td>
<td>> 1000 - 2000</td>
<td>> 2000 - 5000</td>
</tr>
<tr>
<td>5 mg/kg 3 dieren</td>
<td>5 mg/kg 3 dieren</td>
<td>5 mg/kg 3 dieren</td>
<td>5 mg/kg 3 dieren</td>
<td>2000 mg/kg 3 dieren</td>
</tr>
</tbody>
</table>

- **Grens LD₅₀ mg/kg lg**
 - 5
 - 25
 - 30
 - 50
 - 200
 - 300
 - 500
 - 1000
 - 2000
 - 2500
 - 5000

- **EU/chemicaliën vloeibare pesticiden**
 - 25
 - 200
 - 2000
 - 5000

- **EU vaste pesticiden**
 - 5
 - 50
 - 500
 - 2000

- **VN vaste stoffen**
 - 5
 - 50
 - 500

- **VN vloeistoffen**
 - 5
 - 50
 - 200

- **Zwitserland**
 - 5
 - 50
 - 500
 - 2000
 - 5000

- **VS EPA crk**
 - 25

- **Japan PDSCA**
 - 30
 - 300

- **Canada/WHMIS/US OSHA**
 - 50
 - 500

- **US EPA pesticiden**
 - 50
 - 500
 - 5000

- **US CPSC**
 - 50
 - 500
 - 1000
 - 2000

- **Canada pesticiden**
 - 50
 - 500

- per stap worden 3 dieren van hetzelfde geslacht (normaal vrouwtjes) gebruikt
- 0, 1, 2, 3: aantal dode of stervende dieren bij elke stap
- ∞: niet ingedeeld
- "": bij eerste stap
- GHS: Globally Harmonised Classification System (mg/kg lg)
BIJLAGE 2D
B.4. ACUTE TOXICITEIT; HUIDIRRITATIE/CORROSIE

1 METHODE

Deze methode is gelijkwaardig aan TG 404 (2002) van de OESO.

1.1 INLEIDING

Bij de samenstelling van deze bijgewerkte methode is bijzondere aandacht besteed aan mogelijke verbeteringen met het oog op het welzijn van de dieren en aan de evaluatie van alle bestaande informatie over de teststof om onnodige tests bij proefdieren te vermijden. In deze methode wordt de aanbeveling opgenomen de bestaande relevante gegevens op bewijskracht te analyseren, alvorens de beschreven in vivo test op corrosie/irritatie van de stof wordt uitgevoerd. Wanneer er onvoldoende gegevens beschikbaar zijn, kunnen ze worden aangevuld door een sequentiële teststrategie te volgen (1). De aanbevolen teststrategie omvat de uitvoering van gevalideerde en erkende in vitro tests en is als bijlage bij deze methode opgenomen. Bovendien wordt aanbevolen bij de voorlopige in vivo test de drie testgaasjes waar mogelijk niet egelijkertijd maar achtereenvolgens aan te brengen.

In het belang van zowel wetenschappelijke kwaliteit als het dierenwelzijn moeten er geen in vivo tests worden uitgevoerd voordat alle beschikbare gegevens over de mogelijke huidcorrosie/irritatie door de stof zijn geëvalueerd op bewijskracht. Hierbij gaat het bijvoorbeeld om de resultaten van eerdere studies bij mensen en/of proefdieren, gegevens over corrosie/irritatie door een of meer qua structuur verwante stoffen of mengsels van dergelijke stoffen, gegevens waaruit blijkt dat de stof sterk zuur of sterk alkalisch is (2)(3), en resultaten van gevalideerde en erkende in vitro of ex vivo tests (4)(5)(5a). Door een dergelijke analyse zijn er minder in vivo tests nodig op huidcorrosie/irritatie door stoffen waarvoor al voldoende bewijsmateriaal bestaat uit andere onderzoeken met deze twee eindpunten.

Een aanbevolen sequentiële teststrategie, waarin de uitvoering van gevalideerde en erkende in vitro of ex vivo tests op corrosie/irritatie is opgenomen, is als bijlage bij deze methode opgenomen. De strategie is ontwikkeld tijdens een OESO-workshop (6), met algemene stemmen door de deelnemers aanbevolen en als aanbevolen teststrategie opgenomen in het "Globally Harmonised System for the Classification of Chemical Substances" (GHS) (7). Hoewel deze sequentiële teststrategie geen integereerd onderdeel van testmethode B.4 is, wordt aanbevolen deze teststrategie te volgen alvorens in vivo tests uit te voeren. Voor nieuwe stoffen is het de aanbevolen stapsgewijze testbenadering om wetenschappelijk verantwoorde gegevens over corrosie/irritatie door de stof te verkrijgen. Wanneer er voor bestaande stoffen onvoldoende gegevens over de huidcorrosie/irritatie beschikbaar zijn, moet de strategie worden gebruikt om ontbrekende gegevens aan te vullen. Voor het gebruik van een andere teststrategie of -procedure of de beslissing om geen stapsgewijze testbenadering te volgen moet een motivering worden gegeven.

Als hij een bewijskrachtanalyse niet kan worden gecombineerd of er sprake is van corrosie of irritatie, moet overeenkomstig de sequentiële teststrategie een in vivo test worden overwogen (zie de bijlage).

1.2 DEFINITIES

Huidirritatie: het ontstaan van een onomkeerbare beschadiging van de huid na het aanbrengen van een teststof gedurende maximaal 4uur.

Huidcorrosie: het ontstaan van een onomkeerbare beschadiging van de huid, namelijk zichtbare necrose door de epidermis heen in de dermis, na het aanbrengen van een teststof gedurende maximaal 4 uur. Corrosie-reacties worden gekenmerkt door zwenen, bloedingen, bloedkorsten en, tegen het einde van de observatieperiode van 14 dagen, ontsteking door bloeding van de huid, gebieden met volledige haaruitval en littekens. Voor de beoordeling van twijfelachtig letsel moet histopathologie worden overwogen.
1.3 **PRINCIPE VAN DE TESTMETHODE**

De teststof wordt in één dosis op de huid van een proefdier aangebracht; de onbehandelde huid van het proefdier wordt als controle gebruikt. De mate van irritatie/corrosie wordt op bepaalde tijdstippen afgelezen en ingeschaald en wordt nader beschreven om een volledige evaluatie van de effecten mogelijk te maken. De duur van de studie moet voldoende zijn om te kunnen beoordelen of de waargenomen effecten reversibel of irreversibel van aard zijn.

Dieren die gedurende een fase van de test voortdurend tekenen van ernstig ongerief en/of hevige pijn vertonen, moeten op humane wijze worden gedeod en de stof dient diensovereenkomstig te worden beoordeeld. Voor criteria voor de beslissing om stervende en hevig lijdende dieren op humane wijze te doden wordt verwezen naar referentie (8).

1.4 **BESCHRIJVING VAN DE TESTMETHODE**

1.4.1 **Voorbereiding van de *in vivo* test**

1.4.1.1 *Keuze van de diersoort*

Als proefdier wordt de voorkeur gegeven aan het albino konijn en er worden gezonde jonge volwassen konijnen gebruikt. Wanneer er een andere soort wordt gebruikt, moet hiervoor een motivering worden gegeven.

1.4.1.2 *Voorbereiding van de dieren*

Ongeveer 24 uur voor de test wordt het haar op het ruggedeelte van de romp van de dieren door kort afknippen verwijderd. Er moet op worden gelet dat de huid niet wordt geschaduwd. Alleen dieren met een gezonde en gave huid mogen worden gebruikt.

Sommige konijnenstammen hebben plekken met dichte haargroei, die in bepaalde perioden van het jaar meer op de voorgrond treden. De test mag niet op deze plekken met dichte haargroei worden uitgevoerd.

1.4.1.3 *Huisvesting en voeding*

De dieren worden in aparte kooien gehuisvest. De temperatuur in de proefdierruimte dient 20°C (± 3°C) te zijn. Hoewel de relatieve vochtigheid minimaal 30% en bij voorkeur niet hoger dan 70% (behalve bij het reinigen van de ruimte) dient te zijn, moet worden gestreefd naar 50-60%. Verlichting gebeurt met kunstlicht met een ritme van 12 uur licht en 12 uur donker. Als voeding mag het gewone laboratoriumvoer worden gebruikt met een onbeperkte hoeveelheid drinkwater.

1.4.2 **Testprocedure**

1.4.2.1 *Het aanbrengen van de teststof*

De teststof wordt aangebracht op een klein huidoppervlak (ongeveer 6 cm²) en de plek wordt bedekt met een gaasje dat met behulp van niet-irriterend plakband op zijn plaats wordt gehouden. Wanneer de stof niet direct kan worden aangebracht (bijvoorbeeld bij vloeistoffen of bepaalde pastes), wordt de teststof eerst op het gaasje aangebracht en wordt dit daarna op de huid bevestigd. Het gaasje moet gedurende de blootstellingsperiode door middel van een geschikt semi-occlusief verband in licht contact met de huid blijven. Als de teststof op het gaasje wordt aangebracht, moet dit zodanig op de huid worden bevestigd dat er een goed contact en een uniforme verdeling van de stof op de huid is. Er moet tevens voor worden gezorgd dat het gaasje voor het dier onbereikbaar is en dat inslikken of inademen van de teststof onmogelijk is.

Vloeibare stoffen worden in het algemeen onverdund gebruikt. Bij een proef met vaste stoffen (die indien nodig eventueel kunnen worden verpoeend) moet de teststof met een zo klein mogelijke hoeveelheid water (of indien nodig een ander geschikt medium) worden bevochtigd om voor een goed contact met de huid te zorgen. Wanneer een ander medium dan water wordt gebruikt, moet een eventuele invloed van het medium op de irritatie van de huid door de teststof minimaal zijn.

Aan het einde van de blootstellingsperiode, die normaal gesproken 4 uur bedraagt, moeten de resten van de teststof zo mogelijk met water of met een geschikt oplosmiddel worden verwijderd zonder de bestaande respons of de intacte epithelium te wijzigen.
1.4.2.2 *Dosisniveau*

Een dosis van 0,5 ml vloeistof of 0,5 g vaste stof of pasta wordt op het testgedeelte van de huid aangebracht.

1.4.2.3 *Voorlopige test (in vivo test op huidirritatie/corrosie met één dier)*

Het is zeer wenselijk dat de *in vivo* test in eerste instantie met één dier wordt uitgevoerd, vooral wanneer wordt vermoed dat de stof corrosie kan veroorzaken. Dit is in overeenstemming met de sequentiële teststrategie (zie bijlage 1).

Wanneer een stof op basis van een bewijskrachtanalyse als corrosief wordt beschouwd, zijn er geen verdere dierproeven nodig. Bij de meeste stoffen waarvan wordt vermoed dat ze corrosief zijn, zijn verdere *in vivo* tests normaal gesproken niet nodig. Wanneer aanvullende gegevens nodig worden geacht omdat het bewijsmateriaal onvoldoende is, kunnen echter met de volgende aanpak beperkte dierproeven worden uitgevoerd: Bij het dier worden achtereenvolgens maximaal drie testgaasjes aangebracht. Het eerste gaasje wordt na drie minuten verwijderd. Als er geen ernstige huidreactie wordt waargenomen, wordt een tweede gaasje aangebracht dat na een uur wordt verwijderd. Als de waarnemingen in deze fase erop wijzen dat het niet onmogelijk is de blootstelling tot vier uur te verlengen, wordt een derde gaasje aangebracht, dat na vier uur wordt verwijderd, en wordt de reactie ingeschaald.

Als er na een van de drie achtereenvolgende blootstellingen een corrosie-reactie wordt waargenomen, wordt de test onmiddellijk gestaakt. Als er na de verwijdering van het laatste gaasje geen corrosie-reactie wordt waargenomen, wordt het dier gedurende 14 dagen geobserveerd terwijl er vóór die tijd al corrosie ontstaat.

Wanneer er niet wordt verwacht dat de teststof corrosie veroorzaakt maar deze wel irriterend kan zijn, wordt er één gaasje gedurende vier uur op één dier aangebracht.

1.4.2.4 *Bevestigende test (in vivo test op huidirritatie/corrosie met meer dieren)*

Als er bij de voorlopige test geen corrosie-reactie wordt waargenomen, moet de irritatie of negatieve reactie worden bevestigd met nog eens twee dieren die elk gedurende vier uur aan één gaasje worden blootgesteld. Als er bij de voorlopige test irritatie wordt waargenomen, kan de bevestigende test op sequentiële wijze worden uitgevoerd of door nog eens twee dieren tegelijkertijd bloot te stellen. Wanneer in een uitzonderlijk geval de voorlopige test niet wordt uitgevoerd, kunnen twee of drie dieren met één gaasje worden behandeld dat na vier uur wordt verwijderd. Wanneer er twee dieren worden gebruikt die beide dezelfde reactie vertonen, is verder testen niet nodig. Als de reactie verschilt, wordt ook het derde dier getest. Er kunnen extra dieren nodig zijn om duidelijkheid te krijgen omtrent moeilijk te interpreteren reacties.

1.4.2.5 *Observatieperiode*

De duur van de observatieperiode moet voldoende zijn om volledig te kunnen beoordelen of de waargenomen effecten reversibel zijn. Het experiment moet echter worden beëindigd zodra het dier voortdurend tekenen van hevige pijn of ernstig ongerief vertoont. Om te bepalen of de effecten reversibel zijn, moeten de dieren maximaal 14 dagen na de verwijdering van de gaasjes worden geobserveerd. Als al vóór het verstrijken van de 14 dagen wordt geconstateerd dat de effecten reversibel zijn, wordt het experiment op dat moment beëindigd.
1.4.2.6 *Klinische observatie en inschaling van de huidreacties*

Alle dieren worden op tekenen van erytheem en oedeem onderzocht en de respons wordt 60 minuten en vervolgens 24, 48 en 72 uur na de verwijdering van het gaasje ingeschuld. Bij de voorlopige test bij één dier wordt de huid ook onmiddellijk na de verwijdering van het gaasje onderzocht. De huidreactie wordt in een van de categorieën in de tabel ingeschuld en geregistreerd. Als er sprake is van een beschadiging van de huid die na 72 uur niet als irritatie of corrosie kan worden geïdentificeerd, kan het nodig zijn de observatie tot dag 14 voort te zetten om te bepalen of de effecten reversibel zijn. Naast de observatie van irritatie worden ook alle lokale toxische effecten, zoals ontveting van de huid, en alle systemische schadelijke effecten (zoals effecten op klinische toxiciteitverschijnselen en het lichaamsgewicht) voldoende beschreven en geregistreerd. Om duidelijkheid te krijgen omtrent moeilijk te interpreteren reacties moet histopathologisch onderzoek worden overwogen.

De inschaling van huidreacties is per definitie subjectief. Om harmonisatie bij de inschaling van huidreacties te bevorderen en ter ondersteuning van de testlaboratoria en de personen die bij het uitvoeren en het interpreteren van de observatie betrokken zijn, moet het personeel dat de observatie uitvoert afdwingende zijn opgeleid in het gebruikte scoresysteem (zie de tabel). Een getuigde leiding voor de inschaling van huidirritatie en ander letsel kan nuttig zijn (9). De inschaling van de huidreacties moet blind gebeuren.

2 **GEGEVEN**

2.1 **VERMELDING VAN DE RESULTATEN**

De resultaten van het onderzoek worden in het eindverslag in tabelvorm vermeld en hierin worden alle onder punt 3.1 vermelde gegevens opgenomen.

2.2 **EVALUATIE VAN DE RESULTATEN**

De scores voor de huidirritatie worden in samenhang met de aard en ernst van het letsel en de vraag of dit al dan niet reversibel is, beoordeeld. De individuele scores vormen geen absolute norm voor de irriterende eigenschappen van een materiaal, aangezien ook andere effecten van het testmateriaal worden beoordeeld. De individuele scores moeten veeleer als referentiewaarden worden beschouwd, die in combinatie met alle andere observaties tijdens het onderzoek moeten worden geëvalueerd.

Bij de beoordeling van de irritatie-reactie moet rekening worden gehouden met de reversibiliteit van het huidletsel. Wanneer reacties als haaruitval (beperkt gebied), hyperkeratose, hyperplasie en schilfering tot het einde van de observatieperiode van 14 dagen blijven bestaan, moet de teststof als irriterend worden beschouwd.
3 RAPPORTAGE

3.1 TESTVERSLAG

In het testverslag wordt de volgende informatie opgenomen:

Motivering voor in vivo test: bewijskrachtanalyse van reeds bestaande testgegevens, zoals de resultaten van een sequentiële teststrategie:
- een beschrijving van de relevante gegevens die van eerdere tests beschikbaar zijn;
- de gegevens die bij elke fase van de teststrategie verkregen zijn;
- een beschrijving van de uitgevoerde in vitro tests met een gedetailleerde beschrijving van de procedures en de resultaten die met test/referentiestoffen verkregen zijn;
- een bewijskrachtanalyse voor de uitvoering van het in vivo onderzoek.

Teststof:
- identificatiegegevens (b.v. het CAS-nr., de herkomst, de zuiverheid, bekende verontreinigingen en het chargenummer);
- de fysische aard en de fysisch-chemische eigenschappen (b.v. de pH, de vlochtigheid, de oplosbaarheid en de stabiliteit);
- bij een mengsel de samenstelling met voor elk bestanddeel het procentuele gehalte.

Medium:
- identificatiegegevens, de concentratie (indien van toepassing) en het gebruikte volume;
- een motivering voor de keuze van het medium.

Proefdieren:
- de gebruikte soort/stam en een motivering indien andere dieren dan het albino konijn worden gebruikt;
- het aantal dieren van elk geslacht;
- het gewicht van elk dier aan het begin en het eind van de test;
- de leeftijd aan het begin van het onderzoek;
- de herkomst van de dieren, de huisvesting, de voeding enz.

Testomstandigheden:
- de techniek voor de voorbereiding van de plaats waarop het gaasje wordt aangebracht;
- een gedetailleerde beschrijving van het gebruikte verbandmateriaal en de verbandtechniek;
- gedetailleerde gegevens over het bereiden, het aanbrengen en het verwijderen van de teststof.

Resultaten:
- een tabel met de score van de irritatie/corrosie-reactie voor elk dier op elk observatietijdstip;
- beschrijvingen van alle waargenomen letsels;
- een beschrijving in woorden van de aard en de ernst van de waargenomen irritatie of corrosie met eventuele histopathologische bevindingen;
- een beschrijving van andere schadelijke lokale (bijvoorbeeld ontvetting van de huid) en systemische effecten naast de huidirritatie of -corrosie.

Bespreking van de resultaten.
REFERENCES

(5a) Testmethode B.40: Huidcorrosie.

<table>
<thead>
<tr>
<th>Vorming van erytheem en korsten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geen erytheem</td>
</tr>
<tr>
<td>Zeer licht erytheem (nauwelijks waarneembaar)</td>
</tr>
<tr>
<td>Duidelijk gedefinieerd erytheem</td>
</tr>
<tr>
<td>Matig tot ernstig erytheem</td>
</tr>
<tr>
<td>Ernstig erytheem (diep rood) tot korstvorming waardoor de inschaling van erytheem onmogelijk is</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vorming van oedeem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geen oedeem</td>
</tr>
<tr>
<td>Zeer licht oedeem (nauwelijks waarneembaar)</td>
</tr>
<tr>
<td>Licht oedeem (de randen van het gebied zijn goed zichtbaar door duidelijke zwelling)</td>
</tr>
<tr>
<td>Matig oedeem (ongeveer 1 mm zwelling)</td>
</tr>
<tr>
<td>Ernstig oedeem (meer dan 1 mm zwelling tot buiten het blootstellingsgebied)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Om duidelijkheid te krijgen omtrent moeilijk te interpreteren reacties kan histopathologisch onderzoek worden uitgevoerd.
BIJLAGE

Een sequentiële teststrategie voor huidirritatie en corrosie

ALGEMENE OVERWEGINGEN

Hoewel deze sequentiële teststrategie geen integrerend onderdeel van testmethode B.4 is, vormt zij de aanbeveling aanpak voor de bepaling van de kenmerken qua huidirritatie/corrosie. Deze aanpak houdt zowel een optimale gedragscode als een ethische referentie voor in vivo tests op huidirritatie/corrosie in. De testmethode bevat een leidraad voor de uitvoering van de in vivo test en geeft een overzicht van de factoren die vóór het begin van een dergelijke test in aanmerking moeten worden genomen. De strategie levert een benadering voor de evaluatie van bestaande gegevens over de eigenschappen van teststoffen inzake huidirritatie/corrosie en een trapgewijze aanpak voor het vergaren van relevante gegevens over stoffen waarvoor nader onderzoek nodig is of waarvoor nog geen onderzoek is uitgevoerd. Ook wordt aanbevolen onder bepaalde omstandigheden gevalideerde en erkende in vitro of ex vivo tests op huidirritatie/corrosie uit te voeren.

In het belang van verantwoordelijke wetenschap en het welzijn van dieren is het belangrijk dat het onnodig gebruik van dieren wordt verminderd en dat tests waarvan hevige reacties bij dieren worden vernietigd, tot een minimum worden beperkt. Alle informatie over een stof die relevant is voor de mogelijke huidirritatie/corrosie door die stof moet worden geëvalueerd voordat een in vivo test wordt overwogen. Wellicht bestaat er al voldoende bewijsmateriaal om een teststof qua mogelijke huidirritatie of -corrosie in te delen zonder dat er tests bij proefdieren behoeven te worden uitgevoerd. Daarom zal het gebruik van een bewijskrachtanalyse en een sequentiële teststrategie de noodzaak van in vivo testen tot een minimum beperken, vooral als er van de stof hevige reacties worden verwacht.

Het gebruik van een bewijskrachtanalyse voor de evaluatie van bestaande informatie over huidirritatie en -corrosie door stoffen wordt aanbevolen om te bepalen of ander aanvullend onderzoek dan in vivo huidonderzoek moet worden uitgevoerd om te helpen bij de bepaling van deze mogelijke effecten. Wanneer nader onderzoek nodig is, wordt aanbevolen de sequentiële teststrategie te gebruiken om de relevante experimentele gegevens te verkrijgen. Voor stoffen die nog niet zijn getest, moet de sequentiële teststrategie worden gebruikt om de gegevens te vergaren die nodig zijn om de mogelijke huidirritatie/corrosie te bepalen. De in deze bijlage beschreven teststrategie is tijdens een OESO-workshop (1) ontwikkeld en later bevestigd en opgenomen in het "Harmonised Integrated Hazard Classification System for Human Health and Environmental Effects of Chemical Substances", die de steun heeft gekregen van de 28e gezamenlijke vergadering van het Comité chemische stoffen en de Werkgroep chemische stoffen in november 1998 (2).

BESCHRIJVING VAN DE EVALUATIE EN DE TESTSTRATEGIE

Alvorens te beginnen met tests als onderdeel van de sequentiële teststrategie (zie figuur), moet alle beschikbare informatie worden geëvalueerd om te bepalen of in vivo huidonderzoek nodig is. Hoewel de evaluatie van individuele parameters (bijvoorbeeld een extreme pH) significante informatie kan opleveren, moet rekening worden gehouden met alle bestaande informatie. Alle relevante gegevens over de effecten van de betrokken stof of analoge verbindingen moeten bij het nemen van een beslissing over de bewijskracht worden geëvalueerd en er moet een motivering voor de beslissing worden gegeven. De nadruk moet in eerste instantie liggen op bestaande gegevens over de effecten van de stof bij mens en dier en vervolgens op de resultaten van in vitro of ex vivo tests. Waar mogelijk moet in vivo onderzoek aan corrosieve stoffen worden vermeden. Bij de teststrategie spelen de volgende factoren een rol:

- **Evaluatie van bestaande gegevens over de effecten bij mens en dier** (stap 1). In de eerste plaats moet worden gekeken naar bestaande gegevens over de effecten bij de mens, zoals klinisch of bedrijfsgenetisch onderzoek en ziektgevallen, en/of gegevens van dierproeven, bijvoorbeeld van onderzoek naar huidtoxiciteit bij eenmalige of herhaalde blootstelling, omdat deze informatie opleveren die rechtstreeks verband houdt met huideffecten. Bij stoffen waarvan bekend is dat ze irritatie of corrosie veroorzaken en stoffen waarvoor duidelijk is aangetoond dat dit niet het geval is, behoeven geen in vivo tests te worden uitgevoerd.
Analyse van structuur/effect-relaties (SAR) (staap 2). Er moet worden gekeken naar de resultaten van tests met qua structuur verwante stoffen, indien deze beschikbaar zijn. Wanneer er voldoende gegevens beschikbaar zijn over de effecten van qua structuur verwante stoffen of mengsels van dergelijke stoffen bij mens en/of dier om te kunnen concluderen dat deze huidcorrosie/irritatie kunnen veroorzaken, mag worden aangenomen dat de te evalueren teststof tot dezelfde reacties zal leiden. In dat geval behoeft de stof wellicht niet te worden getest. Negatieve gegevens van onderzoek met qua structuur verwante stoffen of mengsels van dergelijke stoffen vormen in het kader van de sequentiële teststrategie niet een afdoende bewijs dat de stof geen corrosie of irritatie veroorzaakt. Voor de bepaling van de potentie voor zowel huidcorrosie als irritatie moeten gevalideerde en erkende SAR-methoden worden gebruikt.

Fysisch-chemische eigenschappen en chemische reactiviteit (staap 3). Stoffen met een extreme pH van bijvoorbeeld ≤ 2,0 en ≥ 11,5 kunnen hevige lokale effecten hebben. Als een stof op basis van een extreme pH als corrosief voor de huid wordt aangeduid, kan ook rekening worden gehouden met zijn zuur/alkalireactive (of buffercapaciteit) (3)(4). Als de buffercapaciteit erop wijst dat een stof wellicht niet corrosief voor de huid is, moeten er nadere tests worden uitgevoerd om dit te bevestigen, waarbij bij voorkeur een gevalideerde en erkende in vitro of ex vivo test moet worden gebruikt (zie de stappen 5 en 6).

Huidtoxiciteit (staap 4). Als van een stof is aangetoond dat deze via de huid zeer toxisch is, is een in vitro onderzoek naar huidirritatie/corrosie wellicht niet uitvoerbaar, omdat de normaal gesproken gebruikte hoeveelheid teststof al groter kan zijn dan de zeer toxische dosis en derhalve tot gevolg kan hebben dat de dieren sterven of hevig lijden. Wanneer er al onderzoek naar de huidtoxiciteit bij albino konijnen tot de limietdosis van 2000 mg/kg lichaamsgewicht of meer is uitgevoerd en er geen huidirritatie of corrosie is waargenomen, zijn verdere tests op huidirritatie/corrosie bovendien wellicht niet nodig. Bij de evaluatie van acute huidtoxiciteit bij eerder uitgevoerd onderzoek moet er op een aantal aspecten worden gelet. Zo kan de gerapporteerde informatie over huidletsel onvolledig zijn. De tests en observaties kunnen bij een andere soort dan het konijn zijn uitgevoerd en de gevoeligheid kan van soort tot soort sterk verschillen. Het is ook mogelijk dat de stof op de dieren is aangebracht in een vorm die niet geschild is voor de beoordeling van huidirritatie/corrosie, bijvoorbeeld omdat de stof voor de test op huidtoxiciteit is verpakt (5). Wanneer er echter goed opgezette en uitgevoerde onderzoeken op huidtoxiciteit bij konijnen zijn verricht, kunnen negatieve resultaten als voldoende bewijs worden beschouwd dat de stof geen corrosie of irritatie veroorzaakt.

Resultaten van in vitro of ex vivo tests (stappen 5 en 6). Stoffen waarvan met een gevalideerde en erkende in vitro of ex vivo test (6)(7), die voor de beoordeling van deze specifieke effecten is opgezet, is aangetoond dat ze corrosief of ernstig irriterende eigenschappen hebben, behoeven niet bij dieren te worden getest. Er kan worden aangenomen dat dergelijke stoffen in vitro vergelijkbare hevige effecten veroorzaken.

In vivo test bij konijnen (stappen 7 en 8). Wanneer op grond van de bewijskracht wordt besloten over te gaan tot in vivo tests, dient eerst een voorlopige test met één dier te worden gedaan. Als de resultaten van deze test erop wijzen dat de stof corrosief voor de huid is, dienen er geen verdere tests te worden uitgevoerd. Als er bij de voorlopige test geen corrosief effect wordt waargenomen, moet de irritatie reactie of de negatieve respons worden bevestigd met ten hoogste nog eens twee dieren gedurende een blootstellingsperiode van vier uur. Als er bij de voorlopige test een irritatie reactie wordt waargenomen, kan de bevestigingstest sequentiëld of door gelijktijdige blootstelling van de twee dieren worden uitgevoerd.

REFERENTIES

(6) Testmethode B.40.

FIGUUR

TEST- EN EVALUATIESTRATEGIE VOOR HUIDIRRITATIE/CORROSIE

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Resultaat</th>
<th>Conclusie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bestaande gegevens bij mens en/of dier waarnoot blijkt dat er effecten op de huid of de slijmvliezen zijn</td>
<td>Corrosief</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irriterend</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Niet corrosief/niet irriterend</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geen informatie beschikbaar of geen conclusie mogelijk</td>
</tr>
<tr>
<td>2</td>
<td>SAR-evaluatie voor huidcorrosie/irritatie uitvoeren</td>
<td>Prognose ernstige huidschade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prognose huidirritatie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prognose onmogelijk, twijfelachtig of negatief</td>
</tr>
<tr>
<td>3</td>
<td>pH meten (eventueel rekening houden met buffercapaciteit)</td>
<td>pH ≤ 2 of ≥ 11.5 (eventueel met hoge buffercapaciteit)</td>
</tr>
<tr>
<td></td>
<td>2 < pH < 11.5 of eventueel pH ≤ 2.0 of ≥ 11.5 met geringe/geen buffercapaciteit</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Gegevens over systemische toxiciteit via de huid evalueren</td>
<td>Zeer toxisch</td>
</tr>
<tr>
<td></td>
<td>Niet corrosief of irriterend bij test met konijnen tot limietdosis van 2000 mg/kg lichaamsgewicht of hoger</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Informatie niet beschikbaar of geen conclusie mogelijk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stof is niet corrosief</td>
<td></td>
</tr>
</tbody>
</table>

1 Kan eventueel vóór de stappen 2 en 3 gebeuren.
Nog geen gevalideerde *in vitro* of *ex vivo* testmethoden op huidirritatie beschikbaar of stof is niet irriterend

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voorlopige in vivo test bij konijnen met één dier uitvoeren</td>
</tr>
<tr>
<td></td>
<td>Ernstige huidbeschadiging</td>
</tr>
<tr>
<td></td>
<td>Als corrosief beschouwd. Geen verdere tests nodig.</td>
</tr>
<tr>
<td></td>
<td>Geen ernstige beschadiging</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Bevestigingstest met nog eens één of twee dieren uitvoeren</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corrosief of irriterend</td>
</tr>
<tr>
<td></td>
<td>Als corrosief of irriterend beschouwd. Geen verdere tests nodig.</td>
</tr>
<tr>
<td></td>
<td>Niet corrosief of irriterend</td>
</tr>
<tr>
<td></td>
<td>Als niet corrosief of irriterend beschouwd. Geen verdere tests nodig.</td>
</tr>
</tbody>
</table>
BIJLAGE 2E
B.5. ACUTE TOXICITEIT: OOGIRRITATIE/CORROSIE

1 METHODE

Deze methode is gelijkwaardig aan TG 405 (2002) van de OESO.

1.1 INLEIDING

Bij de samenstelling van deze bijgewerkte methode is bijzondere aandacht besteed aan mogelijke verbeteringen via de evaluatie van alle bestaande informatie over de teststof om onnodige tests bij proefdieren te vermijden en zodoende rekening te houden met de bezorgdheid omtrent het welzijn van dieren. In deze methode wordt de aanbeveling opgenomen de bestaande relevante gegevens op bewijskracht te analyseren (1), afwijkend de beschreven in vivo test op acute oogirritatie/corrosie wordt uitgevoerd. Wanneer er onvoldoende gegevens beschikbaar zijn, wordt aanbevolen deze aan te vullen door een sequentiële teststrategie te volgen (2)(3). De aanbevolen teststrategie omvat de uitvoering van gevalideerde en erkende in vitro tests en is als bijlage bij de testmethode opgenomen. Bovendien wordt aanbevolen als proef voor oogcorrosie een in vivo test op huidirritatie/corrosie uit te voeren afwijkend een in vivo oogtest te overwegen.

In het belang van zowel wetenschappelijke kwaliteit als het dierenwelzijn moeten er geen in vivo tests worden overwogen voordat alle beschikbare gegevens over de mogelijke oogcorrosie/irritatie door de stof zijn geëvalueerd op bewijskracht. Hierbij gaat het bijvoorbeeld om de resultaten van eerdere studies bij mensen en/of proefdieren, gegevens over corrosie/irritatie door een of meer qua structuur verwante stoffen of mengsels van dergelijke stoffen, gegevens waaruit blijkt dat de stof sterk zuur of sterk alkalisch is (4)(5), en resultaten van gevalideerde en erkende in vitro of ex vivo tests op huidcorrosie en -irritatie (6)(6a). De studies kunnar al vóór de bewijskrachtanalyse zijn uitgevoerd, maar dit kan ook naar aanleiding van deze analyse gebeuren.

Voor bepaalde stoffen kan uit een dergelijke analyse blijken dat er een in vivo onderzoek naar een mogelijke oogcorrosie/irritatie door de stof nodig is. In al deze gevallen verkrijgt het de voorkeur, afwijkend het gebruik van de in vivo oogtest te overwegen, eerst overeenkomstig testmethode B.4 (7) een onderzoek naar de in vivo huideffecten van de stof uit te voeren en de beoordelen. Door toepassing van een bewijskrachtanalyse en de sequentiële teststrategie zal het minder vaak nodig zijn de in vivo test op oogcorrosie/irritatie uit te voeren met stoffen waarvoor al voldoende bewijsmateriaal uit andere studies bestaat. Als met de sequentiële teststrategie niet kan worden bepaald of er sprake is van een mogelijke oogcorrosie of -irritatie, zelfs na de uitvoering van een in vivo onderzoek naar huidcorrosie en -irritatie, kan een in vivo test op oogcorrosie/irritatie worden uitgevoerd.

Een aanbevolen sequentiële teststrategie, waarin de uitvoering van gevalideerde in vitro of ex vivo tests op corrosie/irritatie is opgenomen, is in de bijlage van deze testmethode opgenomen. De strategie is ontwikkeld tijdens een OESO-workshop (8), met algemene stemmen door de deelnemers aanbevolen en als aanbevolen teststrategie opgenomen in het "Globally Harmonised System for the Classification of Chemical Substances" (GHS) (9). Hoewel deze sequentiële teststrategie geen ingegrepen onderdeel van testmethode B.5 is, wordt aanbevolen deze teststrategie te volgen afwijkend in vivo tests uit te voeren. Voor nieuwe stoffen is dit de aanbevolen stapsgewijze testbenadering om wetenschappelijk verantwoorde gegevens over corrosie/irritatie door de stof te verkrijgen. Wanneer er voor bestaande stoffen onvoldoende gegevens over de huid- en oogcorrosie/irritatie beschikbaar zijn, moet de strategie worden gebruikt om ontbrekende gegevens aan te vullen. Voor het gebruik van een andere teststrategie of -procedure of de beslissing om geen stapsgewijze testbenadering te volgen moet een motivering worden gegeven.

1.2 DEFINITIES

Oogirritatie: het ontstaan van veranderingen in het oog na het aanbrengen van een teststof op het oppervlak aan de voorzijde van het oog, die binnen 21 dagen na het aanbrengen volledig reversibel zijn.
Oogcorrosie: het ontstaan van weefselbeschadiging in het oog of een ernstige fysieke zichtvermindering na het aanbrengen van een teststof op het oppervlak aan de voorzijde van het oog, die binnen 21 dagen na het aanbrengen niet volledig reversibel is.

1.3 PRINCIPIE VAN DE TESTMETHODE

De teststof wordt in één dosis op een van de ogen van het proefdier aangebracht; het onbehandelde oog wordt als controle gebruikt. De mate van oogirritatie/corrosie wordt geëvalueerd door op bepaalde tijdstippen het letsel aan de conjunctiva, de cornea en de iris te schaaien. Oog andere effecten in het oog en schadelijke systemische effecten worden beschreven om de volledige evaluatie van de effecten mogelijk te maken. De duur van de studie moet voldoen zijn om te kunnen beoordelen of de effecten reversibel of irreversibel van aard zijn.

Dieren die gedurende een fase van de test voortdurend tekenen van ernstig ongerief en/of hevige pijn vertonen, moeten op humane wijze worden geleed en de stof dient dienovereenkomstig te worden beoordeeld. Voor criteria voor de beslissing om stervende en hevige lijdende dieren op humane wijze te doden wordt verwezen naar referentie (10).

1.4 BESCHRIJVING VAN DE TESTMETHODE

1.4.1 Voorbereiding van de in vivo test

1.4.1.1 Keuze van de soort

Als proefdier wordt de voorkeur gegeven aan het albino konijn er er worden gezonde jonge volwassen dieren gebruikt. Wanneer er een andere stam of soort wordt gebruikt, moet hiervoor een motivering worden gegeven.

1.4.1.2 Voorbereiding van de dieren

Beide ogen van ieder voorlopig voor de test geselecteerd proefdier worden binnen 24 uur vóór het begin van de test onderzocht. Dieren die aan oogirritatie, oogonderoeningen of een reeds bestaand cornealeetsel lijden, mogen niet worden gebruikt.

1.4.1.3 Huisvesting en voeding

De dieren worden in aparte kooien gehuisvest. De temperatuur in de proefdierruimte dient voor konijnen 20°C (± 3°C) te zijn. Hoewel de relatieve vochtigheid minimaal 30% en zij voorkeur niet hoger dan 70% (behalve bij het reinigen van de ruimte) dient te zijn, moet worden gestreefd naar 50-60%. Verlichting gebeurt met kunstlicht met een ritme van 12 uur licht en 12 uur donker. Als voeding mag het gewone laboratoriumvoer worden gebruikt met een onbeperkte hoeveelheid drinkwater.

1.4.2 Testprocedure

1.4.2.1 Het aanbrengen van de teststof

De teststof wordt bij elk dier aangebracht in de conjunctivaalzak van één oog, waarbij het onderste ooglid voorzichtig van de oogbol wordt weggetrokken. Vervolgens worden de oogleden ongeveer één seconde zachtjes dichtgehouden om verlies van het materiaal te voorkomen. Het andere oog, dat niet behandeld wordt, fungeert als controle.

1.4.2.2 Irrigatie

De ogen van de proefdieren mogen gedurende ten minste 24 uur na het indruppelen van de teststof niet worden uitgewassen, tenzij het om een vaste stof gaat (zie punt 1.4.2.3.2) of wanneer er sprake is van onmiddellijke corrosie of irriterende effecten. Na 24 uur mogen de ogen eventueel worden uitgewassen.

Het gebruik van een satellietgroep om de invloed van het uitwassen te onderzoeken wordt niet aanbevolen, tenzij dit wetenschappelijk verantwoord is. Als er een satellietgroep nodig is, dienen hiervoor twee konijnen te worden gebruikt. De wijze van uitwassen, waarbij het bijvoorbeeld gaat om het tijdstip, de samenstelling en temperatuur van de wisselvloei, de duur, het volume en de stroomnelheid, moet zorgvuldig worden vastgelegd.
1.4.2.3 *Dosismiveau*

1.4.2.3.1 Vloeibare teststoffen

Bij vloeibare teststoffen wordt een dosis van 0,1 ml gebruikt. Er mogen geen spuitpompjes worden gebruikt om de stof rechtstreeks in het oog te brngen. De vloeistof wordt na het spuiten opgevangen en vervolgens wordt 0,1 ml in het oog gedruipeld.

1.4.2.3.2 Vaste teststoffen

Bij het testen van vaste stoffen, pasta's en vaste deeltjes wordt een hoeveelheid met een volume van 0,1 ml of een gewicht van ten hoogste 100 mg gebruikt. Het testmateriaal wordt tot een fijn poeder vermalen. Alvorens het volume te meten wordt het vaste materiaal licht ingeklonken, bijvoorbeeld door tegen de houder te tikken. Als de vaste stof op het eerste observatiepunt (1 uur na de behandeling) nog niet door fysiologische mechanismen uit het oog van het proefdier is verwijderd, kan het oog met fysiologisch zout of gedestilleerd water worden uitgewassen.

1.4.2.3.3 Aërosol-teststoffen

Aanbevolen wordt alle spuitvloeistoffen en aërosolen op te vangen voordat ze in het oog worden gedruipeld. Er wordt alleen een uitroeping gemaakt voor stoffen in spuitbusjes onder druk, die niet kunnen worden opgevangen omdat ze verstommen. In deze gevallen wordt het oog opengehouden en wordt de teststof aan het oog toegediend door in één keer gedurende ongeveer één seconde vanaf een afstand van 10 cm recht voor het oog te spuiten. Deze afstand kan afhankelijk van de druk van de nevel en de inhoud worden aangepast. Er moet voor worden gezorgd dat het oog niet door de druk van de nevel wordt beschadigd. In bepaalde gevallen kan het nodig zijn na te gaan of een "mechanische" beschadiging van het oog door de druk van de nevel mogelijk is.

De dosis uit een spuitbus kan door een simulatie als volgt worden geraamd; de stof wordt door een opening die zo groot is als het oog van een konijn en recht voor het papier wordt gehouden, op een weegpapierje gespoten. De gewichtssteuntje van het papier wordt gebruikt voor een benadering van de hoeveelheid die in het oog wordt gespoten. Bij vluchtige stoffen kan de dosis worden geraamd door een opvangbakje voor en na de verwijdering van het testmateriaal te wegen.

1.4.2.4 *Voorlopige test (in vivo test op oogirritatie/corrosie met één dier)*

Zoals in de sequentiële teststrategie (zie bijlage 1) wordt gesteld, is het zeer wenselijk dat de *in vivo* test in eerste instantie met één dier wordt uitgevoerd.

Als de resultaten van deze test erop wijzen dat de stof bij gebruik van de beschreven procedure corrosief of hevig irriterend is, dienen er geen verdere tests op oogirritatie te worden uitgevoerd.

1.4.2.5 *Lokaal aesthetica*

Van geval tot geval kan worden bekeken of er lokale aesthetica moeten worden gebruikt. Als de bewijskrachtanalyse erop wijst dat de stof pijn kan veroorzaken of als uit de eerste tests blijkt dat er een pijnlijke reactie optreedt, kan vóór het indrukken van de teststof een lokaal aestheticum worden toegediend. De aandacht en de dosis van het lokaal aestheticum moeten met zorg worden gekozen om ervoor te zorgen dat het gebruik niet leidt tot verschillen in de reactie op de teststof. Het controle-oog moet op dezelfde wijze worden verduoofd.

1.4.2.6 *Bevestigende test (in vivo test op oogirritatie/corrosie met meerdere dieren)*

Als er bij de voorlopige test geen corrosie-reactie wordt waargenomen, moet de irritatie of negatieve reactie worden bevestigd met nog eens twee dieren. Als er bij de voorlopige test hevige irritatie wordt waargenomen, hetgeen erop wijst dat er mogelijk hevig (irreversibel) effect bij deze bevestigende test, wordt aanbevolen de bevestigende test op sequentiële wijze bij één dier tegelijk uit te voeren en de twee andere dieren niet tegelijkertijd bloot te stellen. Als er bij het tweede dier corrosieve of hevig irriterende effecten optreden, wordt de test niet voortgezet. Er kunnen extra dieren nodig zijn om een zwakke of matige irritatie-reactie te bevestigen.
1.4.2.7 Observatieperiode

De duur van de observatieperiode moet voldoende zijn om de omvang en de reversibiliteit van de waargenomen effecten volledig te kunnen beoordelen. Het experiment moet echter worden beëindigd zodra het dier voortdurend tekenen van hevige pijn of ernstig ongerief vertoont (9). Om te bepalen of de effecten reversibel zijn, moeten de dieren normaal gesproken gedurende 21 dagen na de toediening van de teststof worden geobserveerd. Als al vóór het verstrijken van de 21 dagen wordt geconstateerd dat de effecten reversibel zijn, wordt het experiment op dat moment beëindigd.

1.4.2.7.1 Klinische observatie en inschaling van de oogreacties

De ogen worden 1, 24, 48 en 72 uur na het aanbrengen van de teststof onderzocht. De dieren worden niet langer dan nodig voor de test ingezet zodra er definitieve informatie is verkregen. Dieren die voortdurend tekenen van hevige pijn of ernstig ongerief vertonen, moeten op humane wijze worden gedood en de stof dient dienovereenkomstig te worden beoordeeld. Dieren die na de indrapering de volgende oogletsels ontwikkelen, moeten op humane wijze worden gedood: perforatie van de coorna, signiﬁcante ulceratie van de coorna en stafyloom; bloed in de voorste oogkamer; klasse 4 troebelheid van de coorna die gedurende 48 uur aanhoudt; afwijkend van een lichtreflex (iris-reactie klasse 2) die gedurende 72 uur aanhoudt; ulceratie van de conjunctivae; necrose van de conjunctivae of het knipvlees; loslatend dood weefsel. De reden hiervoor is dat dergelijke letsels in het algemeen irreversibel zijn.

Wanneer de dieren geen oogletsel ontwikkelen, mag de test niet eerder dan drie dagen na de indrapering worden beëindigd. Dieren met licht tot matig letsels moeten worden geobserveerd tot het letsels verdwijnt of gedurende 21 dagen; op dat tijdstip wordt de test dan afgesloten. Op dag 7, dag 14 en dag 21 worden de dieren geobserveerd om te bepalen wat de status van het letsel is en of het reversibel of irreversibel is.

Bij elk onderzoek wordt de score van de oogreactie (conjunctivae, coorna en iris) geregistreerd (zie tabel 1). Ook ander letsel in het oog (zoals pannus of verkleuring) en schadelijke systemische effecten worden gerapporteerd.

Het onderzoek van de respons kan worden vergemakkelijkt door het gebruik van een binoculaire lop, een hand-spleetlamp, een biomicroscoop of andere geschikte apparatuur. Na de registratie van de observaties na 24 uur kunnen de ogen nader worden onderzocht met behulp van ﬂuoresceine.

De inschaling van oogreacties is per definitie subjectief. Om harmonisatie bij de inschaling van oogreacties te bevorderen en ter ondersteuning van de testlaboratoria en de personen die bij het uitvoeren en het interpreteren van de observaties betrokken zijn, moet het personeel dat de observatie uitvoert afdoende zijn opgeleid in het gebruikte scoresysteem. De inschaling van de oogreacties moet blind gebeuren.

2 GEGEVEN

2.1 EVALUATIE VAN DE RESULTATEN

De scores voor de oogirritatie worden in samenhang met de aard en ernst van het letsel en de vraag of dit al dan niet reversibel is, beoordeeld. De individuele scores vormen geen absolute norm voor de irriterende eigenschappen van een materiaal, aangezien ook andere effecten van het testmateriaal worden beoordeeld. De individuele scores moeten veelal als referentiewaarden worden beschouwd en zijn alleen zinvol wanneer ze worden ondersteund door een volledige beschrijving en evaluatie van alle observaties.
3 RAPPORTAGE

3.1 TESTVERSLAG

In het testverslag wordt de volgende informatie opgenomen:

Motivering voor in vivo test: bewijskrachtanalyse van reeds bestaande testgegevens, zoals de resultaten van een sequentiële teststrategie:
- een beschrijving van de relevante gegevens die van eerdere tests beschikbaar zijn;
- de gegevens die bij elke stap van de teststrategie verkregen zijn;
- een beschrijving van de uitgevoerde in vitro tests met een gedetailleerde beschrijving van de procedures en de resultaten die met test/referentiestoffen verkregen zijn;
- een beschrijving van het uitgevoerde in vivo onderzoek op huidirritatie/corrosie met de verkregen resultaten;
- een bewijskrachtanalyse voor de uitvoering van het in vivo onderzoek.

Teststof:
- identificatiegegevens (b.v. het CAS-nr., de herkomst, de zuiverheid, bekende verontreinigingen en het chargenummer);
- de fysische aard en de fysisch-chemische eigenschappen (b.v. de pH, de vluchtigheid, de oplosbaarheid, de stabiliteit en de reactiviteit met water);
- bij een mengsel de samenstelling met voor elk bestanddeel het procentuele gehalte;
- als een lokaal anestheticum is gebruikt: identificatiegegevens, de zuiverheid, het type, de dosis en de potentiële interactie met de teststof.

Medium:
- identificatiegegevens, de concentratie (indien van toepassing) en het gebruikte volume;
- een motivering voor de keuze van het medium.

Proefdieren:
- de gebruikte soort/stam en een motivering indien andere dieren dan het albino konijn worden gebruikt;
- de leeftijd van elk dier aan het begin van het onderzoek;
- het aantal dieren van elk geslacht in de test- en controlegroep (indien deze nodig is);
- het gewicht van elk dier aan het begin en het eind van de test;
- de herkomst, de huisvesting, de voeding enz.

Resultaten:
- een beschrijving van de methode die is gebruikt om de irritatie op elk observatietijdstip in te schalen (bijvoorbeeld hand-spleetlamp, bimicroscoop of fluoresceïne);
- een tabel met de gegevens van de irritatie/corrosie-reactie voor elk dier op elk observatietijdstip tot het moment waarop elk dier uit de test wordt genomen;
- een beschrijving in woorden van de ernst en de aard van de waargenomen irritatie of corrosie;
- een beschrijving van alle andere in het oog waargenomen etwels (bijvoorbeeld vascularisatie, pannusvorming, verkleuring en verkleving);
- een beschrijving van schadelijke lokale effecten buiten het oog en schadelijke systemische effecten en eventuele histopathologische bevindingen.

Bespreking van de resultaten.

3.2 INTERPRETATIE VAN DE RESULTATEN

Een extrapolatie van de resultaten van het onderzoek naar oogirritatie bij proefdieren naar de mens heeft slechts een beperkte geldigheid. In veel gevallen is het albino konijn gevoeliger voor stoffen die oogirritatie of corrosie veroorzaken dan de mens. Bij de interpretatie van de resultaten moet ervoor worden gezorgd dat irritatie ten gevolge van secundaire infectie wordt uitgesloten.
REFERENCES

(6a) Testmethode B.40: Huidcorrosie.

TABEL 1: INSCHALING VAN HET OOGLETSIEL

Cornea

<table>
<thead>
<tr>
<th>Beschrijving</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troebelheid; dichtheidgraad (wordt afgelezen in het gebied met de grootste dichtheid)*</td>
<td>0</td>
</tr>
<tr>
<td>Geen ulceratie of troebelheid.</td>
<td>1</td>
</tr>
<tr>
<td>Verspreide of diffuse troebelige gebieden (meer dan een lichte vertroebeling van de normale glans); details van de iris duidelijk zichtbaar</td>
<td>2</td>
</tr>
<tr>
<td>Gemakkelijk te onderscheiden doorschijnend gebied; details van de iris enigszins vervaagd</td>
<td>3</td>
</tr>
<tr>
<td>Paremoerachtig gebied; details van de iris niet zichtbaar; omvang van de pupil nauwelijks zichtbaar</td>
<td>4</td>
</tr>
</tbody>
</table>

Maximale score: 4

* Er moet worden aangegeven welk gebied van de cornea troebel is

Iris

<table>
<thead>
<tr>
<th>Beschrijving</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normaal.</td>
<td>0</td>
</tr>
<tr>
<td>Duidelijk verdiepte rugae, congestie, zwelling, matige hyperemie rond de cornea of injectie; iris reageert op licht (een trage reactie wordt als een effect beschouwd).</td>
<td>1</td>
</tr>
<tr>
<td>Bloeding, macroscopische destructie of geen reactie op licht</td>
<td>2</td>
</tr>
</tbody>
</table>

Maximale score: 2

Conjunctivae

<table>
<thead>
<tr>
<th>Beschrijving</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roodheid (geldt voor palpebrale en bulbare conjunctivae; niet voor cornea en iris)</td>
<td>0</td>
</tr>
<tr>
<td>Normaal.</td>
<td>0</td>
</tr>
<tr>
<td>Hyperemie in sommige bloedvaten (geinjecteerd)</td>
<td>1</td>
</tr>
<tr>
<td>Diffuse karmozijnrode kleur; individuele vaten niet gemakkelijk zichtbaar</td>
<td>2</td>
</tr>
<tr>
<td>Diffuse dieprode kleur.</td>
<td>3</td>
</tr>
</tbody>
</table>

Maximale score: 3

Chemosis

<table>
<thead>
<tr>
<th>Beschrijving</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zwelling (geldt voor oogleden en/of knipvliezen)</td>
<td>0</td>
</tr>
<tr>
<td>Normaal.</td>
<td>0</td>
</tr>
<tr>
<td>Iets meer zwelling dan normaal.</td>
<td>1</td>
</tr>
<tr>
<td>Duidelijke zwelling met gedeeltelijk uitpuilende oogleden</td>
<td>2</td>
</tr>
<tr>
<td>Zwelling met ongeveer half gesloten oogleden</td>
<td>3</td>
</tr>
<tr>
<td>Zwelling met meer dan half gesloten oogleden</td>
<td>4</td>
</tr>
</tbody>
</table>

Maximale score: 4
BIJLAGE

Een sequentieel teststrategie voor oogirritatie en -corrosie

ALGEMENE OVERwegingen

In het belang van verantwoorde wetenschap en het welzijn van dieren is het belangrijk dat het onnodig gebruik van dieren wordt verminderd en dat tests waarvan hevige reacties bij dieren worden verwacht, tot een minimum worden beperkt. Alle informatie over een stof die relevant is voor de mogelijke oogirritatie/corrosie door die stof moet worden geëvalueerd voordat een in vivo test wordt overwogen. Wellicht bestaat er al voldoende bewijsmateriaal om een teststof qua mogelijke oogirritatie of -corrosie in te delen zonder dat er tests bij proefdieren behoeven te worden uitgevoerd. Daarom zal het gebruik van een bewijskrachtanalyse en een sequentiële teststrategie de noodzaak van in vivo tests tot een minimum beperken, vooral als er van de stof hevige reacties worden verwacht.

Er wordt aanbevolen dat een bewijskrachtanalyse wordt gebruikt om bestaande informatie over oogirritatie en -corrosie door stoffen te evalueren en om te bepalen of onder aanvullend onderzoek dan in vivo oogonderzoek moet worden uitgevoerd om te helpen bij de bepaling van deze mogelijke effecten. Wanneer nader onderzoek nodig is, wordt aanbevolen de sequentiële teststrategie te gebruiken om de relevante experimentele gegevens te verkrijgen. Voor stoffen die nog niet zijn getest, moet de sequentiële teststrategie worden gebruikt om de gegevens te vergaren die nodig zijn om de oogcorrosie/irritatie te bepalen. De in deze bijlage beschreven teststrategie is tijdens een OESO-workshop (1) ontwikkeld. Later is zij bevestigd en opgenomen in het "Harmonised Integrated Hazard Classification System for Human Health and Environmental Effects of Chemical Substances", die de steun heeft gekregen van de 2de gezamenlijke vergadering van het Comité chemische stoffen en de Werkgroep chemische stoffen in november 1998 (2).

Hoewel deze teststrategie geen integrerend onderdeel van testmethode B.5 is, vormt zij de aanbevolen aanpak voor de bepaling van de eigenschappen qua oogirritatie/corrosie. Deze aanpak houdt zowel een optimale gedragscode als een ethische referentie voor in vivo tests op oogirritatie/corrosie in. De testmethode bevat een biedraad voor de uitvoering van de in vivo test en geeft een overzicht van de factoren die vóór het overwegen van een dergelijke test in aanmerking moeten worden genomen. De sequentiële teststrategie levert een bewijskracht-benadering voor de evaluatie van bestaande gegevens over de eigenschappen van stoffen inzake oogirritatie/corrosie en een trapsgewijze aanpak voor het vergaren van relevante gegevens over stoffen waarvoor nader onderzoek nodig is of waarvoor nog geen onderzoek is uitgevoerd. De strategie houdt in dat onder bepaalde omstandigheden eerst gevalideerde en erkende in vitro of ex vivo tests en vervolgens testmethode B.4 op huidirritatie/corrosie worden uitgevoerd (3)(4).

BESCHRIJVING VAN DE STAPSGEWIJZE TESTSTRATEGIE

Alvorens te beginnen met tests als onderdeel van de sequentiële teststrategie (zie figuur), moet alle beschikbare informatie worden geëvalueerd om te bepalen of in vivo oogonderzoek nodig is. Hoewel de evaluatie van individuele parameters (bijvoorbeeld een extreme pH) significante informatie kan opleveren, moet alle bestaande informatie worden geëvalueerd. Alle relevante gegevens over de effecten van de betrokken stof en de qua structuur analoge verbindingen moeten bij het nemen van een beslissing over de bewijskracht worden geëvalueerd en er moet een motivering voor de beslissing worden gegeven. De nadruk moet in eerste instantie liggen op bestaande gegevens over de effecten van de stof bij mens en dier en vervolgens op de resultaten van in vitro of ex vivo tests. Waar mogelijk moet in vivo onderzoek aan corrosieve stoffen worden vermeld. Bij de teststrategie spelen de volgende factoren een rol:

Evaluatie van bestaande gegevens over de effecten bij mens en dier (stap 1). In de eerste plaats moet worden gekeken naar bestaande gegevens over de effecten bij de mens, zoals klinisch en bedrijfsgeneeskundig onderzoek en ziektegevallen, en/of gegevens van oogonderzoek bij proefdieren, omdat deze informatie oplevert die rechtstreeks verband houdt met oogeffecten. Vervolgens moeten de beschikbare gegevens van onderzoek bij mens en/of dier naar huidcorrosie/irritatie worden geëvalueerd. Stoffen waarvan bekend is dat ze corrosief of hevig irriterend voor het oog zijn, mogen niet in de ogen van dieren worden gedruipeld en dit geldt ook voor stoffen met corrosieve of irriterende effecten op de huid: deze stoffen moeten ook als corrosief en/of irriterend voor het oog worden beschouwd. Ook stoffen waarvoor bij eerder uitgevoerde oogonderzoek afdoende is aangetoond dat ze niet corrosief en niet irriterend zijn, dienen niet meer bij in vivo oogonderzoek te worden getest.
Analyse van structuur/activiteits-relaties (SAR) (staap 2). Er moet worden gekomen aan de resultaten van tests met qua structuur verwante chemische stoffen, indien deze beschikbaar zijn. Wanneer er voldoende gegevens beschikbaar zijn over de effecten van qua structuur verwante stoffen of mengsels van dergelijke stoffen bij mens en/of dier om te kunnen concluderen dat deze oogcorrosie/irritatie kunnen veroorzaken, mag worden aangenomen dat de teststof tot dezelfde reacties zal leiden. In dat geval behoefte de stof wellicht niet te worden getest. Negatieve gegevens van onderzoek met qua structuur verwante stoffen of mengsels van dergelijke stoffen vormen in het kader van de sequentiële teststrategie niet een uitoefende bewijs dat de stof geen corrosie of irritatie veroorzaakt. Voor de bepaling van de potentie voor zowel huidcorrosie en -irritatie als oogcorrosie en -irritatie moeten gevalideerde en erkende SAR-methoden worden gebruikt.

Fysisch-chemische eigenschappen en chemische reactiviteit (staap 3). Stoffen met een extreme pH van bijvoorbeeld ≤ 2,0 of ≥ 11,5 kunnen hevige lokale effecten hebben. Als een stof op basis van een extreem pH als corrosief of irriterend voor het oog wordt aangeduid, kan ook rekening worden gehouden met zijn zuur/alkalireserve (buffercapaciteit) (5)(6). Als de buffercapaciteit erop wijst dat een stof wellicht niet corrosief voor het oog is, moeten er nadere tests worden uitgevoerd om dit te bevestigen, waarbij bij voorkeur een gevalideerde en erkende in vitro of ex vivo test moet worden gebruikt (zie het gedeelte over de stappen 5 en 6).

Overweging van andere bestaande informatie (staap 4). In deze fase moet alle beschikbare informatie over systemische toxiciteit via de huid worden geëvalueerd. Ook de acute huidtoxiciteit van de teststof moet in de overwegingen worden betrokken. Als er is aangetoond dat de teststof via de huid zeer toxicus is, behoefte deze wellicht niet in het oog te worden getest. Hoewel er niet noodzakelijkerwijs een verband is tussen acute huidtoxiciteit en oogirritatie/corrosie, kan worden aangenomen dat een stof die via de huid zeer toxicus is, ook bij indruppelen in het oog hoge toxiciteit zal vertonen. Deze gegevens kunnen ook tussen de stappen 2 en 3 worden overgenomen.

Resultaten van in vitro of ex vivo tests (stappen 5 en 6). Stoffen waarvan met een in vitro of ex vivo test (7)(8), die specifiek van voordeel is bij beoordeling van oog- of huidcorrosie/irritatie is gevalideerd en erkend, is aangetoond dat ze corrosieve of hevig irriterende eigenschappen hebben, behoeven niet bij dieren te worden getest. Er kan worden aangenomen dat dergelijke stoffen in vivo vergelijkbare hevige effecten veroorzaken.

Evaluatie van in vivo huidirritatie of -corrosie door de stof (staap 7). Wanneer er onvoldoende bewijsmateriaal bestaat voor de uitoering van een doorslaggevende bewijskrachtanalyse van de mogelijke oogirritatie/corrosie door een stof op basis van gegevens uit bovengenoemde onderzoeken, moet eerst de mogelijke in vivo huidirritatie/corrosie worden geëvalueerd met behulp van testmethode B.4 (4) en de bijbehorende bijlage (9). Als blijkt dat de stof huidcorrosie of hevige huidirritatie veroorzaakt, moet deze stof beschouwd worden als een stof die oogcorrosie veroorzaakt, tenzij er andere informatie is die tot een andere conclusie leidt. Dit betekent dat er dan geen in vivo test op oogirritatie behoeft te worden uitgevoerd. Als de stof voor de huid niet corrosief of hevig irriterend is, moet er een in vivo test op oogirritatie worden uitgevoerd.

In vivo test bij konijnen (stappen 8 en 9). Een in vivo oogonderzoek dient te beginnen met een voorlopige test met één dier. Als de resultaten van deze test erop wijzen dat de stof hevig irriterend of corrosief voor de ogen is, dienen er geen verdere tests te worden uitgevoerd. Als er bij deze test geen corrosief of hevig irriterend effect wordt waargenomen, wordt er een bevestigende test met nog eens twee dieren uitgevoerd.

REFERENCES

(8) Testmethode B.40: Huidcorrosie.

(9) Bijlage van testmethode B.4: Een sequentiële teststrategie voor huidirritatie en corrosie.
FIGUUR

TEST- EN EVALUATIESTRATEGIE VOOR OOGIRRITATIE/CORROSIE

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Resultaat</th>
<th>Conclusie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bestaande gegevens bij mens en/of dier waaruit blijkt dat er effecten op de ogen zijn</td>
<td>Ernstige oogbeschadiging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oogirritatie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Niet corrosief/niet irriterend voor de ogen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Huidcorrosie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hevige huidirritatie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Geen informatie beschikbaar of geen conclusie mogelijk</td>
</tr>
<tr>
<td>2</td>
<td>SAR voor oogcorrosie/irritatie uitvoeren</td>
<td>Prognose ernstige oogbeschadiging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prognose oogirritatie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAR voor huidcorrosie uitvoeren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prognose onmogelijk, twijfelachtig of negatief</td>
</tr>
<tr>
<td>3</td>
<td>pH meten (eventueel rekening houden met buffercapaciteit)</td>
<td>pH ≤ 2 of ≥ 11,5 (eventueel met hoge buffercapaciteit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 < pH < 11,5 of eventueel pH ≤ 2,0 of ≥ 11,5 met geringe/geen buffercapaciteit</td>
</tr>
<tr>
<td>4</td>
<td>Gegevens over systemische toxiciteit via de huid evalueren</td>
<td>Zeer toxisch bij concentraties die in het oog zouden worden getest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informatie niet beschikbaar of stof niet zeer toxisch</td>
</tr>
<tr>
<td>5</td>
<td>Gevalideerde en erkende in vitro of ex vivo test op oogcorrosie uitvoeren</td>
<td>Corrosie-reactie</td>
</tr>
</tbody>
</table>
Stof is niet corrosief of nog geen gevalideerde in vitro of ex vivo testmethoden voor oogcorrosie beschikbaar

6
Gevalideerde en erkende in vitro of ex vivo test op oogirritatie uitvoeren

Stof is niet irriterend of nog geen gevalideerde in vitro of ex vivo testmethoden voor oogirritatie beschikbaar

7
Experimentele evaluatie van mogelijke in vivo huidirritatie/corrosie (zie testmethode B.4 met bijlage)

Stof is niet corrosief of hevig irriterend voor de huid

8
Voorlopige in vivo oogtest bij konijnen met één dier uitvoeren

Geen ernstige beschadiging of geen reactie

9
Bevestigingstest met nog eens één of twee dieren uitvoeren

Corrosief of irriterend

Als corrosief of irriterend voor de ogen beschouwd. Geen verdere tests nodig.

Ernstige oogbeschadiging

Als corrosief voor de ogen beschouwd. Geen verdere tests nodig.

Niet corrosief of irriterend

Als niet irriterend en niet corrosief voor de ogen beschouwd. Geen verdere tests nodig.

Irritatie-reactie

Als irriterend voor de ogen beschouwd. Geen verdere tests nodig.
BIJLAGE 2F
B.31. ONDERZOEK NAAR DE PRENATALE ONTWIKKELINGSTOXICITEIT

1 **METHODE**

Deze methode is overgenomen van TG 414 (2001) van de OESO.

1.1 **INLEIDING**

Deze testmethode voor ontwikkelingstoxiciteit is bedoeld om algemene informatie te verschaffen over de effecten van prenatale blootstelling op het drachtige proefdier en het zich ontwikkelende orgaenje in utero; daarbij kunnen de effecten op het moederdier en het afsterven, structurele abnormaliteiten of afwijkende groei bij de foetus worden bepaald. Functionele gebreken zijn weliswaar een belangrijk aspect van ontwikkeling, maar zijn niet in deze testmethode opgenomen. Hierop kan worden gelet door een apart onderzoek uit te voeren of door als uitbreiding van dit onderzoek de testmethode voor ontwikkelingsneurotoxiciteit uit te voeren. Voor informatie over het testen op functionele gebreken en andere postnatale effecten kan waar nodig de testmethode voor het reproductietoxicitetsonderzoek over twee generaties en het onderzoek naar ontwikkelings-neurotoxiciteit worden gebruikt.

Specifieke aanpassingen van deze testmethode op basis van specifieke kennis omtrent bijvoorbeeld de fysisch-chemische of toxicologische eigenschappen van de teststof kunnen in bepaalde gevallen nodig zijn. Dergelijke aanpassingen zijn aanvaardbaar wanneer overtuigend wetenschappelijk bewijsmateriaal erop wijst dat de test door de aanpassing meer informatie oplevert. In zo'n geval ziet het wetenschappelijk bewijsmateriaal zorgvuldig in het verslag te worden vermeld.

1.2 **DEFINITIES**

Ontwikkelingstoxicologie: de bestudering van schadelijke effecten op het zich ontwikkelende orgaenje die kunnen voortvloeien uit blootstelling vóór de bevrijking, tijdens de prenatale ontwikkeling of postnataal tot het tijdstip van geslachtelijke rijping. De belangrijkste uitingen van ontwikkelingstoxiciteit zijn: 1) dood van het orgaenje, 2) structurele abnormaliteiten, 3) afwijkende groei en 4) functionele gebreken. Ontwikkelingstoxicologie werd vroeger vaak teratologie genoemd.

Schadelijk effect: een aan de behandeling gerelateerde afwijking van de normale toestand die het vermogen van een orgaenje om te overleven, zich te reproduceren of zich aan de omgeving aan te passen vermindert. In het kader van de ontwikkelingstoxicologie in de ruimste zin vallen hier alle effecten onder die de normale ontwikkeling van de vrucht zowel voor als na de geboorte storingen.

Afwijkende groei: een afwijking in het gewicht of de grootte van een of meer organen of het lichaam van een jong.
Afwijkingen (anomalieën): structurele afwijkingen in de ontwikkeling; hieronder vallen zowel misvormingen als variaties (28).

Misvorming/ ernstige abnormalliteit: een structurele verandering die als schadelijk voor het dier wordt beschouwd (en ook dodelijk kan zijn) en meestal zelden voor komt.

Variatie/ lichte abnormalliteit: een structurele verandering die wordt geacht weinig of geen nadelige gevolgen voor het dier te hebben: deze kan van voorbijgaande aard zijn en betrekkelijk vaak in de controlepopulatie voorkomen.

Vrucht: alles wat in enige fase van de ontwikkeling vanaf de bevruchting tot de geboorte uit een bevruchte eicel ontstaat, met inbegrip van de extra-embryonale vliezen alsmede het embryo of de foetus.

Implantatie (innesteling): de hechting van de blastocyst aan de epitheelbekleding van de uterus, met inbegrip van de penetratie door het epitheel van de uterus en de inbedding in het endometrium.

Embryo: de vroege of ontwikkelingsfase van een organisme, meer in het bijzonder het ontwikkelingsproduct van de bevruchting van een eicel nadat de lange as verschenen is en totdat alle belangrijke structuren aanwezig zijn.

Embryotoxiciteit: schadelijke effecten op de normale structuur, ontwikkeling, groei en/of levensvatbaarheid van een embryo.

Foetus: het ongebooren jong in de post-embryonale periode.

Foetotoxiciteit: schadelijke effecten op de normale structuur, ontwikkeling, groei en/of levensvatbaarheid van een foetus.

Abortus: de voortijdige uitstorting uit de uterus van de producten van de concep tie: het embryo of een niet-levensvatbare foetus.

Resorptie: een vrucht die na de implantatie in de uterus sterft en wordt of is geresorbeer.

Vroege resorptie: aanwijzingen voor implantatie zonder als zodanig te herkennen embryo/foetus.

Late resorptie: een dood embryo of een dood foetus met uiterlijke degeneratieve veranderingen.

NOAEL: afkorting voor "no-observed-adverse-effect level" (dosis zonder waargenomen schadelijke effecten): de hoogste dosis of het hoogste blootstellingsniveau waarbij geen aan de behandeling verbonden schadelijke effecten worden waargenomen.
1.3 REFERENTIETOF

Geen.

1.4 PRINCIPE VAN DE TESTMETHODE

De teststof wordt aan drachtige dieren toegediend, normaal gesproken ten minste vanaf de implantaat tot één dag voor de dag waarop ze zullen worden gedood en deze dag dient zo dicht mogelijk bij de normale werpdatum te liggen zonder het risico te lopen dat er gegevens verloren gaan door een voortijdige worp. De testmethode is niet bedoeld om uitsluitend de organogenezische periode te onderzoeken (d.w.z. dag 5-15 bij knaagdieren en dag 6-18 bij het konijn), maar ook de effecten vanaf een eventuele pre-implantatie gedurende de gehele drucht tot de dag vóór de keizersnede. Kort voor de keizersnede worden de vrouwtjes gedood, wordt de inhoud van de uterus onderzocht en worden de foetussen onderzocht op van buitenaf zichtbare anomalieën en veranderingen in zachte weefels en het skelet.

1.5 BESCHRIJVING VAN DE TESTMETHODE

1.5.1 Keuze van de diersoort

Er wordt aanbevolen de test bij de meest relevante soort uit te voeren en laboratoriumsoorten en -stammen te gebruiken die meestal bij tests op prenatale ontwikkelingstoxiciteit worden gebruikt. Van de knaagdiersoorten verdient de rat de voorkeur en van de niet-knaagdieren het konijn. Als een andere soort wordt gebruikt, dient hiervoor een motivering te worden gegeven.

1.5.2 Huisvesting en voeding

De temperatuur in de proefdierruimte dient voor knaagdieren 22°C (± 3°C) en voor konijnen 18°C (± 3°C) te zijn. Hoewel de relatieve vochtigheid minimaal 30% en bij voorkeur niet hoger dan 70% (behalve bij het reinigen van de ruimte) dient te zijn, moet worden gestreefd naar 50-60%. Verlichting gebeurt met kunstlicht met een ritme van 12 uur licht en 12 uur donker. Als voeding mag het gewone laboratoriumvoer worden gebruikt met een onbeperkte hoeveelheid drinkwater.

De dekkig gebeurt in daarvoor geschikte kooien. Dieren die gedekt zijn worden bij voorkeur apart gehuisvest, maar ook groepjes met kleine aantallen dieren zijn aanvaardbaar.
1.5.3 Voorbereiding van de dieren

Er worden gezonde dieren gebruikt die gedurende ten minste 5 dagen aan de omstandigheden in het laboratorium hebben kunnen wennen en waarop geen eerdere proeven zijn uitgevoerd. De kenmerken van de proefdieren qua soort, stam, herkomst, geslacht, gewicht en/of leeftijd worden vastgelegd. De dieren van alle testgroepen dienen zo veel mogelijk hetzelfde gewicht en dezelfde leeftijd te hebben. Op elk dosisniveau worden jonge volwassen vrouwtjes gebruikt die nog geen jongen hebben gehad. De vrouwtjes worden door mannetjes van dezelfde soort en stam gedekt en dekkings door mannetjes met dezelfde ouders wordt vermeden. Voor knaagdieren is dag 0 van de dracht de dag waarop een vaginale prop en/of sperma wordt waargenomen. Voor konijnen is dag 0 meestal de dag van de coitus of kunstmatige inseminatie als deze techniek wordt gebruikt. De konijnen worden zodanig geplaatst dat mogelijke effecten door de plaatsing van de kooi tot een minimum worden beperkt. Elk dier krijgt een uniek identificatienummer. Vrouwtjes die gedekt zijn worden aselect ingedeeld in de controle- en behandelingsgroepen en als de vrouwtjes in groepjes gedekt zijn, worden de dieren in elk groepje gelijk aan de groepen verdeeld. Ook vrouwtjes die door hetzelfde mannetje bevrucht zijn, worden gelijk aangezien de groepen verdeeld.

1.6 UITVOERING

1.6.1 Aantal en geslacht van de dieren

Elke test- en controlegroep bevat een zodanig aantal vrouwtjes dat er bij obductie ongeveer 20 vrouwtjesdieren met implantatieplaatsen zijn. Groepen met minder dan 16 dieren met implantatieplaatsen zullen wellicht niet aan de eisen voldoen. Sterfte bij moederdieren maakt het onderzoek niet noodzakelijkerwijs onbruikbaar, mits deze niet hoger ligt dan ongeveer 10%.

1.6.2 Bereiding van de doses

Als een medium of een ander additief wordt gebruikt om de toediening te vergemakkelijken, moet op de volgende kenmerken worden gelet: de effecten op de resorptie, de distributie, het metaboolisme en de retentie of uitscheiding van de teststof, de effecten op de chemische eigenschappen van de teststof die de toxische kenmerken kunnen wijzigen en de effecten op het verbruik van voer of water of de voedingstoestand van de dieren. Het medium mag geen toxische effecten op de ontwikkeling of de voortplanting hebben.
1.6.3 Dosering

Normaal gesproken wordt de teststof dagelijks toegediend vanaf de implantatie (b.v. dag 5 na de dekking) tot de dag vóór de geplande keizeronde. Als er voorbereidende onderzoeken beschikbaar zijn waaruit blijkt dat er geen grote kans is op verlies vóór implantatie, kan de behandeling worden uitgebreid tot de volledige drachtperiode vanaf de dekking tot één dag voor de dag waarop de dieren zullen worden gedood. Het is bekend dat een onjuiste behandeling of stress tijdens de dracht tot prenaat verlies kan leiden. Om prenaat verlies door niet aan de behandeling gerelateerde factoren te voorkomen worden onnodige manipulaties van drachtige dieren en stress door externe factoren zoals geluiden vermeden.

Er worden ten minste drie dosis niveaus en een gelijkvrij lage controlegroep gebruikt. Gezonde dieren worden aselect in de behandelde en controlegroepen ingedeeld. De dosis niveaus worden zodanig gekozen dat er sprake is van geleidelijk oplopende toxische effecten. Tenzij dit vanwege de fysisch/chemische aard of biologische kenmerken van de teststof onmogelijk is, wordt de hoogste dosis zodanig gekozen dat er enige ontwikkelingstoxiciteit en/of toxiciteit bij het moederdier wordt veroorzaakt (clinische verschijnselen of een afname van het lichaamsgewicht), maar geen sterfte of ernstig leed. Ten minste één lagere dosis moet minimale waarnembare toxische effecten veroorzaken. De laagste dosis mag geen verschijnselen van ontwikkelingstoxiciteit of toxiciteit bij het moederdier veroorzaken. Er wordt een dalende reeks dosis niveaus gekozen teneinde een dosis-afhankelijke respons en de dosis zonder waargenomen schadelijke effecten (NOAEL) te bepalen. Intervallen van een factor twee of vier zijn vaak optimaal om de dalende dosis niveaus vast te stellen en het is vaak beter een vierde testgroep toe te voegen dan zeer grote intervallen (b.v. meer dan een factor tien) tussen de doseringen te gebruiken. Hoewel het de bedoeling is een NOAEL bij het moederdier vast te stellen, kunnen ook onderzoeken waarbij een dergelijke dosis niet wordt bepaald aanvaardbaar zijn (1).

Bij de keuze van de dosis niveaus wordt rekening gehouden met eventueel bestaande gegevens over de toxiciteit en aanvullende informatie over het metabolisme en de toxicokineties van de teststof of verwante materialen. Deze informatie zal ook helpen aan te tonen dat het doseringschema adequaat is.

Er wordt een gelijkvrij lage controlegroep gebruikt. Deze controlegroep krijgt een schijnbehandeling of, als bij de toediening van de teststof een medium wordt gebruikt, een behandeling met medium. Alle groepen worden hetzelfde volume teststof of medium toegediend. De aanpak van de dieren in de controlegroep(en) is identiek aan die van de dieren in de testgroepen. Aan de medium-controlegroepen wordt de hoogst gebruikte medium-dos is toegevoegd (zoals in de laagste dosis groep).

1.6.3 Limiettest

Als een test met één dosis van ten minste 1000 mg/kg lichaamsgewicht dag bij orale toediening volgens de voor dit onderzoek beschreven procedure geen waarnembare toxiciteit bij drachtige dieren of hun jongen veroorzaakt en op grond van bestaande gegevens (b.v. over verwante verbindingen qua structuur en/of metabolisme) geen effect te verwachten valt, zal een volledig onderzoek met drie dosis niveaus wellicht niet nodig zijn. Het kan nodig zijn bij de limiettest op grond van de verwachte blootstelling van de mens een hogere orale dosis te gebruiken. Voor andere toedieningsvormen, zoals inhalatie of toediening op de huid, zal het maximale haalbare blootstellingsniveaus vaak worden bepaald en beperkt door de fysisch-chemische eigenschappen van de teststof (bij toediening op de huid mag bijvoorbeeld geen ernstige lokale toxiciteit optreden).

1.6.4 Toediening van de doses

De teststof of het medium wordt meestal oraal met een sonde toegediend. Als er een andere toedieningsweg wordt gebruikt, moet worden uitgelegd en gemonitord waarom deze gekozen is en kunnen er aanpassingen nodig zijn (2)(3)(4). De teststof wordt elke dag op ongeveer hetzelfde tijdstip toegediend.

De dosis voor een bepaald dier wordt normaal gesproken gebaseerd op de meest recente bepaling van het lichaamsgewicht. Bij de aanpassing van de dosis gedurende het laatste derde deel van de dracht moet echter zorgvuldigheid worden betracht. Voor de keuze van de dosis wordt gebruik gemaakt van bestaande gegevens om overmatige toxiciteit bij het moederdier te voorkomen. Als echter bij de behandelde moederdieren overmatige toxiciteit wordt geconstateerd, worden deze op humane wijze gedood. Als verschillende drachtige dieren tekenen van overmatige toxiciteit vertonen, moet worden overwogen de test bij deze dosis groep te stoppen.
beëindigen. Als de stof met een enkele dosis wordt toegediend, wordt deze bij voorkeur met behulp van een maagsonde of een geschikte catheter in één dosis aan de dieren gegeven. Het maximale volume dat in één keer kan worden toegediend, is afhankelijk van de grootte van het dier. Het volume mag niet groter zijn dan 1 ml/100 g lichaamsgewicht, behalve wanneer het om een waterige oplossing gaat; in dat geval mag 2 ml/100 g lichaamsgewicht worden gebruikt. Wanneer maïslieie als medium wordt gebruikt, mag het volume niet groter zijn dan 0,4 ml/100 g lichaamsgewicht. Variaties in het toegediende volume worden tot een minimum beperkt door de concentratie aan te passen, zodat er voor alle dosissniveaus een constant volume wordt toegediend.

1.6.5 Observatie van de moederdieren

Ten minste eens per dag wordt er een klinische observatie uitgevoerd en vastgelegd, bij voorkeur elke dag op dezelfde tijd(en), waarbij rekening wordt gehouden met de periode na de toediening waarin de verwachte effecten maximaal zijn. De toestand van de dieren wordt geregistreerd, met inbegrip van dieren die gestorven of stervende zijn, relevante gedragsveranderingen en alle zichtbare tekenen van toxiciteit.

1.6.6 Lichaamsgewicht en voerconsumptie

De dieren worden op dag 0 van de dracht of uiterlijk op dag 3 van de dracht als door een externe fokker op een bekend tijdstip gedekte dieren worden geleverd, op de dag waarop de eerste dosis wordt toegediend, ten minste om de drie dagen gedurende de toedieningsperiode en op de dag waarop ze zullen worden gedood, gewogen.

De voerconsumptie wordt om de drie dagen geregistreerd en dit gebeurt op dezelfde dag als waarop het lichaamsgewicht wordt bepaald.

1.6.7 Obductie

De vrouwtjes worden één dag voor de verwachte worp gedood. Vrouwtjes die vóór de dag waarop ze zullen worden gedood tekenen van abortus of voortijdige worp vertonen, worden gedood en a naar een grondig macroscopisch onderzoek onderworpen.

Op het tijdstip waarop het moederdier wordt gedood of tijdens het onderzoek sterft, wordt het macroscopisch onderzoek op structurele abnormaliteiten of pathologische veranderingen. Om beïnvloeding tot een minimum te beperken worden de beoordeling van het moederdier tijdens de keizersnede en de latere analyse van de foetussen bij voorkeur uitgevoerd zonder de testgroep te kennen.

1.6.8 Onderzoek van de inhoud van de uterus

Onmiddellijk nadat het dier gedood is of zo spoedig mogelijk na sterfte wordt de uterus verwijderd en wordt nagegaan of de dieren drachtig zijn. Wanneer een dier niet drachtig lijkt, wordt de uterus nader onderzocht (bijvoorbeeld door kleuring met ammoniumsulfide voor kraagdieren en Salewski-kleuring of een andere geschikte methode voor konijnen) om dit te bevestigen (5).

De uterus van drachtige dieren wordt met de cervix gewogen. Bij drachtige dieren die tijdens het onderzoek dood zijn aangetroffen wordt het gewicht van de uterus niet bepaald.

Bij drachtige dieren wordt het aantal corpora lutea bepaald.

De inhoud van de uterus wordt onderzocht op het aantal dode embryo's of foetussen en levensvatbare foetussen. Om het relatieve tijdstip te bepalen waarop de vrucht gestorven is, wordt de mate van resorptie beschreven (zie punt 1.2).

1.6.9 Onderzoek van de foetussen

Van elke foetus worden het geslacht en het lichaamsgewicht bepaald.

Elke foetus wordt onderzocht op uitwendige afwijkingen (6).

Bij knaagdieren wordt ongeveer de helft van elk nest behandeld en onderzocht met het oog op skeletafwijkingen. De andere helft wordt behandeld en onderzocht met het oog op afwijkingen in zachte weefsels, waarbij erkende of geschikte methoden voor serie-snedes of zorgvuldige macroscopische ontleedtechnieken worden gebruikt.

Bij niet-knaagdieren zoals konijnen worden alle foetussen onderzocht op afwijkingen van zowel de zachte weefsels als het skelet. De lichamen van deze foetussen worden met behulp van zorgvuldige ontleedtechnieken bevorderd op afwijkingen van de zachte weefsels, waarbij ook procedures kunnen worden gebruikt om de interne harsstructuur nader te beoordelen (25). Van de helft van de op deze wijze onderzochte foetussen wordt het hoofd verwijderd en behandeld met het oog op de beoordeling van de zachte weefsels (zoals de ogen, de hersenen, de neusgangen en de tong) met gangbare methoden voor serie-snedes (26) of een even gevoelige methode. De lichamen van deze foetussen en de overige intacte foetussen worden met behulp van dezelfde methoden als voor knaagdieren zijn beschreven, behandeld en onderzocht met het oog op skeletafwijkingen.
2

GEGEVENS

2.1

BEHANDELING VAN DE RESULTATEN

De gegevens worden voor de moederdieren en hun jongen individueel gerapporteerd met een overzicht in tabelvorm, waarbij voor elke testgroep worden vermeld: het aantal dieren aan het begin van de test, het aantal dieren dat tijdens de test dood is aangetroffen of met het oog op een humane behandeling is gedood, het tijdstip van sterfte of humane doding, het aantal drachtige vrouwtjes, het aantal dieren met toxiciteitsverschijnselen, een beschrijving van de waargenomen toxiciteitsverschijnselen met vermelding van de aanvang, de duur en de ernst van de toxicologische effecten, de aard van de waarnemingen bij de embryo’s/foetusen en alle relevante gegevens over de nesten.

De getalsonderzoekige resultaten worden met een geschikte statistische methode geëvalueerd, waarbij het nest als de eenheid voor gegevensanalyse wordt gebruikt. Er wordt een algemeen aanvaardde statistische methode gebruikt; de statistische methoden worden bij de opzet van het onderzoek gekozen en gemotiveerd. Ook de gegevens over de dieren die niet overleven tot het tijdstip waarop ze zouden worden gedood, worden gerapporteerd. Deze gegevens kunnen in de groepsgemiddelden worden opgenomen als dit relevant is. De relevantie van de over deze dieren verkregen gegevens, en derhalve de opname in of uitsluiting van groepsgemiddelden, moet van geval tot geval worden beoordeeld en gemotiveerd.

2.2

EVALUATIE VAN DE RESULTATEN

De resultaten van het onderzoek naar de prenatale ontwikkelings-toxiciteit worden aan de hand van de waargenomen effecten beoordeeld. In deze evaluatie wordt de volgende informatie opgenomen:
— de testresultaten bij de moederdieren en de embryo’s/foetussen, met inbegrip van een evaluatie van het verband of het ontbreken daarvan tussen de blootstelling van de dieren aan de teststof en het optreden en de ernst van alle bevindingen;
— de criteria die zijn gehanteerd voor de indeling van externe afwijkingen en afwijkingen in de zachte weefsels en het skelet bij foetussen in categorieën, als deze indeling heeft plaatsgevonden;
— eventueel controlegegevens uit het verleden om de interpretatie van de resultaten van het onderzoek te bevorderen;
— de getallen die bij de berekening van alle percentages of indices zijn gebruikt;
— een adequate statistische analyse van de resultaten van het onderzoek, indien van toepassing, waarbij voldoende informatie over de analysemethode wordt vermeld, zodat een onafhankelijke evaluator/statisticus de analyse kan beoordelen en reconstructeren.

Wanneer bij een onderzoek wordt aangetoond dat er geen sprake is van toxicologische effecten, moet nader onderzoek worden overwogen om de resorptie en de biologische beschikbaarheid van de teststof vast te stellen.

2.3

INTERPRETATIE VAN DE RESULTATEN

Een onderzoek naar de prenatale ontwikkelings-toxiciteit levert informatie op over de effecten van herhaalde blootstelling aan een stof tijdens de dracht op de moederdieren en de ontwikkeling van hun jongen in de uterus. De resultaten van het onderzoek moeten in samenhang met de resultaten van het onderzoek naar subchronische en reproductietoxiciteit alsmede toxicokinetisch en ander onderzoek worden geïnterpreteerd. Aangezien de nadruk ligt op zowel de algemene toxiciteit voor de moederdieren als de ontwikkelings-toxiciteit, zal met de resultaten van het onderzoek tot op zekere hoogte onderscheid kunnen worden gemaakt tussen effecten op de ontwikkeling zonder algemene toxiciteit en effecten die zich alleen voordoen bij niveaus die ook voor het moederdier toxic zijn (27).
RAPPORTAGE

TESTVERSLAG

In het testverslag wordt de volgende specifieke informatie opgenomen:

Teststof:
— de fysische aard en indien relevant de fysisch-chemische eigenschappen;
— de identiteit met vermelding van het CAS-nummer indien dit bekend/toegelaten is;
— de zuiverheid.

Medium (indien van toepassing):
— motivering voor de keuze van het medium, indien geen water wordt gebruikt.

Proefdieren:
— gebruikte soort en stam;
— aantal en leeftijd van de dieren;
— herkomst, huisvesting, voeding enz.;
— het gewicht van elk dier aan het begin van de test.

Testomstandigheden:
— bewegredenen voor de keuze van de dosisniveaus;
— gedetailleerde gegevens over de formulering van de teststof c.q. de samenstelling van het voer, de concentratie en de stabiliteit en homogeniteit van het preparaat;
— gedetailleerde gegevens over de toediening van de teststof;
— omrekening van de concentratie van de teststof in het voer/drinkwater (in ppm) naar de feitelijke dosis (in mg/kg lichaamsgewicht/dag), indien van toepassing;
— de leefomstandigheden;
— gedetailleerde gegevens over de kwaliteit van het voer en het water.
Resultaten:

Gegevens over de toxische reacties bij de moederdieren per dosis, waaronder in elk geval maar niet uitsluitend:

— het aantal dieren aan het begin van de test, het aantal dieren dat aan het eind nog in leven is, het aantal drachtige dieren en het aantal dieren waarbij abortus of een voortijdige wiel optreedt;
— de sterfdag van dieren die aan het eind van de test niet meer in leven zijn;
— de gegevens van dieren die niet meer in leven zijn op het tijdstip waarop ze zouden worden gedood, worden wel gerapporteerd maar niet in de statistische vergelijking tussen de groepen opgenomen;
— de dag waarop elk afwijkend klinisch verschijnsel wordt waargenomen en het verdere verloop daarvan;
— het lichaamsgewicht, de veranderingen in het lichaamsgewicht en het gewicht van de drachtige uterus, waarbij facultatief de veranderingen in het lichaamsgewicht voor het gewicht van de drachtige uterus kunnen worden gecorrigeerd;
— de voerconsumptie en, indien dit gemeten is, het watergebruik;
— de abortusbevindingen, met inbegrip van het gewicht van de uterus;
— de NOAEL-waarden voor de effecten op de moederdieren en op de ontwikkeling dienen te worden gerapporteerd.

Eindpunten voor ontwikkelingstoxiciteit per dosis voor nesten met implantaties, met inbegrip van:

— het aantal corpora lutea;
— het aantal implantaties en het aantal en percentage levende en dode foetussen en resorpties;
— het aantal en percentage verloren vruchten voor en na implantatie.

Eindpunten voor ontwikkelingstoxiciteit per dosis voor nesten met levende foetussen, met inbegrip van:

— het aantal en percentage levende jongen;
— de verhouding mannetjes/vrouwtjes;
— het lichaamsgewicht van de foetussen, bij voorkeur per geslacht en voor mannetjes en vrouwtjes samen;
— externe mismevingen, missvormingen in de zachte weefsels en het skelet en andere relevante afwijkingen;
— de criteria voor indeling in categorieën, indien van toepassing;
— het totale aantal en het percentage foetussen en nesten met externe afwijkingen en afwijkingen in de zachte weefsels en het skelet, alsmede de aard en de frequentie van de verschillende anomalieën en andere relevante afwijkingen.

Bespreking van de resultaten.

Conclusies.
REFERENTIES

BIJLAGE 2G
B.35. REPRODUCTIETOXICITEITSONDERZOEK OVER TWEE GENERATIES

1 METHODE

Deze methode is overgenomen van TG 416 (2001) van de OESO.

1.1 INLEIDING

Deze testmethode voor de reproductietoxiciteit over twee generaties is bedoeld om algemene informatie te verschaffen over de effecten van een teststof op de toestand en het functioneren van het mannelijke en vrouwelijke reproductiesysteem, met inbegrip van de functie van de geslachtsorganen, de oestrus-cyclus, het paargedrag, de bevruchting, de zwangerschap, de geboorte, de lactatie en het spenen, en de groei en ontwikkeling van de nakomelingen. De studie kan ook informatie verschaften over de effecten van de teststof op de neonatale morbiditeit en mortaliteit en voorlopige gegevens over de prenatale en postnatale ontwikkelingstoxiciteit en kan als leidraad voor verdere tests fungeren. Deze testmethode is niet alleen bedoeld om de groei en ontwikkeling van de F1-generatie te bestuderen, maar ook om de toestand en het functioneren van het mannelijke en vrouwelijke reproductiesysteem daarvan en de groei en ontwikkeling van de F2-generatie te beoordelen. Om meer informatie te verkrijgen over de ontwikkelingstoxiciteit en functionele gebreken kunnen aanvullende tests in dit protocol worden opgenomen, waarbij eventueel de methoden voor ontwikkelingstoxiciteit en/of ontwikkelingstoxikologie kunnen worden geraadpleegd, of kunnen deze eindpunten bij aparte onderzoeken met de daartoe geschikte testmethoden worden bestudeerd.

1.2 PRINCIPE VAN DE TESTMETHODE

De teststof wordt in geleidelijk oplopende doseringen aan verschillende groepen mannetjes en vrouwjes toegediend. De mannetjes van de P-generatie krijgen de teststof gedurende de groei en ten minste één volledige spermatogenezescyclus toegediend (ongeveer 56 dagen bij de muis en 70 dagen bij de rat) om eventuele schadelijke effecten op de spermatogenezes te laten zien. De effecten op het sperma worden aan de hand van een aantal sperma-parameters (zoals de morfologie en beweeglijkheid van het sperma) en door weefscopie en gedetailleerde histopathologie bepaald. Als er gegevens over de spermatogenezes beschikbaar zijn uit een eerder uitgevoerd onderzoek met herhaalde toediening dat lang genoeg geduurd heeft, b.v. een onderzoek van 90 dagen, behoeven de mannetjes van de P-generatie niet in de evaluatie te worden opgenomen. Wel wordt echter aanbevolen monsters te ophalen van sperma van de P-generatie te bewaren om een latere evaluatie mogelijk te maken. De vrouwjes van de P-generatie krijgen de teststof gedurende de groei en enkele volledige oestrus-cycli toegediend om eventuele schadelijke effecten van de teststof op de normale oestrus-cycli te detecteren. De teststof wordt gedurende de dekperiode, gedurende de daaruit voortvloeiende dracht en tot en met het spenen van hun F1-jongen aan de ouderdieren (P-generatie) toegediend. Bij het spenen van de F1-generatie wordt de toediening van de stof voortgezet bij de F1-jongen, en wel gedurende hun groei tot volwassenheid, de nakomelingen en de productie van een F2-generatie tot de F2-generatie wordt gespeerd.

Alle dieren worden klinisch geobserveerd en pathologisch onderzocht op toxiciteitsverschijnselen, waarbij vooral wordt gelet op effecten op de toestand en het functioneren van het mannelijke en vrouwelijke reproductiesysteem en de groei en ontwikkeling van de jongen.
1.3 BESCHRIJVING VAN DE TESTMETHODE

1.3.1 Keuze van de diersoort

Voor de test worden bij voorkeur ratten gebruikt. Als er een andere soort wordt gebruikt, moet hiervoor een motivering worden gegeven en zullen er de nodige wijzigingen moeten worden aangebracht. Stammen met een lage vruchtbaarheid of waarvan bekend is dat er vaak ontwikkelingsstoornissen optreden, mogen niet worden gebruikt. Aan het begin van het onderzoek moeten de gewichtsschillen tussen de dieren minimaal zijn en niet groter dan 20% van het gemiddelde gewicht van elke sele.

1.3.2 Huisvesting en voeding

De temperatuur in de proefdierruimte dient 22°C (± 3°C) te zijn. Hoewel de relatiieve vochtigheid minimaal 30% en bij voorkeur niet hoger dan 70% (behalve bij het reinigen van de ruimte) dient te zijn, moet worden gestreefd naar 50-60%. De verlichting dient met kunstlicht te gebeuren met een ritme van 12 uur licht en 12 uur donker. Als voeding mag het gewone laboratoriumvoer worden gebruikt met een enkele hoeveelheid drinkwater. De keuze van het voer kan worden beïnvloed door de noodzaak om voor een aflopende verwarring van de teststof te zorgen wanneer die langs deze weg wordt toegediend.

De dieren kunnen elk apart of in kleine groepjes met hetzelfde geslacht worden ondergebracht. De dekking gebeurt in daarvoor geschikte kooien. Wanneer de dekking blijkt te hebben plaatsgevonden, worden de vrouwtjes apart gezet in werp- of drachtlokkers. Dieren die gedekt zijn kunnen ook in groepjes worden gehuisvest en één of twee dagen voor het werpen apart worden gezet. Dieren die gedekt zijn krijgen geschikt en geselecteerd nestmateriaal wanneer ze gaan werpen.

1.3.3 Voorbereiding van de dieren

Er worden geronde jonge dieren gebruikt die gedurende ten minste 5 dagen aan de omstandigheden in het laboratorium hebben kunnen wennen en waarop geen eerdere proeven zijn uitgevoerd. De kenmerken van de proefdieren qua soort, stam, herkomst, geslacht, gewicht en/of leeftijd worden vastgelegd. Alle broeder/susterverhoudingen tussen de dieren moeten bekend zijn, zodat dekking van zust door broed wordt vermeden. De dieren worden aselect ingedeeld in controlegroepen en behandele groepen (waarbij geleden aan de hand van het lichaamsgewicht wordt aanbevolen). De kooien worden zodanig geplaatst dat mogelijke effecten door de plaatsing van de kooi tot een minimum worden beperkt. Elk dier krijgt een uniek identificatie nummer. Bij de P-generatie gebeurt dit voordat de toediening begint. Bij de F1-generatie gebeurt dit bij het spenen voor de dieren die voor dekking worden geselecteerd. Voor de geselecteerde F1 dieren wordt bijgehouden uit welk nest ze afkomstig zijn. Daarnaast wordt aanbevolen de jongen zo spoedig mogelijk na de geboorte een eigen identificatie te geven, wanneer wordt overwogen de jongen apart te wegen of functieproeven uit te voeren.

Wanneer met de toediening aan de ouderdieren (P-generatie) wordt gestart, dienen deze ongeveer 5-9 weken oud te zijn. De dieren van alle testgroepen dienen zo veel mogelijk hetzelfde gewicht en dezelfde leeftijd te hebben.
UITVOERING

1.4.1 Aantal en geslacht van de dieren

Elke test- en controlegroep dient een zodanig aantal dieren te bevatten dat er bij voorkeur ten minste 20 drachtige vrouwjes op of vlak voor de werpdatum zijn. Bij stoffen die ongewenst aan de behandeling gerelateerde effecten veroorzaken (b.v. steriliteit of te grote toxiciteit bij hoge doses), is dit soms onmogelijk. Het is de bedoeling dat er genoeg drachtige vrouwjes zijn om een zinnige beoordeling mogelijk te maken van het vermogen van de stof om invloed te hebben op de vruchtbaarheid, de dracht en het gedrag van de moeder, het zogen, de groei en ontwikkeling van de F1-generatie vanaf de bevruchting tot aan de geslachtsgewijsheid en de ontwikkeling van hun jongen (de F2-generatie) tot ze gespeeld worden. Als het gewenste aantal drachtige dieren (d.w.z. 20) niet kan worden gehaald, betekent dit niet automatisch dat het onderzoek onbruikbaar is; dit moet van geval tot geval worden beoordeeld.

1.4.2 Bereiding van de doses

De teststof wordt bij voorkeur oraal (in het voer, in het drinkwater of met een sonde) toegediend, tenzij een andere toedieningsweg (b.v. dermaal of door inhalatie) geschikt wordt geacht.

Waar nodig wordt de teststof in een geschikt medium opgelost of gesuspendeerd. Aanbevolen wordt eerst te bezien of het mogelijk is een waterige oplossing/suspensie te gebruiken, als dát niet kan een oplossing/emulsie in olie (b.v. inhalatie) te overwegen en daarna eventueel een ander medium. Wanneer een ander medium dan water wordt gebruikt, moeten de toxische kenmerken daarvan bekend zijn. De stabilitiet van de teststof in het medium moet worden bepaald.

1.4.3 Dosering

Er worden ten minste drie dosisniveaus en een gelijkvormige controlegroep gebruikt. Tenzij dit vanwege de fysisch/chemische aard of biologische kenmerken van de teststof onmogelijk is, moet de hoogste dosis zodanig worden gekozen dat er enige toxiciteit wordt veroorzaakt, maar geen sterfde of ernstig leed. Bij onverwachte sterfte zijn onderzoeken met een sterfte van minder dan ongeveer 10% bij de ouderdieren (de P-generatie) normaal gesproken nog aanvaardbaar. Er wordt een dalende reeks dosisniveaus gekozen ten diens iets dosis-onafhankelijk effect en de dosis zonder waargenomen schadelijke effecten (NOAEL) te bepalen. Intervalen van een factor twee of vier zijn vaak optimaal om de dalende dosisniveaus vast te stellen en het is vaak het enerzijds teststof toe te voegen dan zeer grote intervallen (b.v. meer dan een factor tien) tussen de doseringen te gebruiken. Bij toediening in het voer mag het dosis-interval niet meer dan een factor drie zijn. Bij de keuze van de dosisniveaus wordt rekening gehouden met bekende toxiciteitsgegevens, met name resultaten van onderzoek met herhaalde toediening. Ook met beschikbare gegevens over het metabolisme en de kinetiek van de teststof of verwante verbindingen dient rekening te worden gehouden. Bovendien zal met deze informatie ook makkelijker kunnen worden aangetoond dat het dosingescherm adequaat is.

De controlegroep wordt niet af, als bij de toediening van de teststof een medium wordt gebruikt, met medium behandeld. Afgezien van de toediening van de teststof is de behandeling van de dieren in de controlegroep identiek aan die van de dieren in de testgroepen. Als er een medium wordt gebruikt, wordt aan de controlegroep de hoogste gebruikte medium dosis toegediend. Als een teststof in het voer wordt toegediend en leidt tot een lagere voeropname of voerbenutting, kan het gebruik van een paarsgewijze gevoerde controlegroep nodig worden geacht. In plaats van een gelijkvormige paarsgewijze gevoerde controlegroep kunnen ook gegevens worden gebruikt uit gecontroleerd onderzoek dat is opgezet om de effecten van een lagere voerconsumptie op reproductie-parameters te bepalen.
Er moet aandacht worden geschonken aan de volgende kenmerken van het medium en andere additieven: effecten op de resorptie, de distributie, het metaboolisme of de retentie van de teststof, effecten op de chemische eigenschappen van de teststof die de toxische kenmerken daarvan kunnen wijzigen en effecten op het voer- of watergebruik of de voedingsstoestand van de dieren.

1.4.4 Limiettest

Als een onderzoek met orale toediening van één dosis van ten minste 1000 mg/kg lichaamsgewicht/dag of, bij toediening in het voer of het drinkwater, een equivalent percentage in het voer of drinkwater volgens de voor dit onderzoek beschreven procedure geen waarneembare toxiciteit bij de euderdieren of hun jongen veroorzaakt en op grond van gegevens over verwachte verbindingen qua structuur en/of metaboolisme geen toxiciteit te verwachten valt, zal een volledig onderzoek met verschillende dosisniveaus wellicht niet nodig zijn. De limiettest is bruikbaar, behalve wanneer vanwege de verwachte blootstelling van de mens een hogere orale dosis nodig wordt geacht. Voor andere toedieningsvormen, zoals inhalatie of toediening op de huid, zal het maximale haalbare blootstellingsniveau vaak worden bepaald en beperkt door de fysisch-chemische eigenschappen van de teststof zoals de oplosbaarheid.

1.4.5 Toediening van de doses

De teststof wordt 7 dagen per week aan de dieren toegediend. Bij voorkeur wordt voor de orale toedieningsweg (in het voer, in het drinkwater of met een sonde) gekozen. Als er een andere toedieningsweg wordt gebruikt, moet er een motivering worden gegeven en kunnen er aanpassingen nodig zijn. De stof wordt aan alle dieren gedurende de vereiste proeftijd met dezelfde methode toegediend. Als de stof met een sonde wordt toegediend, moet dit met een maagsonde gebeuren. Het volume vloeistof dat in één keer wordt toegediend, mag niet groter zijn dan 1 ml/100 g lichaamsgewicht (voor maatsonde is het maximum 0,4 ml/100 g lichaamsgewicht), behalve wanneer het om een waterige oplossing gaat; in dat geval mag 2 ml/100 g lichaamsgewicht worden gebruikt. Behalve wanneer het om irriterende of bijzondere stoffen gaat, waarbij meestal bij hogere concentraties beweging en opsporing worden gehouden. In het toedieningsvolume toegediend. Bij sommige toedieningen krijgen de jongen de teststof meestal alleen indirect via de melk, totdat ze worden gespeeld en directe toediening begint. Bij toediening in het voer of het drinkwater krijgen de jongen de teststof ook direct binnen wanneer ze in de laatste week van de lactatieperiode zelf beginnen te eten.

Wanneer stoffen via het voer of het drinkwater worden toegediend, is het belangrijk ervoor te zorgen dat de hoeveelheid teststof de normale voedings- of waterbalans niet stoor. Wanneer de teststof in het voer wordt toegediend, kan een constante voerconcentratie (in ppm) of een constante dosis in verhouding tot het lichaamsgewicht van het dier worden gebruikt. De gekozen methode dient te worden vermeld. Wanneer de stof met een sonde wordt toegediend, gebeurt dit elke dag op ongeveer hetzelfde tijdstip en wordt de dosis ten minste een keer per week aangepast om een constante dosis in verhouding tot het lichaamsgewicht te houden. Wanneer de stof met een sonde toegediende dosis op basis van het gewicht wordt aangepast, moet rekening worden gehouden met informatie over de placenta-verdeling.
1.4.6 Testschema's

De dagelijkse toediening aan de ouderdieren (de mannetjes en vrouwtjes van de P-generatie) begint wanneer ze 5 tot 9 weken oud zijn. De dagelijkse toediening aan de mannetjes en vrouwtjes van de F1-generatie begint wanneer ze worden gepeerd; er moet aan worden gedacht dat de directe blootstelling van de F1-jongen bij toediening van de teststof via het voer of het drinkwater al tijdens de lactatieperiode kan beginnen. Voor beide geslachten (P en F1) vindt de toediening ten minste 10 weken vóór de dekperiode plaats. Voor beide geslachten wordt de toediening gedurende de dekperiode van twee weken voortgezet. De mannetjes worden op humane wijze gedood en onderzocht wanneer ze niet meer nodig zijn voor de bepaling van de effecten op de reproductie. Bij de moederdieren (P-generatie) wordt de toediening gedurende de dracht en tot het spenen van de F1-jongen voortgezet. Op basis van de beschikbare informatie over de teststof, bijvoorbeeld over de toxiciteit, de metabolisme-inductie of de bioaccumulatie, moet worden overwogen of er wijzigingen in het toedieningsschema nodig zijn. De dosis voor een bepaald dier wordt normaal gesproken gebaseerd op de meest recente bepaling van het lichaamsgewicht. Bij de aanpassing van de dosis gedurende het laatste derde deel van de dracht moet echter zorgvuldigheid worden betracht.

De mannetjes en vrouwtjes van de P- en de F1-generatie worden behandeld tot ze worden gedood. Alle volwassen mannetjes en vrouwtjes van de P- en de F1-generatie worden op humane wijze gedood wanneer ze niet meer nodig zijn voor de bepaling van de effecten op de reproductie. De F1-jongen die niet voor dekking worden geselecteerd en alle F2-jongen worden na het spenen op humane wijze gedood.

1.4.7 Dekprocedure

1.4.7.1 Dekking bij de ouderdieren (P-generatie)

Voor elke dekking wordt één vrouwtje bij één mannetje van dezelfde dosisgroep gezet (1:1-dekking) totdat ze copuleren of er twee weken zijn verstreken. Elke dag worden de vrouwtjes onderzocht op de aanwezigheid van sperma of een vaginale prop. Als dag 0 van de dracht geldt de dag waarop een vaginale prop of sperma wordt gevonden. Wanneer de dekking geen succes heeft, kan worden overwogen de vrouwtjes opnieuw te laten dekken door mannetjes van dezelfde groep waarvan de vruchtbaarheid is aangetoond. In de gegevens wordt duidelijk vermeld welke dieren gepaard hebben. Dekking door een mannetje met dezelfde ouders wordt vermeden.

1.4.7.2 Dekking bij de F1-generatie

Voor de dekking van de F1-jongen worden uit elk nest bij het spenen ten minste één mannetje en één vrouwtje gekozen om te paren met andere jongen van hetzelfde dosisniveau naar een ander nest, hetgeen de F2-generatie oplevert. Wanneer er tussen de jongen uit één nest geen significante verschillen in lichaamsgewicht of uiterlijk worden waargenomen, worden de jongen aselect gekozen. Wanneer deze verschillen wel worden waargenomen, worden de beste vertegenwoordigers van elk nest gekozen. In de praktijk gebeurt dit het gemakkelijkst op basis van het lichaamsgewicht, maar het kan beter zijn om het op basis van het uiterlijk te doen. De dekking bij de F1-generatie gebeurt niet voordat ze volledig tot geslachtsrijpheid zijn gekomen.

Paren zonder jongen worden beoordeeld om te bepalen wat de oorzaak van de onvruchtbaarheid lijkt te zijn. Daartoe kan de gelegenheid worden gegeven voor paring met andere mannetjes of vrouwtjes waarvan de vruchtbaarheid is aangetoond, kunnen de voortplantingsorganen microscoopisch worden onderzocht en kan de oestrus-cyclus of de spermatogenese nader worden onderzocht.
1.4.7.3 Tweede dekking

In bepaalde gevallen, bijvoorbeeld bij een ontbreken van gestrotte veranderingen in de nestgrootte of bij de waarneming van een twijfelachtig effect bij de eerste dekking, wordt aanbevolen de volwassen P- en F1-dieren opnieuw te laten paren om een tweede nest te krijgen. Daarbij wordt aanbevolen vrouwtjes of mannetjes die geen nest hebben gekregen te laten paren met dieren van het andere geslacht waarvan de vruchtbaarheid is aangetoond. Als in een van beide generaties een tweede nest nodig wordt geacht, laat men de dieren ongeveer een week na het openen van het laatste nest opnieuw paren.

1.4.7.4 Nestgrootte

De dieren krijgen de gelegenheid hun jongen normaal te werven en groot te brengen tot ze worden gespeerd. Standaardisatie van de nestgrootte is facultatief. Wanneer standaardisatie gebeurt, moet de gebruikte methode gedetailleerd worden beschreven.

1.5 WAARNEMINGEN

1.5.1 Klinische observaties

Elke dag wordt een algemene klinische observatie uitgevoerd en bij worden de dieren voor het tijdperk tekening gehouden met de periode na de toediening waarin maximale effecten worden verwacht. Gedragsveranderingen, tekenen dat het werven moeilijk verloopt of langer duurt en alle toxiciteitverschijnselen worden geregistreerd. Ten minste één maal per week wordt daarnaast een gedetailleerd onderzoek van elk dier uitgevoerd; dit kan gemakkelijk gebeuren wanneer het dier worden gewogen. Twee maal per dag en in het weekend eventueel één maal per dag wordt bij alle dieren naar zieke of sterfte gekeken.

1.5.2 Lichaamsgewicht en voer/waterconsumptie van de ouderdieren

De ouderdieren (P- en F1-generatie) worden op de eerste dag van toediening en vervolgens ten minste één maal per week gewogen. De moederdieren (P- en F1-generatie) worden ten minste op de dagen 0, 7, 14 en 20 of 21 van de dracht gewogen en tijdens de lactatieperiode op de dagen waarop de nesten worden gewogen en op de dag waarop de dieren worden gedood. Deze observaties worden voor elk volwassen dier apart gerapporteerd. In de periode vóór de dekking en tijdens de dracht wordt de voerconsumptie ten minste wekelijks gemeten. Het watergebruik wordt ten minste wekelijks gemeten als de teststof in het water wordt toegediend.

1.5.3 De oestrus-cyclus

Bij de vrouwtjes van de P- en de F1-generatie worden de lengte en de normaliteit van de oestrus-cyclus geëvalueerd door vaginale uitstrijkjes vóór de dekking en facultatief tijdens de dekking totdat kan worden aangetoond dat de dekking heeft plaatsgevonden. Bij het verwijderen van cellen van de vagina/cervix moet ervoor worden gezorgd dat verstoring van de mucosa en daardoor schijnzangerschap worden voorkomen (1).
1.5.4 Sperma-parameters

Van alle mannetjes van de P- en de F1-generatie wordt, wanneer ze worden gedood, het gewicht van de testis en de epididymis geregistreerd en wordt één exemplaar van elk orgaan bewaard voor histopathologisch onderzoek (zie de punten 1.5.7. en 1.5.8.1). Van een subgroep van ten minste tien mannetjes van elke groep P- en F1-mannetjes worden de andere testis en epididymis gebruikt voor de telling van respectievelijk de homogenisatie-resistente spermatiden en de spermareserve in de staart van de epididymis. Bij deze zelfde subgroep wordt sperma uit de staart van de epididymis of het vast defereens verzameld om de beweeglijkheid en de morfologie van het sperma te beoordelen. Als er aan de behandeling gerelateerde effecten worden waargenomen of uit andere onderzoeken is gebleken dat effecten op de spermatoogeneze mogelijk zijn, wordt de beoordeling van het sperma bij alle mannetjes van elke dosisgroep uitgevoerd; in andere gevallen kan de telling worden beperkt tot de P- en F1-mannetjes uit de controlegroep en de groep met de hoogste dosis.

Het totale aantal homogenisatie-resistente spermatiden uit de testis en het sperma in de staart van de epididymis worden geteld (2)(3). De spermareserve in de staart kan worden afgeleid uit de concentratie en het volume van het sperma in de suspensie die voor de kwalitatieve beoordeling wordt gebruikt en het aantal spermatozoëen dat later door het resterende staartweefsel fijn te malen en/of te homogeniseren wordt gevonden. De telling gebeurt direct na het doden van de dieren bij de gekozen subgroep van de mannetjes van alle dosisgroepen, tenzij er video- of digitale beelden worden gemaakt of tenzij de exemplaren worden ingevroren en later worden geanalyseerd. In deze gevallen kunnen de controlegroep en de groep met de hoogste dosis als eerste worden geanalyseerd. Als er geen aan de behandeling gerelateerde effecten (b.v. effecten op het aantal spermatozoëen, op de beweeglijkheid en/of op de morfologie) worden waargenomen, behoeven de andere dosisgroepen niet te worden geanalyseerd. Wanneer bij de groep met de hoogste dosis wel aan de behandeling gerelateerde effecten worden waargenomen, moeten de groepen met een lagere dosis ook worden beoordeeld.

De beweeglijkheid van sperma uit de epididymis (of het vast defereens) wordt onmiddellijk na het doden beoordeeld of op video opgenomen. Het sperma wordt verwijderd, waarbij de beschadiging tot het minimum wordt beperkt, en met aanvaardbare methoden verdund voor de beweeglijkheidsanalyse (4). Het percentage spermatozoëen in oplepende beweeglijkheidscategorieën wordt subjectief of objectief bepaald. Wanneer computer-gesteunde bewegingsanalyse wordt gebruikt (5)(6)(7)(8)(9)(10), worden de oplepende beweeglijkheidscategorieën bepaald door drempelwaarden voor de gemiddelde snelheid en rechtheid van het pad of een lineaire index die door de gebruiker worden bepaald. Als bij oboedie de monsters op video worden opgenomen (11) of de beelden op een andere wijze worden vastgelegd, kan later een analyse van alleen de P- en F1-mannetjes van de controlegroep en de groep met de hoogste dosis worden uitgevoerd, tenzij er aan de behandeling gerelateerde effecten worden waargenomen; in dat geval moeten de groepen met een lagere dosis ook worden beoordeeld. Wanneer er geen video- of digitale beelden worden opgenomen, worden alle monsters in alle behandelingsgroepen bij de oboedie geanalyseerd.

Er wordt een morfologische evaluatie van een spermamonster uit de epididymis (of het vast defereens) uitgevoerd. De spermatozoëen (ten minste 200 per monster) worden als gefixeerd naaf preparaten onderzocht (12) en als normaal of abnormaal ingedeeld. Morfologische abnormaliteiten van sperma zijn bijvoorbeeld versmelting, geïsoleerde koppen of misvormde koppen en/of staarten. De evaluatie wordt bij de geselecteerde subgroep mannetjes van alle dosisgroepen direct na het doden van de dieren of, wanneer er video- of digitale beelden worden opgenomen, op een later tijdstip uitgevoerd. Ook uitsnippers kunnen, wanneer ze gefixeerd zijn, later worden afgelezen. In deze gevallen kunnen de controlegroep en de groep met de hoogste dosis als eerste worden geanalyseerd. Wanneer er geen aan de behandeling gerelateerde effecten (b.v. effecten op de morfologie van het sperma) worden waargenomen, behoeven de andere dosisgroepen niet te worden geanalyseerd. Wanneer bij de groep met de hoogste dosis wel aan de behandeling gerelateerde effecten worden waargenomen, moeten de groepen met een lagere dosis ook worden beoordeeld.

Als een van de bovengenoemde parameters voor de sperma-evaluatie afwezig is onderdeel van een onderzoek naar systemische toxiciteit van ten minste 90 dagen is onderzocht, behoeft deze bij het onderzoek over twee generaties niet noodzakelijkerwijs opnieuw te worden onderzocht. Wel wordt echter aanbevolen monsters of digitale beelden van het sperma van de P-generatie te bewaren om eventueel een latere evaluatie mogelijk te maken.
1.5.5 Jongen

Elk nest wordt zo spoedig mogelijk na het werpen (lactatiedag 0) onderzocht om het aantal en het geslacht van de jongen, de doodgeboren jongen en de levend geboren jongen en de aanwezigheid van macroscopische afwijkingen vast te stellen. Jongen die op dag 0 dood worden aangetroffen worden, als ze niet verwekt zijn, bij voorkeur onderzocht op mogelijke gebrekken en de doodsoorzaak en geconserveerdd. Levende jongen worden bij de geboorte (lactatiedag 0) of op dag 1 en vervolgens periodiek op weegdagen, zoals bijvoorbeeld de dagen 4, 7, 14 en 21 van de lactatie, geteld en apart gewogen. Bij de moederdieren of de jongen waargenomen lichamelijke of gedragsafwijkingen worden geregistreerd.

De lichamelijke ontwikkeling van de jongen wordt voornamelijk door de toename van het lichaamsgewicht geregistreerd. Andere lichamelijke parameters (zoals de oor- en oogopening, het doorkomen van tanden en de haargroei) kunnen aanvullende informatie opleveren, maar deze gegevens dienen bij voorkeur te worden beoordeeld in de context van gegevens over de geslachtelijke rijping (zoals leeftijd en lichaamsgewicht bij de opening van de vagina of de scheiding tussen eikel en voorhuid) (13). Functioneel onderzoek (bv. motorische activiteit, sensorische functie of reflex-ontogenie) bij de jongen van de F1-generatie voor en/of na het spenen, met name in verband met geslachtelijke rijping, wordt aanbevolen als dergelijk onderzoek niet in afzonderlijke studies is opgenomen. Bij gespeende jongen van de F1-generatie die voor dekkening worden geselecteerd, wordt de leeftijd bij de opening van de vagina of de scheiding van de voorhuid bepaald. De anaal-genitale afstand wordt bij jongen van de F2-generatie op dag 0 na het werpen gemeten als dit in verband met wijzigingen in de verhouding mannetjes/vrouwitjes of het tijdspan van geslachtelijke rijping bij de F1-generatie wenselijk wordt geacht.

Functioneel onderzoek kan achterwege worden gelaten bij groepen met andere duidelijke tekenen van schadelijke effecten (zoals een significant signaal van de gewichtstoename). Als functioneel onderzoek wordt uitgevoerd, moet dit niet gebeuren bij de jongen die voor dekkening worden geselecteerd.

1.5.6 Macroscopische obductie

Alle ouderdieren (P- en F1-generatie), alle jongen met uiterlijke afwijkingen of klinische verschijnselen en één aselect gekozen jong/geslacht/nest van zowel de F1- als de F2-generatie worden, wanneer ze worden gedood of tijdens het onderzoek sterven, macroscopisch onderzocht op structurele afwijkingen of pathologische veranderingen. Daarbij wordt speciale aandacht besteed aan de organen van het reproductiesysteem. Jongen die op humane wijze zijn gedood omdat ze stervend waren en dode jongen (wanneer ze niet verwekt zijn) worden onderzocht op mogelijke gebrekken en/of de doodsoorzaak en geconserveerdd.

Bij alle vrouwitjes die voor het eerst een nest werpen wordt de uterus op een zodanige wijze onderzocht op de aanwezigheid van en het aantal implantiatieplaatsen dat geen afbreak wordt gedaan aan het histopathologische onderzoek.
1.5.7 Gewicht van de organen

Van alle ouderdieren van de P- en F1-generatie worden, wanneer ze worden gedood, het lichaamsgewicht en het gewicht van de volgende organen bepaald (organen die paargewijs voorkomen worden apart gewogen):

— de uterus en de eierstokken;
— de testes en de epididymes (totaal en staart);
— de prostaat;
— de zwaaldesjes met de coagulatieklriven en hun vloeistof en de prostaat (als één geheel);
— de hersenen, de lever, de nieren, de milt, de hypofyse, de schildklier, de bijnieren en bekende doelorganen.

Bij de jongen van de F1- en de F2-generatie die voor ecbductie zijn geselecteerd, wordt het uiteindelijke lichaamsgewicht bepaald en van één select gekezen jong/geslacht/naam (zie punt 1.5.6) worden de volgende organen gewogen: hersenen, milt en thymus.

De resultaten van de macroscopische obductie en het wegen van de organen worden indien mogelijk beoordeeld in de context van waarnemingen bij andere onderzoeken met herhaalde toediening.

1.5.8 Histopathologie

1.5.8.1 Onderdelen

De volgende organen en weefsels van de ouderdieren (P- en F1-generatie) of representatieve monsters daarvan worden in een geschikt medium gefixeerd en bewaard voor histopathologisch onderzoek:

— de vagina, de uterus met de cervix en de eierstokken (geconservd in een geschikt fixatief);
— één testis (geconservd in Bouin's of een vergelijkbaar fixatief), één epididymis, de zwaaldesjes, de prostaat en de coagulatieklriven;
— eerder gespecificeerde doelorganen uit alle dieren van de P- en de F1-generatie die voor dekking zijn geselecteerd.

Bij alle bovengenoemde geconserveerde organen en weefsels wordt voor alle P- en F1-dieren van de controlegroep en de groep met de hoogste dosis die voor dekking zijn geselecteerd, een volledig histopathologisch onderzoek uitgevoerd. Een onderzoek van de eierstokken van de P-dieren is facultatief. Organen waarin aan de behandeling gerelateerde wijzigingen worden aangetroffen, worden ook in de groepen met een lagere dosis onderzocht om bij te dragen tot de bepaling van de NOAEL. Daarnaast worden de voortplantingsorganen van de dieren uit de groepen met een lagere dosis waarbij een verminderd vruchtbaarheid wordt vermoed, bijvoorbeeld degene die in gebreke zijn gebleven bij de dekking, de bevruchtning of het werpen van gezone jongen of waarvoor de periodiciteit van de oestrus of het aantal, de beweeglijkheid of de morfologie van de spermatozoïden is aangetast, histopathologisch onderzocht. Alle macroscopische letselsoor afroe of tumoren worden onderzocht.
Er wordt uitgebreid histopathologisch onderzoek van de testis uitgevoerd (b.v. met Bouin’s fixatief, inbedding met paraffine en dwarscoupes met een dikte van 4.5 μm) om aan de behandeling gerelateerde effecten te signaleren, zoals achtergebleven spermatoïden, ontbrekende kierencellen of -soorten, meerkernige reuzeellen of spermatogene cellen die in het lumen terechtkomen (14). Het onderzoek van de intacte epididymis omvat de kop, het lichaam en de staart en dit kan gebeuren door een lengtecoupé te onderzoeken. De epididymis wordt onderzocht op infiltratie van leukocyten, wijzigingen in het voorkomen van celtypen, afwijkende celtypen en fagocytose van spermatozoïden. Voor het onderzoek van de mannelijke voortplantingsorganen kan kleuring met PAS en hematoxyline worden gebruikt.

De eierstok na de lactatieperiode moet primaire en groeiende follicels en de grote corpora lutea van de lactatie bevatten. Bij histopathologisch onderzoek moet een kwalitatieve aflezing van de primaire follicelpopulatie worden waargenomen. Voor de F1-vrouwtjes wordt een kwantitatieve evaluatie van de primaire follicels uitgevoerd; het aantal dieren, de keuze van de coupe van de eierstok en de monstergrootte van de coupe moeten in statistisch opzicht adequaat zijn voor de gebruikte evaluatieprocedure. Bij het onderzoek wordt het aantal primaire follicels gerekend en dit kan worden gecombineerd met het aantal kleine groeiende follicels om de behandeling en de controle-eierstokken te vergelijken (15)(16)(17)(18)(19).

1.5.8.2 Gespeende dieren

Macroscopisch abnormal enkele weefsel- en dierorganen van alle jongen met uitwendige afwijkingen of klinische verschijnselen en van het ene aselect gekozen jong/geslacht/nest uit zowel de F1- als de F2-generatie die niet voor dekkings zijn geselecteerd, worden in een geschikt medium gefixeerd en bewaard voor histopathologisch onderzoek. Van de gecomponeerde weefsels wordt een volledige histopathologische karakterisering uitgevoerd, waarbij de nadruk vooral ligt op de organen van het reproductiesysteem.

2 GEGEVENS

2.1 BEHANDELING VAN DE RESULTATEN

De gegevens worden individueel gerapporteerd met een overzicht in tabelvorm, waarbij voor elke testgroep en elke generatie worden vermeld: het aantal dieren aan het begin van de test, het aantal dieren dat tijdens de test dood is aangetroffen of met het oog op een humane behandeling is gedood, het tijdsverloop van sterfte of humane doden, het aantal vruchtbare dieren, het aantal drachtige vrouwtjes, het aantal dieren met toxiciteitsverschijnselen, een beschrijving van de waargenomen toxiciteitverschijnselen met vermelding van de aanvang, de duur en de ernst van de toxicische effecten, de aard van de waarnemingen bij de ouderdieren en de jongen, de aard van de histopathologische veranderingen en alle relevante gegevens over de nesten.
De getalsmatige resultaten worden met een geschikte algemeen aanvaarde statistische methode geëvalueerd; de statistische methoden worden bij de opzet van het onderzoek gekozen en gemotiveerd. Statistische dose/response-modellen kunnen nuttig zijn voor de analyse van de gegevens. In het verslag wordt voldoende informatie over de analysemethode en het gebruikte computerprogramma vermeld, zodat een onafhankelijke evaluator/statisticus de analyse kan beoordelen en reconsitueeren.

2.2 EVALUATIE VAN DE RESULTATEN

De resultaten van dit reproductietoxiciteitsonderzoek over twee generaties worden aan de hand van de waargenomen effecten, zoals de resultaten van de obductie en microscopisch onderzoek, beoordeeld. De beoordeling omvat het verband, of het ontbreken daarvan, tussen de dosis van de teststof en de aanwezigheid of afwezigheid, de frequentie en de ernst van anomaliteiten zoals macroscopische letsel, gespecificeerde doelorganen, verminderde vruchtbaarheid, klinische anomaliteiten, aantasting van de reproductie- en nestresultaten, veranderingen in het lichaamsgewicht, effecten op de mortaliteit en andere toxische effecten. Bij de beoordeling van de testresultaten wordt rekening gehouden met de fysisch-chemische eigenschappen van de teststof en, wanneer deze beschikbaar zijn, gegevens over de toxicokinetiek.

Een adequaat uitgevoerd reproductietoxiciteitsonderzoek levert een bevriddigende raming van een dosis zonder effect op en een inzicht in schadelijke effecten op de reproductie, de geboorte, de lactatie en de postnatale ontwikkeling met inbegrip van de groei en de gedrachtselijke ontwikkeling.

2.3 INTERPRETATIE VAN DE RESULTATEN

Een reproductietoxiciteitsonderzoek over twee generaties levert informatie op over de effecten van herhaalde blootstelling aan een stof gedurende alle fasen van de reproductiecyclus. Het onderzoek levert met name informatie op over de reproductieparameters en over de ontwikkeling, de groei, de rijping en het overleven van de jongen. De resultaten van het onderzoek moeten in samenhang met de resultaten van het onderzoek naar subchronische en prenatale ontwikkelingstoxiciteit alsmede toxicokinetisch en ander beschikbaar onderzoek worden geïnterpreteerd. De resultaten van dit onderzoek kunnen worden gebruikt bij de evaluatie van de noodzaak om een chemische stof nader te onderzoeken. De resultaten van het onderzoek kunnen in beperkte mate naar de mens worden geëxtrapoleerd. Ze kunnen het best worden gebruikt voor informatie over de doses zonder effect en de toelaatbare blootstelling van de mens (20)(21)(22)(23).
3 RAPPORTAGE

TESTVERSLAG

In het testverslag wordt de volgende informatie opgenomen:

Teststof:
— de fysische aard en indien relevant de fysisch-chemische eigenschappen;
— identificatiegegevens;
— de zuiverheid.

Medium (indien van toepassing):
— motivering voor de keuze van het medium, indien geen water wordt gebruikt.

Proefdieren:
— gebruikte soort en stam;
— aantal, leeftijd en geslacht van de dieren;
— herkomst, huisvesting, voeding, nestmateriaal enz.;
— het gewicht van elk dier aan het begin van de test.

Testomstandigheden:
— beweerredenen voor de keuze van de dosis niveaus;
— gedetailleerde gegevens over de formulering van de teststof z.q. de samenstelling van het voer en de concentratie;
— de stabilité en homogeniteit van het preparaat;
— gedetailleerde gegevens over de toediening van de teststof;
— omrekening van de concentratie van de teststof in het voer/drinkwaer (in ppm) naar de feitelijke dosis (in mg/kg lichaamsgewicht/dag), indien van toepassing;
— gedetailleerde gegevens over de kwaliteit van het voer en het water.
RESULTATEN:

- de voerconsumptie en indien beschikbaar de waterconsumptie, het voerrendement (de toename van het lichaamsgewicht per gram geconsumeerd voer) en de consumptie van testmateriaal voor de P- en F1-dieren, behalve gedurende de periode dat ze samen in één hok zitten en gedurende ten minste het laatste derde deel van de lactatie;
- resorptiegegevens (indien beschikbaar);
- gegevens over het lichaamsgewicht voor de P- en F1-dieren die voor dekkingszorgen geselecteerd;
- gegevens over het gewicht van het nest en de jongen;
- het lichaamsgewicht bij het doden van de dieren en gegevens over de absolute en relatieve gewicht van organen voor de ouderdieren;
- de aard, de ernst en de duur van (al dan niet reversieve) klinische waarnemingen;
- de sterfelijkheid van dieren die tijdens het onderzoek gestorven zijn;
- gegevens over de toxische reacties per geslacht en dosis, met inbegrip van indexen voor de dekkingszorgen, de vruchtbaarheid, de dracht, de geboorte, de levensvatbaarheid en de lactatie; in het verslag worden ook de getallen vermeld die bij de berekening van deze indexen zijn gebruikt;
- toxische of andere effecten op de reproductie, de jongen, de postnatale groei enz.;
- de Obstetric bevindingen;
- een gedetailleerde beschrijving van alle histopathologische bevindingen;
- het aantal P- en F1-vrouwtjes met een normale cyclus en de lengte van de cyclus;
- het totale aantal spermatozoïden in de staart van de epididymis, het percentage spermatozoïden in oplopende beweeglijkheidscategorieën, het percentage morfologisch normale spermatozoïden en het percentage spermatozoïden met elke gespecificeerde abnormaliteit;
- de tijd tot dekkingszorgen, met inbegrip van het aantal dagen tot de dekkingszorgen;
- de duur van de dracht;
- het aantal implantaties, het aantal corpora lutea en de nestgrootte;
- het aantal levend geboren jongen en verliezen na implantatie;
- het aantal jongen met microscopisch zichtbare abnormaliteiten; indien dit is bepaald, worden het aantal ondermaatse jongen gerapporteerd;
- gegevens over ijpunten in de lichamelijke ontwikkeling van de jongen en andere gegevens over de postnatale ontwikkeling; voor de geëvalueerde ijpunten dient een motivering te worden gegeven;
- gegevens over functionele observaties bij jongen en volwassen dieren, indien van toepassing;
- een statistische behandeling van de resultaten, indien van toepassing.

BESPREKING VAN DE RESULTATEN.

CONCLUSIES, MET INBEGRIJP VAN DE NOAEL-WAARDEN VOOR DE EFFECTEN OP DE MOEDERDIEREN EN DE JONGEN.
4. REFERENCES

BIJLAGE 2H
B.42. HUIDSENSIBILISATIE: LOKALE LYMFKLIERTTEST

1 METHODE

Deze methode is overgenomen van TG 429 (2002) van de OESO.

1.1 INLEIDING

De lokale lymfklierttest (LLKT) is afdoende gevalideerd en geaccepteerd om als nieuwe methode te kunnen worden ingevoerd (1)(2)(3). Dit is de tweede methode om de potentiële huidensensibilisatie door chemische stoffen bij dieren te bepalen. Bij de andere methode (B.6) worden cavia's gebruikt: de maximalisatietest en de Buehler test (4).

De LLKT is een alternatief dat kan worden gebruikt om huidensensibilisatie door chemische stoffen te signaleren en om te bevestigen dat een chemische stof geen significant vermogen bezit om huidensensibilisatie te veroorzaken. Dit houdt niet noodzakelijkerwijs in dat de LLKT in alle gevallen in plaats van de proef met cavia's moet worden gebruikt, maar veeleer dat de test gelijkwaardig is en als alternatief kan worden gebruikt, waarbij positieve en negatieve resultaten niet langer behoeven te worden bevestigd.

De LLKT biedt ten aanzien van zowel de wetenschappelijke vooruitgang als het dierenwelzijn bepaalde voordelen. Hij bestudeert de inductiefase van huidensensibilisatie en levert kwantitatieve gegevens op die voor een dosis/responsbepaling kunnen worden gebruikt. Er zijn publicaties verschenen met de gegevens over de validatie van de LLKT en een overzicht van gerelateerd onderzoek (5)(6)(7)(8). Daarnaast moet worden opgemerkt dat de milde/gematigde sensibilisatoren, die worden aangevonden als geschikte stoffen voor positieve controle bij tests met cavia's, ook geschikt zijn om bij de LLKT te worden gebruikt (6)(8)(9).

De LLKT is een in vivo methode en leidt er derhalve niet toe dat er bij de bepaling van contactensensibilisatie geen dieren meer worden gebruikt. Het is echter wel mogelijk dat het aantal daarvoor gebruikte dieren wordt beperkt. Bovendien zorgt de LLKT voor een aanzienlijke verfijning van de manier waarop dieren voor het testen op contactensensibilisatie worden gebruikt. De LLKT is gebaseerd op het onderzoek van immunologische gebeurtenissen die tijdens de inductiefase van sensibilisatie door chemische stoffen worden gestimuleerd. In tegenstelling tot de proeven met cavia's behoeve bij de LLKT geen door provocatie geïnduceerde overgevoeligheidsreacties van de huid te worden opgewekt. Bovendien behoeft bij de LLKT geen adjuvans te worden gebruikt, hetgeen bij de maximalisatietest bij cavia's wel nodig is. Dit betekent dat het ongerief voor dieren bij de LLKT geringer is. Ondanks de voordelen van de LLKT ten opzichte van klassieke proeven met cavia's moet worden gesteld dat er bepaalde beperkingen zijn waardoor het gebruik van klassieke proeven met cavia's nodig kan zijn (zoals vals-negatieve resultaten bij de LLKT met bepaalde metalen of vals-positieve resultaten met bepaalde stoffen die de huid irriteren) (10).

Zie ook de algemene inleiding van deel B.
1.2 PRINCIPE VAN DE TESTMETHODE

Het beginsel dat aan de LLKT ten grondslag ligt, is dat sensibilisatoren induceren tot een primaire proliferatie van lymfocyten in de lymfklier die de afvoer verzorgt van de plaats waar de stof wordt aangebracht. Deze proliferatie is evenredig met de aangebrachte dosis (en de potentiële van het allergenen) en biedt een eenvoudige mogelijkheid om een objectieve kwantitatieve meting van de sensibilisatie uit te voeren. De LLKT bepaalt deze proliferatie als een dosis/responsrelatie waarbij de proliferatie in de testgroepen wordt vergeleken met de proliferatie in met medium behandelde controlegroepen. De verbinding tussen de proliferatie bij behandelde groepen en bij de medium-controlegroepen wordt bepaald en deze z.g. stimuleringsindex moet minimaal drie zijn voordat een teststof nader kan worden beoordeeld als potentiële huisensensibilisator. De hier beschreven methoden zijn gebaseerd op het gebruik van radioactieve labeling voor de meting van celproliferatie. Er kunnen echter ook andere eindpunten voor de bepaling van de proliferatie worden gebruikt, mits daar een motivering en afdoende wetenschappelijke onderbouwing voor wordt gegeven met volledige referenties en een beschrijving van de methodologie.

1.3 BESCHRIJVING VAN DE TESTMETHODE

1.3.1 Voorbereiding

1.3.1.1 Huisvesting en voeding

De dieren worden in aparte kooien gehuisvest. De temperatuur in de proefdierruimte dient 22°C (± 3°C) te zijn. Hoewel de relatieve vochtigheid minimaal 30% of bij voorkeur niet hoger dan 70% (behalve bij het reinigen van de ruimte) dient te zijn, moet worden gestreefd naar 50-60%. Verlichting gebeurt met kunstlicht met een ritme van 12 uur licht en 12 uur donker. Als voeding mag het gewone laboratoriumvoer worden gebruikt met een onbeperkte hoeveelheid drinkwater.

1.3.1.2 Voorbereiding van de dieren

De dieren worden aselect ingedeeld, gemankeert om elk dier afzonderlijk te kunnen identificeren (maar niet door enige vorm van ornering) en vóór het begin van de toediening gedurende minimaal 5 dagen in hun kooi gehouden om ze aan de omstandigheden in het laboratorium te laten wennen. Vóór het begin van de behandeling worden alle dieren onderzocht om vast te stellen dat ze geen waarneembare huisletsel hebben.

1.3.2 Testomstandigheden

1.3.2.1 Proefdieren

Voor deze test worden bij voorkeur muizen gebruikt. Er worden jonge volwassen vrouwtjesmuisen van de CBA/Ca- of CBA/J-stam gebruikt, die nog geen jongen hebben gehad en niet drachtig zijn. Bij het begin van het onderzoek moeten de dieren 8-12 weken oud zijn; het gewichtverschil tussen de dieren moet minimaal zijn en de afwijking mag niet groter zijn dan 20% van het gemiddelde gewicht. Er mogen ook andere stammen of mannetjes worden gebruikt, wanneer er voldoende gegevens beschikbaar zijn om aan te tonen dat er geen significantie stam- en/of geslachtsspecifieke verschillen in de LLKT-respons zijn.

1.3.2.2 Betrokkenhuisartsen controle

Er worden positieve controles gebruikt om aan te tonen dat de test goed is uitgevoerd en dat het laboratorium in staat is de test tot een goed einde te brengen. De positieve controle moet een positieve LLKT-respons opleveren bij een blootstellingsniveau waarbij in vergelijking met de negatieve controlegroep een stijging van de stimuleringsindex (SI) met > 3 wordt verwacht. De dosis van de positieve controle moet zodanig worden gekozen dat de inducer dichuvel dus maar niet buitensporig is. De stoffen heksylkuminaldehyde (CAS-nr. 101-86-0, EINECS-nr. 202-983-3) en mercaptobenzothiazool (CAS-nr. 149-30-4, EINECS-nr. 205-736-8) verdienen de voorkeur. Onder bepaalde omstandigheden kunnen andere controlestofken worden gebruikt die aan bovengenoemde criteria voldoen, mits een afdoende motivering wordt gegeven. Normaal gesproken zal er voor elke bepaling een positieve controlegroep nodig zijn, maar in bepaalde situaties kunnen testlaboratoria echter ook historische gegevens van positieve controles waaruit blijkt dat er gedurende een periode van zes maanden of langer consequent sprake is van een bevredigende respons. In dergelijke gevallen kan worden volstaan met minder frequente tests met een positieve controle met een interval van ten hoogste zes maanden. Hoewel de stof voor de positieve controle moet worden getest in een medium waarvan bekend is dat het een consequente respons oplevert (zoals acetone of olifoliet), kan de regelgeving in bepaalde gevallen vereisen dat de testen ook in een ongebruikelijk medium (een klinisch/chemisch relevante formulering) worden uitgevoerd. In dat geval moet worden onteregde of er mogelijkerwijs sprake is van een interactie tussen de positieve controle en dit ongebruikelijke medium.
1.3.2.3 Aantal dieren, dosisniveaus en keuze van het medium

Er worden minimaal vier dieren per dosisgroep gebruikt en ten minste drie concentraties van de teststof plus een negatieve controlegroep, die alleen met het medium voor de teststof wordt behandeld, en eventueel een positieve controlegroep. Wanneer de gegevens van elke dier afzonderlijk moeten worden verzet, worden ten minste vijf dieren per dosisgroep gebruikt. Behalve dat de dieren in de controlegroepen niet met de teststof worden behandeld, worden ze verder op identieke wijze behandeld als de dieren in de behandelde groepen.

De keuze van de doses en het medium wordt gebaseerd op de aantallen in referentie (1). De doses worden gekozen uit de concentratierreeks 100%, 50%, 25%, 10%, 5%, 2,5%, 1%, 0,5% enz. Bij de keuze van de drie opeenvolgende concentraties moet rekening worden gehouden met bestaande gegevens over de acute toxiciteit en huidirritatie, wanneer die beschikbaar zijn, zodat bij de hoogste concentratie de blootstelling maximaal is zonder dat dit tot systemische toxiciteit en overmatige lokale huidirritatie leidt (2)(11).

Het medium wordt zodanig gekozen dat de testconcentraties en de oplosbaarheid maximaal zijn terwijl de oplossing/suspensie geschikt moet zijn om de teststof op te brengen. In volgorde van voorkeur worden aanbevolen: aceton/olijfolie (4:1 v/v), dimethylformamide, methylcelloko ion, propyleenglycol en dimethy sulfoxide (2)(10), maar ook een ander medium mag worden gebruikt als daarvoor een afdwingende wetenschappelijke motivering wordt gegeven. In bepaalde gevallen kan het nodig zijn als extra controle een klinisch relevant oplosmiddel te gebruiken of de commerciële formulering waarin de teststof in de handel wordt gebracht. Er moet vooral voor worden gezorgd dat er hydrofiele bestanddelen worden opgenomen in een medium dat de huid vochtig maakt en niet onmiddellijk weghoopt. Een volledig waterig medium moet derhalve worden vermeden.

1.3.3 Testprocedure

1.3.3.1 Proefopzet

De proefopzet van de bepaling is als volgt:

- **Dag 1:**
 - Van elk dier apart wordt het gewicht bepaald en vastgelegd. Vervolgens wordt 25 µl van de verdunning van de teststof, het medium zonder teststof of de positieve controle open aangebracht op het dorsum van elk oor.
 - **Dagen 2 en 3:**
 - Herhaal de aanbrengprocedure van dag 1.
 - **Dagen 4 en 5:**
 - Geen behandeling.
 - **Dag 6:**
 - Van elk dier wordt het gewicht vastgelegd. Injecteer bij de muizen van alle test- en controlegroepen 250 µl PBS (phosphate-buffered saline) die 20 µCi (7.4e+8 Bq) 1H-methylthymidine bevat, in de staartader. Een andere mogelijkheid is injectie van 250 µl PBS die 2 µCi (7.4e+7 Bq) 125I-joddeoxyuridine en 10⁻³ M fluorescentdeoxyuridine bevat, bij alle muizen in de staartader.

Vijf uur later worden de dieren gedood. De afvoerende auriculaire lymfklieren van elk oor worden uitgeprepareerd en voor elke groep gepoold in PBS (groepsgewijze aanpak); het is ook mogelijk voor elk dier apart de twee lymfklieren in PBS te pellen (individuele aanpak). Bijlage 1 van referentie 10 bevat gedetailleerde informatie en diagrammen voor de identificatie en het uitkristallen van de lymfklieren.
Bereiding van de celsuspensies

Er wordt één celsuspensie gemaakt met lymfkliercellen van gepoolde groepen of van aparte dieren door het weefsel voorzichtig door een roestvrij stalen gaas met een maaswijde van 200 μm te persen. De lymfkliercellen worden twee maal gewassen met een overmaat PBS en gedurende 18 uur met 5% trichloorzuurzuur (TCA) neergeslagen bij 4 °C (1). Het neerslag wordt gesuspendeerd in 1 ml TCA en voor 3H-telling overgebracht in scintillatielijstjes die 10 ml scintillatievloeistof bevatten, of direct overgebracht in gamma-teltubiezen voor 125I-telling.

Repaling van celproliferatie (opgenomen radioactiviteit)

De opname van 3H-methylthymidine wordt gemeten door β-scintillatie meting als desintegraties per minuut (DPM). De opname van 125I-jooddeoxyuridine wordt gemeten door 125I-telling en ook als DPM uitgedrukt. Afhankelijk van de gevolgde werkprocedure wordt de opname uitgedrukt als DPM/behandelingsgroep (groepsgewijze aanpak) of DPM/dier (individuele aanpak).

Observatie

Klinische observatie

De dieren worden één keer per dag zorgvuldig geobserveerd op klinische verschijnselen van lokale toxiciteit op de plaats van aangebracht of systemische toxiciteit. Alle observaties worden systematisch geregistreerd en van elk dier wordt een apart overzicht bijgehouden.

Lichaamsgewicht

Zoals onder punt 1.3.3.1 is vermeld, wordt aan het begin van de test en wanneer de dieren volgens schema worden gedood, van elk dier het lichaamsgewicht bepaald.

Berekening van de resultaten

De resultaten worden uitgedrukt als de stimuleringsindex (SI). Bij de groepsgewijze aanpak wordt de SI berekend door de totale opname van radioactiviteit voor elke behandelde groep te delen door de totale opname van radioactiviteit voor de medium controlegroep; dit levert een gemiddelde SI op. Bij de individuele aanpak wordt de SI berekend door de gemiddelde DPM/dier van elke groep behandeld met teststof en de positieve controle groep, te delen door de gemiddelde DPM/dier voor de medium controlegroep. De gemiddelde SI voor de met medium behandelde controles is dan 1.

Wanneer voor de berekening van de SI de individuele aanpak wordt gevolgd, kan er een statistische analyse van de gegevens worden uitgevoerd. Bij het kiezen van een geschikte statistische analysemethode moet de onderzoeker zich bewust blijven van mogelijke verschillen in de variatie en andere soortgelijke problemen, die een gegevenstransformatie of een niet-parametrische statistische analyse noodzakelijk kunnen maken. Een geschikte aanpak voor de interpretatie van de gegevens is dat alle individuele gegevens van behandelde dieren en medium-controles worden geëvalueerd en dat daaraan, rekening houdend met de betrouwbaarheids grenzen, de brief passende dosis/respnscurve wordt afgeleid (8)(12)(13). De onderzoeker moet echter alert zijn op mogelijke "uitbijters" bij behandelde dieren in een groep, waardoor het nodig kan zijn een andere maat voor de respons te gebruiken (bijvoorbeeld de mediaan in plaats van het gemiddelde) of de uitbijters te elimineren.

Wanneer er tot een positieve respons wordt gesloten, moet de stimuleringsindex ≥ 3 zijn en moet er rekening worden gehouden met de dosis/respnsverhouding en eventueel de statistische significante (3)(6)(8)(12)(14).

Als de verkregen resultaten onduidelijk zijn, moet er worden gekeken naar verschillende eigenschappen van de teststof, bijvoorbeeld of deze qua structuur verwant is met bekende huidensensibilisatoren, of de stof overmatige huidirritatie veroorzaakt en wat de aard van de waargenomen respons is. Deze en andere overwegingen worden elders gedetailleerd besproken (7).
GEGEVEN

De gegevens worden vermeld in een tabel met het gemiddelde en de afzonderlijke DPM-vaarden en stimuleringsindices voor elke dosisgroep (en tevens de medium-controlegroep).

RAPPORTAGE

TESTVERSLAG

In het testverslag wordt de volgende informatie opgenomen:

Teststof:
- identificatiegegevens (b.v. het CAS-nr., indien beschikbaar, de herkomst, de zuiverheid, bekende verontreinigingen en het chargenummer);
- de fysische aard en de fysisch-chemische eigenschappen (b.v. de vluchtigheid, de stabiliteit en de oplosbaarheid);
- bij een mengsel de samenstelling met voor elk bestanddeel het procentuele gehalte.

Medium:
- identificatiegegevens (de zuiverheid, de concentratie (indien van toepassing) en het gebruikte volume);
- een motivering voor de keuze van het medium.

Proefdieren:
- de gebruikte muizenstam;
- de microbiologische status van de dieren, wanneer dit bekend is;
- het aantal dieren, de leeftijd en het geslacht;
- de herkomst van de dieren, de huisvesting, de voeding enz.

Testomstandigheden:
- gedetailleerde gegevens over de formulering en het aanbrengen van de teststof;
- beweegredenen voor de keuze van de dosisniveaus, zoals de resultaten van een studie om het interval te bepalen indien deze is uitgevoerd, het gebruikte medium en de concentratie van de teststof en de in totaal aangebrachte hoeveelheid stof;
- gedetailleerde gegevens over de kwaliteit van het voer en het water (waaronder de aard en de herkomst van het voer en de herkomst van het water).

Betrouwbaarheidscontrole:
- een overzicht van de resultaten van de meest recente betrouwbaarheidscontrole met informatie over de stof, de concentratie en het gebruikte medium;
- tegelijkertijd en/of in het verleden bepaalde positieve en negatieve controlegegevens voor het testlaboratorium.

Resultaten:
- het gewicht van elk dier aan het begin van de test en wanneer het volgens schema wordt gedood;
- een tabel met het gemiddelde (groepsgewijze aanpak) en de afzonderlijke (individuele aanpak) DPM-waarden plus de spreiding van waarden voor beide mogelijkheden, en stimuleringsindices voor elke dosisgroep (en tevens de medium-controlegroep);
- de statistische analyse, indien van toepassing;
- voor elk dier het tijdspan waarop de eventuele toxiciteitsverschijnselen zich voordoen, met inbegrip van huidirritatie op de toedieningsplaats, en het verloop daarvan.

Bespreking van de resultaten:
- Een korte bespreking van de resultaten, de dosis/respuesta-analyse en de statistische analyses, indien van toepassing, met een conclusie ten aanzien van de vraag of de teststof als huidsensibilisator moet worden beschouwd.
REFERENCES

B.43. NEUROTOXICITEITSONDERZOEK BIJ KNAAGDIEREN

1 METHODE

Deze methode is gelijkwaardig aan TG 424 (1997) van de OESO.

Deze testmethode is bedoeld om de nodige informatie te krijgen om de mogelijke neurotoxiciteit van chemische stoffen bij volwassen dieren te bevestigen of nader te karakteriseren. Hij kan in combinatie met bestaande testmethoden voor onderzoek naar toxiciteit bij herhaalde toediening worden gebruikt of als zelfstandig onderzoek worden uitgevoerd. Raadpleging van de OESO-leidraad voor strategieën en methoden voor neurotoxiciteitsonderzoek (1) als ondersteuning bij de opzet van onderzoek op basis van deze testmethode wordt aanbevolen. Dit is vooral belangrijk wanneer wordt overwogen de voor het standaardgebruik van deze methode aanbevolen observaties en testprocedures te wijzigen. De leidraad is opgesteld om de keuze van andere testprocedures voor specifieke omstandigheden te vergemakkelijken.

Deze methode is niet geschikt voor de beoordeling van ontwikkelingsneurotoxiciteit.

1.1 INLEIDING

Bij de beoordeling en evaluatie van de toxische karakteristieken van chemische stoffen is het belangrijk de mogelijkheid van neurotoxische effecten te beziens. In de testmethode voor systemische toxiciteit bij herhaalde toediening zijn al observaties opgenomen om op mogelijke neurotoxiciteit te screenen. Deze testmethode kan worden gebruikt voor de opzet van een onderzoek om nadere informatie te verkrijgen over de neurotoxische effecten die bij het onderzoek naar systemische toxiciteit bij herhaalde toediening zijn gesignaleerd of om deze effecten te bevestigen. Ook zonder dat onderzoek naar systemische toxiciteit bij herhaalde toediening aanwijzingen voor een mogelijke neurotoxiciteit heeft opgeleverd, kunnen er voor sommige categorieën chemische stoffen echter aanwijzingen zijn dat ze beter met behulp van deze methode kunnen worden beoordeeld. Voorbeelden van dergelijke aanwijzingen zijn:

- waarneming van neurologische verschijnselen of neuropathologisch letsel bij ander toxiciteitsonderzoek dan onderzoek naar systemische toxiciteit bij herhaalde toediening of
- een structurele verwantschap met stoffen waarvan bekend is dat ze neurotoxisch zijn of andere informatie die een verband met dergelijke stoffen legt.

Daarnaast kan het gebruik van deze testmethode ook in andere gevallen nuttig zijn: zie voor nadere bijzonderheden (1).

Deze methode is zodanig opgezet dat hij op maat kan worden aangepast aan bepaalde behoeften om de specifieke histopathologische en gedragssmatige neurotoxiciteit van een chemische stof te bevestigen en voor een karakterisering en kwantificering van de neurotoxische reacties te zorgen.

In het verleden werd neurotoxiciteit gelijkgesteld met neuropathie met neuropathologisch letsel of neurologische stoornissen zoals een epileptische aanval, verlamming of tremor. Hoewel neuropathie een belangrijke uiting van neurotoxiciteit is, is het nu duidelijk dat er vele andere verschijnselen van toxiciteit voor het zenuwstelsel zijn (b.v. het verlies van motorische coördinatie, sensorische afdalingen en leer- en geheugenstoornissen) die bij een onderzoek naar neuropathie of ander onderzoek niet altijd naar voren komen.

Neurotoxica kunnen optreden via een aantal aangrijtingspunten binnen het zenuwstelsel en een scala van mechanismen. Aangezien er niet één pakket tests is waarmee de neurotoxische potentie van alle stoffen volledig kan worden beoordeeld, kan het nodig zijn andere in vivo of in vitro tests te gebruiken die specifiek zijn voor de waargenomen of verwachte soorten neurotoxiciteit.

Deze testmethode kan ook in combinatie met de richtlijnen van de OESO-leidraad voor strategieën en methoden voor neurotoxicitisonderzoek (1) worden gebruikt om onderzoek op te zetten waarmee de dosis/respons-kwantificering nader kan worden gekarakteriseerd of de gevoeligheid kan worden verhoogd teneinde een betere bepaling van de dosis zonder waargenomen schadelijke effecten mogelijk te maken of bekende of vermoede gevaren van de chemische stof te staven. Er kan bijvoorbeeld onderzoek worden opgezet om de neurotoxische mechanismen te bepalen en te evalueren of om de gegevens aan te vullen die al beschikbaar zijn door het gebruik van basisprocedures voor neuropathologische en neurogedragsovervattie. Als gegevens die door het gebruik van de in deze methode aanbevolen standaardprocedures worden verkregen, al beschikbaar zijn en niet nodig worden geacht voor de interpretatie van de resultaten van het onderzoek, behoeven ze niet met dit onderzoek opnieuw te worden vergaard.

Dit onderzoek naar neurotoxiciteit levert, zelfstandig of in combinatie gebruikt, informatie op die:

- kan aangeven of het zenuwstelsel door de geteste chemische stof permanent of reversibel wordt aangetast;
- kan bijdragen tot de karakterisering van de wijzigingen in het zenuwstelsel ten gevolge van de blootstelling aan de chemische stof en tot inzicht in het mechanisme daarvan;
- het verband tussen dosis en respons en tussen tijd en respons kan bepalen teneinde een dosis zonder waargenomen schadelijke effecten te kunnen bepalen (die kan worden gebruikt om veiligheidscriteria voor de chemische stof vast te stellen).

Bij deze testmethode wordt de teststof oraal toegediend. Andere toedieningswegen (bijv. dermaal of inhalatie) kunnen geschikt zijn en hiervoor kan het nodig zijn de aanbevolen procedures te wijzigen. De keuze van de toedieningsweg wordt bepaald door het blootstellingsprofiel bij de mens en de beschikbare toxicologische of kinetische informatie.

1.2 DEFINITIES

Schadelijk effect: een met de behandeling samenhangende afwijking van de normale situatie waardoor het organisme minder goed in staat is tot overleven, reproduktie of aanpassing aan de omgeving.

Dosis: de toegediende hoeveelheid teststof. De dosis wordt uitgedrukt als gewicht (g, mg), als gewicht van de teststof per gewichtseenheid van het proefdier (bijvoorbeeld mg/kg) of als constante concentratie in het voer (ppm).

Dosering: een algemene term die de dosis en de frequentie en de duur van de toediening omvat.

Neurotoxiciteit: een schadelijke verandering in de structuur of de functie van het zenuwstelsel die een gevolg is van blootstelling aan een chemisch, biologisch of fysisch agens.

Neurotoxicum: een chemisch, biologisch of fysisch agens dat in staat is neurotoxiciteit te veroorzaken.

NOAEL: de afkorting van "no-observed-adverse effect level" (dosis zonder waargenomen schadelijke effecten), d.w.z. de hoogste dosis waarbij er geen met de behandeling samenhangende schadelijke gevolgen worden waargenomen.

1.3 PRINCIPE VAN DE TESTMETHODE

De teststof wordt in een aantal doses oraal toegediend aan verschillende groepen knaagdieren. Meestal is herhaalde toediening nodig gedurende 28 dagen of in de vorm van subchronisch (90 dagen) of chronisch (een jaar of langer) onderzoek. De in deze testmethode beschreven procedures kunnen ook worden gebruikt voor een onderzoek naar acute neurotoxiciteit. De dieren worden getest om afwijkend gedrag en/of neurologische afwijkingen te kunnen detecteren of karakteriseren. Geslutterte elke observatieperiode wordt een scala van gedragsuitingen beoordeeld dat door neurotoxica kan worden beïnvloed. Aan het eind van de test wordt een deel van de dieren van elk geslacht van elke groep in situ geperfundeerd en worden er secties van de hersenen, het ruggenmerg en de perifere zenuwen geprepareerd en onderzocht.
Wanneer het onderzoek zelfstandig als screening voor neurotoxiciteit of voor de karakterisering van neurotoxische effecten wordt uitgevoerd, kunnen de dieren van elke groep die niet voor perfusie en vervolgens histopathologie worden gebruikt (zie tabel 1), voor specifieke neuropathologische, neurochimische, elektrofysiologische of neurogedragsprocedures worden gebruikt waarmee de gegevens kunnen worden aangevuld die worden verkregen uit het verplichte standaardonderzoek van deze methode (1). Deze aanvullende procedures kunnen bijzonder nuttig zijn wanneer empirische observaties of verwachte effecten wijzen op een specifiek type of aangrijpingspunt voor de neurotoxiciteit van een chemische stof. Anderzijds is het ook mogelijk de resterende dieren te gebruiken voor evaluaties zoals die zijn opgenomen in testmethoden voor onderzoek naar toxiciteit bij herhaalde toediening bij knaagdieren.

Wanneer de procedures van deze testmethode in combinatie met die van andere testmethoden worden gebruikt, is er een voldoende aantal dieren nodig om aan de observatierequisiten voor beide onderzoeken te voldoen.

1.4 BESCHRIJVING VAN DE TESTMETHODE

1.4.1 Keuze van de diersoort

Bij voorkeur wordt de rat gebruikt, maar ook andere knaagdiersoorten kunnen worden gebruikt wanneer hiervoor een motivering wordt gegeven. Er worden gezonde jonge volwassen dieren van gangbare laboratoriumstammen gebruikt. De vrouwtjes mogen nog geen jongen hebben gehad en mogen niet drachtig zijn. De toediening begint zo spoedig mogelijk na het spenen, bij voorkeur uiterlijk wanneer de dieren zes weken oud zijn en in elk geval voordat de dieren negen weken oud zijn. Wanneer dit onderzoek met andere onderzoeken wordt gecombineerd, kan het echter nodig zijn deze leeftijdsgrenzen aan te passen. Aan het begin van het onderzoek mag het lichaamsgewicht van de dieren niet meer dan ± 20% afwijken van het gemiddelde gewicht voor elk geslacht. Wanneer een onderzoek met herhaalde toediening van korte duur als voorbereiding op een langdurig onderzoek wordt uitgevoerd, moeten bij beide onderzoeken dieren van dezelfde stam en dezelfde herkomst worden gebruikt.

1.4.2 Huisvesting en voeding

De temperatuur in de proefdierkamer dient 22°C (± 3°C) te zijn. Hoewel de relatievochtigheid minimaal 30% en bij voorkeur niet hoger dan 70% (behalve bij het reinigen van de ruimte) dient te zijn, moet worden gestreefd naar 50-60%. Verlichting gebeurt met kunstlicht met een ritme van 12 uur licht en 12 uur donker. Harde onregelmatige geluiden moeten tot een minimum worden beperkt. Als voeding mag het gewone laboratoriumvoer worden gebruikt met een onbeperkte hoeveelheid drinkwater. De keuze van het voer kan worden beïnvloed door de noodzaak om voor een afdoende mengbaarheid met de teststof te zorgen, wanneer de stof in het voer wordt toegediend. De dieren mogen apart of in kleine groepen met hetzelfde geslacht worden huisvest.

1.4.3 Voorbereiding van de dieren

De gezonde jonge dieren worden aselect ingedeeld in de behandeling- en controlegroepen. De kooien worden zodanig opgesteld dat mogelijke effecten door de plaatsing van de kooien tot een minimum worden beperkt. De dieren worden op unieke wijze gemanipuleerd en voor het begin van het onderzoek gedurende minimaal 5 dagen in hun kooi gehouden om ze aan de omstandigheden in het laboratorium te laten wennen.

1.4.4 Toedieningsweg en bereiding van de doses

Deze testmethode behandelde specifiek de orale toediening van de teststof. De orale toediening kan met een maagsonde, in het voer, in het drinkwater of met capsules gebeuren. Ook andere toedieningswegen (b.v. dermaal of inhalatie) kunnen worden gebruikt, maar hiervoor moeten de aanbevolen procedures wellicht worden gewijzigd. De keuze van de toedieningsweg wordt bepaald door het blootstellingsprofiel bij de mens en de beschikbare toxicologische of kinetische informatie. De motivering voor de keuze van de toedieningsweg en hieruit voortvloeiende wijzigingen in de procedures van deze testmethode moeten worden vermeld.

Waar nodig kan de teststof in een geschikt medium worden opgelost of gesuspendeerd. In eerste instantie wordt het gebruik van een waterige oplossing/suspensie aanbevolen, als tweede keuze een oplossing/suspensie in olie (bijvoorbeeld maïsolie) en uiteindelijk eventueel een oplossing/suspensie in een ander medium. De toxicologische kenmerken van het medium moeten bekend zijn. Daarnaast moet aandacht worden besteed aan de volgende kenmerken van het medium: effecten van het medium op de resorptie, de distributie, het metabolisme of de retentie van de teststof die wellicht gevolgen kunnen hebben voor de toxicologische kenmerken, en effecten op de consumptie van voer of water of de voedselsstatus van de dieren.
1.5 PROCEDURE

1.5.1 Aantal en geslacht van de dieren

Wanneer het onderzoek zelfstandig wordt uitgevoerd, moeten er in elke dosis- en controlegroep ten minste 20 dieren (10 vrouwtjes en 10 mannetjes) worden gebruikt voor de evaluatie van gedetailleerde klinische en functionele observaties. Van deze 10 vrouwtjes en 10 mannetjes moeten ten minste 5 vrouwtjes en 5 mannetjes aan het eind van het onderzoek in situ worden geperfundeeerd en voor gedetailleerde neurohistopathologie worden gebruikt. Wanneer in een bepaalde dosisgroep slechts bij een beperkt aantal dieren verschillen van neurotoxische effecten worden geobserveerd, moet worden overwogen onder andere deze dieren voor perfusie te selecteren. Wanneer het onderzoek in combinatie met een onderzoek naar toxiciteit bij herhaalde toediening wordt uitgevoerd, moeten er voldoende dieren worden gebruikt om aan de doelstellingen van beide onderzoeken te voldoen. Tabel 1 bevat een overzicht van de minimale aantallen dieren per groep voor verschillende onderzoekscombinaties. Als het de bedoeling is tussentijds dieren te doden of bij bepaalde groepen na de behandeling te observeren of de toxicische effecten reversibel zijn, blijven bestaan of vertraagt optreden of wanneer aanvullende observaties worden overwogen, moet het aantal dieren worden opgevoed om ervoor te zorgen dat er voldoende dieren beschikbaar zijn voor observatie en histopathologie.

1.5.2 Behandelings- en controlegroepen

In het algemeen moeten er ten minste drie dosisgroepen en één controlegroep worden gebruikt, maar als er op grond van de beoordeling van andere gegevens bij herhaalde toediening van 1000 mg/kg lichaamsgewicht/dag geen effecten worden verwacht, kan er een limiettest worden uitgevoerd. Als er geen geschikte gegevens beschikbaar zijn, kan er een verkennd onderzoek worden uitgevoerd om de te gebruiken doses te helpen bepalen. Afgezien van de toediening van de teststof worden de dieren in de controlegroep op identieke wijze behandeld als de dieren in de dosisgroepen. Als er bij de toediening van de teststof een medium wordt gebruikt, moet het hoogste gebruikelijke volume van het medium aan de controlegroep worden toegediend.

1.5.3 Betrouwbaarheidscontrole

Het laboratorium dat het onderzoek uitvoert, moet gegevens verstrekken waaruit blijkt dat het in staat is het onderzoek uit te voeren en wat de gevoeligheid van de gebruikte procedures is. Uit deze gegevens moet blijken dat het veranderingen in de verschillende voor observatie aanbevolen eindpunten, zoals autonome verschijnselen, sensorische reactiviteit, grijpkracht van de ledematen en motorische activiteit, kan detecteren en eventueel kwantificeren. Voor informatie over chemische stoffen die verschillende soorten neurotoxische reacties veroorzaken en als positieve controle kunnen worden gebruikt, wordt verwezen naar de referenties (2) tot en met (9). Als de procedures in grote lijnen gelijk blijven, kunnen gegevens uit het verleden worden gebruikt. Periodieke bijwerking van gegevens uit het verleden wordt aanbevolen. Wanneer de uitvoering van de test of de procedures door het laboratorium op een essentieel punt wordt gewijzigd, moet met nieuwe gegevens worden aangetoond dat de gevoeligheid van de procedures op peil blijft.

1.5.4 Keuze van de doses

Bij de keuze van de dosisniveaus wordt rekening gehouden met eerder waargenomen toxiciteit en kinetische gegevens die voor de teststof verwante materialen beschikbaar zijn. De hoogste dosis wordt zodanig gekozen dat er neurotoxische effecten of duidelijke systemische toxicische effecten optreden. Vervolgens wordt er een zodanige dalende reeks dosisniveaus gekozen dat er een verband tussen dosis en respons kan worden gelegd en er bij de laagste dosis geen schadelijke effecten worden waargenomen (NOAEL). In beginsel worden de dosisniveaus zodanig gekozen dat primaire toxicische effecten op het zenuwstelsel kunnen worden onderscheiden van effecten die samenhangen met systemische toxiciteit. Twee of drie intervals is vaak optimaal en in plaats van een zeer groot interval tussen de doses (b.v. meer dan een factor 10) verdient toevoeging van een vierde testgroep vaak de voorkeur. Wanneer er een redelijke raming van de blootstelling van de mens is, moet hier ook rekening mee worden gehouden.

1.5.5 Limiettest

Als een onderzoek met één dosis van ten minste 1000 mg/kg lichaamsgewicht/dag volgens de beschreven procedures geen waarnembare neurotoxische effecten oplevert en als toxiciteit op grond van gegevens van qua structuur verwante verbindingen niet te verwachten valt, zal een volledig onderzoek met drie dosisniveaus wellicht niet nodig worden geacht. Op grond van de verwachte blootstelling van de mens kan het gebruik van een hogere orale dosis bij de limiettest nodig worden geacht. Bij andere toedieningswegen, bijvoorbeeld dermaal of inhalatie, wordt het maximaal haalbare blootstellingsniveau vaak bepaald door de fysisch-chemische eigenschappen van de teststof. Bij de uitvoering van een oraal acuut onderzoek moet de dosis voor een limiettest ten minste 2000 mg/kg zijn.
1.5.6 Toediening van de dosis

De teststof wordt dagelijks, zeven dagen per week, gedurende ten minste 28 dagen aan de dieren toegediend: voor een toedieningschema van vijf dagen per week of een kortere blootstellingsperiode moet een motivering worden gegeven. Wanneer de teststof met een sonde wordt toegediend, moet dit in één keer met een maagsonde of een geschikte kathe ter gebeuren. Het maximale volume van een vloeistof dat in één keer kan worden toegediend, is afhankelijk van de groottes van de proefdieren. Het volume mag niet groter zijn dan 1 ml/100 g lichaamsgewicht. Bij waterige oplossingen kan echter het gebruik van maximaal 2 ml/100 mg lichaamsgewicht worden overwogen. Behalve bij irriterende of bijtende stoffen, die normaal gesproken bij hogere concentraties hevigere effecten hebben, moeten volumeverschillen tot een minimum worden beperkt door de concentratie aan te passen, zodat er op alle dosisniveaus hetzelfde volume wordt toegediend.

Het is belangrijk dat er bij stoffen die via het voet of het drinkwater worden toegediend, voor wordt gezorgd dat de hoeveelheden teststof de normale voor- of waterbalans niet verstoren. Wanneer de teststof in het voet wordt toegediend, kan een constante concentratie in het voet (in ppm) of een constante dosis in verhouding tot het lichaamsgewicht van de dieren worden gebruikt; de gekozen methode moet worden gespecificeerd. Wanneer een stof met een sonde wordt toegediend, moet de dosis elke dag op een vergelijkbaar tijdstip worden toegediend en indien nodig worden aangepast om een constante dosis in verhouding tot het lichaamsgewicht van het dier te houden. Wanneer een onderzoek met herhaalde toediening als voorbereiding op een langdurig onderzoek wordt gebruikt, moet bij beide onderzoeken een vergelijkbare voeding worden gebruikt. Bij acuut onderzoek kan de dosis, als toediening in één keer niet mogelijk is, in kleinere porties worden verdeeld die in de loop van maximaal 24 uur worden toegediend.

1.6 OBSERVATIE

1.6.1 Frequentie van de observaties en tests

Bij onderzoek met herhaalde toediening bestrijkt de observatieperiode de toedieningsperiode. Bij acuut onderzoek vindt de observatie gedurende 14 dagen na de toediening plaats. Bij dieren in satellietgroepen die gedurende een periode na de behandeling zonder blootstelling worden gehouden, moeten de observaties ook deze periode bestrijken.

De frequentie van de observaties moet voldoende zijn voor een maximale kans op detectie van eventuele neurologische en/of gedragswijkingen. De observatie moet bij voorkeur elke dag op hetzelfde tijdstip plaatsvinden en hierbij moet rekening worden gehouden met de piekperiode voor de verwachte effecten na de toediening. Tabel 2 bevat een overzicht van de frequentie van de klinische observaties en functionele tests. Als kinetische of andere gegevens uit eerder onderzoek erop wijzen dat verschillende tijdsperioden voor observaties, tests of periodes na observaties nodig zijn, moet er een ander schema worden opgesteld om zo veel mogelijk informatie te verkrijgen. Voor veranderingen in het schema moet een motivering worden gegeven.

1.6.1.1 Observatie van de algemene gezondheidsstoestand en de mortaliteit/morbilitéit

Alle dieren worden ten minste één keer per dag zorgvuldig geobserveerd om hun gezondheidsstoestand te beoordelen en ten minste twee keer per dag op morbiditeit en mortaliteit.

1.6.1.2 Gedetailleerde klinische observatie

Bij alle hiervoor geselecteerde dieren (zie tabel 1) wordt één keer vóór de eerste blootstelling (om vergelijking per dier mogelijk te maken) en daarna met verschillende tussenpozen afhankelijk van de duur van het onderzoek (zie tabel 2) een gedetailleerde klinische observatie uitgevoerd. Bij satelliet-herstelgroepen dienen aan het eind van de herstelperiode gedetailleerde klinische observaties te worden uitgevoerd. Gedetailleerde klinische observatie dienen buiten het eigen hok in een standaard-loopruimte te gebeuren. Ze moeten zorgvuldig worden geregistreerd met behulp van scoresystemen met criteria of schalen voor elke meeting bij de observatie. De gebruikte criteria of schalen moeten expliciet door het laboratorium worden gedefinieerd. Er moet worden getracht ervoor te zorgen dat de variaties in de testomstandigheden minimaal zijn (niet systematisch gerealiseerd aan de behandeling) en dat de observaties worden uitgevoerd door geschokte waarnemers die niet op de hoogte zijn van de gegeven behandeling.
Het verdient aanbeveling de observaties gestructureerd uit te voeren, waarbij voor elk dier op elk observatietijdstip systematisch goed gedefinieerde criteria worden gehanteerd (met inbegrip van een definitie van het "normale bereik"). Het "normale bereik" moet afdoende worden gedocumenteerd. Alle waargenomen verschijnselen moeten worden geregistreerd. Waar mogelijk moet ook de omvang van de waargenomen verschijnselen worden geregistreerd. Klinische observatie moet ten minste maar niet uitsluitend omvatten: veranderingen in huid, vacht, ogen en slijmvliezen, secrecie en excretie van stoffen en autonome activiteit (b.v. tranen, pilo-erectie, verandering in pupilgrootte, een ongebruikelijk ademhalingspatroon en/of ademen door de mond, ongebruikelijke urine- of ontlastingsverschijnselen en verkleuring van de urine).

Ook ongebruikelijke reacties ten aanzien van de lichaams houding, de mate van activiteit (b.v. meer of minder exploratie van de standaard-loopruimte) en de coördinatie van de bewegingen dienen te worden geregistreerd. Verandering in gang (b.v. waggelen of ataxie), houding (b.v. gebocheld) en reactiviteit op vastpakken, neerzetten of andere ongevingsprikkel, alsmede de aanwezigheid van klonische of tonische bewegingen, convulsies of tremors, stereotiep gedrag (b.v. overmatige lichaamsvorzorg, ongebruikelijke houdtbewegingen, herhaaldelijk rundraaien) of bizar gedrag (b.v. bijten of overmatig likken, zelfverminking, achteruitlopen, stempelslaaien) of agressie moeten worden geregistreerd.

1.6.1.3 Functionele tests

Net als bij de gedetailleerde klinische observatie moeten ook de functionele tests bij alle hiervoor geselecteerde dieren (zie tabel 1) één keer vóór de eerste blootstelling en daarna geregeld worden uitgevoerd. Ook de frequentie van de functionele tests is afhankelijk van de duur van het onderzoek (zie tabel 2). Afgezien van de in tabel 2 vermelde observatieperioden moeten ook zo kort mogelijk vooraf de dieren worden gereduceerd, functionele observaties bij satelliet-herstelgroepen worden uitgevoerd. Bij de functionele tests moet worden gekeken naar de sensorische reactiviteit op verschillende soorten prikkels (b.v. auditieve, visuele en proprioceptieve prikkels (5/6/7)), een beoordeling van de grijpkracht van ledematen (8) en een beoordeling van de motorische activiteit (9). De motorische activiteit moet worden gemeten met een geautomatiseerd apparaat dat zowel een afname als een toename van de activiteit kan detecteren. Als er een ander gedefinieerd systeem wordt gebruikt, moet dit kwantitatief zijn en moeten de gevoeligheid en de betrouwbaarheid worden aangetoond. Elk apparaat moet worden getest om de betrouwbaarheid in de loop der tijd en de consistentie van apparaat tot apparaat te waarborgen. Voor een gedetailleerde beschrijving van de te volgen procedures wordt verwezen naar de respectieve referenties. Als er geen gegevens zijn (b.v. structuur/activiteit-relaties, epidemiologische gegevens of ander toxicologisch onderzoek) die aanwijzingen geven omtrent de mogelijke neurotoxische effecten, moet worden overwogen gespecialiseerde tests op de sensorische en motorische functie of leren en geheugen uit te voeren om deze mogelijke effecten meer in detail te onderzoeken. Voor meer informatie over gespecialiseerde tests en het gebruik daarvan wordt verwezen naar (1).

Bij wijze van uitzondering kunnen dieren die zodanige toxiciteitsverschijnselen vertonen dat deze de functionele test significant zouden storen, van deze test worden uitgesloten. Voor het uitsluiten van dieren van een functionele test moet een motivering worden gegeven.

1.6.2 Lichaamsgewicht en consumptie van voer en water

Bij onderzoek met een duur tot 90 dagen moeten alle dieren ten minste één keer per week worden gewogen en moet de voerconsumptie (de waterconsumptie als de teststof in het water wordt toegediend) ten minste wekelijks worden gemeten. Bij langdurig onderzoek moeten alle dieren de eerste 13 weken ten minste één keer per week worden gewogen en daarna ten minste één keer per vier weken. De eerste 13 weken wordt de voerconsumptie (de waterconsumptie als de teststof in het water wordt toegediend) ten minste wekelijks gemeten en daarna ongeveer één keer per drie maanden, tenzij het voe of de gezondheidstoestand of de veranderingen in het lichaamsgewicht een ander ritme nodig is.

1.6.3 Oogheelkundig onderzoek

Bij een onderzoek dat langer dan 28 dagen duurt, moet vóór de toediening van de teststof en aan het einde van het onderzoek bij voorkeur bij alle dieren maar ten minste bij de dieren in de hoge dosis- en controlegroepen een oogheelkundig onderzoek worden uitgevoerd met een oftalmoscoop of een gelijkwaardig geschild instrument. Als er veranderingen in de ogen worden waargenomen of als dit met het oog op klinische verschijnselen nodig is, moeten alle dieren worden onderzocht. Bij een langdurig onderzoek moet er ook na 13 weken een oogheelkundig onderzoek worden uitgevoerd. Het oogheelkundig onderzoek behoeft niet te worden uitgevoerd als deze gegevens al beschikbaar zijn uit ander onderzoek met een vergelijkbare duur en vergelijkbare dosisniveaus.
1.6.4 Hematologisch en klinisch-biochemisch onderzoek

Wanneer het onderzoek naar neurotoxiciteit in combinatie met een onderzoek naar systemische toxiciteit bij herhaalde toediening wordt uitgevoerd, moeten er hematologisch onderzoek en klinisch-biochemische bepalingen worden uitgevoerd zoals dat in de desbetreffende methode voor het onderzoek naar systemische toxiciteit is beschreven. De monsterneming moet zodanig gebeuren dat mogelijke neurogedragseffecten tot een minimum worden beperkt.

1.6.5 Histopathologie

Bij elk weefselspecimen in paraffine wordt een algemene kleurprocedure uitgevoerd, zoals hematoxyline en eosine (H&E), en wordt een microscopisch onderzoek uitgevoerd. Als er verschijnselen van perifere neuropathie worden waargenomen of vermoed, worden er monsters van perifere zenuwweefsel in kunststof onderzocht. Klinische verschijnselen kunnen ook aanwijzingen opleveren voor andere onderzoekspunten of het gebruik van speciale kleurprocedures. Richtsnoeren voor andere plaatsen die kunnen worden onderzocht, zijn te vinden in (3)(4). Ook geschikte speciale kleurstoffen om specifieke soorten pathologische veranderingen aan te tonen, kunnen nuttig zijn (18).

Representatieve secties van het centrale en perifere zenuwstelsel worden histologisch onderzocht (zie referentie 3, hoofdstuk 5, en referentie 4, hoofdstuk 50). Normaal gesproken moeten onder de volgende gebieden worden onderzocht: de voorhersenen, het centrum van het cerebrum met een sectie door de hippocampus, de midden hersenen, het cerebellum, de pons, de medulla oblongata, het oog met oogzenuw en nertvies, het ruggenmerg bij de cervicale en lumbale verdikkingen, de ganglia van de dorsale wortel, de vezels van de dorsale en ventrale wortel, de proximale nervus ischiadicus, de proximale nervus tibialis (bij de knie) en de kniachtvretakkingen van de nervus tibialis. Van het ruggenmerg en de perifere zenuwen moeten zowel dwarse of transversale als longitudinale secties worden gemaakt. Er moet worden gelet op het vaatstelsel van het zenuwstelsel. Tevens moet er een monster van een kuitspier, met name de kuitspier, worden onderzocht. Er moet bijzondere aandacht worden besteed aan plaatsen met een cellulair en vezelstructuur en -patroon in het CZS en het PZS waarvan bekend is dat ze bijzonder gevoelig zijn voor neurotoxica.

Voor een leidraad voor neuropathologische veranderingen die vaak een gevolg zijn van blootstelling aan een toxic stof, wordt verwezen naar de referenties (3) en (4). Een stapsgewijze onderzoek van de weefselmonster wordt aanbevolen, waarbij secties van de hoogste dosisgroep eerst worden vergeleken met die van de controlegroep. Als er in de monsters van deze groepen geen neuropathologische veranderingen worden waargenomen, is een verdere analyse niet nodig. Als er in de hoogste dosisgroep neuropathologische veranderingen worden waargenomen, worden er van elk van de mogelijk aangetaste weefels van de tussengroepen en de laagste groep monsters genomen en sequentieel onderzocht.

Als er bij het kwalitatieve onderzoek bewijzen van neuropathologische veranderingen worden gevonden, moet er een tweede onderzoek worden uitgevoerd bij alle gebieden van het zenuwstelsel die deze veranderingen vertonen. Bij alle dosisgroepen worden er van elk van de mogelijksterwijs aangetaste gebieden secties geëxtraeerd en selecteer onder de code te kennen onderzocht. De frequentie en de ernst van elk letsel worden geregistreerd. Nadat van alle gebieden van alle dosisgroepen de score is bepaald, kan de code worden verborgen en kan er een statistische analyse worden uitgevoerd om het verband tussen dosis en respons te bepalen. Van elk letsel moet er voorbeelden van uiteenlopende ernst worden beschreven.

De neuropathologische bevindingen moeten in de context van de gedragsobservaties en metingen alsmede andere gegevens uit eerder en tegelijkertijd uitgevoerd onderzoek naar de systemische toxiciteit van de teststof worden geëvalueerd.
2 GEGEVENS

2.1 BEHANDELING VAN DE RESULTATEN

Er worden voor elk dier apart gegevens verstrekt. Daarnaast worden alle gegevens in tabelvorm samengevat met voor alle test- en controlegroepen vermelding van het aantal dieren aan het begin van het onderzoek, het aantal dieren dat tijdens het onderzoek doed is aangetroffen of op humane wijze is gedood met het tijdstip waarop ze zijn gestorven of gedood, het aantal dieren dat toxiciteitsverschijnselen vertoonde, een beschrijving van de waargenomen toxiciteitsverschijnselen, met inbegrip van de aard, de duur, de aard en de ernst van eventuele toxische effecten, en het aantal dieren met letsel, met vermelding van de aard en de ernst van het letsel of de letseis.

2.2 EVALUATIE EN INTERPRETATIE VAN DE RESULTATEN

De resultaten van het onderzoek moeten worden geëvalueerd, waarbij wordt gekeken naar de incidentie, de ernst en de correlatie van neurogedragseffecten en neuropathologische effecten (en ook neurochemische en elektrofysiologische effecten als dit aanvullende onderzoek is uitgevoerd) en andere waargenomen schadelijke effecten. Waar mogelijk moeten getalsonmatige resultaten met behulp van een geschikte en algemeen erkende statistische methode worden geëvalueerd. De statistische methoden moeten gedurende de opzet van het onderzoek worden gekozen.

3 RAPPORTAGE

TESTVERSLAG

In het testverslag moet de volgende informatie worden opgenomen:

Teststof:

— de fysieke aard (met inbegrip van isomerie, de zuiverheid en de fysisch-chemische eigenschappen);
— identificatiegegevens.

Medium (indien van toepassing):

— een motivering voor de keuze van het medium.

Proefdieren:

— de gebruikte soort/stam;
— het aantal dieren, hun leeftijd en hun geslacht;
— de herkomst, de huisvesting, de acclimatisering, de voeding enz;
— het gewicht van elk dier aan het begin van het onderzoek.

Testomstandigheden:

— gedetailleerde gegevens over de formulering van de teststof, de bereiding van het voer en de concentratie, de stabiliteit en de homogeniteit van het preparaat;
— een specificatie van de toegediende doses met gedetailleerde gegevens over het medium, het volume en de fysische vorm van het toegediende materiaal;
— gedetailleerde gegevens over de toediening van de teststof;
— een motivering voor de gekozen dosisniveaus;
— een motivering voor de blootstellingsroute en -duur;
— een omschrijving van de concentratie van de teststof in het voer/drinkwater (in ppm) en in de feitelijke dosis (in mg/kg lichaamsgewicht/dag), indien van toepassing;
— gedetailleerde gegevens over het voer en het water.
Observatie en testprocedures:

- gedetailleerde gegevens over de keuze van dieren uit elke groep voor de perfusie-subgroepen;
- gedetailleerde gegevens over de scoresystemen met vermelding van de criteria en schaalindeling voor elke meting bij de gedetailleerde klinische observaties;
- gedetailleerde gegevens over de functionele tests voor de sensorische reactiviteit op verschillende soorten prikkels (b.v. auditieve, visuele en proprioceptieve prikkels), voor de beoordeling van de grijpkracht van ledematen, voor de beoordeling van de motorische activiteit (met een beschrijving van geautomatiseerde apparaten voor de detectie van de activiteit) en andere gebruikte procedures;
- gedetailleerde gegevens over het oogheelkundig onderzoek en eventueel het hematologisch onderzoek en de klinisch-biochemische tests met de desbetreffende referentiewaarden;
- gedetailleerde gegevens over specifieke neuropathologische, neurochemische, elektrofysiologische of neurogedragsprocedures.

Resultaten:

- het lichaamsgewicht/veranderingen in het lichaamsgewicht en het lichaamsgewicht bij de dood van het dier;
- de consumptie van voer en de consumptie van water, indien van toepassing;
- gegevens over de toxische respons per geslacht en dosisgroep, met vermelding van toxiciteitsverschijnselen of mortaliteit;
- de aard, de ernst en de duur (aanzienstijdpunt en verloop) van de gedetailleerde klinische observaties (al dan niet reversibel);
- een gedetailleerde beschrijving van alle resultaten van de functionele tests;
- de obductiebevindingen;
- een gedetailleerde beschrijving van alle resultaten van neuropathologische, neurochemische, elektrofysiologische of neurogedragsprocedures, indien beschikbaar;
- gegevens over de resorptie en het metabolisme, indien beschikbaar;
- een statistische behandeling van de resultaten, indien van toepassing.

Bespreking van de resultaten:

- informatie over de dosis/respons-relatie;
- het verband tussen eventuele andere toxische effecten en een conclusie over het neurotoxisch vermogen van de teststof;
- de dosis zonder waargenomen schadelijke effecten.

Conclusies:

- een specifieke vermelding van de algehele neurotoxiciteit van de teststof is wenselijk.

REFERENTIES

Tabel 1

Minimaal aantal dieren dat per groep nodig is wanneer het neurotoxiciteitsonderzoek zelfstandig of in combinatie met een ander onderzoek wordt uitgevoerd

<table>
<thead>
<tr>
<th></th>
<th>Als zelfstandig onderzoek</th>
<th>In combinatie met het 28-dagen-onderzoek</th>
<th>In combinatie met het 90-dagen-onderzoek</th>
<th>In combinatie met het chronische toxiciteitsonderzoek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totaal aantal dieren per groep</td>
<td>10 mannetjes en 10 vrouwtjes</td>
<td>10 mannetjes en 10 vrouwtjes</td>
<td>15 mannetjes en 15 vrouwtjes</td>
<td>25 mannetjes en 25 vrouwtjes</td>
</tr>
<tr>
<td>Gekozen aantal dieren voor functionele tests met gedetailleerde klinische observaties</td>
<td>10 mannetjes en 10 vrouwtjes</td>
</tr>
<tr>
<td>Gekozen aantal dieren voor perfusie in situ en neurohistopathologie</td>
<td>5 mannetjes en 5 vrouwtjes</td>
</tr>
<tr>
<td>Gekozen aantal dieren voor observaties herhaalde toediening en subchronische/chronische toxiciteit, hematologie, klinische biochemie, histopathologie enz., zoals vermeld in de respectieve Richtlijnen</td>
<td>5 mannetjes en 5 vrouwtjes</td>
<td>10 mannetjes* en 10 vrouwtjes*</td>
<td>20 mannetjes* en 20 vrouwtjes*</td>
<td></td>
</tr>
<tr>
<td>Aanvullende observaties, indien van toepassing</td>
<td>5 mannetjes en 5 vrouwtjes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Inclusief vijf dieren die als onderdeel van het neurotoxiciteitsonderzoek voor functionele tests en gedetailleerde klinische observaties zijn gekozen.
Tabel 2

Frequentie van de klinische observatie en functionele tests

<table>
<thead>
<tr>
<th>Bij alle dieren</th>
<th>Algemene gezondheidstoestand</th>
<th>Acuut</th>
<th>28 dagen</th>
<th>90 dagen</th>
<th>Chronisch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dagelijks</td>
<td>dagelijks</td>
<td>dagelijks</td>
<td>dagelijks</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bij dieren die voor de functionele observaties gekozen zijn</th>
<th>Gedetailleerde klinische observaties</th>
<th>Acuut</th>
<th>28 dagen</th>
<th>90 dagen</th>
<th>Chronisch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- vóór eerste blootstelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- binnen 8 uur na toediening op geraamde tijdstip piek-effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- op dagen 7 en 14 na toediening</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- vóór eerste blootstelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- vervolgens één keer per week</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- één keer tijdens de eerste of tweede week van blootstelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- vervolgens één keer per maand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Functionele tests</th>
<th>Acuut</th>
<th>28 dagen</th>
<th>90 dagen</th>
<th>Chronisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>- vóór eerste blootstelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- binnen 8 uur na toediening op geraamde tijdstip piek-effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- op dagen 7 en 14 na toediening</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- vóór eerste blootstelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- tijdens de vierde week van behandeling, zo dicht mogelijk bij het eind van de blootstellingsperiode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- één keer tijdens de eerste of tweede week van blootstelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- vervolgens één keer per maand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BIJLAGE 2I
C.21: MICRO-ORGANISMEN IN DE BODEM: BEPALING VAN DE OMZETTING VAN STIKSTOF

1 METHODE

Deze methode is overgenomen van TG 216 (2000) van de OESO.

1.1 INLEIDING

In deze testmethode wordt een laboratoriumtest beschreven om te onderzoeken welke effecten chemische stoffen na één blootstelling op lange termijn hebben op de omzetting van stikstof door micro-organismen in de bodem. De test is in eerste instantie gebaseerd op aanbevelingen van de Organisatie voor de bescherming van planten in Europa en het Middellandse-Zeegebied (1). Er is echter ook rekening gehouden met andere richtlijnen, bijvoorbeeld die van de Biologische Bundesanstalt in Duitsland (2), het Environmental Protection Agency in de VS (3) de SSETAC (4) en de Internationale Organisatie voor Normalisatie (5). Tijdens een workshop van de OESO over de selectie van bodem/sediment in Belgrado in Italië in 1995 (6) is overeenstemming bereikt over het aantal en de aard van de in deze test te gebruiken bodemonsters. De aanbevelingen voor het verzamelen, behandelen en bewaren van de bodemonsters zijn gebaseerd op ISO-richtlijnen (7) en aanbevelingen van de workshop in Belgrado. Bij de beoordeling en evaluatie van toxische kenmerken van teststof kan het nodig zijn de effecten op de microbiedeactiviteit van de bodem te bepalen, bijvoorbeeld wanneer er gegevens over de potentiële neveneffecten van gewasbeschermingsmiddelen op de microflora van de bodem nodig zijn of wanneer wordt verwacht dat de micro-organismen in de bodem aan andere chemische stoffen dan gewasbeschermingsmiddelen worden blootgesteld. De bepaling van de omzetting van stikstof wordt uitgevoerd om de effecten van deze chemische stoffen op de microflora van de bodem te bepalen. Als er landbouwchemicaal (b.v. gewasbeschermingsmiddelen, kunstmest of bouwchemicaal) worden getest, worden zowel de bepaling van de omzetting van stikstof als de bepaling van de omzetting van koolstof uitgevoerd. Als er andere stoffen dan landbouwchemicaal worden getest, volstaat de bepaling van de omzetting van stikstof. Als de EC₅₀ bij de bepaling van de omzetting van stikstof voor dergelijke stoffen echter binnen het bereik valt van de waarde die voor in de handel verkrijgbare nitrificatieremmers (zoals nitrapyrin) wordt gevonden, kan een bepaling van de omzetting van koolstof worden uitgevoerd om nadere informatie te verkrijgen.

De bodem bestaat uit levende en niet-levende componenten die complexe en heterogene mengsels kunnen vormen. Micro-organismen spelen een belangrijke rol bij de afbraak en omzetting van organisch materiaal in vruchtbare bodem en veel soorten dragen bij tot verschillende aspecten van de vruchtbaarheid van de bodem. Een versterking van deze biochemische processen op lange termijn kan mogelijkerwijs de cyclie van natrium verstoren en veranderingen brengen in de vruchtbaarheid van de bodem. Omzetting van koolstof en stikstof vindt in elke vruchtbare bodem plaats. Hoewel de voor deze processen verantwoordelijke microbië levengemeenschappen van bodem tot bodem verschillen, zijn de omzettingroutes in grote lijnen gelijk.

De hier beschreven testmethode is bedoeld om te detecteren welke schadelijke effecten een stof op lange termijn op het omzettingsproces van stikstof in aërobe bodem aan het oppervlak kan hebben. Met de testmethode kunnen ook de effecten van stoffen op de omzetting van koolstof door de microflora in de bodem worden bepaald. De vorming van nitraat vindt plaats na het verbreken van de koolstof/stikstof-bond. Als er in de behandelde en de controlebodem een even hoge nitraatproductie wordt gemeten, is het daarom zeer waarschijnlijk dat de belangrijkste afbraakroutes voor koolstof intact zijn en functioneren. Het voor de test gekozen substraat (verpooien lavendel) heeft een gunstige koolstof/stikstof-verhouding (meestal tussen 12/1 en 16/1). Daardoor is er tijdens de test een geringer koolstoftekort en kunnen microbië levengemeenschappen, als ze door een chemische stof worden aangezet, zich binnen 100 dagen weer herstellen.

Deze testmethode is ontwikkeld uit tests die in eerste instantie bedoeld waren voor stoffen waarvoor kan worden geraadpleegd welke hoeveelheid de bodem bereikt. Dit geldt bijvoorbeeld voor gewasbeschermingsmiddelen die in bekende hoeveelheden op het veld worden gebruikt. Voor landbouwchemicaal is het voldoende twee doses te testen die relevant zijn voor de opgebrachte hoeveelheid die wordt verwacht of geraamd. Landbouwchemicaal kunnen als werkzame stof of als geformuleerd product worden getest. De test kan echter ook voor andere stoffen worden gebruikt. Door zowel de op de bodem gebrachte hoeveelheid teststof als de manier waarop de gegevens worden geëvalueerd, te veranderen, kan de test ook worden gebruikt voor chemische stoffen waarvoor niet bekend is hoeveel er naar verwachting in de bodem terecht zal komen. Daarom worden voor andere stoffen dan landbouwchemicaal de effecten van een reels concentraties op de omzetting van stikstof bepaald. De gegevens uit deze tests worden gebruikt om een dosis/respons-curven samen te stellen en EC₅₀-waarden te berekenen, waarbij x het procentuele effect aangeeft.
1.2 DEFINITIES

Omzetting van stikstof: de uiteindelijke afbraak van stikstofhoudend organisch materiaal door micro-organismen via ammonificatie en nitrificatie tot het anorganische eindproduct nitraat.

EC (effectieve concentratie): de concentratie van de teststof in de bodem die leidt tot een remming van de omzetting van stikstof in nitraat met x procent.

EC₉₀ (mediaan van de effectieve concentratie): de concentratie van de teststof in de bodem die leidt tot een remming van de omzetting van stikstof in nitraat met 50 procent (50%).

1.3 REFERENTIETOFFEN

Geen.

1.4 PRINCIPE VAN DE TESTMETHODE

Gezeefde bodem wordt verbeterd met verpoederd plantenmeel en hetzij behandeld met de teststof, hetzij niet behandeld (controlo). Als er landbouwchemicaliën worden getest, wordt aanbevolen minimaal twee concentraties te testen die moeten worden gekozen op grond van de hoogste concentratie die op het veld wordt verwacht. Na 0, 7, 14 en 28 dagen incubatie worden monsters van de behandelde en de controlebodem geëxtraherd met een geschikt opluimmiddel en wordt de hoeveelheid nitraat in de extracten bepaald. De nitraatvorming in de behandelde monsters wordt vergeleken met de controleten en de procentuele afwijking van de behandelde ten opzichte van de controelen wordt berekend. Alle tests duren ten minste 28 dagen. Als op dag 28 het verschil tussen de behandelde en de controlebodem 25% of groter is, worden de metingen voortgezet tot maximaal 100 dagen. Als er andere stoffen dan landbouwchemicaliën worden getest, wordt de teststof in een reeks concentraties aan de bodemmonsters toegevoegd en wordt na 28 dagen incubatie de hoeveelheid nitraat in de behandelde en de controelen bepaald. De resultaten van tests met verschillende concentraties worden aan regressieanalyse onderworpen en de EC₉₀-waarden (d.w.z. de EC₉₀, de EC₅₀ en/of de EC₅ₐ) worden berekend. Zie ook de definities.

1.5 GELDIGHEID VAN DE TEST

Bij landbouwchemicaliën wordt de evaluatie van de testresultaten gebaseerd op betrekkelijk kleine verschillen (gemiddeld ± 25%) tussen de nitraatconcentraties in de behandelde en de controelen monsters en grote verschillen in de controles kunnen dan ook tot onjuiste resultaten leiden. Het verschil tussen replicaat- en controlemonsters moet derhalve kleiner zijn dan ± 15%.

1.6 BESCHRIJVING VAN DE TESTMETHODE

1.6.1 Apparatuur

Er worden testbakken van chemisch inert materiaal gebruikt. Het volume moet geschikt zijn voor de procedure die voor de incubatie van de bodem wordt gebruikt, d.w.z. incubatie in één keer of als een reeks afzonderlijke bodemmonsters (zie punt 1.7.1.2). Het waterverlies moet tot een minimum worden beperkt maar gasuitwisseling moet tijdens de test mogelijk zijn (de testbakken kunnen bijvoorbeeld met perforeerde polyethyleenfolie worden afgedekt). Wanneer vluchtige stoffen worden getest, moeten er afsluitbare gasdichte bakken worden gebruikt. Deze moeten zo groot zijn dat het bodemmonster ongeveer een kwart van hun volume beslaat.

Er wordt standaard-laboratoriumapparatuur gebruikt, waaronder:

— een schuidapparaat: een mechanische schuimmachine of gelijkwaardige apparatuur;
— een centrifuge (3000 g) of filtrerenapparaat (met nitraatvrij filterpapier);
— een instrument voor nitraatanalyse met een aflopende gevoeligheid en reproduceerbaarheid.
1.6.2 **Selectie en aantal bodemsoorten**

Er wordt één bodemsoort gebruikt. De aanbevolen kenmerken van de bodem zijn:

- zandgehalte: minimaal 50% en maximaal 75%;
- pH: 5,5 – 7,5;
- organisch koolstofgehalte: 0,5 – 1,5%;
- de microbiële biomassa moet worden gemeten (8)(9) er het koolstofgehalte daarvan moet minimaal 1% van het totale organische koolstofgehalte van de bodem zijn.

In de meeste gevallen levert een bodem met deze kenmerken de ongunstigste situatie op, aangezien de adsorptie van de teststof minimaal is en de beschikbaarheid voor de flora maximaal. Een test met andere bodemsoorten is dan ook meestal niet nodig. In bepaalde gevallen, bijvoorbeeld wanneer de teststof naar verwachting vooral bij bepaalde bodemsoorten zoals zure bosgrond zal worden gebruikt of bij elektrostatisch geladen chemische stoffen, kan het echter nodig zijn nog een andere bodemsoort te gebruiken.

1.6.3 **Verzameling en opslag van de bodemmonsters**

1.6.3.1 **Verzameling**

Er moet gedetailleerde informatie beschikbaar zijn over de geschiedenis van de locatie waar de testbodem wordt verzameld, zoals de exacte ligging, de vegetatie, de data van behandelingen met gewasbeschermingsmiddelen, behandelingen met organische en anorganische mest, toevoegingen van biologisch materiaal en onopzettelijke verontreinigingen. De voor de verzameling van de bodem gekozen locatie moet op lange termijn kunnen worden gebruikt. Permanenten weidegrond en velden met eenjarige graangewassen (behalve maïs) of dicht ingezaaide groenbemestingsgewassen zijn geschikt. De gekozen monsternemingsplaats mag gedurende ten minste één jaar voor de monsterneming niet met gewasbeschermingsmiddelen zijn behandeld. Ook mag er gedurende ten minste zes maanden geen organische mest zijn opgebracht. Het gebruik van anorganische mest is alleen aanvaardbaar wanneer dit in overeenstemming met de eisen van het gewas is en er mogen gedurende ten minste drie maanden na de opbrengst van de meest geen monsters worden genomen. Het gebruik van grond die is behandeld met meststoffen waarvan bekend is dat ze biocide-effecten hebben (b.v. calciumcyanamid) moet worden vermieden.

Gedurende of vlak na lange perioden (meer dan 30 dagen) van droogte of doorondergraving van de bodem mogen er geen monsters worden genomen. Bij een omgeploegde bodem moeten de monsters van een diepte van 0 tot 20 cm worden genomen. Bij grasland (weidegrond) of andere bodemsoorten waar gedurende lange perioden (ten minste één veetseizoen) niet geploegd wordt, kan de maximale monsterdiepte iets groter dan 20 cm (b.v. maximaal 25 cm) zijn.

De bakken waarin en de temperatuur waarbij de bodemmonsters worden vervoerd, moeten zo zorgvuldig als de oorspronkelijke eigenschappen van de bodem niet significant veranderen.

1.6.3.2 **Opslag**

Het gebruik van grond die net van het veld komt, verdient de voorkeur. Als opslag in het laboratorium niet kan worden vermeden, kan de grond gedurende maximaal drie maanden in het donker bij 4 ± 2°C worden bewaard. Tijdens de opslag van grond moet er voor aërobe omstandigheden worden gezorgd. Als de grond wordt verzameld in gebieden waar deze gedurende ten minste drie maanden per jaar bevriesst, is opslag gedurende zes maanden bij -18°C tot -22°C mogelijk. Vóór elk experiment wordt de microbiële biomassa van opgeslagen grond gemeten; het koolstofgehalte van de biomassa moet minimaal 1% van het totale organische koolstofgehalte van de bodem zijn (zie punt 1.6.2).
1.6.4 Behandeling en voorbereiding van de grond voor de test

1.6.4.1 Pre-incubatie

Als de grond opgeslagen was (zie punt 1.6.3.2), wordt pre-incubatie gedurende 2 tot 28 dagen aanbevolen. De temperatuur en het vochtgehalte van de bodem tijdens de pre-incubatie moeten vergelijkbaar zijn met die tijdens de test (zie de punten 1.6.4.2 en 1.7.1.3).

1.6.4.2 Fysisch-chemische kenmerken

De grond wordt met de hand ontdaan van grote voorwerpen (stenen, delen van planten enz.) en zonder overmatig drogen vochtig gezet met een deeltjesgrootte van maximaal 2 mm. Het vochtgehalte van het bodemmonster moet met gedestilleerd of gedecarboniseerd water worden aangepast tot 40-60% van het maximale watergehalte.

1.6.4.3 Verdamping met organisch substraat

De bodem wordt verbeterd met een geschikt organisch substraat, zoals verpoederd luzerne/grasmael (hoofdbestanddeel Medicago sativa) met een C/N-verhouding tussen 12/1 en 16/1. De aanbevolen luzerne/bodem-verhouding is 5 gram luzerne per kg bodem (drooggewicht).

1.6.5 Voorbehandeling van de teststof voordat deze op de bodem wordt gebracht

De teststof wordt normaal gesproken met behulp van een draagstof opgebracht. Dit kan water zijn (voor in water oplosbare stoffen) of een inerte vaste stof zoals fijn kwartszand (deeltjesgrootte 0,1-0,5 mm). Andere vloeibare draagstoffen dan water (b.v. organische oplosmiddelen zoals aceton of chloroform) moeten worden vermeden omdat deze de microflora kunnen aantasten. Als zand als draagstof wordt gebruikt, kan deze worden gecoopt met de in een geschikt oplosmiddel opgeloste of gesuspendeerde teststof. In dat geval moet het oplosmiddel voor het mengen met de bodem door verdamping worden verwijderd. Voor een optimale verdeling van de teststof in de bodem wordt een verhouding van 100 g zand per kg grond (drooggewicht) aanbevolen. De controllemonsters worden behandeld met uitsluitend een even grote hoeveelheid water en/of kwartszand.

Bij het testen van vluchtige stoffen moeten verliezen tijdens de behandeling zo veel mogelijk worden voorkomen en moet er naar een homogene verdeling in de bodem worden gestreefd (de teststof kan bijvoorbeeld op verschillende plaatsen in de bodem worden geïnjecteerd).

1.6.6 Testconcentraties

Als er landbouwchemicaïllen worden getest, moeten er ten minste twee concentraties worden gebruikt. De laagste concentratie moet ten minste overeenkomen met de maximale hoeveelheid die naar verwachting in de praktijk in de bodem terechtkomt. Terwijl de hoogste concentratie een veelvoud van de laagste concentratie moet zijn. Bij de berekening van de concentratie van de aan de bodem toegediende teststof wordt uitgegaan van een uniforme vermenigvuldiging in de bodem tot een diepte van 5 cm en een dichtheid van de droge grond van 1,5. Voor landbouwchemicaïllen die rechtstreeks op de bodem worden gebracht en voor chemische stoffen waarvoor de hoeveelheid die op de bodem terechtkomt voorspelbaar is, worden als testconcentratie de maximale PEC (predicted environmental concentration) en het vijfvoud van deze concentratie aanbevolen. Stoffen die naar verwachting meer dan een keer per seizoen op de bodem worden gebracht, moeten worden getest bij concentraties die worden berekend door de PEC te vermenigvuldigen met het aantal keren dat dit naar verwachting maximaal gebeurt. De hoogste geteste concentratie mag echter niet hoger zijn dan tien keer de maximale per keer opgebrachte hoeveelheid. Als andere stoffen dan landbouwchemicaïllen worden getest, wordt een meetuikende reeks van ten minste vijf concentraties gebruikt. De geteste concentraties moeten het interval bestrijken dat voor de bepaling van de EC₅₀-waarden nodig is.
1.7 UITVOERING VAN DE TEST

1.7.1 Blootstellingsomstandigheden

1.7.1.1 Behandeling en controle

Als er landbouwchemicaïëns worden getest, wordt de grond in drie even grote porties verdeeld. Twee porties worden gemengd met de draagstof die de teststof bevat en de andere portie met de draagstof zonder teststof (controle). Voor zowel de behandelde als de controlegrond wordt minimaal een bepaling in triplo aanbevolen. Als er andere stoffen dan landbouwchemicaïëns worden getest, wordt de grond in zes even grote porties verdeeld. Vijf porties worden gemengd met de draagstof die de teststof bevat en de andere portie met de draagstof zonder teststof. Voor zowel de behandelde als de controlegrond wordt een bepaling in triplo aanbevolen. Er moet worden gezorgd voor een homogene verdeling van de teststof in de behandelde bodemmonsters. Bij het mengen moeten comprimering en kluitvorming van de grond worden voorkomen.

1.7.1.2 Incubatie van de bodemmonsters

Incubatie van de bodemmonsters kan op twee manieren gebeuren: als één monster voor elke behandelde en onbehandelde bodem of als een reeks aparte even grote submonsters voor elke behandelde en onbehandelde bodem. Wanneer vluchtige stoffen worden getest, mag de test echter uitsluitend met een reeks aparte submonsters worden uitgevoerd. Wanneer de grond als één monster wordt geïncubeerd, worden grote hoeveelheden van elke behandelde en onbehandelde bodem geïncubeerd en worden tijdens de test waar nodig submonsters voor analyse genomen. De hoeveelheid die aanvankelijk voor elke behandelde en onbehandelde bodem wordt geïncubeerd, is afhankelijk van de grootte van de submonsters, het aantal replicaatbepalingen dat voor de analyse wordt gebruikt en het verwachte maximale aantal monsternemingsstijdstippen. Grond die als één monster wordt geïncubeerd, moet vóór het nemen van submonsters grondig worden gemengd. Wanneer de bodem als een reeks aparte bodemmonsters wordt geïncubeerd, wordt elke portie behandelde en onbehandelde grond in het vereiste aantal submonsters verdeeld, die worden gebruikt wanneer ze nodig zijn. Wanneer bij een experiment meer dan twee monsternemingsstijdstippen kunnen worden verwacht, moeten er voldoende submonsters voor alle replicaatbepalingen en alle monsternemingsstijdstippen worden gemaakt. Ten minste drie replicaatmonsters van de testbodem worden onder aerobe omstandigheden geïncubeerd (zie punt 1.7.1.1). Tijdens alle tests moeten er geschikte bakken worden gebruikt met voldoende ruimte boven de grond om te voorkomen dat er anaërobe omstandigheden ontstaan. Wanneer er vluchtige stoffen worden getest, mag de test uitsluitend met een reeks aparte submonsters worden uitgevoerd.

1.7.1.3 Testomstandigheden en duur van de test

De test wordt in het donker bij kamertemperatuur (20 ± 2°C) uitgevoerd. Het vochtgehalte van de bodemmonsters moet gedurende de test op 40-60% van het maximale watergehalte van de bodem worden gehouden (zie punt 1.6.4.2) met een bereik van ± 5%. Indien nodig kan gede¯sterifield of gede¯stereerd water worden toegevoegd.

De minimale duur van een test is 28 dagen. Als er landbouwchemicaïëns worden getest, wordt de nitaatvorming in behandelde en controlemonsters vergeleken. Als op dag 28 het verschil groter dan 25% is, wordt de test voortgezet tot het verschil 25% of minder is maar maximal gedurende 100 dagen. Voor andere stoffen dan landbouwchemicaïëns wordt de test na 28 dagen beëindigd. Op dag 28 wordt de hoeveelheid nitaat in de behandelde en de controlemonsters bepaald en worden de EC-waarden berekend.

1.7.2 Monsterneming en analyse van de grond

1.7.2.1 Schema voor de monsterneming

Als er landbouwchemicaïëns worden getest, worden de bodemmonsters op de dagen 0, 7, 14 en 28 op nitaat geanalyseerd. Als er een langere test nodig is, wordt na dag 28 om de 14 dagen een analyse uitgevoerd.
Als er andere stoffen dan landbouwchemiciën worden getest, worden er ten minste vijf testconcentraties gebruikt en worden de bodemonsters aan het begin (dag 0) en aan het eind van de blootstellingsperiode (dag 28) op nitraat geanalyseerd. Als dit nodig wordt geacht, kan er bijvoorbeeld op dag 7 een tussentijdse meting worden gedaan. De op dag 28 verkregen gegevens worden gebruikt om de EC₅₀-waarde voor de chemische stof te bepalen. Als dat gewenst is, kunnen de gegevens van de controlemonsters op dag 0 worden gebruikt om de oorspronkelijke hoeveelheid nitraat in de bodem te bepalen.

1.7.2.2 Analyse van de bodemonsters

Op elk monsternemingstijdstip wordt in elk replicatemonster (behandeld en controle) de gevormde hoeveelheid nitraat bepaald. Het nitraat wordt uit de bodem geextracteerd door de monsters met een geschikte extractievloeistof, bijvoorbeeld een 0,1 M kaliumchloride-oplossing, te schudden. Een hoeveelheid van 5 ml KCl-oplossing per gram grond (drooggewicht) wordt aanbevolen. Om de extractie te optimaliseren mogen de bakken met grond en extractievloeistof ten hoogste halfvol zijn. De mengsels worden gedurende 60 minuten bij 150 rpm geschud. De mengsels worden gecentrificeerd of gefiltreerd en de vloeistoffasen worden op nitraat geanalyseerd. Deelijzerige vloeibare extracten kunnen vrij analyse maximaal zes maanden bij −20 ±5°C worden bewaard.

2 GEGEVENS

2.1 BEHANDELING VAN DE RESULTATEN

Als de test met landbouwchemiciën wordt uitgevoerd, wordt de gevormde hoeveelheid nitraat in elk replicatemonster geanalyseerd en worden de gemiddelde waarden van alle replicatiebepalingen in tabelvorm vermeld. De omzetting van stikstof wordt met adequate en algemeen erkende statistische methoden (b.v. een F-test, niveau met 5% significantiem) bepaald. De gevormde hoeveelheid nitraat wordt uitgedrukt in mg nitraat/kg drooggewicht bodem/dag. De nitraatvorming bij elke behandelde bodem wordt vergeleken met de controle en de procentuele afwijking van de controle wordt berekend.

Als de test met andere stoffen dan landbouwchemiciën wordt uitgevoerd, wordt de gevormde hoeveelheid nitraat in elk replicatemonster bepaald en wordt er een dosis/respnses-curve samengesteld om de EC₅₀-vaarden te bepalen. De hoeveelheid nitraat (in mg nitraat/kg drooggewicht bodem) die na 28 dagen in de behandelde monsters wordt gevonden, wordt vergeleken met de controle. Uit deze gegevens wordt de procentuele remming voor elke testconcentratie berekend. Deze percentages worden uitgezet tegen de concentratie en met behulp van statistische procedures worden de EC₅₀-waarden berekend. Met behulp van standaardprocedures worden ook de betrouwbaarheidsgrenzen (p = 0,95) voor de berekende EC₅₀ bepaald (10[11][12]).

Teststoffen die grote hoeveelheden stikstof bevatten, kunnen bijdragen tot de tijdens de test gevormde hoeveelheid nitraat. Als deze stoffen bij een hoge concentratie worden getest (b.v. stoffen waarvan wordt aangenomen dat ze herhaaldelijk worden opgebracht), moeten er aflopende controles in de test worden opgenomen (d.w.z. bodem met teststof maar zonder plantenmee). Bij de berekening van de EC₅₀ moet dan rekening worden gehouden met de gegevens van deze controles.

2.2 INTERPRETATIE VAN DE RESULTATEN

Wanneer de resultaten van tests met landbouwchemiciën worden geëvalueerd en het verschil in de nitraatvorming tussen de laagste concentratie (d.w.z. de maximale verwachte concentratie) en de controle in een monsternemingstijdstip na dag 28 niet groter dan 25% is, kan worden geconcludeerd dat het product op lange termijn geen invloed op de omzetting van stikstof in de bodem heeft. Wanneer de resultaten van tests met andere stoffen dan landbouwchemiciën worden geëvalueerd, worden de EC₅₀, de EC₃₅ en/of de ECₐₐ gebruikt.
RAPPORTAGE

In het testverslag moet de volgende informatie worden opgenomen:

Een volledige specificatie van de gebruikte bodem met vermelding van o.a.:

— de geografische kenmerken van de locatie (lengte en breedte);
— informatie over het verleden van de locatie (d.w.z. vegetatie, behandelingen met gewasbeschermingsmiddelen, behandelingen met meststoffen, onopzettelijke verontreinigingen enz.);
— het gebruikspatroon (d.w.z. landbouwgrond, bos enz.);
— de monsternemingsdiepte (in cm);
— het gehalte aan zand/slib/leim (in % drooggewicht);
— de pH (in water);
— het gehalte aan organische koolstof (in % drooggewicht);
— het stikstofgehalte (in % drooggewicht);
— de aanvankelijke nitraatconcentratie (in mg nitraat/kg drooggewicht);
— de kation-uitwisselingscapaciteit (in mmol/kg);
— de microbiële biomassa in percentage totale organische koolstof;
— de referentie van de voor de bepaling van elke parameter gebruikte methode;
— alle informatie over de verzameling en opslag van de bodemmonster;
— een gedetailleerde beschrijving van de eventuele pre-incubatie van de grond.

De teststof:

— de fysische aard en indien relevant de fysisch-chemische eigenschappen;
— de chemische identificatiegegevens, indien relevant, met inbegrip van de structuurformule, de zuiverheid (d.w.z. het percentage werkzaam bestanddeel voor gewasbeschermingsmiddelen) en het stikstofgehalte.

Het substraat:

— de herkomst van het substraat;
— de samenstelling (d.w.z. luzernemeel, luzerne/grasmeel);
— koolstof- en stikstofgehalte (in % drooggewicht);
— maaswijde van de zeef (in mm).

De testomstandigheden:

— gedetailleerde gegevens over de verbetering van de bodem met organisch substraat;
— het aantal concentraties van de teststof en, indien van toepassing, een motivering voor de keuze van de concentraties;
— gedetailleerde gegevens over de manier waarop de teststof op de bodem wordt gebracht;
— de incubatietemperatuur;
— het vochtgehalte van de bodem aan het begin van en tijdens de test;
— de gebruikte incubatiemethode (d.w.z. in één portie of als een reeks aparte submonster);
— het aantal replicatiebepalingen;
— de monsternemingstijdstippen;
— de voor de extractie van nitraat uit de bodem gebruikte methode.
De resultaten:
— de voor de nitraanlyse gebruikte analyseprocedure en apparatuur;
— de resultaten van de nitraanlyse, met vermelding van de afzonderlijke en gemiddelde waarden, in tabelvorm;
— de verschillen tussen de replicaatbepalingen bij de behartigde en de controlemonsters;
— een verklaring voor correcties in de berekeningen, indien van toepassing;
— het procentuele verschil in de nitraattotering op elk monsternemingstijdstip of, indien van toepassing, de EC50-waarde met het 95%-betrouwbarehsinterval, andere EC-waarden (d.w.z. EC25 of EC50) met betrouwbaarheidsintervallen en een grafische voorstelling van de dosis/respuesta-
curve;
— de statistische behandeling van de resultaten;
— alle informatie en opmerkingen die nuttig kunnen zijn voor de interpretatie van de resultaten.
REFERENCES

C.22: MICRO-ORGANISMEN IN DE BODEM: BEPALING VAN DE OMZETTING VAN KOOLSTOF

1 METHODE

Deze method is overgenomen van TG 217 (2000) van de OESO.

1.1 INLEIDING

In deze testmethode wordt een laboratoriumtest beschreven om te onderzoeken welke effecten gewasbeschermingsmiddelen en wellicht andere chemische stoffen na één blootstelling op lange termijn kunnen hebben op de omzetting van koolstof door micro-organismen in de bodem. De test is in eerste instantie gebaseerd op aantekeningen van de Organisatie voor de bescherming van planten in Europa en het Middellandse-Zeegebied (1). Er is echter ook rekening gehouden met andere richtlijnen, bijvoorbeeld van de Biologische Bundesanstalt in Duitsland (2), het Environmental Protection Agency in de VS (3) en de SETAC (4). Tijdens een workshop van de OESO over de selectie van bodem/sediment in België in Italië in 1995 (5) is overeenstemming bereikt over het aantal en de aard van de in deze test te gebruiken bodemonsters. De aanbevelingen voor het verzamelen, behandelen en bewaren van de bodemonsters zijn gebaseerd op ISO-richtlijnen (6) en aanbevelingen van de workshop in België.

Bij de beoordeling en evaluatie van toxische kenmerken van teststof kan het nodig zijn de effecten op de microbiële activiteit van de bodem te bepalen, bijvoorbeeld wanneer er gegevens over de potentiële neveneffecten van gewasbeschermingsmiddelen op de microflora van de bodem nodig zijn of wanneer wordt verwacht dat de micro-organismen in de bodem aan andere chemische stoffen dan gewasbeschermingsmiddelen worden blootgesteld. De bepaling van de omzetting van koolstof wordt uitgevoerd om de effecten van deze chemische stoffen op de microflora van de bodem te bepalen. Als er landbouwchemicaliën (b.v. gewasbeschermingsmiddelen, kunstmest of bosbouwchemicaliën) worden getest, worden zowel de bepaling van de omzetting van koolstof als de bepaling van de omzetting van nitraten uitgevoerd. Als er andere stoffen dan landbouwchemicaliën worden getest, stelt de bepaling van de omzetting van stikstof van dergelijke stoffen echter binnen het bereik valt van de waardes die voor in de handel verkrijgbare nitrificatieroemmers (zoals nitrapyrin) worden gevonden, kan een bepaling van de omzetting van koolstof worden uitgevoerd om nadere informatie te verkrijgen.

Deze testmethode is bedoeld om te detecteren welke schadelijke effecten een stof op lange termijn op het omzettigingsproces van koolstof in aërobe bodem aan het oppervlak kan hebben. De test is gevoelig voor veranderingen in de grootte en activiteit van de microbiële leveringsorganen die verantwoordelijk zijn voor de omzetting van koolstof, aangezien deze organen bijzonder toegewijd zijn aan de omzetting van koolstof, aangezien deze organen bijzonder toegewijd zijn aan de omzetting van koolstof.

Deze testmethode is bedoeld om te detecteren welke schadelijke effecten een stof op lange termijn op het omzettigingsproces van koolstof in aërobe bodem aan het oppervlak kan hebben. De test is gevoelig voor veranderingen in de grootte en activiteit van de microbiële leveringsorganen die verantwoordelijk zijn voor de omzetting van koolstof, aangezien deze organen bijzonder toegewijd zijn aan de omzetting van koolstof.
Deze testmethode is ontwikkeld uit tests die in eerste instantie bedoeld waren voor stoffen waarvoor kan worden geraamd welke hoeveelheid de bodem bereikt. Dit geldt bijvoorbeeld voor gewasbeschermingsmiddelen die in bekende hoeveelheden op het veld worden gebracht. Voor landbouwrechtemaat is het voldoende twee doses te testen die relevant zijn voor de opgebrachte hoeveelheid die wordt verwacht of geraamd. Landbouwchemici kunnen als werkzame stof of als geformuleerd product worden getest. Het gebruik van de test blijft echter niet beperkt tot stoffen met een voorspelbare milieuconcentratie. Door zowel als de op de bodem gebrachte hoeveelheid teststof als de manier waarop de gegevens worden geëvalueerd, te veranderen, kan de test ook worden gebruikt voor chemische stoffen waarvoor niet bekend is hoeveel er naar verwachting in de bodem terecht zal komen. Daarom worden voor andere stoffen dan landbouwchemici de effecten van een reeks concentraties op de omzetting van koolstof bepaald. De gegevens uit deze tests worden gebruikt om een dosis/respons-curve samen te stellen en EC₅₀-waarden te berekenen, waarbij x het procentuele effect aangeeft.

1.2 DEFINITIES

Omzetting van koolstof: de afbraak van organisch materiaal door micro-organismen tot het anorganische eindproduct koolstofdioxide.

EC₅₀ (effectieve concentratie): de concentratie van de teststof in de bodem die leidt tot een remming van de omzetting van koolstof in koolstofdioxide met x procent.

EC₅₀ ma (median van de effectieve concentratie): de concentratie van de teststof in de bodem die leidt tot een remming van de omzetting van koolstof in koolstofdioxide met 50 procent.

1.3 REFERENTIESTOFFEN

Geen.

1.4 PRINCIPE VAN DE TESTMETHODE

Gezeefde bodem wordt hetstij behandeld met de teststof, hetstij niet behandeld (controle). Als er landbouwchemici worden getest, wordt aanbevolen minimaal twee concentraties te testen die moeten worden gekozen op grond van de hoogste concentratie die op het veld wordt verwacht. Na 0, 7, 14 en 28 dagen incubatie worden monsters van de behandelde en de controlebodem met glucose gemengd en wordt de door glucose geïnduceerde ademhaling gedurende twaalf uur gemeten. De ademhaling wordt uitgedrukt in vrijgekomen koolstofdioxide (in mg koolstofdioxide/kg droge bodem/uur) of verbruikte zuurstof (in mg zuurstof/kg bodem/uur). De gemiddelde ademhaling in de behandelde bodemmonsters wordt vergeleken met de controloemmers en de procentuele afwijking van de behandelde ten opzichte van de controloemmers wordt berekend. Alle tests duren ten minste 28 dagen. Als op dag 28 het verschil tussen de behandelde en de controloemmers 25% of groter is, worden de metingen om de veertien dagen voortgezet tot maximaal 100 dagen. Als er andere stoffen dan landbouwchemici worden getest, wordt de teststof in een reeks concentraties aan de bodemmonsters toegevoegd en wordt na 28 dagen de door glucose geëngeneerde ademhaling (d.w.z. de gemiddelde hoeveelheid gevormde koolstofdioxide of verbruikte zuurstof). De resultaten van tests met een reeks concentraties worden aan regressianalyse onderworpen en de EC₅₀ waarden (d.w.z. de EC₅₀, de EC₇₅ en/of de EC₉₀) worden berekend. Zie ook de definities.

1.5 GELDIGHEID VAN DE TEST

Bij landbouwchemici wordt de evaluatie van de testresultaten gebaseerd op betrekkelijk kleine verschillen (gemiddeld ± 25%) tussen het vrijgekomen koolstofdioxide of de verbruikte zuurstof in (of door) de behandelde en de controloemmers en grote verschillen in de controloes kunnen dan ook tot onjuiste resultaten leiden. Het verschil tussen replica-controlemonsters moet derhalve kleiner zijn dan ± 15%.
1.6 BESCHRIJVING VAN DE TESTMETHODE

1.6.1 Apparatuur

Er worden testbakken van chemisch inert materiaal gebruikt. Het volume moet geschikt zijn voor de procedure die voor de incubatie van de bodem wordt gebruikt, d.w.z. incubatie in één keer of als een reeks afzonderlijke bodemmonsters (zie punt 1.7.1.2). Het waterverlies moet tot een minimum worden beperkt maar gasuitwisseling moet tijdens de test mogelijk zijn (de testbakken kunnen bijvoorbeeld met geperforeerde polyethyleenfolie worden afgedekt). Wanneer vluchtige stoffen worden getest, moeten er afsluitbare gasdichte bakken worden gebruikt. Deze moeten zo groot zijn dat het bodemmonster ongeveer een kwart van hun volume beslaat.

Voor de bepaling van de door glucose geïnduceerde ademhaling zijn incubatiesystemen en instrumenten voor de meting van het gevormde koolzuur of de verbruikte zuurstof nodig. Voor voorbeelden van dergelijke systemen en instrumenten wordt naar de literatuur verwezen (8) (9) (10) (11).

1.6.2 Selectie en aantal bodemsoorten

Er wordt één bodemsoort gebruikt. De aanbevolen kenmerken van de bodem zijn:

- zandgehalte: minimaal 50% en maximaal 75%;
- pH: 5,5 - 7,5;
- organisch koolstofgehalte: 0,5 - 1,5%;
- de microbiële biomassa moet worden gemeten (12) (13) en het koolstofgehalte daarvan moet minimaal 1% van het totale organische koolstofgehalte van de bodem zijn.

In de meeste gevallen levert een bodem met deze kenmerken de ongunstigste situatie op, aangezien de adsorptie van de teststof tot een minimum wordt beperkt en de beschikbaarheid van de stof voor de flora maximaal is. Een test met andere bodemsoorten is dan ook meestal niet nodig. In bepaalde gevallen, bijvoorbeeld wanneer de teststof naar verwachting vooral bij bepaalde bodemsoorten zoals zure bosbodem zal worden gebruikt of bij elektrostatisch geladen chemische stoffen, kan het echter nodig zijn een andere bodemsoort te gebruiken.

1.6.3 Verzameling en opslag van de bodemmonsters

1.6.3.1 Verzameling

Er moet gedetailleerde informatie beschikbaar zijn over de geschiedenis van de locatie waar de testbodem wordt verzameld, zoals de exacte ligging, de vegetatie, de data van behandelingen met gewasbeschermingsmiddelen, behandelingen met organische en anorganische mest, toevlucht van biologisch materiaal en onopzettelijke verontreinigingen. De voor de verzameling van de bodem gekozen locatie moet op lange termijn kunnen worden gebruikt. Permanente weidegrond en velden met eenjarige graangewassen (behalve mais) of dicht ingezaaide groenbemestingsgewassen zijn geschikt. De gekozen monsternemingsplaats mag gedurende ten minste één jaar vóór de monsterneming niet met gewasbeschermingsmiddelen zijn behandeld. Ook mag er gedurende ten minste zes maanden geen organische mest zijn opgebracht. Het gebruik van anorganische mest is alleen aanvaardbaar wanneer dit in overeenstemming is met de eisen van het gewas en er mogen gedurende ten minste drie maanden na de opbrengst van de mest geen monsters worden genomen. Het gebruik van grond die is behandeld met meststoffen waarvan bekend is dat ze biocide-effecten hebben (bijv. calciumcyanamid) moet worden vermeden.

Gedurende of vlak na lange perioden (meer dan 30 dagen) van droogte of doordrenking van de bodem mogen er geen monsters worden genomen. Bij een omgepoedelde bodem moeten de monsters van een diepte van 0 tot 20 cm worden genomen. Bij grasland (weidegrond) of andere bodemsoorten waar gedurende lange periodes (ten minste één teeltseizoen) niet geploegd wordt, kan de maximale monsterdiepte iets groter dan 20 cm (bijv. maximaal 25 cm) zijn. De bakken waarin en de temperatuur waarbij de bodemmonsters worden vervoerd, moeten zodanig zijn dat de oorspronkelijke eigenschappen van de bodem niet significant veranderen.
1.6.3.2 Op slag

Het gebruik van grond die net van het veld komt, verdient de voorkeur. Als op slag in het laboratorium niet kan worden vermeden, kan de grond gedurende maximaal drie maanden in het donker bij 4 ± 2°C worden bewaard. Tijdens de op slag van grond moet er voor aërobe omstandigheden worden gezorgd. Als de grond wordt verzameld in gebieden waar deze gedurende ten minste drie maanden per jaar bevriezen, is op slag gedurende zes maanden bij -18°C mogelijk. Vóór elk experiment wordt de microbiële biomassa van opgeslagen grond gemeten; het koolstofgehalte van de biomassa moet minimaal 1% van het totale organische koolstofgehalte van de bodem zijn (zie punt 1.6.2).

1.6.4 Behandeling en voorbereiding van de grond voor de test

1.6.4.1 Pre-incubatie

Als de grond opgeslagen was (zie de punten 1.6.4.2 en 1.7.1.3), wordt pre-incubatie gedurende 2 tot 28 dagen aanbevolen. De temperatuur en het vochtgehalte van de bodem tijdens de pre-incubatie moeten vergelijkbaar zijn met die tijdens de test (zie de punten 1.6.4.2 en 1.7.1.3).

1.6.4.2 Fysisch-chemische kenmerken

De grond wordt met de hand ontdaan van grote voorwerpen (stenen, delen van planten enz.) en zonder overmatig drogen vochtig gezet tot een deeltjesgrootte van maximaal 2 mm. Het vochtgehalte van het bodemmonster moet met gedestilleerd of gedioniseerd water worden aangepast tot 40-60% van het maximale watergehalte.

1.6.5 Voorbehandeling van de teststof voordat deze op de bodem wordt gebracht

De teststof wordt normaal gesproken met behulp van een draagstof opgebracht. Dit kan water zijn (voor in water oplosbare stoffen) of een inerte vaste stof zoals fijn kwartszand (deeltjesgrootte 0,1-0,5 mm). Andere vloeibare draagstoffen dan water (b.v. organische oplosmiddelen zoals acetan of chloroform) moeten worden vermeden omdat deze de microflora kunnen aantasten. Als zand als draagstof wordt gebruikt, kan deze worden gecookt met de in een geschikt oplosmiddel opgeloste of gesuspendeerde teststof. In dat geval moet het oplosmiddel vóór het mengen met de bodem door verdamping worden verwijderd. Voor een optimale verdeling van de teststof in de bodem wordt een verhouding van 10 g zand per kg grond (drooggewicht) aanbevolen. De controlemonsters worden behandeld met uitsluitend dezelfde hoeveelheid water en/of kwartszand.

Bij het testen van vliechtige stoffen moeten verliezen tijdens de behandeling worden voorkomen en moet er naar een homogene verdeling in de bodem worden gestreefd (de teststof kan bijvoorbeeld op verschillende plaatsen in de bodem worden geïnjecteerd).

1.6.6 Testconcentraties

Als er gewasbeschermingsmiddelen of andere chemische stoffen met een voorspelbare milieuconcentratie worden getest, moeten er ten minste twee concentraties worden gebruikt. De laagste concentratie moet ten minste overeenkomen met de maximale hoeveelheid die naar verwachting in de praktijk in de bodem terechtkomt. Bij de berekening van de concentratie van de aan de bodem toegevoegde teststof wordt uitgegaan van een uniforme vermenigvuldiging in de bodem tot een diepte van 5 cm en een dichtheid van de droge grond van 1,5. Bij een relatief hoge stofgehalte (0,5 g/km²) in het grondwater met een maximale hoeveelheid van de droge grond van 1,5. Voor landbouwchemicaïnen die rechtstreeks op de bodem worden gebracht en voor chemische stoffen waarvoor de hoeveelheid die in de bodem terechtkomt voorspelbaar is, worden als testconcentratie de voorspelbare milieuconcentratie (PEC - predictable environmental concentration) en het vijfvoud van deze concentraties aanbevolen. Stoffen die naar verwachting meer dan een keer per seizoen op de bodem worden gebracht, moeten worden getest bij concentraties die worden berekend door de PEC te vermenigvuldigen met het aantal keren dat dit naar verwachting maximaal gebeurt. De hoogste geteste concentratie mag echter niet hoger zijn dan tien keer de maximale per keer opgebrachte hoeveelheid.

Als andere stoffen dan landbouwchemicaïnen worden getest, wordt een meetkundige reeks van ten minste vijf concentraties gebruikt. De geteste concentraties moeten het interval bestrijken dat voor de bepaling van de EC₅₀-waarden nodig is.
UITVOERING VAN DE TEST

1.7.1 Blootstellingsomstandigheden

1.7.1.1 Behandeling en controle

Als er landbouwchemicaliën worden getest, wordt de grond in drie even zware porties verdeeld. Twee porties worden gemengd met de draagstof die de teststof bevat en de andere portie met de draagstof zonder teststof (control). Voor zowel de behandelde als de controlegrond wordt minimaal een beplanting in triplo aanbevolen. Als er andere stoffen dan landbouwchemicaliën worden getest, wordt de grond in zes even zware porties verdeeld. Vijf porties worden gemengd met de draagstof die de teststof bevat en de andere portie met de draagstof zonder teststof. Voor zowel de behandelde als de controlegrond wordt een beplanting in triplo aanbevolen. Er moet worden gezorgd voor een homogene verdeling van de teststof in de behandelde bodemmonsters. Bij het mengen moeten comprimering en kluitvorming van de grond worden voorkomen.

1.7.1.2 Incubatie van de bodemmonsters

Incubatie van de bodemmonsters kan op twee manieren gebeuren: als één monster voor elke behandelde en onbehandelde bodem of als een reeks aparte even grote submonsters voor elke behandelde en onbehandelde bodem. Wanneer vluchtige stoffen worden getest, mag de test uitsluitend met een reeks aparte submonsters worden uitgevoerd. Wanneer de grond als één monster wordt geïncubeerd, worden grote hoeveelheden van elke behandelde en onbehandelde bodem geïncubeerd en worden tijdens de test waar nodig submonsters voor analyse genomen. De hoeveelheid die aanvankelijk voor elke behandelde en onbehandelde bodem wordt geïncubeerd, is afhankelijk van de grootte van de submonsters, het aantal replicatapellingen dat voor de analyse wordt gebruikt en het verwachte maximale aantal monsternemingstijdstappen. Grond die als één monster wordt geïncubeerd, moet vóór het nemen van submonsters grondig worden gemengd. Wanneer de bodem als een reeks aparte bodemmonsters wordt geïncubeerd, wordt elke portie behandelde en onbehandelde grond in het vereiste aantal submonsters verdeeld, die worden gebruikt wanneer ze nodig zijn. Wanneer bij een experiment meer dan twee monsternemingstijdstappen kunnen worden verwacht, moeten er voldoende submonsters voor alle replicatapellingen en alle monsternemingstijdstappen worden gemaakt. Ten minste drie replicatemonsters van de testbodem worden onder aerobe omstandigheden geïncubeerd (zie punt 1.7.1.1). Tijdens alle tests moeten er geschikte bakken worden gebruikt met voldoende ruimte boven de grond om te voorkomen dat er anaërobe omstandigheden ontstaan. Wanneer er vluchtige stoffen worden getest, mag de test uitsluitend met een reeks aparte submonsters worden uitgevoerd.

1.7.1.3 Testomstandigheden en duur van de test

De test wordt in het donker bij kamertemperatuur (20 ± 2°C) uitgevoerd. Het vochtgehalte van de bodemmonsters moet gedurende de test op 40-60% van het maximale watergehalte van de bodem worden gehouden (zie punt 1.6.4.2) met een bereik van ± 5%. Indien nodig kan gdestilleerd of gedistilleerd water worden toegevoegd.

De minimale duur van een test is 28 dagen. Als er landbouwchemicaliën worden getest, worden de hoeveelheden vrijgekomen stikstof of verbruikte zuurstof in de behandelde en de controlemonsters vergeleken. Als op dag 28 het verschil groter dan 25% is, wordt de test voortgezet tot het verschil 25% of minder is maar maximale gedurende 100 dagen. Als er andere stoffen dan landbouwchemicaliën worden getest, wordt de test na 28 dagen beëindigd. Op dag 28 worden de hoeveelheden vrijgekomen koolstofdioxide of verbruikte zuurstof in de behandelde en de controlemonsters bepaald en worden de ECV waarden berekend.

1.7.2 Monsterneming en analyse van de grond

1.7.2.1 Schema voor de monsterneming

Als er landbouwchemicaliën worden getest, wordt de door glucose geïnduceerde ademhaling van de bodemmonsters op de dagen 0, 7, 14 en 28 bepaald. Als er een langere test nodig is, wordt na dag 28 om de 14 dagen een analyse uitgevoerd.

Als er andere stoffen dan landbouwchemicaliën worden getest, worden er ten minste vijf testconcentraties gebruikt en wordt de door glucose geïnduceerde ademhaling van de bodemmonsters aan het begin (dag 0) en aan het eind van de blootstellingsperiode (dag 28) bepaald. Als dit nodig wordt geacht, kan er bijvoorbeeld op dag 7 een tussenresultat meting worden gedaan. De op dag 28 verkregen gegevens worden gebruikt om de ECV waardoor de chemische stof te bepalen. Als dat gewenst is, kunnen de gegevens van de controlemonsters op dag 0 worden gebruikt om de oorspronkelijke hoeveelheid metabole actieve microbiële biomassa in de bodem te bepalen (12).
1.7.2.2 Meting van de door glucose geïnduceerde ademhaling

Op elk monsternemingstijdstip wordt in elk replicaatmonster (behandeld en controle) de door glucose geïnduceerde ademhaling bepaald. De bodemmonsters worden gemengd met een zodanige hoeveelheid glucose dat er onmiddellijk een maximale ademhalingsreactie optreedt. De hoeveelheid glucose die bij een bepaalde bodem nodig is om een maximale ademhalingsreactie te veroorzaken, kan bij een vooronderzoek met een reeks glucoseconcentraties worden bepaald (14). Voor een zandige bodem met 0,5-1,5% organische koolstof is 2000 tot 4000 mg glucose per kg drooggewicht bodem echter meestal voldoende. De glucose kan met schoon kwartszand (10 g zand/kg drooggewicht bodem) tot poeder worden vermalen en homogeën met de bodem worden vermengd.

De met glucose verrijkte bodemmonsters worden geïncubeerd in geschikte apparatuur om de ademhaling continu, om het uur of om de twee uur bij 20 ± 2°C te meten (zie punt 1.6.1). Het vrijgekomen koolstofoxide of de verbrukte zuurstof wordt gedurende twaalf uur gemeten en de meetingen dienen zo spoedig mogelijk te beginnen, d.w.z. binnen 1 tot 2 uur na de toevoeging van de glucose. De totale hoeveelheid gedurende de twaalf uur vrijgekomen koolstofoxide of verbrukte zuurstof wordt gemeten en de gemiddelde ademhaling wordt bepaald.

2 GEGEVENS

2.1 BEHANDELING VAN DE RESULTATEN

Als er landbouwchemiciën worden getest, wordt de hoeveelheid vrijgekomen koolstofoxide of verbrukte zuurstof in elk replicaat-bodemmonster geregistreerd en worden de gemiddelde waarden van alle replicatetestbepalingen in tabelltform vermeld. De resultaten worden met adequate en algemeen erkende statistische methoden (b.v. een F-test, niveau met 5% significantie) geëvalueerd. De door glucose geïnduceerde ademhaling wordt uitgedrukt in mg koolstofoxide/kg drooggewicht bodem/uur of mg zuurstof/kg drooggewicht bodem/uur. De gemiddelde vorming van koolstofoxide of het gemiddelde verbruik van zuurstof bij elke behandelde bodem wordt vergeleken met de controle en de procentuele afwijking van de controle wordt berekend.

Als de test met andere stoffen dan landbouwchemiciënl wordt uitgevoerd, wordt de hoeveelheid vrijgekomen koolstofoxide of verbrukte zuurstof in elk replicaat-bodemmonster bepaald en wordt er een dosis/respursively samengewerkt. De door glucose geïnduceerde ademhaling (d.w.z. mg koolstofoxide/kg drooggewicht bodem/uur of mg zuurstof/kg drooggewicht bodem/uur) die na 28 dagen in de behandelde monsters wordt bepaald, wordt vergeleken met de controle. Uit deze gegevens wordt de procentuele remming voor elke testconcentratie berekend. Deze percentages worden uitgezet tegen de concentratie en met behulp van statistische proceduren worden de EC₅₀-waarden berekend. Met behulp van standaardprocedures worden ook de betrouwbaarheidsgrenzen (p = 0.95) voor de berekende EC₅₀ bepaald (15)(16)(17).

2.2 INTERPRETATIE VAN DE RESULTATEN

Wanneer de resultaten van tests met landbouwchemiciënl worden geëvalueerd en het verschil in de ademhaling tussen de laagste concentratie (d.w.z. de maximale verwachte concentratie) en de controle op enig monsternemingstijdstip na dag 28 niet groter dan 25% is, kan worden geconcludeerd dat het product op lange termijn geen invloed op de omzetting van koolstof in de bodem heeft. Wanneer de resultaten van tests met andere stoffen dan landbouwchemiciënl worden geëvalueerd, worden de EC₅₀, de EC₅₀ en/of de EC₄₀ gebruikt.
3 RAPPORTAGE

TESTVERSLAG

In het testverslag moet de volgende informatie worden opgenomen:

Een volledige specificatie van de gebruikte bodem met vermelding van o.a.:

— de geografische kenmerken van de locatie (lengte en breedte);
— informatie over het verleden van de locatie (d.w.z. vegetatie, behandelingen met gewasbeschermingsmiddelen, behandelingen met meststoffen, onopzettelijke verontreinigingen enz.);
— het gebruikspatroon (d.w.z. landbouwgrond, bos enz.);
— de monsternemingsdiepte (in cm);
— het gehalte aan zand/silt/klei (in % drooggewicht);
— de pH (in water);
— het gehalte aan organische koolstof (in % drooggewicht);
— het stikstofgehalte (in % drooggewicht);
— de kation-uitwisselingscapaciteit (in mmol/kg);
— de oorspronkelijke microbiële biomassa in percentage totale organische koolstof;
— de referentie van de voor de bepaling van elke parameter gebruikte methode;
— alle informatie over de verzameling en opslag van de bodemmonsters;
— een gedetailleerde beschrijving van de eventuele pre-incubatie van de grond.

De teststof:

— de fysische aard en indien relevant de fysisch-chemische eigenschappen;
— de chemische identificatiegegevens, indien relevant, met inbegrip van de structuurformule, de zuiverheid (d.w.z. het percentage werkzaam bestanddeel voor gewasbeschermingsmiddelen) en het stikstofgehalte.

De testomstandigheden:

— gedetailleerde gegevens over de verbetering van de bodem met organisch substraat;
— het aantal concentraties van de teststof en, indien van toepassing, een motivering voor de keuze van de concentraties;
— gedetailleerde gegevens over de manier waarop de teststof op de bodem wordt gebracht;
— de incubatietermperatuur;
— het vochtgehalte van de bodem aan het begin van en tijdens de test;
— de gebruikte incubatiemethode (d.w.z. in één portie of als een reeks aparte submonsters);
— het aantal replicatibepalingen;
— de monsternemingstijdstippen.
De resultaten:

— de voor de meting van de ademhaling gebruikte methode en apparatuur;
— de hoeveelheden kooldioxide of zuurstof, met vermelding van de afzonderlijke en gemiddelde waarden, in tabelvorm;
— de verschillen tussen de replicatebepalingen bij de behartigde en de controlemonsters;
— een verklaring voor correcties in de berekeningen, indien van toepassing;
— het procentuele verschil in de door glucose geïnduceerde ademhaling op elk monsternemingstijdstip of, indien van toepassing, de EC₉₀ met het 95%-betrouwbaarheidsinterval, andere ECₙ-waarden (d.w.z. EC₂₅ of EC₇₀) met betrouwbaarheidsintervallen en een grafische voorstelling van de dosis/respom-curve;
— de statistische behandeling van de resultaten, indien van toepassing;
— alle informatie en opmerkingen die nuttig kunnen zijn voor de interpretatie van de resultaten.
REFERENCES

C.23. AËROBE EN ANAËROBE OMZETTING IN DE BODEM

1 METHODE

Deze methode is overgenomen van TG 307 (2002) van de OESO.

1.1 INLEIDING

Deze testmethode is gebaseerd op bestaande richtsnoeren (1)(2)(3)(4)(5)(6)(7)(8)(9). De hier beschreven methode is bedoeld om de aërobe en anaërobe omzetting van chemische stoffen in de bodem te evalueren. De experimenten zijn bedoeld om te bepalen (i) wat de omzettingssnelheid van de teststof is en (ii) wat de aard en de vormings- en afbraaksnelheid van omzettingsproducten waaraan planten en bodemorganismen kunnen worden blootgesteld. Dergelijke onderzoeken zijn nodig voor chemische stoffen die rechtstreeks op de bodem worden gebracht of waarvan het aannemelijk is dat ze in het bodemmilieu terechtkomen. De resultaten van dit laboratoriumonderzoek kunnen ook worden gebruikt voor de ontwikkeling van monsternemings- en analyseprotocolen voor vervangend veldonderzoek.

Aëroob en anaëroob onderzoek met één bodemtype is meestal voldoende voor de evaluatie van omzettingsroutes (8)(10)(11); De omzettingsniveaus moeten daarnaast in ten minste drie bodemtypes worden bepaald (8)(10).

In Belgirate (Italië) is in 1995 een OESO-workshop over bodem- en sedimentselectie gehouden (10), waar met name overeenstemming is bereikt over het aantal bodemtypes dat voor deze test moet worden gebruikt. De geteste bodemtypes moeten representatief zijn voor de milieu-situatie op de plaats waar de stoffen worden gebruikt of vrijkomen. Zo moeten chemische stoffen die in een subtropisch of tropisch klimaat vrijkomen, met Ferrasols of Nitosols (FAO-systeem) worden getest. De workshop heeft op basis van de ISO-richtsnoeren (15) ook aanbevelingen gedaan voor het verzamelen, behandelen en bewaren van bodemonsters. Het gebruik van paddy(rijst)-bodem komt in deze methode ook aan de orde.

1.2 DEFINITIES

Teststof: een stof, hetzij de oorspronkelijke verbinding, hetzij relevante omzettingsproducten.

Omzettingsproducten: alle stoffen die ontstaan bij biotische of abiotische omzettingsreacties van de teststof, met inbegrip van CO₂ en producten in gebonden residuen.

Gebonden residuen: verbindingen in de bodem, in planten of in dieren die na extractie in de vorm van de oorspronkelijke verbinding of de metabolieten/omzettingsproducten daarvan in de matrix achterblijven. De extractiemethoden mag de verbindingen zelf of de structuur van de matrix niet significant wijzigen. De aard van de binding kan gedeeltelijk worden opgehelderd door extractiemethoden die de matrix wijzigen of door verfijnde analysetechnieken. Tot op heden zijn op deze manier bijvoorbeeld covalente, ionische en soppiebindingen en insluitingen gesignaleerd. In het algemeen heeft de vorming van gebonden residuen tot gevolg dat de biologische toegankelijkheid en de biologische beschikbaarheid significant afnemen (12) [gewijzigd overgenomen uit IUPAC 1984 (13)].

Aëroobe omzetting: reacties die in aanwezigheid van moleculaire zuurstof verloopen (14).

Anaërobe omzetting: reacties die bij uitsluiting van moleculaire zuurstof verlopen (14).

Bodem: een mengsel van anorganische en organische chemische bestanddelen, in het laatste geval bestaande uit verbindingen met een hoog koolstof- en stikstofgehalte en een hoog moleculair gewicht, dat kleine (meestal micro)organismen bevat. Bodem kan in twee toestanden worden verwerkt:

(a) onverstoord, zoals in de loop der tijd ontwikkeld, met kenmerkende lagen van verschillende bodemtypes;
(b) verstoord, zoals meestal aangetroffen in bouwland of waarneer bij deze test gebruikte monsters door graven worden genomen (14).
Mineralisatie: de volledige afbraak van een organische verbinding tot CO₂ en H₂O onder aërobe omstandigheden en CH₄, CO₂ en H₂O onder anaërobe omstandigheden. In de context van deze testmethode betekent mineralisatie, wanneer met ¹³C gelabelde verbindingen worden gebruikt, een volledige afbraak waarbij een gelabeld koolstoftoon wordt geoxideerd en een equivalente hoeveelheid ¹³CO₂ vrijkomt (14).

Halveringstijd (t₁/₂): de tijd die nodig is om 50% van een hoeveelheid teststof om te zetten, wanneer de omzetting kan worden beschreven door kinetiek van de eerste orde; deze is omwachtelijk van de concentratie.

DT₅₀ (Disappearance Time 50): de tijd waarin de concentratie van de teststof met 50% daalt; deze verschilt van de halveringstijd t₁/₂ wanneer de omzetting niet volgens kinetiek van de eerste orde plaatsvindt.

DT₇₅ (Disappearance Time 75): de tijd waarin de concentratie van de teststof met 75% daalt.

DT₉₀ (Disappearance Time 90): de tijd waarin de concentratie van de teststof met 90% daalt.

1.3 REFERENTIESTOFFEN

Voor de karakterisering en/of identificatie van omzettende producten met behulp van spectroscopische en chromatografische methoden moeten referentiestoffen worden gebruikt.

1.4 TOEPASBAARHEID VAN DE TEST

De methode kan worden gebruikt voor alle chemische stoffen (al dan niet radioactief gelabeld) waarvoor een analysemethode met een afdoende nauwkeurigheid en gevoeligheid beschikbaar is. Enigszins vliegige, niet-vliegige, in water oplosbare en niet in water oplosbare stoffen kunnen worden getest. De test mag niet worden gebruikt voor chemische stoffen met een grote vliegigheid vanuit de bodem (b.v. fumigatiemiddelen of organische oplosmiddelen) die onder de experimentele omstandigheden tijdens deze test uit de bodem verdwijnen.

1.5 INFORMATIE OVER DE TESTSTOF

Voor de meting van de omzettingssnelheid kan een al dan niet gelabelde teststof worden gebruikt. Voor de besturing van de omzettingsroute en voor de bepaling van een maasschalen is gelabeld materiaal nodig. Labeling met ¹⁴C wordt aanbevolen, maar ook het gebruik van andere isotope zoals ¹³C, ¹⁵N, ²H of ³²P kan nuttig zijn. Het label moet zo veel mogelijk in het meest stabiele deel van het molecuul worden aangebracht. De zuiverheid van de teststof moet ten minste 95% zijn.

Vóór de uitvoering van een test om de aërobe en anaërobe omzetting in de bodem te bepalen moet de volgende informatie over de teststof beschikbaar zijn:

(a) de oplosbaarheid in water (methode A.6);
(b) de oplosbaarheid in organische oplosmiddelen;
(c) de dampspanning (methode A.4) en de constante van de wet van Henry;
(d) de verdrijvingcoëfficiënt n-octanol/water (methode A.8);
(e) de chemische stabilité in het donker (hydrolyse) (methode C.7);
(f) de pK₅ a, als een molecuul protonering of deprotonering kan ontergaan [OES-richtlijn 112] (16).

Ook informatie over de toxiciteit van de teststof voor micro-organismen in de bodem kan nuttig zijn [testmethoden C.21 en C.22] (16).

Er moeten analysemethoden (met inbegrip van methoden voor extractie en clean-up) beschikbaar zijn voor de kwantitatieve en kwantitatieve bepaling van de teststof en de omzettende producten daarvan.

1 Als de teststof bijvoorbeeld één ring bevat, moet deze ring worden gelabeld; als de teststof twee of meer ringen bevat, kan er apart onderzoek nodig zijn om te bekijken wat er met elke gelabelde ring gebeurt en om bruikbare informatie over de vorming van omzettende producten te verkrijgen.
1.6 PRINCIPE VAN DE TESTMETHODE

De bodemmonsters worden met de teststof behandeld en worden onder gecontroleerde
laboratoriumomstandigheden (bij constant temperatuur en met een constant vochtgehalte van de bodem) in het
donker geincubeerd in kolven van het biometer-type of in doorstroomsystemen. Nadat voldoende tijd is
verstreken, worden de bodemmonsters geëxtraheerd en op de oorspronkelijke stof en de omzettingsproducten
daarvan geanalyseerd. Ook vluchtige producten worden met geschilderde absorptie-apparatuur opgevangen om te
worden geanalyseerd. Door met ¹³C gelabeld materiaal te gebruiken kunnen de verschillende
mineralisatiereizen worden gemeten door het omstane ¹⁴CO₂ weg te vangen en kan de massabalanse, met
inbegrip van de vorming van aan de bodem gehouden residuen, worden bepaald.

1.7 KWALITEITSCRITERIA

1.7.1 Recovery

Door onmiddellijk na de toevoeging van de teststof bodemmonsters ten minste in duplo te extraheren en te
analyseren wordt een eerste indicatie verkregen van de herhaalbaarheid van de analysemethode en de
uniformiteit van de procedure voor het opbrengen van de teststof. In latere fasen van de experimenten wordt de
recovery bepaald aan de hand van de respectieve massabalanse. Voor gelabelde stoffen moet de recovery
binnen 90% en 110% liggen (6) en voor ongelabelde stoffen tussen 70% en 110% (3).

1.7.2 Herhaalbaarheid en gevoeligheid van de analysemethode

De herhaalbaarheid van de analysemethode (exclusief de efficiëntie van de extractie in het begin) voor de
kwantitatieve bepaling van de teststof en de omzettingsproducten kan worden gecontroleerd door één extract
van een bodemmonster, dat lang genoeg is geincubeerd voor de vorming van omzettingsproducten, in duplo te
analyseren.

De aantoonbaarheidsgraad van de analysemethode voor de teststof en voor de omzettingsproducten mag niet
hoger zijn dan 0,01 mg·kg⁻¹ bodem (als teststof) of, indien dit aangemerkt is, 1% van de opgebrachte dosis. De
bepaalbaarheidsgraad moet ook worden gespecificeerd.

1.7.3 Nauwkeurigheid van de omzettingsgegevens

Een regressieanalyse van de concentratie van de teststof als functie van de tijd levert de vereiste informatie op
over de betrouwbaarheid van de omzettingscurve en maakt het mogelijk betrouwbaarheidsgrenzen te
berekenen voor de halveringstijd (bij kinetiek van de pseudo-eerste orde) of de DT₅₀ en, indien van toepassing,
de DT₇₅ en de DT₉₀.

1.8 BESCHRIJVING VAN DE TESTMETHODE

1.8.1 Apparatuur en chemicaliën

Incubatiesystemen bestaan in de vorm van statische gesloten systemen of geschilderde doorstroomsystemen
(7)(17). In de figuren 1 en 2 worden voorbeelden gegeven van respectievelijk een geschilderde doorstroomapparaat
voor bodemincubatie en een kolf van het biometer-type. Beide soorten incubatiesystemen hebben hun
voordelen en beperkingen (7)(17).

Er is standaard-laboratoriumapparatuur nodig, met name:

- analyse-instrumenten voor bijvoorbeeld GLC, HPLC en TLC, met inbegrip van de nodige
detectieapparatuur voor de analyse van al dan niet radioactief gelabelde stoffen, of voor de inverse
isotoopverdundunningsmethode;
- instrumenten voor identificatie (b.v. MS, GC-MS, HPLC-MS of NMR);
- een vloeistofcirculatiemeter;
- een oxidator voor de verbranding van radioactief materiaal;
- een centrifuge;
- extractieapparatuur (b.v. centrifugepres voor koude extractie en een Soxhlet-apparaat voor continue
extractie met reflux);

-
— instrumenten voor de concentratie van oplossingen en extrakten (b.v. een rotatieverdammer);
— een waterbad;
— een mechanisch mengapparaat (b.v. een kneedmachine of een roermotor).

De volgende chemicaliën worden onder andere gebruikt:
— NaOH p.a., 2 mol dm\(^{-3}\), of een andere geschikte base (b.v. KOH of ethanolamine);
— H\(_2\)SO\(_4\) p.a., 0.05 mol dm\(^{-3}\);
— ethyleenglycol p.a.:
— vast absorptiemateriaal zoals natronkalk en polyurethaanpropen;
— organische oplosmiddelen p.a., zoals aceton of methanol;
— scintillatievloeistof.

1.8.2 Het opbrengen van de teststof

Om de teststof aan de bodem toe te voegen en daarin te verdelen kan deze worden opgelost in water (gedesioniseerd of gestedilleerd) of indien nodig in minimale hoeveelheden aceton of andere organische oplosmiddelen (6) waaronder de teststof voldoende oplosbaar en stabil is. Het gekozen oplosmiddel mag in de gebruikte hoeveelheid echter geen significante invloed op de microbiële activiteit van de bodem hebben (zie de punten 1.5 en 1.9.2-1.9.3). Het gebruik van oplosmiddelen die de microbiële activiteit remmen, zoals chloroform, dichloormethaan en andere diekalingemiddelde oplosmiddelen, moet worden vermeden.

De teststof kan ook als vaste stof worden toegevoegd, bijvoorbeeld gemengd met kwartszand (6) of een klein submonster van de testbodem dat aan de lucht gedroogd en gesteriliseerd is. Als de teststof met behulp van een oplosmiddel wordt toegevoegd, moet het oplosmiddel eerst verdampen voordat het submonster met de teststof aan het oorspronkelijke niet-steriele bodemonster wordt toegevoegd.

Bij algemene chemische stoffen, die voornamelijk via zuiveringslijsf/gebied in de landbouw in de bodem terechtkomen, moet de teststof eerst aan het slib worden toegevoegd, dat dan vervolgens in het bodemonster wordt gebracht (zie de punten 1.9.2 en 1.9.3).

Het gebruik van geformuleerde producten wordt in de regel niet aanbevolen. Bijvoorbeeld bij slecht oplosbare teststof kan het gebruik van geformuleerd materiaal echter een geschikt alternatief zijn.

1.8.3 Bodem

1.8.3.1 Selectie van de bodem

Om de omzettingsroute te bepalen kan een representatief bodemtype worden gebruikt: zandig leem, siltig leem, leem of licht zand (volgens de FAO- en USDA-indeling (18)) met een pH van 5,5-8,0, een organisch koolstofgehalte van 0,5-2,5% en een microbiële biomassa van ten minste 1% van het totale organische koolstofgehalte wordt aanbevolen (10).

Voor het onderzoek naar de omzettingssnelheid moeten ten minste drie aanvullende bodemtypes worden gebruikt die een scala van relevante bodemtypes vormen. Het organisch koolstofgehalte, de pH, de kiezelgehalte en de microbiële biomassa van de bodemtypes moeten uiteenlopen (10).

Voor alle bodemtypes moeten in elk geval de textuur (% zand, % silt en % klei) [volgens de FAO- en USDAINDELING (18)], de pH, de kation-uitwisselingscapaciteit, het organisch koolstofgehalte, de dichtheid van de droge grond, de waterretentie-karakteren en de microbiële biomassa (uitsluitend voor aërobe onderzoek) worden bepaald. Aanvullende informatie over de eigenschappen van de bodem kan nuttig zijn bij de interpretatie van de resultaten. Voor de bepaling van de bodemkenmerken kunnen de in de referenties (19)(20)(21)(22)(23) aanbevolen methoden worden gebruikt. De microbiële biomassa dient met de SIR-methode (substraat-geïnduceerde ademhaling) (25)(26) of met andere methoden (20) te worden bepaald.

\[\text{De waterretentie-karakteren van een bodemtype kunnen worden gemeten als de veldcapaciteit, het waterhoudend vermogen of de waterspanning (pF). Zie bijlage I voor een uitleg. In het testverslag moet worden vermeld of de waterretentie karaktery en de dichtheid van de droge grond in onverstoorde of verstoorde (bewerkte) veldmonsters zijn bepaald.}\]
1.8.3.2 Verzameling, behandeling en opslag van de bodem monsters

Er moet gedetailleerde informatie beschikbaar zijn over de geschiedenis van de locatie waar de testboden wordt verzameld, zoals de exacte ligging, de vegetatie, behandelingen met chemische stoffen, behandelingen met organische en anorganische mest, toevoegingen van biologisch materiaal of andere verontreinigingen. Als de bodem in de loop van de voorgaande vier jaar met de teststof of structureel analoge verbindingen daarvan is behandeld, mag deze niet voor het omzettingsonderzoek worden gebruikt (10)(15).

De grond moet vers van het veld (van de A-horizont of de toplaag van 20 cm) worden verzameld met een bodemwatergehalte dat zeven gemakkelijker maakt. Voor andere bodem dan paddy-velden moet monsterneming niet gedurende of vlak na lange periodes (>30 dagen) van droogte, vorst of overstroming gebeuren (14). De monsters moeten zodanig worden vervoerd dat veranderingen in het bodemwatergehalte tot een minimum worden beperkt, en zo veel mogelijk in het donker worden bewaard op een plaats waar er lucht bij kan komen. Een losjes dichtgeknoopte polyetheen zak is hier in het algemeen geschikt voor.

De grond moet zo spoedig mogelijk naar monsterneming worden verwerkt. Vegetatie, groot formaat bodemfauna en stenen moeten worden verwijderd voordat de grond door een zelf van 2 mm wordt gezeefd om kleine stenen en resten van planten en dieren te verwijderen. Voordat de grond wordt gezeefd, mag deze niet te veel worden gedroogd en platgedrukt (15).

Wanneer het in de winter moeilijk is om in het veld monsters te nemen (bevroren bodem of een laag sneeuw), kunnen deze worden genomen van een partij grond die in een kas bedekt door vegetatie (bijvoorbeeld gras of een gras/klaver-mengsel), wordt bewaard. Er is een duidelijke voorkeur voor onderzoek met vers van het veld gehaalde grond, maar als de verzamelde en bewerkte grond vóór het begin van het onderzoek moet worden opgeslagen, moeten de omstandigheden adequaat zijn en mag dit slechts een beperkte tijd gebeuren (4 ± 2°C gedurende maximaal drie maanden) om de microbiële activiteit op peil te houden3. Voor gedetailleerde instructies voor de verzameling, behandeling en opslag van grond die voor biotransformatie-experimenten moet worden gebruikt, wordt verwezen naar (8)(10)(15)(26)(27).

Voordat de bewerkte grond voor de test wordt gebruikt, wordt deze gepre-incubeerd om ontkieming en de verwijdering van zaden mogelijk te maken en om het evenwicht van het microbiële metabolisme na de overgang van de monsternemings- en opslagomstandigheden naar de incubatie-omstandigheden te herstellen. Een pre-inicubatieperiode van 2 tot 28 dagen met bij benadering de temperatuur en de vochtomstandigheden van de echte test volstaat in het algemeen (15). De opslag en de pre-incubatie mogen samen niet langer dan drie maanden duren.

1.9 UITVOERING VAN DE TEST

1.9.1 Testomstandigheden

1.9.1.1 Testtemperatuur

Gedurende de hele testperiode moet de grond in het donker worden geïnкуеіred bij een constante temperatuur die representatief is voor de klimaatomstandigheden waar de teststof zal worden gebruikt of zal vrijkomen. Voor alle teststof die in een gematigd klimaat in de bodem teacht kunnen komen, wordt een temperatuur van 20 ± 2°C aanbevolen. De temperatuur moet worden gemonitord.

Voor chemische stoffen die in een kouder klimaat worden gebruikt of vrijkomen (bijvoorbeeld in noordelijke landen of in de herfst of de winter), moeten daarnaast ook bodemmonsters bij een lagere temperatuur (bijvoorbeeld 10 ± 2°C) worden geïnкуеіred.

3 Recent onderzoekresultaten wijzen erop dat ook grond uit gematigde zones zonder een significant verlies van microbiële activiteit gedurende meer dan drie maanden bij -20°C kan worden bewaard (28)(29).
1.9.1.2 Vochtigehalte

Voor omzettingsproeven onder aërobe omstandigheden moet het vochtgehalte van de bodem\(^4\) op een pH tussen 2,0 en 2,5 worden gebracht en gehouden (3). Het vochtgehalte van de bodem wordt uitgedrukt als massa water per massa droge grond en moet periodiek worden gecoreleerd (bijvoorbeeld om de twee weken) door de incubatiekolven te wegen en waterverliezen moeten worden gecompenseerd door water toe te voegen (bij voorkeur steriel gefilterd kraanwater). Er moet op worden gelet dat bij het toevoegen van vocht (eventuele) verliezen van de teststof en/of omzettingsproducten door verwijziging en/of afbraak onder invloed van licht worden voorkomen of tot een minimum worden beperkt.

Voor omzettingsproeven onder anaërobe of paddy-omstandigheden wordt de grond onder water gezet om deze met water te verzetten.

1.9.1.3 Aërobe incubatie-omstandigheden

In de doorstromingsystemen worden de omstandigheden aërobe gehouden door periodiek met bevochtigde lucht te spuiten of daar continu mee te ventileren. In de biometerkolven vindt de uitwisseling van lucht door diffusie plaats.

1.9.1.4 Steriele aërobe omstandigheden

Om informatie te krijgen over de relevantie van de af堂ische omzetting van een teststof kunnen bodemonsters worden gesteriliseerd (zie de referenties 16 en 29 voor sterilisatiemethoden), behandeld met steriele teststof (bijvoorbeeld door de oplossing via een steriel filter toe te voegen) en belucht met bevochtigde steriele lucht zoals beschreven onder punt 1.9.1.3. Voor paddy-bodems moeten grond en water worden gesteriliseerd en moet de incubatie volgens punt 1.9.1.6 worden uitgevoerd.

1.9.1.5 Anaërobe incubatie-omstandigheden

Om anaërobe omstandigheden te krijgen en te houden wordt de met de teststof behandelde grond gedurende 30 dagen of, indien dit korter is, één halveringsteraal of DT\(_{50}\) onder aërobe omstandigheden geïncubeerd en vervolgens met water doordrenkt (waterlaag van 1-3 cm) en wordt het incubatiesysteem met een inert gas (bijvoorbeeld stikstof of argon) doorgepompt\(^5\). Het systeem moet mogelijkheden bieden voor de meting van bijvoorbeeld de pH, de zuurstofconcentratie en de redoxpotentiaal en apparatuur bevatten voor het wegvangen van vluchtige producten. Het systeem van het biometer-type moet getest zijn om te voorkomen dat door diffusie lucht binnendringt.

1.9.1.6 Paddy-incubatieomstandigheden

Om de omzetting in paddy-rijstbodem te onderzoeken wordt de bodem onder water gezet met een waterlaag van ongeveer 1-5 cm en wordt de teststof aan de waterfase toegevoegd (9). Een bodemdiepte van ten minste 5 cm wordt aanbevolen. Het systeem wordt net als onder aërobe omstandigheden met lucht geventileerd. De pH, de zuurstofconcentratie en de redoxpotentiaal van de waterlaag worden gemeten en geraapporterd. Voordat de omzettingsproef wordt begonnen, is een pre-incubatieperiode van minimaal twee weken nodig (zie punt 1.8.3.2).

\(^4\) De grond mag niet te nat en niet te droog zijn om een afdoonende belichting en voeding van de microflora in de bodem te waarborgen. Als vochtigehalte voor een optimale microbiële groei wordt een waterhoudend vermogen (WHV) van 40-60\% en een waterspanning van 0,1-0,33 bar aanbevolen (6). Dit laatste interval komt overeen met een pH van 2,0-2,5. Bijlage 2 wordt voor verschillende bodemtypes het karakteristieke vochtigehalte vermeld.

1.9.1.7 Daar van de test

Het onderzoek naar snelheid en route mag normaal gesproken niet langer duren dan 120 dagen6 (3)(6)(8), omdat dan ga in een kunstmatig laboratoriumsysteem, dat van natuurlijke aanvulling afgesloten is, in de loop der tijd een daling van de microbiële activiteit van de bodem kan worden verwacht. Wanneer dit nodig is om de afbraak van de teststof en de vorming en afbraak van belangrijke omzettingsproducten te karakteriseren, kan het onderzoek gedurende langere tijd (bijvoorbeeld 6 of 12 maanden) worden voortgezet (8). Voor langere incubatietijd moet in het testverslag een motivering worden gegeven en in dat geval moet gedurende en aan het eind van deze periode de biomassa worden gemeten.

1.9.2 Uitvoering van de test

In elke incubatiekolf (zie de figuren 1 en 2 in bijlage 3) wordt ongeveer 50 tot 200 g grond (drooggewicht) gebracht, die volgens een van de onder punt 1.8.2 beschreven methoden met de teststof wordt behandeld. Wanneer er voor de toevoeging van de teststof organische aansluitmiddelen worden gebruikt, moeten deze door verdamping uit de grond worden verwijderd. Vervolgens wordt de grond met een spatel en/of door de kolf te schudden grondig gemengd. Als het onderzoek onder paddy-onderhoud wordt uitgevoerd, worden de grond en het water na de toevoeging van de teststof grondig gemengd. Kleine porties (bijvoorbeeld 1 g) van de behandelde grond worden op de teststof geanalyseerd om te controleren of deze uniform verdeeld is. Alternatieve methoden komen later aan de orde.

De toegevoegde hoeveelheid moet overeenkomen met de grootste hoeveelheid van een gewasbeschermingsmiddel dat in de gebruiksaanwijzing voor opbrengst wordt aanbevolen en een uniforme vermenigvuldiging tot een adequate diepte op het veld (bijvoorbeeld de vroege 10 cm van de bodem)7. Voor chemische stoffen die bijvoorbeeld op het blad of zonder vermenigvuldig op de bodem worden gebracht, moet hij de berekening van de hoeveelheid die aan elke kolf moet worden toegevoegd, worden uitgegaan van een diepte van 2,5 cm. Voor chemische stoffen die met de grond worden vermengd, is de adequate diepte die in de gebruiksaanwijzing vermeld is. Voor algemene chemische stoffen wordt de opgebrachte hoeveelheid bepaald op basis van de meest relevante aanvoerroute; als bijvoorbeeld zuiveringsslib de belangrijkste route voor de teover naar de bodem is, moet de chemische stof aan het slib worden toegevoegd in concentratie die overeenkomt met de verwachte concentratie in het slib en moet de hoeveelheid aan de grond toegevoegd slib overeenkomen met de normale hoeveelheid op landbouwgrond gebruikt slib. Als deze concentratie niet hoog genoeg is om belangrijke omzettingsproducten te bepalen, kan incubatie van aparte bodemmonsters met grotere hoeveelheden nuttig zijn, maar te grote hoeveelheden die de microbiële functies van de bodem beïnvloeden, moeten worden vermieden (zie de punten 1.5 en 1.8.2).

Ook kan een grotere hoeveelheid (d.w.z. 1 tot 2 kg) grond met de teststof worden behandeld, zorgvuldig in een geschikt mengapparaat worden gemengd en vervolgens in kleine porties van 50 tot 200 g in de incubatiekolven worden gebracht (bijvoorbeeld met behulp van monsterverdelers). Kleine porties (bijvoorbeeld 1 g) van de behandelde grond worden op de teststof geanalyseerd om te controleren of deze uniform verdeeld is. Een dergelijk procedure verdient de voorkeur aangezien daarmee een uniformere verdeling van de teststof in de bodem mogelijk is.

Ook onbehandelde bodemmonsters worden onder dezelfde (aërobe) omstandigheden als de met de teststof behandelde monsters geincubeerd. Deze monsters worden gebruikt voor de meting van de biomassa gedurende en aan het eind van het onderzoek.

6 Aëroob onderzoek kan al lang vóór de 120 dagen worden beëindigd, mits de uiteindelijke omzettingsroute en de uiteindelijke mineralisatie op dat moment duidelijk bereikt zijn. Beëindiging van de test is mogelijk na 120 dagen of wanneer ten minste 90% van de teststof is omgezet, maar alleen als ten minste 5% CO₂ is gevormd.

7 De aanvankelijke concentratie op basis van het oppervlak wordt als volgt berekend:

\[\text{C}_{\text{bodem}} = \frac{\text{A}[\text{kg/ha}]}{\text{d}[\text{kg/m}^2]} \]

\[\text{C}_{\text{bodem}} = \text{aandachtelijke concentratie in de bodem [mg/kg].} \]

\[\text{A} = \text{opgebrachte hoeveelheid [kg/ha]; d = dikte van de bodemlaag [m]; d = dichtheid van de droge bodem [kg/m}^3]. \]

Als vuistregel geldt dat een opgebrachte hoeveelheid van 1 kg/ha1 tot een bodemconcentratie van ongeveer 1 mg/kg1 in een laag van 10 cm leidt (uitgaande van een dichtheid van de droge bodem van 1 g/cm3).
Wanneer de teststof voor de toevoeging aan de bodem in een of meer organische oplosmiddelen wordt opgelost, worden met dezelfde hoeveelheid oplosmiddelen behandeld bodemmonsters worden onder dezelfde (aërobe) omstandigheden als de met de teststof behandelde monsters geïncubeerd. Deze monsters worden gebruikt voor de meting van de biomassa aan het begin, gedurende en aan het eind van het onderzoek om na te gaan welke effecten de organische oplosmiddelen op de microbiële biomassa hebben. De kolven met de behandelde bodemmonsters worden aan het in figuur 1 beschreven doorstroomssysteem bevestigd of met de in figuur 2 afgebeelde absorptiekolom afgesloten (zie bijlage 3).

1.9.3 Monsterneming en meting

Op geschikte tijdstippen worden incubatiekolven in duplo vervijlder en worden de bodemmonsters met geschikte oplosmiddelen en met een verschillende polariteit geëxtraheerd en op de teststof en/of omzettingsproducten geanalyseerd. In een goed geïsoleerd onderzoek zijn er voldoende kolven om op elk monsternemingstijdstip twee kolven te kunnen gebruiken. Ook de absorptieoplossingen of het vaste absorptiemateriaal worden in verschillende tijdstippen (gedurende de eerste maand om de 7 dagen en daarna om de 17 dagen) gedurende en aan het eind van de incubatie van elk bodemmonster vervijelder en op vluchtige producten geanalyseerd. Naast een bodemmonster dat direct na de toevoeging wordt genomen (dag 0), worden nog ten minste 5 andere monsternemingspunten gekozen. De tijdstippen worden zodanig gekozen dat het verloop van de afbraak van de teststof en van de vorming en afbraak van de omzettingsproducten kan worden bepaald (bijvoorbeeld na 0, 1, 3 en 7 dagen, na 2 en 3 weken, na 1, 2 en 3 maanden enz.).

Wanneer een met 14C gelabelde teststof wordt gebruikt, wordt de niet-extraheerbare radioactiviteit door verbranding kwantitatief bepaald en wordt er voor elk monsternemingstijdstip een massabalance bepaald.

Bij anaërobe en paddy-incubatie worden de bodem- en de waterfase gezamenlijk op de teststof en de omzettingsproducten geanalyseerd of voór extractie en analyse door filtratie of centrifugerings gescheiden.

1.9.4 Facultatieve tests

Aërobe niet-steriele proeven bij andere temperaturen en vochtgehaltes van de bodem kunnen nuttig zijn om de invloed van de temperatuur en het vochtgehalte van de bodem op de omzettingsnelheid van een teststof en/of de omzettingsproducten daarvan in de bodem te bepalen.

Met behulp van bijvoorbeeld superkritische vloeistofextractie kan worden getracht de niet-extraheerbare radioactiviteit nader te karakteriseren.

2 GEGEVENS

2.1 BEHANDELING VAN DE RESULTATEN

Voor elk monsternemingstijdstip wordt de hoeveelheid teststof, omzettingsproducten, vluchtige stoffen (uitsluitend in %) en niet-extraheerbare materiaal als percentage van de oorspronkelijk toegevoegde concentratie en eventueel als mg/kg bodem (op basis van het drooggewicht) vermeld. Voor elk monsternemingstijdstip dient er een massabalance te worden gegeven als percentage van de oorspronkelijk toegevoegde concentratie. Door in een grafiek de concentratie van de teststof uit te zetten tegen de tijd kan de halveringstijd of de DT50 worden bepaald. Belangrijke omzettingsproducten moeten worden geïdentificeerd en ook hun concentratie moet tegen de tijd worden uitgezet om hun vormings- en afbraaksnheid aan te geven. Een belangrijk omzettingsproduct is een product dat op enig moment tijdens het onderzoek in een grotere hoeveelheid dan 10% van de toegevoegde dosis aanwezig is.

De weggevanger vluchtige producten geven een indicatie van het vervluchtigingsvermogen van een teststof en de omzettingsproducten daarvan vanuit de bodem.
Er moet een nauwkeuriger bepaling van de halveringstijd of de DT₅₀ en eventueel de DT₁₀ en de DT₅₀ worden verkregen door de nodige kinetische modelberekeningen uit te voeren. Naast de halveringstijd en de DT₅₀ wordt er ook beschrijving van het gebruikte model gegeven met vermelding van de orde van de kinetiek en de determinatiecoëfficiënt (r^2). Kinetiek van de eerste orde krijgt de voorkeur, tenzij $r^2 < 0.7$. Eventueel moeten de berekeningen ook worden toegespist op de belangrijke omzettingsproducten. Voorbeelden van geschikte modellen worden beschreven in de referenties 31 tot en met 35.

Wanneer onderzoek bij verschillende temperaturen wordt uitgevoerd, wordt de omzettingsnivellheid binnen het experimentele temperatuurtraject als functie van de temperatuur beschreven met behulp van de vergelijking van Arrhenius:

$$k = A \cdot e^{\frac{E}{T}}$$

waarbij A en B regressiecoëfficiënten zijn van respectievelijk het intercept en de helling van een best passende rechte die voorkomt uit een lineaire regressie van $\ln k$ tegen $\frac{1}{T}$, c de snelheidsconstante bij temperatuur T is en T de temperatuur in Kelvin is. Er moet goed worden gelet op het beperkte temperatuurtraject waarop de vergelijking van Arrhenius geldig is wanneer de omzetting door de microbiële activiteit wordt bepaald.

2.2 EVALUATIE EN INTERPRETATIE VAN DE RESULTATEN

Hoewel het onderzoek in een kunstmatig laboratoriumssysteem wordt uitgevoerd, kan aan de hand van de resultaten een raming worden gemaakt van de omzettingsnivellheid van de teststof en de vormings- en afbraaksnivellheid van de omzettingsproducten onder veldomstandigheden (36)(37).

Een onderzoek naar de omzettingsroute van een teststof levert informatie op over de manier waarop de structuur van de gebruikelijke stof in de bodem onder invloed van chemische en microbiële reacties verandert.

3 RAPPORTAGE

TESTVERSLAG

In het testverslag moet de volgende informatie worden opgenomen:

De teststof:
— de trivial naam, de chemische naam, het CAS-nummer, de structuurformule (waarin de plaats van het label wordt aangegeven als radioactief gelabeld materiaal wordt gebruikt) en relevante fysisch-chemische eigenschappen (zie punt 1.5);
— de zuiverheid (verontreinigingen) van de teststof;
— de radiochemische zuiverheid van een radioactief gelabelde stof en de specifieke activiteit (indien van toepassing).

Referentiestoffen:
— de chemische naam en de structuur van referentiestoffen die voor de karakterisering en/of de identificatie van omzettingsproducten worden gebruikt.

De gebruikelijke bodem:
— gegevens over de plaats waar de monsters zijn verzameld;
— de datum van monsterneming en de gevolgde procedure;
— eigenschappen van de bodem zoals de pH, het organisch koolstofgehalte, de textuur (% zand, % silt, % klei), de kation-uitwisselingscapaciteit, de dichtheid van de droge bodem, de waterretentiekennmerken en de microbiële biomassa;
— de periode gedurende waarin de omstandigheden waaronder de monsters zijn opgeslagen (als ze zijn opgeslagen).
De testomstandigheden:
— de data waarop het onderzoek is uitgevoerd;
— de gebruikte hoeveelheid teststof;
— de gebruikte oplosmiddelen en de manier waarop de teststof is opgebracht;
— het gewicht van de oorspronkelijk behandelde bodem waaruit op elk analysestap een monster is genomen;
— een beschrijving van het gebruikte incubatiesysteem;
— de stroomsnelheid van de lucht (alleen voor doorstromingsystemen);
— de temperatuur van de proefopstelling;
— het vochtgehalte van de bodem tijdens de incubatie;
— de microbiële biomassa aan het begin, gedurende en aan het eind van het aërobe onderzoek;
— de pH, de zuurstofconcentratie en de redoxpotentiaal aan het begin, gedurende en aan het eind van het anaërobe en paddy onderzoek;
— de extractiemethode(n);
— de methoden voor de kwantitatieve en kwantitatieve analyse van de teststof en de belangrijke omzettingsproducten in de bodem en het absorptiemateriaal;
— het aantal replicaties-bepalingen en het aantal controlebepalingen.

De resultaten:
— de resultaten van de bepaling van de microbiële activiteit;
— de herhaalbaarheid en gevoeligheid van de gebruikte analysemethode;
— de recovery (onder punt 1.7.1 wordt vermeld welke percentages voor een geldig onderzoek gehaald moeten worden);
— tabellen met de resultaten, uitgedrukt als percentage van de gebruikte aanvankelijke dosis en eventueel in mg kg⁻¹ bodem (drooggewicht);
— de massabalans gedurende en aan het eind van het onderzoek;
— de karakterisering van de niet extraheerbare (gebonden) radioactiviteit of residuen in de bodem;
— een kwantificering van het vrijgekomen CO₂ en andere vliegtermische verbindingen;
— curves waarin voor de teststof en eventueel de belangrijke omzettingsproducten de bodemconcentratie tegen de tijd wordt uitgezet;
— de halveringstijd of de DT₅₀, DT₃₅ en DT₉₀ voor de teststof en eventueel de belangrijke omzettingsproducten, met vermelding van de betrouwbaarheidsgrenzen;
— een raming van de abiotische afbraakssnelheid onder steriele omstandigheden;
— een evaluatie van de omzettingskinetiek voor de teststof en eventueel de belangrijke omzettingsproducten;
— de voorgestelde omzettingsroutes, indien van toepassing;
— een bespreking en interpretatie van de resultaten;
— de onbewerkte gegevens (d.w.z. voorbeelden van chromatogrammen en van berekeningen van de omzettingsnelheid en de middelen die voor de identificatie van de omzettingsproducten zijn gebruikt).

REFERENTIES

(1) US. Environmental Protection Agency (1982). Pesticide Assessment Guidelines, Subdivision N. Chemistry: Environmental Fate.

(9) MAFF - Japan 2000 - Draft Guidelines for transformation studies of pesticides in soil - Aerobic metabolism study in soil under paddy field conditions (flooded).

(16) Annex V to Dir. 67/548/EEC

BIJLAGE I

WATERDRUK, VELDCAPACITEIT (VC) EN WATERHOUWEND VERMOGEN (WHV)(I)

<table>
<thead>
<tr>
<th>Hoogte van de waterkolom [cm]</th>
<th>pF(0)</th>
<th>bar(0)</th>
<th>Opmerkingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^-7</td>
<td>7</td>
<td>10^-6</td>
<td>Droge bodem</td>
</tr>
<tr>
<td>1,6x10^-4</td>
<td>4,2</td>
<td>16</td>
<td>Verwelkingspunt</td>
</tr>
<tr>
<td>10^-4</td>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10^-2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6x10^-2</td>
<td>2,8</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>3,3x10^-2</td>
<td>2,5</td>
<td>0,33(0)</td>
<td></td>
</tr>
<tr>
<td>10^-1</td>
<td>2</td>
<td>0,1</td>
<td>Bereik van de veldcapaciteit(0)</td>
</tr>
<tr>
<td>60</td>
<td>1,8</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1,5</td>
<td>0,033</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0,01</td>
<td>WHV (bij benadering)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0,001</td>
<td>Met water verzadigde bodem</td>
</tr>
</tbody>
</table>

(0) pF = log hoogte waterkolom in cm.
(0) 1 bar = 10^5 Pa.
(0) Komt overeen met een watergehalte van ongeveer 10% in zand, 35% in leem en 45% in klei.
(0) De veldcapaciteit is niet constant maar varieert van bodemtype tot bodemtype tussen pF 1,5 en 2,5.

De waterdruk wordt als hoogte van de waterkolom in cm of in bar gemeten. Vanwege het grote bereik van de zuigspanning wordt eenvoudigheidshalve de pF-waarde gebruikt, de logarithme van de hoogte van de waterkolom in cm.

De veldcapaciteit wordt gedefinieerd als de hoeveelheid water die door een natuurlijke bodem twee dagen na een langdurige regenperiode of afdoende irrigatie tegen de zwaartekracht in kan worden vastgehouden. Deze grootte wordt in situ op het veld in onverstoorde grond bepaald. De meting is dus niet van toepassing op laboratorium-bodemmonster die wel verstoord zijn. De in verstoorde grond bepaalde VC-waarde kan een sterke systematische variatie vertonen.

Het waterhoudend vermogen (WHV) wordt in het laboratorium met verstoorte en onverstoorde grond bepaald door een bodemkolom via capillaire transport met water te verzadigen. Het WHV is vooral voor verstoorde grond nuttig en kan wel 30% hoger liggen dan de veldcapaciteit (1). Het WHV is experimenteel ook gemakkelijker te bepalen dan een betrouwbare VC-waarde.

BIJLAGE 2

VOCHTGEHALTE VAN DE BODEM (in g water per 100 g droge grond) VAN VERSCHILLENDE BODEMSOORTEN UIT VERSCHILLENDE LANDEN

<table>
<thead>
<tr>
<th>Bodemtype</th>
<th>Land</th>
<th>WHV¹</th>
<th>(p^F = 1,8)</th>
<th>(p^F = 2,5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zand</td>
<td>Duitsland</td>
<td>28,7</td>
<td>8,8</td>
<td>3,9</td>
</tr>
<tr>
<td>Lemig zand</td>
<td>Duitsland</td>
<td>50,4</td>
<td>17,9</td>
<td>12,1</td>
</tr>
<tr>
<td>Lemig zand</td>
<td>Zwitserland</td>
<td>44,0</td>
<td>35,3</td>
<td>9,2</td>
</tr>
<tr>
<td>Siltig leem</td>
<td>Zwitserland</td>
<td>72,8</td>
<td>56,6</td>
<td>28,4</td>
</tr>
<tr>
<td>Kleileem</td>
<td>Brazilië</td>
<td>69,7</td>
<td>38,4</td>
<td>27,3</td>
</tr>
<tr>
<td>Kleileem</td>
<td>Japan</td>
<td>74,4</td>
<td>57,8</td>
<td>31,4</td>
</tr>
<tr>
<td>Zandig leem</td>
<td>Japan</td>
<td>82,4</td>
<td>59,2</td>
<td>36,0</td>
</tr>
<tr>
<td>Siltig leem</td>
<td>VS</td>
<td>47,2</td>
<td>33,2</td>
<td>18,8</td>
</tr>
<tr>
<td>Zandig leem</td>
<td>VS</td>
<td>40,4</td>
<td>25,2</td>
<td>13,3</td>
</tr>
</tbody>
</table>

¹ Waterhoudbend vermogen
BIJLAGE 3

Figuur 1
Voorbeeld van een doorstroomapparaat voor de bestudering van de omzetting van chemische stoffen in de bodem (1)(2)

1: naaldventiel
2: gaswafles met water
3: ultramembraan (alleen voor steriele omstandigheden), poriegrootte 0,2 μm
4: bodemmetabolisme-kolf (alleen voor anaërobe en paddy-
onstandigheden met waterlaag)
5: ethyleenglycol-val voor organische vluchtige stoffen
6: zwavelzuur-val voor alkalische vluchtige stoffen
7, 8: natriumhydroxide-val voor CO₂ en andere zure vluchtige stoffen
9: stromingsmeter

Figuur 2
Voorbeeld van een kolf van het biometer-type voor de bestudering van de omzetting van chemische stoffen in de
bodem (3)

Natronkalk voor de absorptie van CO₂
Met olie behandeld glaswol of polyurethaanschuim voor de absorptie van organische vluchtige stoffen
Bodem + teststof

Boden. Z. PflKrankh PflSchutz, Sonderheft VII, 141-146.
C.24. AÉROBE EN ANAÉROBE OMZETTING IN AQUATISCHE SEDIMENTSYSTEMEN

1 METHODE

Deze methode is overgenomen van TG 308 (2002) van de OESO.

1.1 INLEIDING

Chemische stoffen kunnen bijvoorbeeld rechtstreeks, door overwaaien bij het spuiten, door afdamping, door drainage, door afvalverwijdering, in industriële, huishoudelijk of agrarisch afvalwater of door depositie uit de lucht in ondiepe of diepe oppervlaktewateren terechtkomen. In deze testmethode wordt een laboratoriumprocedure beschreven voor de bepaling van de aérobe en anaérobe omzetting van organische stoffen in aquatische sedimenten. De methode is gebaseerd op bestaande richtsnoeren (1)(2)(3)(4)(5)(6). In Belgirate (Italië) is in 1995 een OESO-workshop over bodem- en sedimentselectie gehouden (7), waar met name overeenstemming is bereikt over het aantal sedimenttypes dat voor deze test moet worden gebruikt. De workshop heeft op basis van de ISO-richtsnoeren (8) ook aanbevelingen gedaan voor het verzamelen, behandelen en bewaren van sedimentmonsteren. Dergelijke onderzoeken zijn nodig voor chemische stoffen die direct aan water worden toegevoegd of waarvan het aannemelijk is dat ze via bovengenoemde routes in het aquatisch milieu terecht zullen komen.

De omstandigheden in natuurlijke aquatische sedimenten zijn in de bovenstaande waterfase vaak aéroob. De bovenste laag van het sediment kan aéroob of anaérob zijn, terwijl het diepere sediment meestal anaérob is. Om al deze mogelijkheden te omvatten worden in dit document zowel aérobe als anaérobe tests beschreven. Bij de aérobe test wordt een aérobe waterkolom boven een aérobe sedimentlaag met daaronder een anaérobe gradient gesimuleerd. Bij de anaérobe test wordt een volledig anaérob water/sedimentstelsel gesimuleerd. Als de omstandigheden zorgvuldig worden als significant van deze aanbevelingen moet worden afgewekst, bijvoorbeeld door een intacte sedimentkern te gebruiken of sediment dat aan de teststof blootgesteld kan zijn, zijn daarvoor andere methoden beschikbaar (9).

1.2 DEFINITIES

In alle gevallen moet een deel van het Internationale Eenheidensysteem (SI) worden gebruikt.

Teststof: een stof, hetzij de oorspronkelijke verbinding, hetzij relevante omzettende producten.

Omzettende producten: alle stoffen die ontstaan bij biotische en/ of biotische omzettende reacties van de teststof, met inbegrip van CO₂ en gebonden residuen.

Gebonden residuen: verbindingen in de bodem, in planten of in dieren die na extractie in de vorm van de oorspronkelijke verbinding of de metabolieten daarvan in de matrix achterblijven. De extractiemethode mag de verbindingen zelf of de structuur van de matrix niet significant wijzigen. De aard van de binding kan gedeeltelijk worden opgehelderd door extractiemethoden die de matrix wijzigen of door verticale analysetechnieken. Tot op heden zijn op deze manier bijvoorbeeld covalente, ionische en sorptiebindingen en insluitingen gesignaleerd. In het algemeen heeft de vorming van gebonden residuen tot gevolg dat de biologische beschikbaarheid significant afneemt (10) [gewijzigd overgenomen uit IUPAC 1984 (11)].

Aérobe omzetting (oxidiserend): reacties die in aanwezigheid van moleculaire zuurstof verlopen (12).

Anaérobe omzetting (reducerend): reacties die bij uitsluiting van moleculaire zuurstof verlopen (12).

Natuurlijk water: oppervlakwater dat uit bijvoorbeeld een meer of een rivier wordt verkregen.

Mineralisatie: de volledige afbraak van een organische verbinding tot CO₂ en H₂O onder aerobe omstandigheden en CH₄, CO₂ en H₂O onder anaerobe omstandigheden. In de context van deze testmethode betekent mineralisatie, wanneer radioactief gelabelde verbindingen worden gebruikt, een volledige afbraak van een molecuul waarbij een gelabeld koolstofatoom volledig wordt geoxideerd of gereduceerd en een equivalente hoeveelheid respectievelijk ¹⁴CO₂ of ¹³CH₄ vrijkomt.

Halveringstijd (t½): de tijd die nodig is om 50% van een hoeveelheid teststof omzetten, wanneer de omzetting kan worden beschreven door kinetiek van de eerste orde; deze is onafhankelijk van de aanvankelijke concentratie.

DT₅₀ (Disappearance Time 50): de tijd waarin de aanvankelijke concentratie van de teststof met 50% daalt.

DT₇₅ (Disappearance Time 75): de tijd waarin de aanvankelijke concentratie van de teststof met 75% daalt.

DT₉₀ (Disappearance Time 90): de tijd waarin de aanvankelijke concentratie van de teststof met 90% daalt.

1.3 REFERENTIETESTSTOFFEN

Voor de kwalitatieve en kwantitatieve bepaling van omzettingsproducten met behulp van spectroscoïpische en chromatografische methoden moeten referentiestoffen worden gebruikt.

1.4 INFORMATIE OVER DE TESTSTOF

Voor de meting van de omzettingsniveaus kan een al dan niet met een isotoop gelabelde teststof worden gebruikt, hoewel de voorkeur wordt gegeven aan gelabeld materiaal. Voor de bestudering van de omzettingsroute en voor de bepaling van een massabalanis is gelabeld materiaal nodig. Labeling met ¹³C wordt aanbevolen, maar ook het gebruik van andere isotopen zoals ¹⁴C, ¹⁵N, ³H of ³¹P kan nuttig zijn. Het label moet zo veel mogelijk in het meest stabiele gedeelte van het molecuul worden aangebracht. De chemische en/of radiochemische zuiverheid van de teststof moet ten minste 95% zijn.

Vóór de uitvoering van een test moet de volgende informatie over de teststof beschikbaar zijn:

(a) de oplosbaarheid in water (methode A.6);
(b) de oplosbaarheid in organische oplosmiddelen;
(c) de dampdruk (methode A.4) en de constante van de wet van Henry;
(d) de verdelingscoëfficiënt n-octanol/water (methode A.8);
(e) de adsorptiecoëfficiënt (Kₐ, Kₒ of Kₐₙ) (methode C.18);
(f) de hydrolyse (methode C.7);
(g) de dissociatieconstante (pKₐ) (OESO-richtlijn 112 | (13);
(h) de chemische structuur van de teststof en eventueel de plaats van het (de) isotopenlabel(s).

Nit: De temperatuur waarbij deze metingen zijn uitgevoerd, moet worden gerapporteerd.

Ook informatie over de toxiciteit van de teststof voor micro-organismen, over de gemakkelijke en/of intrinsieke biologische afbreekbaarheid en over de aerobe en anaerobe omzetting in de bodem kan nuttig zijn.

1 Als de teststof bijvoorbeeld één ring bevat, moet deze ring worden gelabeld: als de teststof twee of meer ringen bevat, kan er apart onderzoek nodig zijn om te bekijken wat er met elke gelabelde ring gebeurt en om bruikbare informatie over de vorming van omzettingsproducten te verkrijgen.
Er moeten analysemethoden (met inbegrip van methoden voor extractie en clean-up) beschikbaar zijn voor de kwalitatieve en kwantitatieve bepaling van de teststof en de omzettingsproducten daarvan in water en in sediment (zie punt 1.7.2).

1.5 PRINCIPE VAN DE TESTMETHODE

Bij deze testmethode worden een aërobe en een anaërobe aquatisch sedimentsysteem gebruikt (zie bijlage 1) dat het mogelijk maakt:

(i) de omzettings snelheid van de teststof in een water/sediment systeem te meten;
(ii) de omzettings snelheid van de teststof in het sediment te meten;
(iii) de mineralisatiesnelheid van de teststof en/of de omzettingsproducten daarvan te meten (wanneer een met 14C gelabelde teststof wordt gebruikt);
(iv) de omzettingsproducten in de water- en de sedimentfase kwalitatief en kwantitatief te bepalen en een massabalan op te stellen (wanneer een gelabelde teststof wordt gebruikt);
(v) de verdeling van de teststof en de omzettingsproducten daarvan over de twee fasen gedurende een incubatieperiode in het donker (om bijvoorbeeld algenbloei te voorkomeren) bij constante temperatuur te meten. Wanneer dit met het oog op de gegevens verantwoord is, worden de halveringenstijl, de DT$_{50}$, de DT$_{10}$ en de DT$_{90}$ bepaald, maar deze mogen niet veel verder dan de duur van het experiment worden geëxtrapolierd (zie punt 1.2).

Voor zowel de aërobe als de anaërobe test moeten ten minste twee sedimenten met het bijbehorende water worden gebruikt (7). Er kunnen echter gevallen zijn waarin er meer dan twee aquatische sedimenten moeten worden gebruikt, bijvoorbeeld wanneer het gaat om een chemische stof die zowel in zoet water als in het mariene milieu kan voorkomen.

1.6 TOEPASBAARHEID VAN DE TEST

De methode kan in het algemeen worden gebruikt voor alle chemische stoffen (al dan niet gelabeld) waarvoor een analysemethode met een afdoende nauwkeurigheid en gevoeligheid beschikbaar is. Enigszins vluchtige, niet-vluchtige, in water oplosbare en slecht in water oplosbare stoffen kunnen worden getest. De test mag niet worden gebruikt voor chemische stoffen met een grote vluchtigheid vanuit water (bijv. fumigatiemiddelen of organische oplosmiddelen) die daardoor onder de experimentele omstandigheden tijdens deze test uit het water en/of het sediment verdwijnen.

De methode is niet in staat om een simulatie van de omstandigheden in stromend water (zoals rivieren) of in open zee te geven.

1.7 Kwaliteitscriteria

1.7.1 Recovery

Door onmiddellijk na de toevoeging van de teststof water- en sedimentmonster ten minste in duplo te extraheren en te analyseren wordt een eerste indicatie verkregen van de herhaalbaarheid van de analysemethode en de uniformiteit van de procedure voor het toevoegen van de teststof. In latere fasen van de experimenten wordt de recovery bepaald aan de hand van de respectievelijke massabalanzen (wanneer gelabeld materiaal wordt gebruikt). Voor gelabelde stoffen moet de recovery tussen 90% en 110% liggen (6) en voor ongelabelde stoffen tussen 70% en 110%.

1.7.2 Herhaalbaarheid en gevoeligheid van de analysemethode

De herhaalbaarheid van de analysemethode (exclusief de efficiëntie van de extractie in het begin) voor de kwantitatieve bepaling van de teststof en de omzettingsproducten kan worden gecorrigeerd door één extract van een water- of sedimentmonster, dat lang genoeg is geincubatie voor de vorming van omzettingsproducten, in duplo te analyseren.
De aantoonbaarheidsgrens van de analysemethode voor de teststof en voor de omzettingsproducten mag niet hoger zijn dan 0,01 mg/kg water of sediment (als teststof) of, indien dit lager is, 1% van de aanvankelijk aan een teststof toegevoegde hoeveelheid. De bepaalbaarheidsgrens moet ook worden gespecificeerd.

1.7.3 Nauwkeurigheid van de omzettingsgegevens

Een regressieanalyse van de concentratie van de teststof als functie van de tijd levert de vereiste informatie op over de nauwkeurigheid van de omzettingscurve en maakt het mogelijk de betrouwbaarheidsgrenzen te berekenen voor de halveringstijd (bij kinetiek van de pseudo-eerste orde) of de DT₅₀ en eventueel de DT₇₅ en de DT₉₀.

1.8 BESCHRIJVING VAN DE METHODE

1.8.1 Testsysteem en apparatuur

Het onderzoek moet in glazen houders (bijvoorbeeld flessen of zentrifugebussen) worden uitgevoerd, tenzij informatie vooraf (zoals de verdelingscoëfficiënt n-octanol/water of sorptiegegevens) erop wijst dat de teststof zich aan glas kan hechten; in dat geval moet wellicht worden overwogen een ander materiaal (zoals Teflon) te gebruiken. Wanneer bekend is dat de teststof zich aan glas hecht, kan dit probleem met behulp van een of meer van de volgende methoden worden beperkt:

- de massa van de aan het glas gesorbeerde teststof en omzettingsproducten bepalen;
- al het glaaswerk aan het eind van de test met oplosmiddel spoelen;
- geformuleerde producten gebruiken (zie ook punt 1.9.2);
- een grotere hoeveelheid co-oplosmiddel gebruiken om de teststof aan het systeem toe te voegen; als een co-oplosmiddel wordt gebruikt, mag dit geen solvolyse van de teststof veroorzaken.

In de bijlagen 2 en 3 worden voorbeelden gegeven van karakteristieke testapparaten, namelijk respectievelijk een doorstroomapparatuur en een systeem van het biometer-type (14). In referentie (15) worden andere geschikte incubatiesystemen beschreven. De experimentele apparatuur moet de uitwisseling van lucht of stikstof en het wegvangen van vluchtige producten mogelijk maken. De afmetingen van de apparatuur moeten zodanig zijn dat aan de eisen van de test wordt voldaan (zie punt 1.9.1). Ventilatie kan gebeuren door zachtjes doorboren of door lucht of stikstof over het wateroppervlak te leiden. In het laatste geval kan het nuttig zijn het water van boven zachtjes te roeren om de zuurstof op stikstof of stikstof beter in het water te verdelen. Er mag geen CO₂-vrije lucht worden gebruikt omdat daardoor de pH van het water kan stijgen. Verstoring van het sediment is in elk geval onwenselijk en moet zo veel mogelijk worden voorkomen. Enigszins vluchtige chemische stoffen moeten in een systeem van het biometer-type bij licht roeren van het wateroppervlak worden getest. Er kunnen ook gesloten systemen met lucht of stikstof boven de vloeistof en interne flacons voor het wegvangen van vluchtige producten worden gebruikt (16). Bij de aërobe test is een periodieke verversing van het gas boven de vloeistof nodig om het zuurstofverbruik door de biomassa te compenseren.

Voor het wegvangen van vluchtige omzettingsproducten kunnen bijvoorbeeld worden gebruikt: kaliumhydroxide- of natriumhydroxide-oplossingen van 1 mol/l voor kooldioxide en ethyleenglycol, ethanolamine of 2% parafl in xyleen voor organische verbindingen. Vluchtige stoffen die onder anaërobe omstandigheden ontstaan, zoals methaan, kunnen bijvoorbeeld met een moleculeze zeef worden opgevangen. Deze vluchtige stoffen kunnen bijvoorbeeld tot CO₂ worden verbrand door het gas bij een temperatuur van 900°C door een met CuO gevulde kwartsbuis te leiden en het gevormde CO₂ in een alkalische absorptieoplossing weg te vangen (17).

2 Aangezien deze alkalische absorptie-oplossingen ook kooldioxide uit de ventilatiehucht absorberen en kooldioxide die bij aërobe experimenten door ademhaling ontstaat, moeten ze geregeld worden vererst om verzadiging en zedoende verlies van hun absorptievermogen te voorkomen.
Er is laboratoriumapparatuur voor de chemische analyse van de teststoef en de omzettingsproducten nodig (gaschromatografie (GLC), hoge-drukvloeistofchromatografie (HPLC), dunne-laagchromatografie (TLC), massaspectroscopie (MS), gaschromatografie-massapectrometrie (GC/MS), vloeistofchromatografie-massapectrometrie (LC/MS), kernspinresonantie (NMR) enz.) met inbegrip van detectiesystemen voor al dan niet radioactief gelabelde chemische stoffen. Wanneer radioactief gelabelde materiaal wordt gebruikt, zijn ook een vloeistofscintillatietafere en een verbrandingsoxidator (voor de verbranding van sedimentmonsters voor de analyse van de radioactiviteit) nodig.

Daarnaast zijn eventueel ook andere standaard laboratoriumapparatuur voor fysisch chemische en biologische bepalingen (zie tabel 1 onder punt 1.8.2.2), glaswerk, chemicaal en reagentia nodig.

1.8.2 Selectie van aquatische sedimenten en aantal sedimenten

De monsternemingsplaatsen moeten aan de hand van het doel van de test in een bepaalde situatie worden gekozen. Bij de keuze van de monsternemingsplaatsen moet rekening worden gehouden met stoffen die wellicht in het verleden door landbouw, industrie of huishoudens in het stroomgebied en het water stroomopwaarts terecht zijn gekomen. Als het sediment in de loop van de voorgaande vier jaar met de teststoef of structureel analoge verbindingen is verontreinigd, mag het niet worden gebruikt.

1.8.2.1 Selectie van het sediment

Voor het aerobe onderzoek worden normaal gesproken twee sedimenten gebruikt (7). Het organisch koolstofgehalte en de textuur van de gekozen sedimenten moeten verschillen. Één sediment moet een hoog organisch koolstofgehalte (2,5-7,5%) en een fijne textuur hebben en het andere sediment een laag organisch koolstofgehalte (0,5-2,5%) en een grove textuur. Het verschil in organisch koolstofgehalte moet normaal gesproken ten minste 2% zijn. Een "fijne textuur" wordt gedefinieerd als een gehalte aan [klei + silt] van >50% en een "grove textuur" wordt gedefinieerd als een gehalte aan [klei + silt] van <50%. Het verschil in gehalte aan [klei + silt] voor de twee sedimenten moet normaal gesproken ten minste 20% zijn. Wanneer een chemische stof ook in het zeewater terecht kan komen, moet ten minste één van de water/sedimentsystemen van mariene herkomst zijn.

Voor het strikt anaerobe onderzoek moeten monsters van twee sedimenten (met het bijbehorende water) uit de anaerobe zones van oppervlaktewateren worden genomen (7). Zowel het sediment als de waterfase moeten voorzichtig worden behandeld en verwoerd zodat er geen zuurstof bij kan komen.

1.8.2.2 Karakterisering van de water/sedimentmonsters

In onderstaande tabel wordt een overzicht gegeven van de sleutelparameters die voor zowel water als sediment moeten worden gemeten en gerapporteerd (met vermelding van de gebruikte methode) en de fase van de test waarin deze parameters moeten worden bepaald. Ter informatie: methoden voor de bepaling van deze parameters worden vermeld in de referenties (18)(19)(20)(21).

Daarnaast kan het van geval tot geval nodig zijn andere parameters te meten en te rapporteren (bijvoorbeeld voor zout water: deeltjes, alkalinité, hardheid, geleidingsvermogen en NO3/Po4 (verhouding en elk apart); voor sedimenten: kation-uitwisselingscapaciteit, waterhoudend vermogen, carbonaat en stikstof en fosfor totaal; voor mariene systeem: zoutgehalte). Een analyse van sedimenten en water op nitraat, sulfuaat, biologisch beschikbaar ijzer en wellicht andere elektroenacceptoren kan ook nuttig zijn bij de beoordeling van redoxomstandigheden, vooral wanneer het gaat om anaerobe omzetting.

[klei + silt] is de minerale fractie van het sediment met een deeltjesgrootte <50 μm.
Meting van parameters voor de karakterisering van water/sedimentmonsters (7)(22)(23)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fase van de testprocedure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monsterneming</td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
<tr>
<td>Herkomst/bron</td>
<td>x</td>
</tr>
<tr>
<td>Temperatuur</td>
<td>x</td>
</tr>
<tr>
<td>pH</td>
<td>x</td>
</tr>
<tr>
<td>TOC</td>
<td></td>
</tr>
<tr>
<td>O₂-concentratie*</td>
<td>x</td>
</tr>
<tr>
<td>Redoxpotential²</td>
<td>x</td>
</tr>
<tr>
<td>Sediment</td>
<td></td>
</tr>
<tr>
<td>Herkomst/bron</td>
<td>x</td>
</tr>
<tr>
<td>Laag/depte</td>
<td>x</td>
</tr>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>Deelbijsoorten-verdeling</td>
<td>x</td>
</tr>
<tr>
<td>TOC</td>
<td>x</td>
</tr>
<tr>
<td>Microbiële biomassa²²</td>
<td>x</td>
</tr>
<tr>
<td>Redoxpotential²</td>
<td></td>
</tr>
</tbody>
</table>

* Uit recent onderzoek is gebleken dat metingen van de zuurstofconcentratie van water en van redoxpotentiaal geen mechanismische of voorspelende waarde hebben voor de groei en ontwikkeling van microbiële populaties in oppervlaktewateren (24)(25). De bepaling van het biochemisch zuurstofverbruik (BZV, bij de monsterneming en aan het begin en aan het einde van de test) en van de concentratie van de micro-/micronutriënten Ca, Mg en Mn (aan het begin en aan het einde van de test) in water en de meting van de totale hoeveelheid N en P in sedimenten (bij de monsterneming en aan het einde van de test) zijn wellicht betere instrumenten voor de interpretatie en evaluatie van de aerobe biotransformatiesnelheid en -route.

** De methode met de microbiële ademhalingsnelheid (26), de funigatiemethode (27) of de telplaatmethode (bijvoorbeeld bacteriën, actinomyceten, fungi en totaal aantal kolonies) voor aerob onderzoek en de vormingsnelheid van methaan voor anaerob onderzoek.

1.8.3 Verzameling, behandeling en opslag

1.8.3.1 Verzameling

Voor de monsterneming van sediment moeten de ontwerp-richtlijnen van de ISO voor de monsterneming van bodemsediment (8) worden gevolgd. Sedimentmonsters worden genomen van de hele bovenste sedimentlaag van 5 tot 10 cm. Het bijbehorende water moet op dezelfde plaats en op hetzelfde tijdstip als het sediment worden verzameld. Voor het anaërobe onderzoek moet het monster van het sediment en het bijbehorende water worden genomen en vervoerd zonder dat er zuurstof bij kan komen (28) (zie punt 1.8.2.1). In de literatuur worden enkele monsternemings-apparaten beschreven (8)(23).
1.8.3.2 Behandeling

Het sediment wordt door filtratie van het water gescheiden en het sediment wordt met behulp van extra water van de locatie, dat vervolgens wordt weggegooid, nat gezeefd over een zeef van 2 mm. Vervolgens worden bekende hoeveelheden sediment en water in de gewenste verhouding (zie punt 1.9.1) in incubatiekolven gemengd en voorbehouden voor de acclimatiseringstijd (zie punt 1.8.4). Voor het anaërobe onderzoek moeten alle bewerkingen worden uitgevoerd zonder dat er zuurstof bij kan komen (29)(30)(31)(32)(33).

1.8.3.3 Op slag

Het gebruik van verse monsters sediment en water wordt ten zeerste aanbevolen, maar als opslag nodig is, moeten sediment en water volgens bovenstaande beschrijving worden gezet en samen in een laag water (6-10 cm) in het donker bij 4 ± 2°C gedurende maximaal 4 weken worden opgeslagen (7)(8)(23). Monsters die voor aërobe onderzoek worden gebruikt, moeten zodanig worden bewaard dat er gemakkelijk lucht bij kan komen (bijvoorbeeld in open haken), terwijl monsters voor anaërobe onderzoek zodanig moeten worden bewaard dat er geen zuurstof bij kan komen. Bevriezing van sediment en water en uitdroging van het sediment tijdens het vervoer en de opslag moeten worden voorkomen.

1.8.4 Voorbehandeling van de sediment/watermonsters voor de test

Voordat de teststof wordt toegevoegd, wordt elk sediment/watermonster geacclimatiseerd. Daartoe worden de monsters onder precies dezelfde omstandigheden als die van de incubatie tijdens de test in het incubatieapparaat gebracht. Bij het test zal worden gebruikt (zie punt 1.9.1). De acclimatiseringstijd is de tijd die het systeem nodig heeft om redelijk stabil te worden, zoals dit tot uiting komt in de pH, de zuurstofconcentratie in het water, de redoxpotentieaal van het sediment en het water en de macroscopische scheidings van de fases. De acclimatiseringstijd duurt normaal gesproken een tot twee weken en mag niet meer dan vier weken duren. De resultaten van de tijdens deze periode uitgevoerde bepalingen moeten worden geraapporteerd.

1.9 UITVOERING VAN DE TEST

1.9.1 Testomstandigheden

De test wordt in het incubatieapparaat (zie punt 1.8.1) uitgevoerd met een volumeverhouding water/sediment tussen 3:1 en 4:1 en een sedimentlaag van 2,5 cm (± 0,5 cm). Een minimum hoeveelheid van 50 g sediment (droog gewicht) per incubatie tijdens wordt.

De test wordt in het donker bij een constante temperatuur tussen 16°C en 30°C uitgevoerd. Een temperatuur van 20 ± 2°C is geschikt. Daarnaast kan waar nodig, afhankelijk van de informatie die de test moet opleveren, van geval tot geval ook een lagere temperatuur (bijvoorbeeld 10°C) worden overwogen. De incubatietermperatuur wordt gemonitord en geraapporteerd.

4 Uit recent onderzoek is gebleken dat opslag bij 4°C tot een afname van het organisch koolstofgehalte van het sediment kan leiden, hetgeen mogelijk een vertraging in de incubatie kan veroorzaken (34).
1.9.2 Behandeling en toevoeging van de teststof

Er wordt één concentratie van de teststof gebruikt. Voor gewasbeschermingsmiddelen die rechtstreeks in wateren worden gebracht, moet de op de etikettering vermelde maximale dosering als de maximale toe te dienen hoeveelheid worden gebruikt, berekend op basis van het oppervlak van het water in de houder. In alle andere gevallen wordt de te gebruiken concentratie afgeleid van de geraamde emissie in het milieu. Er moet voor worden gezorgd dat de concentratie van de teststof voldoende is om de omzetting route en de vorming en afbraak van de omzettingproducten te kunnen karakteriseren. Het kan nodig zijn hogere doses te gebruiken (bijvoorbeeld een factor 10 hoger), wanneer de concentraties van de teststof aan het begin van de test dicht bij de aantoonbaarheidsgraads liggen en/of wanneer belangrijke omzettingproducten niet gemakkelijk kunnen worden aangetoond wanneer hun concentratie 10% van de oorspronkelijk gebruikte hoeveelheid teststof bedraagt. Als er echter hogere testconcentraties worden gebruikt, mogen deze geen significante schadelijke effecten hebben op de microbiëleactiviteit van het water/sedimentsysteem. Om voor een constante concentratie van de teststof in houders met verschillende afmetingen in te zetten, kan het nodig zijn de hoeveelheid toe te voegen materiaal aan te passen op basis van de verhouding tussen de diepte van de waterkolom in de houder en de waterdiepte in het veld (er wordt uitgegaan van een diepte van 100 cm, maar ook een andere diepte kan worden gebruikt). Voor een voorbeeld van een dergelijke berekening wordt verwezen naar bijlage 4.

In het ideale geval wordt de teststof als waterige oplossing aan de waterfase van het testsytem toegevoegd. Als dit onvermijdelijk is, mogen kleine hoeveelheden met water mengbare oplosmiddelen (zoals acetoon of ethanol) voor de toevoeging en verdeling van de teststof worden gebruikt, maar deze hoeveelheden mogen niet groter zijn dan 1% (v/v) en geen schadelijke effecten op de microbiëleactiviteit van het teststystem hebben. De bereiding van de waterige oplossing van de teststof moet voorzichtig gebeuren - het gebruik van een generatorkolom of menging vooraf kan nodig zijn om voor een volledige homogeniteit te zorgen. Na de toevoeging van de waterige oplossing aan het testsytem wordt aanbevolen de waterfase voorzichtig te mengen, waarbij het sediment zo min mogelijk wordt verstoord.

Het gebruik van geformuleerde producten wordt normaal gesproken afgeraden, aangezien de bestanddelen van de formuleering de verdeling van de teststof en/of de omzettingproducten over de water- en sedimentfase kunnen beïnvloeden. Voor slecht in water oplosbare stoffen kan het gebruik van geformuleerd materiaal echter een geschat alternatief zijn.

Het aantal incubatiehouders is afhankelijk van het aantal monsternemingstijdstippen (zie punt 1.9.3). Er moeten zo veel testsystemen beschikbaar zijn dat er op elk monsternemingstijdstip twee systemen uit de proef kunnen worden genomen. Wanneer er controle-opstellingen voor elk aquatisch sedimentsysteem worden gebruikt, mogen deze niet met de teststof worden behandeld. De controle-opstellingen kunnen worden gebruikt om aan het eind van het onderzoek de microbiële biomassa van het sediment en de totale hoeveelheid organische koolstof in het water en het sediment te bepalen. Twee controle-opstellingen (d.w.z. één voor elk aquatisch sediment) kunnen worden gebruikt voor de monitoring van de versoepel parameters in het sediment en het water gedurende de acclimatiseeringsperiode (zie de tabel onder punt 1.8.2.2). Wanneer de teststof met behulp van een oplosmiddel wordt toegevoegd, zijn twee extra controle-opstellingen nodig om de schadelijke effecten daarvan op de microbiëleactiviteit van het testsytem te meten.

1.9.3 Duur van de test en monsterneming

Het experiment mag normaal gesproken niet langer duren dan 100 dagen (6) en moet worden voortgezet totdat de afbraakroute en het verdelingspatroon sediment/water vaststaan of 90% van de teststof door omzetting en/of vervluchtiging is verdwenen. Er moeten ten minste zes monsternemingstijdstippen zijn (inclusief het beginpunt) en een facetatief vooronderzoek (zie punt 1.9.4) kan worden gebruikt om een adequaat monsternemingsschema vast te stellen en de duur van de test te bepalen, tenzij er uit eerder onderzoek voldoende gegevens over de teststof beschikbaar zijn. Voor hydrolobe teststoffen kunnen extra monsternemingspunten tijdens de beginfase van het onderzoek nodig zijn om de snelheid van de verdeling over de sediment- en de waterfase te bepalen.

* Een test met een tweede concentratie kan nuttig zijn voor chemische stoffen die langs verschillende routes in het oppervlaktewater terechtkomen en waarbij dit tot significant verschillende concentraties leidt, zolang de laagste concentratie met een aflopende nauwkeurigheid kan worden geanalyseerd.
Op geschikte monsternemingstijdstippen worden hele incubatiehouders (in duplo) voor analyse uit de test genomen. Het sediment en het bovenstaande water worden apart geanalyseerd.6 Hiert bovenstaande water wordt voorzichtig verwijderd, waarbij het sediment zo min mogelijk wordt verstoord. Bij de extractie en karakterisering van de teststof en de omzettingsproducten worden adequate analyseprocedures gevolgd. Er moet op worden gelet dat ook materiaal dat aan de incubatiehouder of aan de verbindingsbuizen voor het wegvangen van vluchtige stoffen is geadviseerd, wordt verwijderd.

1.9.4 Facultatief vooronderzoek

Als de duur en het monsternemingsschema niet aan de hand van ander relevant onderzoek aan de teststof kunnen worden bepaald, kan een facultatief vooronderzoek nuttig zijn, dat onder dezelfde testomstandigheden wordt uitgevoerd als het definitieve onderzoek. Als er een vooronderzoek wordt uitgevoerd, moeten de relevante experimentele omstandigheden en resultaten daarvan kort worden gerapporteerd.

1.9.5 Metingen en analyse

Voor elk monsternemingstijdstip wordt de concentratie van de teststof en de omzettingsproducten in het water en het sediment gemeten en gerapporteerd (als concentratie en als percentage van de toegevoegde hoeveelheid). In het algemeen moeten omzettingsproducten die op enig monsternemingstijdstip in grotere hoeveelheden dan 10% van de toegevoegde radioactiviteit in het hele water/sedimentsysteem worden bepaald, worden geïdentificeerd tenzij er een redelijke motivering is om dit niet te doen. Ook voor omzettingsproducten waarvan de concentratie gedurende het onderzoek voortdurend stijgt, moet identificatie worden overwogen, zelfs als hun concentratie niet hoger wordt dan bovengenoemde grenswaarde, aangezien dit op persistentie kan wijzen. Deze aspecten moeten van geval tot geval worden bekeken en in het verslag moet een motivering van de conclusies worden opgenomen.

Voor elk monsternemingstijdstip worden ook de resultaten van systemen voor het wegvangen van gassen en vluchtige stoffen (CO₂ en bijvoorbeeld vluchtige organische verbindingen) gerapporteerd. Ook de mineralisatiesnelheden worden gerapporteerd. Voor elk monsternemingstijdstip worden de niet-extraheerbare (gebonden) residuen in sediment gerapporteerd.

2 GEGEVENS

2.1 BEHANDELING VAN DE RESULTATEN

Voor elk monsternemingstijdstip wordt de totale massabalans of de recovery (zie punt 1.7.1) van de toegevoegde radioactiviteit berekend. De resultaten worden als percentage van de toegevoegde radioactiviteit gerapporteerd. De verdeling van de radioactiviteit tussen water en sediment wordt voor elk monsternemingstijdstip als concentratie en als percentage gerapporteerd.

De halveringsstijl, de DT_{50} en eventueel de DT_{95} en de DT_{99} van de teststof worden samen met hun betrouwbaarheidsgrenzen (zie punt 1.7.3) berekend. Informatie over de snelheid waarmee de teststof uit het water en het sediment verdwijnt, kan met behulp van geschikte evaluatiehulpmiddelen worden verkregen. Deze kunnen variëren van het gebruik van kinetiek van de pseudo-eerste orde en empirische technieken voor de bepaling van de optimale curve waarmee grafische of numerieke oplossingen worden toegepast, tot complexere evaluaties met behulp van bijvoorbeeld modellen met een of meer compartimenteren. Voor nadere bijzonderheden wordt verwezen naar de desbetreffende gepubliceerde literatuur (35)(36)(37).

6 Wanneer een snelle heroxidatie van anaërobe omzettingsproducten aannemelijk is, moeten ook bij de monsterneming en analyse anaërobe omstandigheden worden gehandhaafd.
Alle benaderingen hebben hun sterke en zwakke punten en lopen c.q. complexiteit sterk uiteen. Wanneer wordt uitgegaan van kinetiek van de eerste orde, worden de afbraak- en distributieprocessen wellicht te zeer vereenvoudigd, maar wanneer dit mogelijk is levert dit een parameter op (de snelheidsconstante of halveringstijd) die gemakkelijk te begrijpen is en bruikbaar is voor simulatiemodellen en de berekening van geraamde milieuconcentraties. Empirische benaderingen of lineaire transformaties kunnen leiden tot curves die beter bij de gegevens aansluiten en maken derhalve een betere bepaling van de halveringstijd, de DT₅₀ en eventueel de DT₅ en de DT₉ₐ mogelijk. Het nut van de afgeleide constanten is echter beperkt. Compartimentmodellen kunnen een aantal nuttige constanten voor een risico考评 opgeleveren, die de afbraakniveau in verschillende compartimenten en de vorming van de chemische stof beschrijven. Ze moeten ook worden gebruikt voor de bepaling van de snelheidsconstante voor de vorming en afbraak van belangrijke omzettingsproducten. In alle gevallen moet er een motivering voor de keuze van de methode worden gegeven en moet degene die het experiment uitvoert grafisch en/of statistisch aantonen hoe goed de curve en de gegevens bij elkaar aansluiten.

3 RAPPORTAGE

3.1 TESTVERSLAG

In het testverslag moet de volgende informatie worden opgenomen:

De teststof:
— de triviale naam, de chemische naam, het CAS-nummer, de structuurformule (waarin de plaats van het label of de labels wordt aangegeven als radioactief gelabeld materiaal wordt gebruikt) en relevante fysisch-chemische eigenschappen;
— de zuiverheid (verontreinigingen) van de teststof;
— de radiochemische zuiverheid van een gelabelde stof en de moleaire activiteit (indien van toepassing).

Referentiestoffen:
— de chemische naam en de structuur van referentiestoffen die voor de karakterisering en/of de identificatie van omzettingsproducten worden gebruikt.

Voor de test gebruikte sedimenten en wateren:
— de locatie en een beschrijving van de monsternemingsplaatsen) voor het aquatische sediment met indien mogelijk een vermelding van de verontreiniging in het verleden;
— alle informatie over de verzameling, de opslag (als ze zijn opgeslagen) en de acclimatisering van water/sedimentsystemen;
— de kenmerken van de sediment/watermonsters, zoals vermelk in de tabel onder punt 1.8.2.2.

De testomstandigheden:
— het gebruikte testsysteem (bijvoorbeeld doorstromingsysteem, biometer-type, wijze van ventilatie, roermethode, watervolume, sedimentmassa, dikte van de water- en de sedimentlaag, afmetingen van de testhouders enz.);
— de toevoeging van de teststof aan het systeem; gebruikte concentratie bij de test, aantal replicaties en controlebepalingen en de wijze waarop de teststof is toegevoegd (bijvoorbeeld een eventueel gebruik van een oplosmiddel) enz.
— de incubatietemperatuur;
— de monsternemingsstijlstenen;
— de extractiemethoden met de efficiëntie en de analysemethoden met de aantoonbaarheidsgrens;
— de methoden voor de karakterisering/identificatie van de omzettingsproducten;
— afwijkingen van het testprotocol of de testomstandigheden tijdens het onderzoek.

De resultaten:
— onbewerkte gegevens van representatieve analyses (alle onbewerkte gegevens moeten in het GLP-archief worden bewaard);
— de herhaalbaarheid en gevoeligheid van de gebruikte analysemethoden;
— de recovery (onder punt 1.7.1 wordt vermeld welke percentages voor een geldig onderzoek gehaald moeten worden);
— tabellen met de resultaten, uitgedrukt als percentage van de gebruikte dosis en in mg kg⁻¹ in het water, het sediment en het totale systeem (alleen percentage), voor de teststof en eventueel de omzettingsproducten en de niet-extracteerbare radioactiviteit;
— de massaalans gedurende en aan het eind van het onderzoek;
— een grafische voorstelling van de omzetting in het water, in het sediment en in het totale systeem (met inbegrip van de mineralisatie);
— de mineralisatiesnelheid;
— de halveringstijd, de DT₁₀ en eventueel de DT₅₀ en de DT₉₀ voor de teststof en eventueel de belangrijke omzettingsproducten, met vermelding van de betrouwbaarheidsgrenzen, in het water, in het sediment en in het totale systeem;
— een evaluatie van de omzettingskinetiek van de teststof en eventueel de belangrijke omzettingsproducten;
— de voorgestelde omzettingsroute, indien van toepassing;
— een bespreking van de resultaten.

4 REFERENTIES

(1) BBA-Guidelines for the examination of plant protectors in the registration process. (1990), Part IV, Section 5.1: Degradability and fate of plant protectors in the water/sediment system. Germany.

BIJLAGE 1

RICHTSNOEREN VOOR HET AÉROBE EN HET ANAÉROBE TESTSSTEEM

Het aërobe testsysteem
Het in deze testmethode beschreven aërobe testsysteem bestaat uit een aërobe waterlaag (met een zuurstofconcentratie die normaal tussen 7 en 10 mg.l⁻¹ ligt) en een sedimentlaag die aan het oppervlak aëroob en onder het oppervlak anaëroob is (met een gemiddelde redoxpotentiaal (Eₜₐ₅) in het anaërobe gedeelte van het sediment die normaal tussen -80 en -190 mV ligt). In elke incubatie-opstelling wordt vochtige lucht over het wateroppervlak geleid om voor voldoende zuurstof in de ruimte boven het water te zorgen.

Het anaërobe testsysteem
Voor het anaërobe testsysteem is de testprocedure in grote lijnen gelijk aan de voor het aërobe systeem geschetste procedure, behalve dat in elke incubatie-opstelling vochtige stikstof over het wateroppervlak wordt geleid om voor voldoende stikstof in de ruimte boven het water te zorgen. Het sediment en het water worden als anaëroob beschouwd zodra de redoxpotentiaal (Eₜₐ₅) lager dan -100 mV is.

Bij de anaërobe test wordt voor de bepaling van de mineralisatie ook het vrijgekomen kooldioxide en methaan gemeten.
BIJLAGE 2

VOORBEELD VAN EEN DOORSTROOMOESTELLING

Veiligheidsval, leeg
Val 1:
ethyleenglycol om organische vluchtige stoffen weg te vangen
Val 2:
0,1 M zwavelzuur om alkalische vluchtige stoffen weg te vangen
Val 3 en 4:
2M natriumhydroxide om CO2 en andere zure vluchtige stoffen weg te vangen

Opzet voor afbraak aquatisch sediment
BIJLAGE 3

VOORBEELD VAN EEN BIOMETER-APPARAAT

Systeem voor absorptie van CO₂ en voor adsorptie van organische vluchtige stoffen (doorlatbaar voor O₂)

Opzet voor CO₂-extractie

Opening voor bepaling zuurstof in H₂O

Opening voor bepaling gas (me' tussenschot gesloten)

Roerder

Water

Sediment

Magnetroerder
BIJLAGE 4

VOORBEELD VOOR DE BEREKENING VAN DE HOEVEELHEID TESTSTOF DIE AAN EEN TESTHOUDER WORDT TOEGEVOEGD

Inwendige diameter van de cilinder: = 8 cm
Diepte waterkolom zonder sediment: = 12 cm
Oppervlak waterspiegel: 3,142 x 42 = 50,3 cm²
Toe te voegen hoeveelheid: 500 g teststof/ha komt overeen met 5 µg/cm²
Totaal in µg: 5 x 50,3 = 251,5 µg
Aanpassing van de hoeveelheid op basis van een diepte van 100 cm:
12 x 251,5 ÷ 100 = 30,18 µg
Volume van de waterkolom: 50,3 x 12 = 603 ml
Concentratie in water: 30,18 ÷ 603 = 0,050 µg/ml of 50 µg/l