LĒMUMI

KOMISIJAS ISTENOŠANAS LĒMUMS

(2012. gada 28. februāris),

ar ko pieņem labāko pieejamo tehnisko paņēmienu (LPTP) secinājumus stikla ražošanas nozarē saskaņā ar Eiropas Parlamenta un Padomes Direktīvu 2010/75/ES par rūpnieciskajām emisijām

(izņemts ar dokumenat numuru C(2012) 865)

(Dokuments attiecas uz EEZ)

(2012/134/ES)

EIROPAS KOMISIJA,

ņemot vērā Līgumu par Eiropas Savienības darbību,

ņemot vērā Eiropas Parlamenta un Padomes 2010. gada 24. novembra Direktīvu 2010/75/ES par rūpnieciskajām emisijām (piesārņojuma integrēta novēršana un kontrolē) (pārstrādāta versija) (1) un jo ipaši tās 13. panta 5. punktu,

tā kā:

(2) Saskaņā ar Direktīvas 2010/75/ES 13. panta 2. punktu atbilstošas informācijas apmaiņai ir jābūt saistītai ar iekārtu darbību un tehniskajiem paņēmieniem attiecībā uz emisijām, kas attiecinātā gadījumā izteikta kā ieterminēta vai ilgtermiņa videi piemērotā rādītājs, un saistītajām atsauces nosacījumiem, patēriņu un izveidojot vielu, ūdens patēriņu, enerģijas izmantošanu un aiztīrītumu radīšanu; un izmantojot tehniskajiem paņēmieniem, saistīto monitoringu, iedarbību starp viendomu, ekonomisko un tehnisko pamatojumu un to attīstību; un labākajiem pieejamajiem tehniskajiem paņēmieniem un jaunajiem tehniskajiem paņēmieniem, kas apzināti, ņemot vērā minētās direktīvas 13. panta 2. punkta a) un b) apakšpunkta minētās jautājumus.

Direktīvas 2010/75/ES 3. panta 12. punktā definētie „LPTP secinājumi” ir LPTP atsaucu dokumentu pamatelementi, un tajā ietvertas tās LPTP atsaucu dokumenta daļas, kurās izklāstīti secinājumi par labākajiem pieejamaļiem tehniskajiem paņēmieniem, to apraksts, informācija to piemērojamās izvērtēšanai, ar labākajiem pieejamaļiem tehniskajiem paņēmieniem saistītajās emisijās līmenē, saistītā uzraudzība, saistītā patēriņa līmeni un, vajadzības gadījumā, atbilstīgi teritorijas sanācijas pasākumi.

PIELIKUMS

LABĀKO PIEEJAMO TEHNISKO PAŅĪMIENU (LPTP) SECINĀJUMI PAR STIKLA RAŽOŠANU

DARBĪBAS JOMA ... 6
DEFINĪCIJAS ... 6
VISPĀRĪGI APSVERUMI .. 6
Vidējošanas periodi un bāzes apstākļi gaisa emisijām ... 6
Pārvēršana skābekļa bāzes koncentrācijā ... 7
Koncentrāciju pārvēršana konkrētās emisijās masas daļu izteiksmē 8
Dažu gaisa piesārņotāju definīcijas .. 9
Vidējošanas periodi noteikšanas izvadei ... 9
1.1. Vispārīgie LPTP secinājumi par stikla ražošanas nozari .. 9
1.1.1. Vides apsaimniekošanas sistēmas ... 9
1.1.2. Energoefektivitāte ... 10
1.1.3. Materiālu uzglabāšana un apstrāde ... 11
1.1.4. Vispārīgi primārie paņēmieni ... 12
1.1.5. Stikla ražošanas procesa raditās emisijas ādenī ... 14
1.1.6. Atkritumi, kas veidojas stikla ražošanas procesos ... 16
1.1.7. Stikla ražošanas procesa raditais trokšnis .. 17
1.2. LPTP secinājumi par taras stikla ražošanu ... 17
1.2.1. Putekļu emisijas no kausēšanas krāsnīm .. 17
1.2.2. Kausēšanas krāšņu izdalītie slāpekļa oksīdi (NOX) ... 17
1.2.3. Kausēšanas krāšņu izdalītie sēra oksīdi (SOX) .. 20
1.2.4. Kausēšanas krāšņu izdalītie ādeļraža hlorīds (HCl) un ādeļraža fluorīds (HF) 20
1.2.5. Kausēšanas krāšņu izdalītie metāli ... 21
1.2.6. Emisijas, kas rodas pakārtotu procesu laikā ... 21
1.3. LPTP secinājumi par lokšņu stikla ražošanu ... 23
1.3.1. Putekļu emisijas no kausēšanas krāsnīm .. 23
1.3.2. Kausēšanas krāšņu izdalītie slāpekļa oksīdi (NOX) ... 23
1.3.3. Kausēšanas krāšņu izdalītie sēra oksīdi (SOX) .. 25
1.3.4. Kausēšanas krāšņu izdalītie ādeļraža hlorīds (HCl) un ādeļraža fluorīds (HF) 26
1.3.5. Kausēšanas krāšņu izdalītie metāli ... 26
1.3.6. Emisijas, kas rodas pakārtotu procesu laikā ... 27
1.4. LPTP secinājumi par vienlaidu stikšķiedras ražošanu .. 28
1.4.1. Putekļu emisijas no kausēšanas krāsnim .. 28
1.4.2. Kausēšanas krāšņu izdalītie slapeķļa oksīdi (NO₃) ... 29
1.4.3. Kausēšanas krāšņu izdalītie sēra oksīdi (SO₂) .. 29
1.4.4. Kausēšanas krāšņu izdalītaiš ūdenraža hlorīds (HCl) un ūdenraža fluorīds (HF) .. 30
1.4.5. Kausēšanas krāšņu izdalītie metāli ... 31
1.4.6. Emisijas, kas rodas pakārtotu procesu laikā ... 31
1.5. LPTP secinājumi par šķīrņu stikla ražošanu ... 32
1.5.1. Putekļu emisijas no kausēšanas krāsnim .. 32
1.5.2. Kausēšanas krāšņu izdalītie slapeķļa oksīdi (NO₃) ... 33
1.5.3. Kausēšanas krāšņu izdalītie sēra oksīdi (SO₂) .. 35
1.5.4. Kausēšanas krāšņu izdalītaiš ūdenraža hlorīds (HCl) un ūdenraža fluorīds (HF) .. 35
1.5.5. Kausēšanas krāšņu izdalītie metāli ... 36
1.5.6. Emisijas, kas rodas pakārtotu procesu laikā ... 38
1.6. LPTP secinājumi par speciālā stikla ražošanu ... 39
1.6.1. Putekļu emisijas no kausēšanas krāsnim .. 39
1.6.2. Kausēšanas krāšņu izdalītie slapeķļa oksīdi (NO₃) ... 39
1.6.3. Kausēšanas krāšņu izdalītie sēra oksīdi (SO₂) .. 42
1.6.4. Kausēšanas krāšņu izdalītaiš ūdenraža hlorīds (HCl) un ūdenraža fluorīds (HF) .. 42
1.6.5. Kausēšanas krāšņu izdalītie metāli ... 43
1.6.6. Emisijas, kas rodas pakārtotu procesu laikā ... 43
1.7. LPTP secinājumi par minerālvates ražošanu ... 44
1.7.1. Putekļu emisijas no kausēšanas krāsnim .. 44
1.7.2. Kausēšanas krāšņu izdalītie slapeķļa oksīdi (NO₃) ... 45
1.7.3. Kausēšanas krāšņu izdalītie sēra oksīdi (SO₂) .. 46
1.7.4. Kausēšanas krāšņu izdalītaiš ūdenraža hlorīds (HCl) un ūdenraža fluorīds (HF) .. 47
1.7.5. Akmens vates kausēšanas krāšņu izdalītaiš sērūdegradis (H₂S) 48
1.7.6. Kausēšanas krāšņu izdalītie metāli ... 48
1.7.7. Emisijas, kas rodas pakārtotu procesu laikā ... 49
1.8. LPTP secinājumi par augstas temperatūras izolācijas šķiedru (HTIW) ražošanu .. 50
1.8.1. Putekļu emisijas no kausēšanas un pakārtotiem procesiem 50
1.8.2. Kausēšanas un pakārtotu procesu laikā izdalītie slapeķļa oksīdi (NO₃) 51
1.8.3. Kausēšanas un pakārtotu procesu laikā izdalītie sēra oksīdi (SO₂) 52
1.8.4. Kausēšanas krāšņu izdalītās ūdeņraža hlorīds (HCl) un ūdeņraža fluorīds (HF) 52
1.8.5. Kausēšanas krāšņu un pakārtotu procesu izdalītie metāli .. 53
1.8.6. Gaistoši organiskie savienojumi pakārtotos procesos .. 53
1.9. LPTP secinājumi par frites ražošanu .. 54
1.9.1. Putekļu emisijas no kausēšanas krāsnīm .. 54
1.9.2. Kausēšanas krāšņu izdalītie slāpekļa oksīdi (NOₓ) .. 54
1.9.3. Kausēšanas krāšņu izdalītie sēra oksīdi (SO₂) ... 55
1.9.4. Kausēšanas krāšņu izdalītās ūdeņraža hlorīds (HCl) un ūdeņraža fluorīds (HF) 56
1.9.5. Kausēšanas krāšņu izdalītie metāli .. 56
1.9.6. Emisijas, kas rodas pakārtotu procesu laikā .. 57
1.9.7. Glosārijs .. 58
1.10. Metožu apraksts 58
1.10.1. Putekļu emisijas .. 58
1.10.2. NOₓ emisijas ... 58
1.10.3. SOₓ emisijas .. 60
1.10.4. HCl, HF emisijas .. 60
1.10.5. Metālu emisijas ... 60
1.10.6. Jauktās gāzveida emisijas (piemēram, SOₓ, HCl, HF, bora savienojumi) 61
1.10.7. Jauktās emisijas (cietās un gāzveida daļās) .. 61
1.10.8. Emisijas, kas rodas griestanas, slīpēšanas, pulēšanas laikā ... 61
1.10.9. H₂S, gaistošu organisko savienojumu emisijas .. 62
DARBĪBAS JOMA
Šie LPTP secinājumi attiecas uz Direktīvas 2010/75/ES i pielikumā minēto rūpniecisko darbību, proti:

— 3.3. Stikla ražošana, tostarp stiklšķiedras ražošana, ar kausēšanas jaudu virs 20 tonnām dienā;
— 3.4. Minerālvielu kausēšana, tostarp minerālšķiedru ražošana, ar kausēšanas jaudu virs 20 tonnām dienā.

Šie LPTP secinājumi neattiecas uz šādām darbībām:

— šķidrā stikla ražošana, uz ko attiecas atsaucu dokumentus "Neorganisko pamatvielu – cietvielu un citu vielu ražošana" (NPV-C);
— polikristālu šķiedras ražošana;
— spoguļa ražošana, uz kuru attiecas atsaucu dokumentus "Virsmu apstrādātās vietas izstāde".

Citi atsaucu dokumenti, kuri attiecas uz šajos LPTP secinājumos aplūkoto darbību:

<table>
<thead>
<tr>
<th>Atsaucu dokumenti</th>
<th>Darbība</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissijas no uzglabāšanas vietām (EFS)</td>
<td>Izejvielu uzglabāšana un pārviestošana</td>
</tr>
<tr>
<td>Energoefektivitāte (ENE)</td>
<td>Visspārīgā energoefektivitāte</td>
</tr>
<tr>
<td>Ekonomikas un vides faktoru mijiedarbība (ECM)</td>
<td>Metožu ekonomisko un vides faktoru mijiedarbība</td>
</tr>
<tr>
<td>Vispārīgie monitoringa principi (MON)</td>
<td>Emisiju un patēriņa monitoringa</td>
</tr>
</tbody>
</table>

Šajos LPTP secinājumos uzskaitītie un aprakstītie tehniskie paņēmieni nav ne obligāti, ne pilnīgi. Drikst izmantot citus paņēmienus, kas nodrošina vismaz līdzvērtīgu vides aizsardzības līmeni.

DEFINĪCIJAS
Šajos LPTP secinājumos izmanto šādas definīcijas:

<table>
<thead>
<tr>
<th>Izmantotais termins</th>
<th>Definīcija</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jauna iekārta</td>
<td>Iekārta, kas uzstādīta montāžas vietā pēc šo LPTP secinājumu publicēšanas vai pēc pilnīgās iekārtas nomaiņas, iespējams, ar esošu pamata montāžas vietā pēc šo LPTP secinājumu publicēšanas.</td>
</tr>
<tr>
<td>Esoša iekārta</td>
<td>Iekārta, kas nav jauna iekārta.</td>
</tr>
<tr>
<td>Jauna krāsns</td>
<td>Krāsns, kas uzstādīta montāžas vietā pēc šo LPTP secinājumu publicēšanas vai pēc krāsnis pilnīgas pārējā pēc šo LPTP secinājumu publicēšanas.</td>
</tr>
<tr>
<td>Parasta krāsņa pārējs</td>
<td>Pārējs, ko veic starp darbmūža cikliem bez būtiskām prasībām vai tehnoloģijas izmanojām, kuras laikā krāsns karkass netiek būtiski pārveidots un kopumā tiek saklabauti jau esošie krāsni izmēri. Krāsņus ugunsizturīgās detalās un, ja nepieciešams, regeneratorus attauno, pilnībā vai dalēji noņem materialu.</td>
</tr>
<tr>
<td>Krāsņa pilnīga pārējs</td>
<td>Pārējs, kuras laikā būtiski mainās prasības krāsnis vai tehnoloģija, kā arī krāsņ un ar to saistītais aprīkojums tiek būtiski pārveidots vai noņemt.</td>
</tr>
</tbody>
</table>

VISPĀRĪGI APSVĒRUMI

Vidējošanas periodi un bāzes apstākļi gaisa emisijām
1. tabula

<table>
<thead>
<tr>
<th>Kausēšana</th>
<th>Mērvienība</th>
<th>Bāzes apstākļi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipveida kausēšanas krāsnis ar nepārtrauktas darbības tīgeliem</td>
<td>mg/Nm³</td>
<td>Skābekļa tīlumpkoncentrācijā – 8 %</td>
</tr>
<tr>
<td>Tipveida kausēšanas krāsnis ar periodisku darbības tīgeliem</td>
<td>mg/Nm³</td>
<td>Skābekļa tīlumpkoncentrācijā – 13 %</td>
</tr>
<tr>
<td>Ar skābekli un kurināmo darbināmas krāsni</td>
<td>kg uz tonnu izkausēta stikla</td>
<td>Emisijas līmeņu izteiksmes, ko mēra kā mg/Nm³ attiecībā pret skābekļa bāzes koncentrāciju, neattiecas.</td>
</tr>
<tr>
<td>Elektriskā krāsnis</td>
<td>mg/Nm³ vai kg uz tonnu izkausēta stikla</td>
<td>Emisijas līmeņu izteiksmes, ko mēra kā mg/Nm³ attiecībā pret skābekļa bāzes koncentrāciju, neattiecas.</td>
</tr>
<tr>
<td>Frites kausēšanas krāsni</td>
<td>mg/Nm³ vai kg uz tonnu izkausētas frites</td>
<td>Koncentrācija attiecas uz skābekļa tīlumpkoncentrāciju 15 %. Ja krāsnī darbina ar gaisu un gāžveida kurināmo, LPTP-SEL izsaka kā emisijas koncentrāciju (mg/Nm³). Ja krāsnī darbina tikai ar skābekli un kurināmo, LPTP-SEL izsaka kā konkrētu masas daļu emisiju (kg uz tonnu izkausētas frites). Ja krāsnī darbina, izmantojot ar skābekli bagātinātu gaisu un kurināmo, LPTP-SEL izsaka kā emisijas koncentrāciju (mg/Nm³) vai kā konkrētu masas daļu emisiju (kg uz tonnu izkausētas frites).</td>
</tr>
<tr>
<td>Visu veidu krāsnis</td>
<td>kg uz tonnu izkausēta stikla</td>
<td>Konkrētā masas daļu emisijas attiecas uz vienu tonnu izkausētā stikla.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ar kausēšanu nesaistita darbība, tostarp pakārtošanas procesi</th>
<th>Mērvienība</th>
<th>Bāzes apstākļi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visi procesi</td>
<td>mg/Nm³</td>
<td>Attiecībā uz skābekli neveic nekādas korekcijas.</td>
</tr>
<tr>
<td>Visi procesi</td>
<td>kg uz tonnu stikla</td>
<td>Konkrētā masas daļu emisijas attiecas uz vienu tonnu saražotā stikla.</td>
</tr>
</tbody>
</table>

Pārvēršana skābekļa bāzes koncentrācijā

Formula emisijā koncentrācijas aprēķināšanai atbilstoši skābekļa bāzes līmenim (skatīt 1. tabulu) ir šāda.

\[
E_R = \frac{21 - O_R}{21 - O_M} \times E_M
\]

Kur:

- \(E_R \) (mg/Nm³): emisijā koncentrācija, kas ir koriģēta atbilstoši skābekļa bāzes līmenim \(O_R \);
- \(O_R \) (vol %): skābekļa bāzes līmenis;
- \(E_M \) (mg/Nm³): emisijā koncentrācija saskaņā ar izmērīto skābekļa līmeni \(O_M \);
- \(O_R \) (vol %): izmērītās skābekļa līmenis.
Konzentrāciju pārvēršana konkrētās emisijās masas daļu izteiksmē

LPTP-SEL, kas 1.2.–1.9. nolādā ir norādīti kā konkrētas emisijas masas daļu izteiksmē (kg uz tonnu izkausēta stikla), pamatā ir aprēķinātī turpmāk aprakstītājā veidā, izņemot ar skābekli un kurināmo darbināmas krāsnis un atsevišķos gadījumos – elektriskās kausēšanas krāsnis, attiecībā uz kuram kg uz tonnu izkausēta stikla snieg tie LPTP-SEL ir atvasināti no konkrētiem paziņotajiem datiem.

Turpmāk ir sniegt aprēķina metode, kuru izmantoja koncentrāciju pārvēršanai konkrētās emisijās masas daļu izteiksmē.

Konkrēta emisija masas daļās (kg uz tonnu izkausēta stikla) = konversijas koeficients × emisiju koncentrācija (mg/Nm³),

kur: konversijas koeficients = (Q/P) × 10⁻⁶

kur Q = atgāzu tilpums Nm³/h,
P = izkausēta stikla vilkšanas ātrums tonnās/h.

Atgāzu tilpumu (Q) nosaka pēc konkrēta energijas patēriņa, kurināmā veida un oksidētāja (gaiss, ar skābekli bagātināts gaiss un skābeklis ar tīru, kas atkarīga no radošanas procesa). Enerģijas patēriņš ir kompleksā veidā atkarīgs no (galvenokārt) krāsnis veida, stikla veida un lausku procentuālā daudzuma.

Tomēr mijiedarību starp koncentrāciju un konkrētu masas daļu plūsmu var ietekmēt daudzi faktori, tostarp:
— krāsnis veids (gaisa iesildīšanas temperatūra, kausēšanas tehnoloģija);
— ražotā stikla veids (kausēšanas enerģētiskās prasības);
— apkures veids (fosilais kurināmais/papildu elektriskā apkure);
— fosilā kurināmā veids (šķidrās, gāzveida);
— oksidētāja veids (skābeklis, gaiss, ar skābekli bagātināts gaiss);
— lausku procentuālais daudzums;
— kameru sastāvs;
— krāsnis vecums;
— krāsnis izmērs.

2. tabulā iekļautie konversijas koeficienti ir izmanto LPTP-SEL pārvēršanai no koncentrācijas konkrētās emisijās masas daļas izteiksmē.

Konsentrācijas koeficienti ir noteikti, pamatojoties uz energoeffektīvu krāšņu rādītājiem un attiecīs tikai uz pilnībā ar gaiss/ kurināmo darbināmā krāsnīm.

2. tabula

Orientējošie koeficienti, kuras izmanto mg/Nm³ pārvēršanai izkausēta stikla kg uz tonnu, pamatojoties uz energoeffektīvu ar kurināmo/gaiss darbināmu krāšņu rādītājiem

<table>
<thead>
<tr>
<th>Nozare</th>
<th>Koeficienti mg/Nm³ pārvēršanai kg uz tonnu izkausēta stikla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokošu stikls</td>
<td>2,5 × 10⁻³</td>
</tr>
<tr>
<td>Taras stikls</td>
<td></td>
</tr>
<tr>
<td>Vispārīgs gadījums</td>
<td>1,5 × 10⁻³</td>
</tr>
<tr>
<td>Īpaši gadījumi (cb)</td>
<td>Atbilstoši konkrētām pētījumam (bieži 3,0 × 10⁻³)</td>
</tr>
<tr>
<td>Vienlaicu stikliķedra</td>
<td>4,5 × 10⁻³</td>
</tr>
<tr>
<td>Nozares</td>
<td>Koefficientsi mg/Nm³ pārvēršanai kg uz tonnu izkausēta stikla</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Šķirņu stikls</td>
<td></td>
</tr>
<tr>
<td>Silikātstikls</td>
<td>2,5 × 10⁻³</td>
</tr>
<tr>
<td>Ipaši gadījumi (†)</td>
<td>Atbilstoši konkrētam pētījumam (no 2,5 līdz > 10 × 10⁻³; bieži 3,0 × 10⁻³)</td>
</tr>
<tr>
<td>Minerālvate</td>
<td></td>
</tr>
<tr>
<td>Stikla vate</td>
<td>2 × 10⁻³</td>
</tr>
<tr>
<td>Akmens vates cepēls</td>
<td>2,5 × 10⁻³</td>
</tr>
<tr>
<td>Speciālais stikls</td>
<td></td>
</tr>
<tr>
<td>Kineskopa detalu stikls</td>
<td>3 × 10⁻³</td>
</tr>
<tr>
<td>(paneļi)</td>
<td></td>
</tr>
<tr>
<td>Kineskopa detalu stikls</td>
<td>2,5 × 10⁻³</td>
</tr>
<tr>
<td>(kineskops)</td>
<td></td>
</tr>
<tr>
<td>Borosilikāts (caurules)</td>
<td>4 × 10⁻³</td>
</tr>
<tr>
<td>Stikla keramika</td>
<td>6,5 × 10⁻³</td>
</tr>
<tr>
<td>Gaismķermeņu stikls</td>
<td>2,5 × 10⁻³</td>
</tr>
<tr>
<td>Frite</td>
<td>Atbilstoši konkrētam pētījumam (no 5 līdz 7,5 × 10⁻³)</td>
</tr>
</tbody>
</table>

(†) Ipaši gadījumi nozīmē mazāk labvēlīgus gadījumus (t. i., mazās speciālās krāsēs, kuru ražījums kopumā ir mazāks par 100 tonnām dienā un lausa daļa ir mazāka par 30 %). Šī kategorija veido tikai 1–2 % taras stikla ražošanas.

(†) Ipaši gadījumi nozīmē mazāk labvēlīgus gadījumus un/vai stiklus, kas nav izgatavoti no silikātstikla: borosilikāti, stikla keramika, kristālūdens un retāk – svisu kristālūdens.

DAŽU GAISA PIESĀRNOTĀJU DEFINĪCIJAS
Šajos LPTP secinājumos un 1.2.–1.9. nodaļā minētajiem LPTP-SEL izmanto šādas definīcijas:

<table>
<thead>
<tr>
<th>NO₂, ko izesaka kā NO₂</th>
<th>Slāpekla oksīda (NO) un slāpekla dioksīda (NO₂) summa, kas izteikta kā NO₂.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂, ko izesaka kā SO₂</td>
<td>Sēra dioksīda (SO₂) un sēra trioksīda (SO₃) summa, kas izteikta kā SO₂.</td>
</tr>
<tr>
<td>Čūdegroša hlorīds, ko izesaka kā HCl</td>
<td>Visi gāzveida hlorīdi, kas izteikti kā HCl.</td>
</tr>
<tr>
<td>Čūdegroša fluorīds, ko izesaka kā HF</td>
<td>Visi gāzveida fluorīdi, kas izteikti kā HF.</td>
</tr>
</tbody>
</table>

VIDEJOŠANAS PERIODI NOTEKUDĒNU IZVADEI
Ja vien nav noteikts citādi, ar labākajiem pieejamajiem tehniskajiem parpēmieniem (LPTP-SEL) saistītie emisijas līmeņi noteiktiem noteikumiem izvadei, kas sniega šajos LPTP secinājumos, attiecas uz divu stundu vai 24 stundu periodā iegūta kompožītupuru videjo vērtību.

1.1. Vīsāri LPTP secinājumi par stikla ražošanu
Ja vien nav noteikts citādi, šajā nodaļā izklāstītos LPTP secinājumus var piemērot visām iekārtām.

Papildus vīsāriem šajā nodaļā izklāstījaiem LPTP piemēro arī 1.2.–1.9. nodaļā iekļautos ar konkrētu procesu saistītos LPTP.

1.1.1. Vides apsaimniekošanas sistēmas
1. LPTP ir jāstāveno un jāievēro vide apsaimniekošanas sistēma (VAS), kurai ir visas šādas pazīmes:
 i) vadības, tostarp vecāko vadītāju apvienošanās;
 ii) vides politikas definīcija, kas ietver vadības veikts pastāvīgus iekārtas uzlabojumus;
Attiecas uz krātības, uzdevumu un mērķu plānošana un noteikšana apvienojumā ar finanšu plānošanu un ieguldījumiem;

iv) procedūru istsenošana, iepašu uzmanību pievēršot:
 a) struktūrai un atbildībai;
 b) mācībām, izpratnei un kompetencei;
 c) informācijas sniegšanai;
 d) darbinieku iesaistīšanai;
 e) dokumentācijai;
 f) efektīvai procesa vadībai;
 g) tehniskās apkopes programmām;
 h) gatavībai ārkārtas situācijām un reaģēšanai uz tām;
 i) tiesību aktu vides jomā prasību ievērošanas nodrošināšanai;

v) darbības rezultātu pārbaude un koriģējošu pasākumu veikšana, jo iepaši pievēršot uzmanību:
 a) monitoringam un mērījumiem (skatīt arī atsauces dokumentu par monitoringa vispārīgājiem principiem);
 b) koriģējošiem un profilakses pasākumiem;
 c) uzskaitvedībai;
 d) neatkarīgām (ja praktiski iespējams) iekšējām vai ārējām auditam, lai noteiktu, vai VAS atbilst plānotajiem pasākumiem un vai tā ir atbilstoši ieviesa un uzturēta;

vi) vecāko vadītāju veikta VAS un tās pastāvīgas piemērotības, atbilstības un efektivitātes pārskatīšana;

vii) sekošana līdzīgi nekaitīgākajai tehnoloģijai attīstībai;

viii) ietekmes uz vidi izvērtēšana, ķēmēm vērā iespējamo ārkārtas eksploatacijas pārtraukšanu jaunās ārkārtas konstruēšanas posmā, kā arī ārkārtas darbības laikā;

ix) regulāra nozares procesu mērījumu salīdzināšana.

Piemērojamība

Piemērošanas joma (piemēram, detalizācijas limenis) un VAS iepatnības (piemēram, standarta vai nestandarta) kopumā tiks saistīta ar ārkārtas veidu, āpmēru un sarežģitību un ietekmes uz ārkārtējo vidi pakāpi, ko tā var radīt.

1.1.2. Energoefektivitāte

2. LPTP mērķis ir samazināt specifisko enerģijas patēriņu, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Procesa pilnveidošana ar darbības rādīju kontroles pallīdzību.</td>
<td>Tehniskie paņēmieni ir vispārīgi piemērojami.</td>
</tr>
<tr>
<td>ii) Kausēšanas krāsnis regulāra tehniskā apkope.</td>
<td>Attiecas uz jaunām ārkārtām.</td>
</tr>
<tr>
<td>iii) Krāsās konstrukcijas un kausēšanas tehnoloģijas izvēles uzlabošana.</td>
<td>Lai piemerojot esošām ārkārtām, ir nepieciešama krāsās pilnīga pārbaude.</td>
</tr>
<tr>
<td>iv) Degšanas vadības tehnoloģiju ievešana.</td>
<td>Attiecas uz krāsnīm, kurās darbina ar kurināmo/gaisu, kā arī skābeklā un kurināmo.</td>
</tr>
</tbody>
</table>
1.1.3. Materiālu uzglabāšana un apstrāde

3. LPTP mērķis ir novērst vai — gadījumā, ja tas nav praktiskā realizējams, — samazināt cietvielu uzglabāšanas un apstrādes laikā radītās putekļu emisijas izplatību, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

I. Izejielu uzglabāšana

<table>
<thead>
<tr>
<th>Tehniskais paņēmienis</th>
<th>Piemērojamā</th>
</tr>
</thead>
<tbody>
<tr>
<td>v) Lielākas lausu daļas izmantošana, ja vien tas ir iespējams, kā arī ekonomiski un tehniski lietderīgi.</td>
<td>Nav piemērojama vienlaidu stiklēkšedras, augstas temperatūras izolācijas šķedras un frites ražošanas nozarei.</td>
</tr>
<tr>
<td>vi) Siltuma utilizācijas katla izmantošana enerģijas argēžām, ja vien tas ir tehniski un ekonomiski lietderīgi.</td>
<td>Attiecās uz krāsnēm, kuras darbina ar kurināmogaisu, kā arī skābekli un kurināmogaisu.</td>
</tr>
<tr>
<td>vii) Šīhtas un lausku uzstāšana, ja vien tas ir tehniski un ekonomiski lietderīgi.</td>
<td>Tehniskā paņēmiena piemērojamību un ekonomisko lietderību nosaka vispārējā ekstensitāte, kuru var nodrošināt, iekļaujot sarazotā tvaiķa efektīvu izmantošanu.</td>
</tr>
<tr>
<td>Parasti var izmantot tikai šīhtai, kurus sastāvā ir vairāk par 50 % lausu.</td>
<td>Attiecās uz krāsnēm, kuras darbina ar kurināmogaisu, kā arī skābekli un kurināmogaisu.</td>
</tr>
</tbody>
</table>

II. Izejielu apstrāde

<table>
<thead>
<tr>
<th>Tehniskais paņēmienis</th>
<th>Piemērojamā</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Beztaras pulverveida materiāli jāgabāt noslēgtās glabātuvēs, kas aprikojas ar putekļainības pazemināšanas sistēmu (piemēram, šķiedru filtrs).</td>
<td>Tehniskie paņēmieni ir vispārīgi pieņemami.</td>
</tr>
<tr>
<td>ii) Šīhtas materiāli jāgabāt noslēgtos konteineros vai ciešī aizvērtā iepakojumā.</td>
<td>Šī tehniskā paņēmiena izmantošanas iespējas ir iespējamos iespējams enerģoeffektivitāti, ierozēm vai arī pieņemt vieglākās iespējas, kas saistās ar piena gaisa un to darbību, kas attiecas uz noteiktu šīhtas sastāvu.</td>
</tr>
<tr>
<td>iii) Šīhtas mitrināšana.</td>
<td>Šī tehniskā paņēmiena izmantošanas iespējas ir iespējamos iespējams enerģoeffektivitāti, ierozēm vai arī pieņemt vieglākās iespējas, kas saistās ar piena gaisa un to darbību, kas attiecas uz noteiktu šīhtas sastāvu.</td>
</tr>
<tr>
<td>iv) Neliela negatīva spiediena radīšana krāsnē.</td>
<td>Šī tehniskā paņēmiena izmantošanas iespējas ir iespējamos iespējams enerģoeffektivitāti, ierozēm vai arī pieņemt vieglākās iespējas, kas saistās ar piena gaisa un to darbību, kas attiecas uz noteiktu šīhtas sastāvu.</td>
</tr>
<tr>
<td>v) Neplaisījošu izvejielu izmantošana (galvenokārt dolo-mēts un kalķakmens). Šāda parādība ir raksturīga minerāliem, kas kasītina ietekmē sāk sprakšķēt, kābā rada vara kāpēnītes putekļu emisija.</td>
<td>Izmantošana ir atkarīga no sarežģījumiem, kas saistīti ar izvejielu pieejamību.</td>
</tr>
<tr>
<td>vi) Procesos, kuros var veidoties putekļi (piemēram, iepakojojamu atvēršana, frites šīhtas sagatavošana, maizos filtru attīrīšana at patekļiem, aukstās emaljas tīkļi, jākaismanos filtru sistēmā pieļūt ventila cijas.</td>
<td>Tehniskie paņēmieni ir vispārīgi pieņemami.</td>
</tr>
<tr>
<td>viii) Iekrautos kameru noslēgšana.</td>
<td>Vispārīgi, piemērojama. Lai nepieļautu iepakoju un bojājumus, var būt nepieciešams izmantot dzesēšanu.</td>
</tr>
</tbody>
</table>
4. LPTP mērķis ir novērst vai — gadājumā, ja tas nav praktiski realizējams, — samazināt gaistošu izjēvielu uzglabāšanas un apstrādes laikā radītās gāzveida emisijas izplatību, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

i) Bezkaras uzglabāšanas tvertnes, kas saules gaismas ietekmes dēļ ir pakļautas temperatūras izmaiņām, ir jānorāgo ar krāsu, kurai ir zema saules gaismas absorbcijas spēja.

ii) Jākontrolē temperatūra gaistošu izjēvielu glabātuve.

iii) Gaistošu izjēvielu glabātuves tvertnes jāpārklāj ar izolāciju.

iv) Materiāli tehniskās apgādes vadība.

v) Liela daudzuma gaistošu naftas produktu uzglabāšanai jāizmanto ar peldosiem jumtiem aprīkotas tvertnes.

vi) Gaistošu šķidrumu pārsūkšanā (piemēram, no autocisternām uz uzglabāšanas tvertni) jāizmanto atvaino nosūces sistēmas.

vii) Šķidro izjēvielu glabāšanai jāizmanto elastīgas pārsegas tvertnes.

viii) Tvertnes jāaprīko ar spiediena/vakuumā vārstiem, kuru konstrukcija var iztūrēt spiediena svārstības.

ix) Uzglabājot bistamus materiālus, jāveic apstrāde pret noplūdēm (piemēram, adsorbciju, absorbciju, kondensēšanos).

x) Uzglabājot šķidrumus, kuriem ir tendency putot, to uzpilde jāveic, izmantojot zemvīrsma uzpildi.

1.1.4. Vispārīgi primārie paņēmieni

5. LPTP mērķis ir samazināt enerģijas patērījumu un emisijas atmosfērā, veicot kaušēšanas krāsās darbības rādītāju un plānotās tehniskās apkopes pastāvīgu monitoringu.

| Tehniskais paņēmieni | Piemērojamās
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tehniskais paņēmieni ļoti virkni monitoringa un tehniskās apkopēs pasākumu, kuras var veikt atsevišķi vai kopā atkarībā no krāsās veida un mērķi mazināt nolietošanās izraisītā sekas krāsnij, piemēram, krāsnis un deglu nobīdvešana, maksimālās izolācijas uzturešana, apstākļu kontrolē vienmērīgas lietas nodrošināšanai, kurināmā/ gaismi attiecības kontrolē utt.</td>
<td>Attiecas uz regeneratīvājām, rekuperatīvājām, kā arī ar skābekli un kurināmo darbinātām krāsnim.</td>
</tr>
<tr>
<td>Tehniskais paņēmieni ļoti vērājot kontrolē tādējām procesēm, piemēram, hidro izjēvielu glabāšanai, maksimālās izolācijas uzturešana, atkārtotu uzglabāšana, kurināmā/ gaismi attiecības kontrolē utt.</td>
<td>Lai noteiktu, vai tehnisko paņēmieni var piemērot citu veidu krāsnim, ir nepieciešams atsevišķs iekārtas novērtējums.</td>
</tr>
</tbody>
</table>

6. LPTP mērķis ir veikt rūpīgu visu kaušēšanas krāsnē ievietojamā vielu un izjēvielu atlasi un kontrolu, lai samazinātu vai novērstu emisijas atmosfērā, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

Tehniskais paņēmieni	Piemērojamās
Tehniskais paņēmieni	Piemērojamās
i) Izejvielu un no arījēm piegādātājiem iepirkto lausu un zemu piemaisāšumu (piemēram, metāli, hlorīdi, fluorīdi) daļu izmantošana.	Piemēro atkarībā no iekārtā ražotā stikla veida, izjēvielu un kurināmā pieejamības.
ii) Alternatīvus (piemēram, mazāk gaistošu) izjēvielu izmantošana.	
iii) Kurināmā ar mazākiem metālu piejaukumiem izmantošana.	
7. LPTP mērķis ir veikt emisiju un/vai citu saistīto procesu rādītāju regulāru monitoringu, tostarp:

<table>
<thead>
<tr>
<th>Tekniskais paņēmiens</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Kritisko procesa rādītāju nepārtraukts monitoringa, lai nodrošinātu procesa stabilitāti, piemēram, temperatūru, kurināmā padve na gaisa plūsmu.</td>
<td>Tekniskie paņēmienci ir vispārīgi piemērojami.</td>
</tr>
<tr>
<td>ii) Regulārs procesu rādītāju monitoringa, lai novērstu/samazinātu piesārņojumu, piemēram, O₂ koncentrāciju dārgāķis, lai kontrolētu kurināmā/gaisa attiecību.</td>
<td></td>
</tr>
<tr>
<td>iii) Nepārtraukti putekļu, NO₂ un SO₂ emisiju samazināšana vai periodiskā mērīšana vismaz divas reizes gadā saistībā ar surogātu rādītāju kontroli, lai nodrošinātu attīrīšanas sistēmas pienācīgu darbību starp mērījumu reizēm.</td>
<td></td>
</tr>
<tr>
<td>iv) Nepārtraukti vai regulāri periodiski NH₃ emisiju mērījumi, ja izmanto selektīvas kataлизtiskās samazināšanas (SCR) vai selektīvas nekatalitiskās samazināšanas (SNCR) tehniskos paņēmienus.</td>
<td>Tekniskie paņēmienci ir vispārīgi piemērojami.</td>
</tr>
<tr>
<td>v) Nepārtraukti vai regulāri periodiski CO emisiju mērījumi, ja NOₓ emisijas samazināšana nolūkā izmanto primāros tehniskos paņēmienus vai kīmisko samazināšanu, izmantojot kurināmā tehniskos paņēmienus, vai arī ja var notikt tikai daļēja sadežana.</td>
<td>Tekniskie paņēmienci ir vispārīgi piemērojami.</td>
</tr>
<tr>
<td>vi) HCl, HF, CO un metālu emisiju regulāri periodiski mērījumi, ja ipaši, ja izmanto šādas vielas saturošas izejvielas, vai arī, ja var notikt tikai daļēja sadežana.</td>
<td></td>
</tr>
<tr>
<td>vii) Nepārtraukts surogātu rādījumu monitoringa, lai nodrošinātu pienācīgu atgāzu attīrīšanas sistēmas darbību un vienmērīgu emisijas līmeni starp periodiskas mērīšanas reizēm. Surogātu rādītāju monitorings ietver: reģenta padevi, temperatūru, ūdens pievadu, spriegumu, putekļu tīrīšanu, ventilatora ātrumu utt.</td>
<td></td>
</tr>
</tbody>
</table>

8. LPTP mērķis ir ekspluatēt atgāzu attīrīšanas sistēmas normālos ekspluatācijas apstākļos ar pilnu jaudu un pieejamību, lai novērstu vai samazinātu emisijas.

Piemērojamība

Konkrētiem ekspluatācijas apstākļiem var noteikt ipašu kārtību, jo ipaši:

i) darbības uzsākšanas un apturēšanas laikā;

ii) citām ipašām operācijām, kuras var ieteikt sistēmu pareizu darbību (piemēram, regulārie un neplānotie krāsns un/vai atgāzu attīrīšanas sistēmas tehniskās apkopes un tīrīšanas darbi vai būtiskas izmaiņas ražošanā);

iii) nepietiekamas atgāzu plūsmas vai temperatūras gadījumam, kas liedz izmantot sistēmu ar pilnu jaudu.

9. LPTP mērķis ir ierobežot tvana gāzes (CO) emisijas no kaušēšanas krāsns, ja NOₓ emisijas samazināšanai izmanto primāros tehniskos paņēmienus vai kīmisko samazināšanu ar kurināmā palīdzību.

<table>
<thead>
<tr>
<th>Tekniskais paņēmiens</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primāro NOₓ emisiju samazināšanas metožu pamanāt ir degšanas korķēšana (piemēram, gaisa/kurināmā attiecības samazināšana, pakāpeniska degšana, ko nodrošina zemās NOₓ emisijas degšanās),(Kīmiskā reducēšana ar kurināmā palīdzību nozīmē oglu(de)šanu kurināmā pierīvešanu atgāzu plūsmai, lai samazinātu NOₓ, kas veidojas krāsns. Šo metožu izmanto arī izraiso CO emisiju pieaugumu var ierobežot ar rūpīgu darbības rādītāju kontroli.</td>
<td>Attiecības uz konvencionālām ar gaisa/kurināmā darbinājamām krāsnēm.</td>
</tr>
</tbody>
</table>
3. tabula

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tvana gāze, ko izaaka kā CO</td>
<td>< 100 mg/Nm³</td>
</tr>
</tbody>
</table>

10. LPTP mērķis ir ierobežot amonjaka (NH₃) emisijas, piemērojot selektīvās katalitiskās samazināšanas (SCR) vai selektīvās nekatalitiskās samazināšanas (SNCR) tehniskos paņēmienus augstā efektivitātē NOₓ emisiju samazināšanai.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tehniskais paņēmiens ietver piemērotu SCR vai SNCR atgāzu attīrīšanas sistēmu darbības apstākļu noteikšanu un uzturēšanu nolūkā ierobežot neregulējusā amonjaka emisijas.</td>
<td>Attiecas uz kaušanas krāsnīm, kas aprīkotas ar SCR vai SNCR sistēmu.</td>
</tr>
</tbody>
</table>

4. tabula

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amonjaks, ko izaaka kā NH₃</td>
<td>< 5–30 mg/Nm³</td>
</tr>
</tbody>
</table>

(1) Augstākā līmeņa NOₓ koncentrācijai pie iepūlēs, lielākiem reducēšanas ātrumiem un katalizatora nolietošanos.

11. LPTP mērķis ir samazināt bora emisijas no kaušanas krāsnīm, ja bora savienojums izmanto šītās sagatavošanai, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (2)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Filtrēšanas sistēmas darbība piemērotā temperatūrā, lai atvieglotu bora savienojumu atdalīšanu citēt agregātstāvoklī, ņemot vērā to, ka dūmāmēs var saturēt dažus borskābes savienojumus gāzveida stāvoklī ne tikai temperatūrā, kas ir zemāka par 200 °C, bet arī par 60 °C zemākā temperatūrā.</td>
<td>Piemērojamība esošam iekārtām var būt ierobežota tehnisku ar esošās filtrēšanas sistēmas novietojumu un raksturlielumiem saistītā sarežģīšanu dēļ.</td>
</tr>
<tr>
<td>ii) Sausa vai pussausa gāzu attīrīšana apvienojumā ar filtrēšanas sistēmu.</td>
<td></td>
</tr>
<tr>
<td>iii) Slapjā gāzu attīrīšana.</td>
<td>Piemērojamību esošam iekārtām var ierobežot nepieciešamību ieviest īpašu noteikūdeņu attīrīšanu.</td>
</tr>
</tbody>
</table>

(2) Tehniskie paņēmieni ir apraksīti 1.10.1., 1.10.4. un 1.10.6. nodājā.

Monitorings

Bora emisiju monitoringu vajadzētu veikt saskaņā ar īpašu metodologiju, kas ļauj mērit gan cietvielu, gan gāzveida emisiju un noteikt efektīvāko veiđu dūmāmēs attīrīšanai no sādām savienojumiem.

1.1.5. Stikla ražošanas procesu radītās emisijas ūdenī

12. LPTP mērķis ir samazināt ūdens patēriņu, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Izšakstījumu un noplužu samazināšana līdz minimāmam.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
</tr>
<tr>
<td>ii) Dzesēšanai un tīrīšanai izmanto to ūdeni atkārto izmantošana pēc attīrīšanas.</td>
<td></td>
</tr>
</tbody>
</table>

Tehniskais paņēmiens ir vispārīgi piemērojams.

Gāzu attīrīšanai izmantojot ūdeni recirkulācijā var izmantojot lielākā daļa gāzu attīrīšanas sistēmu, tomēr attīrīšanas līdzekli var būt nepiecējams periodiski izvadīt un novainīt.
13. LPTP mērķis ir samazināt piesārņotāju emīcijas slogs noteikumus izveidot, izmantojot kādu no turpmāk minētajām noteikumos attīrīšanas sistēmām vai to apvienojumu.

| Tehniskais paņēmiens | Piemērojamā ba | Tehniskie paņēmieni ir vispārīgi piemērojamie. | Var izmantot tikai nozarēm, kurās ražošanas procesa izmanto organiskas vielas (piemēram, vienlaudu stikluķis un minerālu ražošana). | Attiecas uz iekārtām, kurām ir nepieciešams turpināt piesārņotāju samazināšanu. | Kopumā attiecas tikai uz frites ražošanas nozari (noteikumi jāievēro ar aktīvām skābekļa filtrēšanas sistēmām, lai samazinātu organisko materiālu izmantošanu un negadījumu izveidošanu, kas izraisītas ar ražošanas procesa drošības aspektiem). |

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens</th>
<th>Piemērojamā ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>iii) Dalījā slēgta ūdensapgādes sistēmas kontūra izmantošana, cikāt tas ir tehniski un ekonomiski lietderīgi.</td>
<td>Šī tehniskā paņēmienā piemērojamā ba var ierobežot grūtības, kas saistītas ar ražošanas procesa drošības aspektiem. Proti:</td>
</tr>
<tr>
<td></td>
<td>— ja tas nepieciešams atbilstoši drošības prasībām, var izmantot nenoslēgta cikla dzesēšanas sistēmu (pie mērām, saistībā ar negadījumiem, kad ir jājutdzi liels daudzums stikla);</td>
</tr>
<tr>
<td></td>
<td>— dažos piemēros procesos izmantoto ūdeni (pie mērām, pakārtotā darbība vienlaudī stikluķis ražošanā, pulēšana ar skābī šķirni un speciālā stikla ražošanā u. c.) var vajadzēt pilnībā vai dalījā iepriekš noteikotu attīrīšanas sistēmām.</td>
</tr>
</tbody>
</table>

5. tabula

LPTP-SEL stikla ražošanas noteikumus iepriekšējās atklātās ādenīstilpē

<table>
<thead>
<tr>
<th>Rādītājs (°)</th>
<th>Mērvienība</th>
<th>LPTP-SEL (°) (apvienotais parazgs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>—</td>
<td>6,5–9</td>
</tr>
<tr>
<td>Kopēļa cietvēlu suspensija</td>
<td>mg/l</td>
<td>< 30</td>
</tr>
<tr>
<td>Ķīmiskais skābekļa patērīnis (COD)</td>
<td>mg/l</td>
<td>< 5–130 °</td>
</tr>
<tr>
<td>Sulfāti, ko izsaka kā SO₄²⁻</td>
<td>mg/l</td>
<td>< 1 000</td>
</tr>
<tr>
<td>Fluorūdi, ko izsaka kā F</td>
<td>mg/l</td>
<td>< 6 °</td>
</tr>
<tr>
<td>Oglādeņraži kopā</td>
<td>mg/l</td>
<td>< 15 °</td>
</tr>
<tr>
<td>Svinīs, ko izsaka kā Pb</td>
<td>mg/l</td>
<td>< 0,05–0,3 °</td>
</tr>
<tr>
<td>Antimons, ko izsaka kā Sb</td>
<td>mg/l</td>
<td>< 0,5</td>
</tr>
<tr>
<td>Aršēns, ko izsaka kā As</td>
<td>mg/l</td>
<td>< 0,3</td>
</tr>
<tr>
<td>Bārijs, ko izsaka kā Ba</td>
<td>mg/l</td>
<td>< 3,0</td>
</tr>
</tbody>
</table>
1.1.6. Atkritumi, kas veidojas stikla ražošanas procesos

14. LPTP mērķis ir samazināt cieto noglabājamo atkritumu ražošanu, izmantojot kādu no turpmāk minētajiem tehniskajiem paņemieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Rādītājs (1)</th>
<th>Mērvienība</th>
<th>LPTP-SEL (2) (apvienotois paraugs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinks, ko izsaka kā Zn</td>
<td>mg/l</td>
<td>< 0,5</td>
</tr>
<tr>
<td>Varš, ko izsaka kā Cu</td>
<td>mg/l</td>
<td>< 0,3</td>
</tr>
<tr>
<td>Hroms, ko izsaka kā Cr</td>
<td>mg/l</td>
<td>< 0,3</td>
</tr>
<tr>
<td>Kadmijs, ko izsaka kā Cd</td>
<td>mg/l</td>
<td>< 0,05</td>
</tr>
<tr>
<td>Alva, ko izsaka kā Sn</td>
<td>mg/l</td>
<td>< 0,5</td>
</tr>
<tr>
<td>Niķelis, ko izsaka kā Ni</td>
<td>mg/l</td>
<td>< 0,5</td>
</tr>
<tr>
<td>Amonjaks, ko izsaka kā NH₄</td>
<td>mg/l</td>
<td>< 10</td>
</tr>
<tr>
<td>Bors, ko izsaka kā B</td>
<td>mg/l</td>
<td>< 1–3</td>
</tr>
<tr>
<td>Fenols</td>
<td>mg/l</td>
<td>< 1</td>
</tr>
</tbody>
</table>

(1) Tabulā uzskaitīto piesārņotāju esamām ir atkarīga no stikla rūpfiecības nozares un dažādām darbībām, kuras veic rūpnīcā.

(2) Līmeņi attiecas uz apvienoto paraugu, kas ir iegūts divu stundu vai 24 stundu laikā.

(3) Vienlaicīgi stikla šķiedras ražošanas nozares LPTP-SEL ir < 200 mg/l.

(4) Līmenis attiecas uz attīrītās ūdeni, kas veidojas palūšanās ar skābi darbību laikā.

(5) Parasti oglēdērauzu cēlojās rādītāja veido minerālājas.

(6) Augstākais diapazona līmenis ir saistīts ar paškārtotiem procesiem svina kristālnīku ražošanā.

1.1.6. Atkritumi, kas veidojas stikla ražošanas procesos

14. LPTP mērķis ir samazināt cieto noglabājamo atkritumu ražošanu, izmantojot kādu no turpmāk minētajiem tehniskajiem paņemieniem vai to apvienojumu.

Tehniskais paņemiens	Piemērojamās

i) Šīhtas atkritumu produktu pārstrāde, ja vien tas atbilst kvalitātes prasībām. | Piemērojamās var ierobežot ar stikla gāja produkcijas kvalitāti saistīti sarežģījumi.

ii) Materiālu zudumu samazināšana līdz minimumam izejvielu uzglabāšanas un pārviestošanas laikā. | Tehniskais paņemiens ir vispārīgi piemērojams.

iii) No izbrākšādās produktinās iegūtu lauku iekšēja pārstrāde. | Kopumā nav piemērojama. Vienlaicīgi stikļšķiedras, augstas temperatūras izolācijas šķiedras un frites ražošanas nozarei.

iv) Putekļu pārstrāde šīhtas sagatavošanas laikā, ja vien tas atbilst kvalitātes prasībām. | Piemērojamās var ierobežot dažādi faktori:
— stikla galaprodukcijas kvalitātes prasības;
— šīhtas sagatavošanā izmantoto lauku procentuālu daļu;
— iespējamās uzgūstāja rūptavas materiālu iznese un korozijā;
— sēra bilances ierobežojumi.

v) Lieterēša cieto atkritumu un/vai no gūtu izmantoto šķiedras, atrodot tam atbilstošu piezīmēr inām (piemēram, ūdens attīrīšanas laikā iegūtās gūtus) vai citās nozārēs. | Kopumā attiecas uz šķirošu stikla nozari (svina kristāla griešanas gūtus un tās citās stikla nozari (svītu stikla dalījumu savākšanas ar naftas produktiem).

Neparedzama un piesārņo sasāvā, maza apjoma un apsābās jāekonomiskās lieterēšās dēļ piemērojami citām stikla ražošanas nozārēm ir ierobežota.

vi) Lieterēša savu mūžu nokalpojušo uzgūstāja materiālu iespējamā izmantoto šķiedras citās nozārēs. | Uzgūstāja materiālu ražotāju un iespējama gāja lietojumu noteikto ierobežojumu dēļ piemērojamā ir ierobežota.

vii) Atkritumu briketēšana ar saistvielām, lai izmantotu tos karstās pāmsas stāvceļos, ja vien tas atbilst kvalitātes prasībām. | Atkritumu briketēšanu ar saistvielām var piemērot tikai akmens vates ražošanas nozarei.

Būtu nepieciešams rast kompromisu starp emisijām atmosfērā un cieto atkritumu ražošanas plūsmu.
1.1.7. Stikla ražošanas procesu radītais troksnis
15. LPTP mērķis ir samazināt trokšņa līmeni, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

i) Veikt trokšņa ietekmes uz visi nozīmes un izstrādāt vieta iedzīvotājiem vienstāvīgās atmosfēras plānā.

ii) Pārcelt trokšņa iekārtas/procesus uz atveidotu struktūrvenību/ielaippu.

iii) Izmantojot norobežojošas konstrukcijas trokšņa avota slāpēšanai.

iv) Troksni radotās ārpustelpu darbība veikt dienā.

v) Atkarībā no vietējām apstākļiem izmantojot trokšņa slāpēšanas sienas vai dabiskus šķēršļus (kokus, krūmus) starp iekārtu un aizsargāto zonu.

1.2. LPTP secinājumi par taras stikla ražošanu.
Ja vien nav noteikts citādā jautājumā LPTP secinājumi attiecās uz visām taras stikla ražošanas iekārtām.

1.2.1. Putekļu emisijas no kausēšanas krāsnim.
16. LPTP mērķis ir samazināt putekļu emisijas kausēšanas krāsnis atgāzēs, ieskaitot dūmgi zemattīrīšanas sistēmu, piemēram, elektrostatisko filtru vai maisa filtru un augstākās izkalnu kondensācijas sistēmas.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
</table>
| Dūmgi zemattīrīšanas sistēmas veido caurules galā uzstādītas iekārtas, kas filtrē visus materiālus, kuri mērījumu veikšanai nepieciešams ir cietā agregācijas šķeršļa.
| Tehniskais paņēmiens ir vispārīgi piemērojams. |

(1) Filtrēšanas sistēmas (t. i., elektrostatiskais filtrs, maisa filtrs) ir aprakstītas 1.10.1. nodalā.

6. tabula

<table>
<thead>
<tr>
<th>Rādītnis</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putekļi</td>
<td>mg/Nm³</td>
</tr>
<tr>
<td></td>
<td>< 10–20</td>
</tr>
</tbody>
</table>

(3) Diapazona zemākās un augstākās vērtības noteikšanai tika attiecīgi izmantoti konversijas koeficienti 1,5 × 10⁻³ un 3 × 10⁻³.

1.2.2. Kausēšanas krāšņu izdalītie slāpekļa oksīdi (NOₓ).
17. LPTP mērķis ir samazināt kausēšanas krāsnis izdalītos NOₓ emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

I. Primārie tehniskie paņēmieni, piemēram:

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Degšanas korekcijas</td>
<td></td>
</tr>
<tr>
<td>a) Gaisa/kurināmā attiecības samazināšana.</td>
<td>Articē uz konvensionālām ar gaisu/kurināmu darbināmām krāsnīm. Maksimālu liederību nodrošina parastā vai krāsnis pilnīga pārējā vērtību apvienojumā ar optimālu krāsnis konstrukciju un geometriju.</td>
</tr>
<tr>
<td>b) Pazemināta sadegšanai nepieciešamā gaisa temperatūra.</td>
<td>Zemākās krāsnis efektivitātes un līdzāka kurināmā patēriņa dēļ var piemērot tikai atbilstoši konkrētajam iekārtas uzstādīšanas apstākļiem (t. i., rekatapērošana krāšņu izmantošana regeneratīvo krāšņu vietā).</td>
</tr>
<tr>
<td>Tekniskais paņēmiens (1)</td>
<td>Piemērojamība</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| c) Pakāpeniska sadedzināšana:
— pakāpeniska gaisa padeve;
— pakāpeniska kurināmā padeve. |
| Kurināmā pakāpenisku padevi var piemērot lielākajai daļai konvencionālo ar gaisu/kurināmā darbināmo krāsu.
Pakāpeniskai gaisa padevi ir [oti ierobežota piemērojamība tās tehniskās sarežģītības dēļ]. |
| d) Dūmgāzu recirkulācija |
| Šo tehnisko paņēmienu var piemērot tikai speciālu degtu ar auto-
matīzētu atgāzu recirkulāciju izmantošanai. |
| e) Zema NOₓ līmeņa deglj |
| Tehniskais paņēmiens ir vispažīgi piemēroams.
Kopumā ieguvumi apkārtējai videi ir mazāki, ja šo tehnisko paņēmienu izmanto ar gāzi darbināmām krāsnām, kurām ir šķersvirziena tiesmas, jo šādā krāsnīm ir tehniski ierobežojumi un zemāka piēlāgojamība.
Maksimālu lieterību nodrošina parasta vai krāsns pilnīga pārbūve
apvienojumā ar optimālu krāsns konstrukciju un ģeometriju. |
| f) Kurināmā izvelē |
| Piemērojamību ierobežo sarežģītumi, kas saistīti ar dažāda veida
kurināmā pieejamību, un to var ieteikt dālībvalsts enerģētikas politika. |
| ii) Speciāla krāsns konstrukcija |
| Var piemērot tikai ūdeni šīhtas sagatavošanai, kuras sastāvā lēlāko
dalju (> 70 %) veido no arēkiem piegādātājiem saņemtas lauskas.
Lai tehnisko paņēmienu varētu izmantot, kausēšanas krāns ir pilnībā jāpārbūvē.
Krāns forma (garā un šaura) var radīt platības ierobežojumus. |
| iii) Elektriskā kausēšana |
| Nav piemērojama lielupjoma (vairāk par 300 tonnām dienā) stikla
ražošanai.
Nav piemērojama rāzošanai, kuras laikā nepieciešams ievērojamu
mainīt stikla masas vilkšanas raksturīgumu.
Tehniskā paņēmiens tiešsaistē ir nepieciešama krāsns pilnīga
pārbūve. |
| iv) Kausēšana, izmantojot skābekli un kurināmo |
| Visslielākos ieguvumus apkārtējai videi var nodrošināt pēc krāsns
pilngas pārbūves. |

(1) Tehniskie paņēmiens aprakstīti 1.10.2. nolaidā.

II. Sekundārie tehniskie paņēmieni, piemēram:

<table>
<thead>
<tr>
<th>Tekniskais paņēmiens (2)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Selektīva kataltīskā reducēšana (SCR)</td>
<td></td>
</tr>
</tbody>
</table>
| Šī tehniskā paņēmiens izmantošanai var būt nepieciešams uzlabot putekļuģeņās, pazeminātās sistēmu, lai nodrošinātu, ka putekļu koncentrācijā nav lēlāka par 10–15 mg/Nm³, kā arī uzlabot atsērošanas sistēmu SOₓ emisijas novēršanai.
Optimālas darba temperatūras diapazona dēļ tehnisko paņēmienu var piemērot tikai elektrostatisko filtru izmantošanai.
Kopumā tehnisko paņēmienu var izmantot ar mājas filtru sistēmu, ko zemās darba temperatūras 180–200 °C diapazonā apstākļos būtu nepieciešama atgāzu atkārtota uzkarsēšana.
Šī tehniskā paņēmiens tiešsaistē ir nepieciešams ievērojamu telpa. |
| ii) Selektīva nekataltīskā reducēšana (SNCR) |
| Tehnisko paņēmienu var izmantot reperatīvājām krāsnām.
Loti ierobežota piemērojamība tipveida reperatīvājām krāsnām, ja ir apgūtināta piekluve parizojamajā temperatūrās diapazonā vai nav iespējams pareizi sajaukt dūmgāzes ar reagentu.
To var izmantot jaunajām reperatīvājām krāsnām, kas ir aprīkošas ar daltajiem reperatīvājiem, tomēr ir grūti uzturēt temperatūras diapazonu līdzīgi virzienmaiņas starp kamerām dēļ, jo šāda virzienmaiņa izraisa cikliskas temperatūras izmaiņas. |

(2) Tehniskie paņēmieni aprakstīti 1.10.2. nolaidā.
7. tabula

LPTP-SEL kaušēšanas krāšņu NOₓ emisijām taras stikla ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ, ko izaaka kā NO₂</td>
<td>Degšanas koriģēšana, īpaša krāsns konstrukcija (2) (3)</td>
<td>500–800</td>
</tr>
<tr>
<td></td>
<td>Elektriskā kaušēšana</td>
<td>< 100</td>
</tr>
<tr>
<td></td>
<td>Kaušēšana, izmantojot skābekli un kurināmo (4)</td>
<td>Neattiecās</td>
</tr>
<tr>
<td></td>
<td>Sekundārie tehniskie paņēmieni</td>
<td>< 500</td>
</tr>
</tbody>
</table>

(1) Izmantots vispārējiem gadījumiem 2. tabulā norādītajās konversijās koeficients (1,5 × 10⁻³), izņemot elektrisko kaušēšanu īpaši gadījumā (3 × 10⁻³).
(2) Zemāka vērtība attiecas uz LPTP-SEL kaušēšanu.
(3) Šis vērtības būtu jāpārskata, ja kaušēšanas krāsnī veic parastu vai pilnīgu pārbūvi.
(4) Sasniedzamie līmeņi ir atkarīgi no pieejamās dabasgāzes un skābekļa kvalitātes (slāpekļa satura).

18. Ja šīūtas sagatavošanā izmanto nitrātus un/vai kaušēšanas krāsnī ir nepieciešami īpaši oksidēšanās degšanas apstākļi, lai nodrošinātu gāla izstrādājuma kvalitāti, LPTP mērķis ir samazināt NOₓ emisijas, cik vien iespējams samazinot šādu izstrādi izmantošanu apvienojumā ar primārājiem vai sekundārājiem tehniskajiem paņēmieniem.

LPTP-SEL ir iekļautā 7. tabulā.

8. tabulā izklāstītie LPTP-SEL attiecas uz gadījumiem, kuros nitrātus šīšas sagatavošanai izmanto iem darba cikliem vai kaušēšanas krāsnīm, kuru ražgums nav lielāks par 100 tonnām dienā.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojami balsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primārie tehniskie paņēmieni:</td>
<td>Nitrātu aizstāšanu šīšas sagatavošanā var ierobežot lielas izmaksas un/vai alternatīvo materiālu lielāka ietekme uz apkārtni</td>
</tr>
<tr>
<td>— Nitrātu izmantošanas šīšas sagatavošanai samazināšana līdz minimumam.</td>
<td></td>
</tr>
<tr>
<td>Nitrātus izmanto joti augstas kvalitātes izstrādājumu ražošanā (piemēram, stikla tara, smaržu pudeltēs un kosmētikas tara).</td>
<td></td>
</tr>
<tr>
<td>Efektīvi alternatīvi materiāli ir sulfāti, arsēna oksīdi, cērija oksīds.</td>
<td></td>
</tr>
<tr>
<td>Nitrātu izmantošanas alternatīva ir procesa pārkārtotāja (piemēram, radot īpašus oksidēšanās degšanas apstākļus).</td>
<td></td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.2. nolādā.

8. tabula

LPTP-SEL kaušēšanas krāšņu NOₓ emisijām taras stikla ražošanas nozarē, ja šīšas sagatavošanai izmanto nitrātus un/vai ir radīti īpaši oksidēšanas degšanas apstākļi iem darba cikliem vai kaušēšanas krāsnīm, kuru ražgums nav lielāks par 100 tonnām dienā

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ, ko izaaka kā NO₂</td>
<td>Primārie tehniskie paņēmieni</td>
<td>< 1 000</td>
</tr>
</tbody>
</table>

(1) Izmantots 2. tabulā īpašiem gadījumiem norādītajās konversijās koeficients (3 × 10⁻³).
1.2.3. Kaušēšanas krašņu izdaitīte sēra oksīdi (SO₂)

19. LPTP mērķis ir samazināt kaušēšanas krāsnis izdaitītās SO₂ emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamāba</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Sausā vai pussausā gāzu attīrīšana apvienojumā ar filtrēšanas sistēmu.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
</tr>
<tr>
<td>ii) Sēra satura samazināšana līdz minimumam šīhtas sagatavošanā un sēra bilances optimizēšanā.</td>
<td>Sēra satura samazināšana līdz minimumam šīhtas sagatavošanā ir vispārīgi piemērojama, ievērojot stikla gāla izstrādājuma kvalitātes prasību noteiktos ierobežojumus. Lai varētu izmantot sēras bilances optimizēšanu, ir nepieciešams rast kompromīsu risinājumu starp SO₂ emisiju mazināšanu un cieto atkritumu apsaimniekošanu (izfiltrētie putekļi). SO₂ emisiju samazināšanas efektivitāte ir atkarīga no sēra savienojumu ieslēgšanas stiklā, kas atkarībā no stikla veida var būtīt atšķirīgas.</td>
</tr>
<tr>
<td>iii) Kurināmā ar zemu sēra saturu izmantošana</td>
<td>Piemērojamāba var ierobežot sarežģījumus, ka saistīti ar zemā sēra saturu kurināmā piejamā, un to var ietekmēt dalībvalsts enerģētikas politiku.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.3. nodalā.

9. tabula

LPTP-SEL kaušēšanas krašņu SO₂ emisijām taras stikla rādošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>Kurināmās</th>
<th>LPTP-SEL (1) (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂, ko izsaka kā SO₂</td>
<td>mg/Nm³</td>
<td>Kg uz tonnu izkausēšana stikla (3)</td>
</tr>
<tr>
<td>Dabagsūze</td>
<td>< 200–500</td>
<td>< 0,3–0,75</td>
</tr>
<tr>
<td>Degvieleļļa (4)</td>
<td>< 500–1 200</td>
<td>< 0,75–1,8</td>
</tr>
</tbody>
</table>

(1) Attiecībā uz dažiem šīmā krāsnī stikla veidiem (piemēram, zaļajā pudeļa stikls, kas samazina emisijas) ar sasniedzamajiem emisijas līmenēm saistītu bažu dēļ var būt nepieciešama sēra bilances izpēte. Tabulā minētās vērtības var būt sarežģīti saņemt apvienojumā ar filtrējošo putekļu pārstrādi un kvalitatīvo no arījumā piegādājumā sazumu lausu pārstrādi.

(2) Zemākā līmeņa ir saistīti ar apstākļiem, kurus SO₂ samazināšanai ir lielāka prioritāte nekā cieto atkritumu ražošanas samazināšanai, proti, ja filtrējojo putekļu ir augstākā saturā.

(3) Ir izmantots 2. tabulā vispārīgākās gadijumiem norādīts konversijas koeficients (1,5 x 10⁻²).

(4) Attīstīšanās līmeni ir saistīti ar 1 % sēra degvieleļļā izmantošanu apvienojumā ar sekundārajiem attīrīšanas tehniskajiem paņēmieniem.

1.2.4. Kaušēšanas krašņu izdaitītei ūdeņraža hlorīds (HCl) un ūdeņraža fluorīds (HF)

20. LPTP mērķis ir samazināt kaušēšanas krāsni izdaitītās HF un HCl emisijas (iespējams, ari dūmgāzes, kas rodas karstās sakaušēšanas pārkāpuma uzklāšanas laikā), izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamāba</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Izejvielu ar zemu Hloru un fluorā saturu atlaššanā šīhtas sagatavošanai.</td>
<td>Piemērojamāba var ierobežot sarežģījumus, ka saistīti ar iekārtā ražotā stikla veidu un izzejvielu piejamā.</td>
</tr>
<tr>
<td>ii) Sausā vai pussausā gāzu attīrīšana apvienojumā ar filtrēšanas sistēmu.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.4. nodalā.
10. tabula

LPTP-SEL kausēšanas krāšņu HCl un HF emisijām taras stikla ražošanas nozāre

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/Nm³</td>
</tr>
<tr>
<td>Ļaģa hlorīda, ko izsaka kā HCl (²)</td>
<td>< 10–20</td>
</tr>
<tr>
<td>Ļaģa fluorīda, ko izsaka kā HF</td>
<td>< 1–5</td>
</tr>
</tbody>
</table>

(²) Izmantots 2. tabulā vispārīgiem gadījumiem norādītais koeficients (1,5 × 10⁻³).
(³) Augstākā līmenī ir saistīti ar vienlaicīgu karstā sakausēšanas pārkāpjuma uzklāšanas laikā radušos dūmgāzu attīrīšanu.

1.2.5. Kausēšanas kaujanās izdalītie metāli

21. LPTP mērķis ir samazināt kausēšanas krāšņu izdalīšanas metālu emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmiem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (³)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Izejvielu ar zemu metālu saturu atlašīšana šītai sagatavošanai.</td>
<td>Piemērojamība var ierobežot sarežģījumus, kas saistīti ar iekārtā ražotā stikla veidu un izejvielu pieejamību.</td>
</tr>
<tr>
<td>ii) Samazināt līdz minimāmām metālu savienojumu izmantošanu šītai sagatavošanai, ja ir nepieciešama šītaik iekrāsošana vai atkrāsošana atbilstoši patēriņam paredzētā stikla kvalitātes prasībām.</td>
<td>Tekhniskie paņēmieni ir vispārīgi piemērojami.</td>
</tr>
<tr>
<td>iii) Filtrēšanas sistēmas izmantošana (maiza filters vai elektrostatiskais filters)</td>
<td>Tekhniskie paņēmieni ir apraksīti 1.10.5. nodalā.</td>
</tr>
<tr>
<td>iv) Sausā vai pussausā gāzu attīrīšana apvienojumā ar filtriem atomizēšanas sistēmu.</td>
<td></td>
</tr>
</tbody>
</table>

(³) Tehniskie paņēmieni apraksīti 1.10.5. nodalā.

11. tabula

LPTP-SEL kausēšanas krāšņu metālu emisijām taras stikla ražošanas nozāre

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL (³) (⁴)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/Nm³ Kg uz tonnu izkausēta stikla (⁴)</td>
</tr>
<tr>
<td>∑ (As, Co, Ni, Cd, Se, Cr₂⁺)</td>
<td>< 0,2–1 (⁴)</td>
</tr>
<tr>
<td>∑ (As, Co, Ni, Cd, Se, Cr₃⁺, Sb, Pb, Cr₆⁺, Cu, Mn, V, Sn)</td>
<td>< 1–5</td>
</tr>
</tbody>
</table>

(³) Līmeņi attiecas uz kopējo metālu daudzumu dūmgāzēs gan cietā, gan gāzveida stāvoklī.
(⁴) Zemāka līmeņa LPTP-SEL attiecas uz gadījumiem, kuros šītaik sagatavošanai netiek aprūpēti izmantoti metālu savienojumi.
(⁵) Augstākā līmeņa ir saistīti ar metālu izmantotanu šītai iekrāsošanai vai atkrāsošanai vai arī attiecas uz gadījumiem, kuros karstā sakausēšanas pārkāpjuma uzklāšanas laikā radušās dūmgāzes attīra kopā ar kausēšanas krāšņu emisijām.
(⁶) Izmanto 2. tabulā vispārīgiem gadījumiem norādītais koeficients (1,5 × 10⁻³).
(⁷) Īpašos gadījumos, kad tiek ražots augstas kvalitātes optiskais stikls un atkrāsošanai ir nepieciešams lielāks sēļa daudzums (atkarībā no izsjūvēšanas vietas un ražošanas laika).
(⁸) Tehniskie paņēmiens ir apraksīti 11.1.1. nodalā.

1.2.6. Emisijas, kas rodas pakārtotu procesu laikā

22. Ja karstās sakausēšanas pārkāpjuma uzklāšanai izmanto alvas, alvorganiskus vai titāna savienojumus, LPTP mērķis ir samazināt emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmiem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Pārkājumā produkta zudumu samazināšana līdz minimumam, nodrošinot kārtīgu uzklāšanas sistēmas nobīvēšanu un uzstādot efektīvus nostacētus.</td>
<td>Tekhniskie paņēmieni ir vispārīgi piemērojami.</td>
</tr>
</tbody>
</table>

Lai līdz minimumam samazinātu nereagējošu produktu izplūdes atmosfērā, ir būtiska piemērota uzklāšanas sistēmas konstrukcija un blīvējums.
Tehniskais paņēmiens	Piemērojamība
ii) Pārkāšanas laikā radušos dūmgāzus sajaukšana ar kaušēšanas krāsas atgāzēm vai krāsas degšanas kameru gaisu, ja ir uzstādīta sekundārā attīrīšanas sistēma (filtuš, kā arī sausais vai pussausais gāzu skruberis)	

Atkarībā no kāmiskā savienojamās pārkāšanas laikā radušās atgāzes pirmā attīrīšanas var saukti kopā ar citām dūmgāzēm. Pastāv divi varianti:

— sajaukšana kopā ar kaušēšanas krāsas dūmgāzēm pie sekundārās gāzām tīrīšanas sistēmas ieciet (sausā vai pussausā gāzā attīrīšana kopā ar filtrešanas sistēmu);

— sajaukšana kopā ar degšanas kameru gaisu pirms ievadišanas reģeneratorā un pēc kaušēšanas procesa laikā radušās atgāzes sekundārā attīrīšanas (sausā vai pussausā gāzā attīrīšana kopā ar filtrešanas sistēmu).

| iii) Sekundārā tehniskā paņēmiema izmantošana, piemēram, slapijā gāzā attīrīšana, sausā gāzā attīrīšana kopā ar filtrešanu (1).

| 1) Tehniskie paņēmiemi aprakstīti 1.10.4. un 1.10.7. nodalā.

| 12. tabula
LPTP-SEL emisijām atmosfērā, kas rodas karstās sakaušēšanas pārkājuma uzklāšanas laikā taras stikla ražošanas nozarē, ja pakārtojo procesu laikā radušās dūmgāzes attīra atsevišķi |

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putekļi</td>
<td>< 10</td>
</tr>
<tr>
<td>Ti tāna savienojumi, ko iesaka kā Ti</td>
<td>< 5</td>
</tr>
<tr>
<td>Alvas, tostarp alvorganiskie savienojumi, ko iesaka kā Sn</td>
<td>< 5</td>
</tr>
<tr>
<td>Ūdenraža hlorīds, ko iesaka kā HCl</td>
<td>< 30</td>
</tr>
</tbody>
</table>

23. Ja SO₃ izmanto virsmas apstrādei, LPTP mērķis ir samazināt SOₓ emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmiem vai to apvienojumu.

Tehniskais paņēmiens (1)	Piemērojamība
i) Produkta zudumu samazināšana līdz minimumam, kārtīgi nobīdvējot uzklāšanas sistēmu.	

Lai līdz minimumam samazinātu neragejusā produkta izplūdes atmosfērā, ir būtiska piemērota uzklāšanas sistēmas konstrukcija un tehniskā aizp purchasers.

| ii) Sekundārā tehniskā paņēmiema, piemēram, slapijā gāzā attīrīšanas izmantotās.

| 1) Tehniskie paņēmiemi aprakstīti 1.10.6. nodalā.

| 13. tabula
LPTP-SEL SOₓ emisijām no pakārtotiem procesiem, ja SOₓ izmanto virsmas apstrādei taras stikla ražošanas nozarē un ja šādas dūmgāzes attīra atsevišķi |

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOₓ, ko iesaka kā SO₂</td>
<td>< 100–200</td>
</tr>
</tbody>
</table>
1.3. LPTP secinājumi par lokšņu stikla raošanu
Ja vien nav noteikts citādi, šajā nodaļā izklāstītie LPTP secinājumi attiecas uz visām lokšņu stikla raošanas iekārtām.

1.3.1. Putekļu emisijas no kausēšanas krāsnim
24. LPTP mērķis ir samazināt putekļu emisijas kausēšanas krāsns atgāžs, izmantojot elektrostatisko filtru vai maisa filtru sistēmu

Tehniskie paņemieni aprakstīti 1.10.1. nodaļā.

14. tabula
LPTP-SEL kausēšanas krāsnu putekļu emisijām lokšņu stikla raošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putekļi</td>
<td>< 10–20</td>
</tr>
<tr>
<td></td>
<td>< 0.025–0.05</td>
</tr>
</tbody>
</table>

(*) Ir izmantots 2. tabulā norādītajai konversijai koeficients \((2.5 \times 10^{-3})\).

1.3.2. Kausēšanas krāsnu izdalītie slāpekļa oksidi \((NO_x)\)
25. LPTP mērķis ir samazināt kausēšanas krāsns izdalīšas NO\(_x\) emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņemieniem vai to apvienojumu.

1. Primārie tehniskie paņemieni, piemēram:

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (*)</th>
<th>Piemērojamāba</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Degšanas korekcijas</td>
<td></td>
</tr>
<tr>
<td>a) Gaisa/kurināmā attiecības samazināšana</td>
<td>Attiecas uz konvencionālām ar gaisu/kurināmo darbināmām krāsnim. Maksimāls ieguvums nodrošina parastu vai krāsnu pilnīgā pārējā apvienojumā ar labāko krāsnu konstrukciju un geometriju.</td>
</tr>
<tr>
<td>b) Pazemināta sadegšanai nepieciešamā gaisa temperatūra</td>
<td>Zemākās krāsna efektivitātes un lielāka kurināmā patēriņa dēļ var piešķirt tikai mazrāžētām krāsnim, kuras izmanto specializēta lokšņu stikla raošanai, un atbilstoši konkrētajai iekārtas uzstādīšanas apstākļiem (t. i., relačlietavu krāsnu izmantošana reģeneratīvo krāsnu vietā).</td>
</tr>
<tr>
<td>c) Pakāpeniska sadedzināšana:</td>
<td></td>
</tr>
<tr>
<td>— pakāpeniska gaisa padeve;</td>
<td></td>
</tr>
<tr>
<td>d) Dūmgāzu recirkulācija</td>
<td>Šo tehnisko paņēmienu var piešķirt tikai speciālu deglu ar automātizētu atgāzi recirkulāciju izmantotānai.</td>
</tr>
<tr>
<td>e) Zema NO(_x) līmeņa degli</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams. Kopumā ieguvumi apkārtošajai videi ir mazāki, ja Šo tehnisko paņēmienu izmanto ar gāzi darbināmām krāsnim, kurām ir šķersvīziena tiesības. Tādējādi krāsna darbināšanos un pilnīgo krāsnu pārējā apvienojumā ar labāko krāsnu konstrukciju saražojumu ir ļoti ierobežoti uzstādījumi. Maksimālus ieguvumus nodrošina parastu vai krāsnu pārējā apvienojumā ar labāko krāsnu konstrukciju un geometriju.</td>
</tr>
<tr>
<td>f) Kurināmā izvele</td>
<td>Piemērojamību ierobežo saražošanai, kas saistīta ar dažāda veida kurināmā pieejamību, un to var ietekmēt dalībvalsts enerģētikas politika.</td>
</tr>
</tbody>
</table>
Tehniskais paņēmiens (Ⅰ)

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (Ⅰ)</th>
<th>Piemērojamiba</th>
</tr>
</thead>
<tbody>
<tr>
<td>ii) FENIX process</td>
<td>Var izmantot tikai regeneratīvājām krāsnām ar šķēršļa krīšu izmantošanu.</td>
</tr>
<tr>
<td>Tā pamata ir vairāku primāro metožu apvienojums, lai optimizētu dešļu reģeneratīvājām krāsnām ar šķēršļa krīšu izmantošanu. Galvenais iespējams ir šādas:</td>
<td></td>
</tr>
<tr>
<td>— pārmērīgās gaisa pieplūdes samazināšana;</td>
<td></td>
</tr>
<tr>
<td>— karsto punktu slāpēšana un liemtu temperatūras homogenizācija;</td>
<td></td>
</tr>
<tr>
<td>— kontrolētā kurināmā un dešļu gaisa sajaukšana.</td>
<td></td>
</tr>
<tr>
<td>iii) Kausēšana, izmantojot skābekli un kurināmo</td>
<td>Vislielākais ieguvums apturētājai videi var nodrošināt pēc krāsns pilnīgā pārākums.</td>
</tr>
</tbody>
</table>

(Ⅰ) Tehniskie paņēmiens aprakstīti 1.10.2. nodaļā.

II. Sekundārie tehniskie paņēmiens, piemēram:

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (Ⅰ)</th>
<th>Piemērojamiba</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Kārtīša samazināšana</td>
<td>Var izmantot regeneratīvājām krāsnām.</td>
</tr>
<tr>
<td>un kurināmā palīdzība.</td>
<td>Piemērojamibas ierobežo palielinātā kurināmā patēriņa un no tā izrietotā ietekme uz vidi un ekonomiskās sekas.</td>
</tr>
<tr>
<td>ii) Selettiva katallītiskā reducēšana (SCR)</td>
<td>Šī tehniskā paņēmiena izmantošanai var būt nepieciešams uzlabot putekļainās pazemināšanas sistēmu, lai nodrošinātu, ka putekļa koncentrācija nav lielāka par 10–15 mg/Nm³, kā arī uzlabot atse- ronās sistēmu SOx emisijas novēršanai.</td>
</tr>
</tbody>
</table>

(Ⅰ) Tehniskie paņēmiens aprakstīti 1.10.2. nodaļā.

15. tabula

LPTP-SEL kausēšanas krāsns NOx emisijām lokšņu stikla raķešanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP</th>
<th>LPTP-SEL (Ⅰ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mg/Nm³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOx, ko iesaka kā NO2</th>
<th>Degšanas korekcijas FENIX process (Ⅰ)</th>
<th>700–800</th>
<th>1,75–2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kausēšana, izmantojot skābekli un kurināmo (Ⅰ)</td>
<td>Neattiecas</td>
<td>< 1,25–2,0</td>
<td></td>
</tr>
<tr>
<td>Sekundārie tehniskie paņēmiens (Ⅰ)</td>
<td>400–700</td>
<td>1,0–1,75</td>
<td></td>
</tr>
</tbody>
</table>

(Ⅰ) Ja speciāla stikla raķešanai dažkārt izmanto nitrātus, tad ir paredzams, ka emisijas līmeni būs augstāki. |
(Ⅱ) ir izmantots 2. tabulā norādītais konversijas koeficients (2,5 × 10⁻⁶). |
(Ⅲ) Zemāk diapazona līmenī ir saistīts ar FENIX procesa piemērošanu. |
(Ⅳ) Sasniedzamie līmeni ir atkarīgi no pieejamās dabasgāzes un skābekļa kvalitātes (slāpekļa saturu). |

26. Ja šīs tabulas sagatavošanai izmanto nitrātus, LPTP mērķis ir samazināt NOx emisijas, līdz minimumam samazinot šādu izdevību izmantošanai apvienojuma ar primāroma jem vai sekundārajiem tehniskajiem paņēmiem. Ja tiek izmantoti sekundārie tehniskie paņēmiens, piemēro 15. tabulā norādītos LPTP-SEL.
Ja nitrātu izmanto šītas sagatavošanai speciāli stikla ražošanai ierobežotam išu ražošanas ciklu skaitam, tad ir jāievēro
16. tabulā izklāstītie LPTP-SEL.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primārie tehniskie paņēmiens:</td>
<td>Nitrātu aizstāšanu šītas sagatavošanā var ierobežot lielas izmaksas un/vai alternatīvo materiālu lielāku ietekme uz apkārtējo vidi.</td>
</tr>
<tr>
<td>Nitrātu izmantošanas šītas sagatavošanai samazināšana līdz minimumam.</td>
<td></td>
</tr>
<tr>
<td>Nitrātu izmanto speciāli izstrādājumu ražošanai (pie- mēram, krāsainajam stiklām).</td>
<td></td>
</tr>
<tr>
<td>Efektīvi alternatīvie materiāli ir sulfāti, ar sēna oksīdi, cērija oksīds.</td>
<td></td>
</tr>
</tbody>
</table>

(1) Tehniskais paņēmiens aprakstīts 1.10.2. nodalījumā.

16. tabula
LPTP-SEL kausēšanas krāsns izdalītajām NOX emisijām lokšķu stikla ražošanas nozarē, ja nitrātus izmanto šītas sagatavošanai speciāli stikla ražošanai ierobežotam išu ražošanas ciklu.

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOX ko izsaka kā NO2</td>
<td>Primārie tehniskie paņēmiens</td>
<td>< 1 200</td>
</tr>
<tr>
<td></td>
<td>Kg uz tonnu izkausēta stikla (1)</td>
<td>< 3</td>
</tr>
</tbody>
</table>

(1) Ir izmantots 2. tabulā iepakotiem goji diņiem norādītai konversijas koeficients (2,5 × 10⁻³).

1.3.3. Kausēšanas krāsķu izdalītie sēra oksīdi (SOX)
27. LPTP mērķis ir samazināt kausēšanas krāsns izdalītās SOX emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmiem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Sausā vai pussausā gāzu attīrīšana apvienojumā ar filtrēšanas sistēmu</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
</tr>
<tr>
<td>ii) Sēra satura samazināšana līdz minimumam šītas sagatavošanā un sēra bilances optimizēšana</td>
<td>Sēra satura samazināšana līdz minimumam šītas sagatavošanā ir vispārīgi piemērojama, ievērojot stikla gāja izstrādājuma kvalitātes prasību noteiktos ierobežojumus. Lai varētu izmantot sēra bilances optimizēšanas tehnisko paņēmienu, ir nepieciešams rast kompromisa risinājumu starp SOX emisiju mazināšanu un cieto atkritumu apsaimniekošanu (izfiltrētie putekļi).</td>
</tr>
<tr>
<td>iii) Kurināmā ar zemu sēra satura izmantošana</td>
<td>Piemērojamību var ierobežot sarežģījumi, kas saistīti ar zema sēra satura kurināmā pieejamību, un to var ietekmēt dažādās enerģētikas politikā.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmiens aprakstīti 1.10.3. nodalījumā.

17. tabula
LPTP-SEL kausēšanas krāsns SOX emisijām lokšķu stikla ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>Kurināmās</th>
<th>LPTP-SEL (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOX ko izsaka kā SO2</td>
<td>Dabasgāze</td>
<td>LPTP-SEL (1)</td>
</tr>
<tr>
<td>Kg uz tonnu izkausēta stikla (1)</td>
<td>< 300–500</td>
<td>< 0,75–1,25</td>
</tr>
<tr>
<td>Kg uz tonnu izkausēta stikla (1)</td>
<td>500–1 300</td>
<td>1,25–3,25</td>
</tr>
</tbody>
</table>

(1) Zemākās lielumi ir saistīti ar apstākļiem, kuros SOX samazināšanu ir attīstīt prioritētē nekā mazākai cieto atkritumu ražošanai, proti, ja filtrēšanu pateikumus un augstus sullājumus.
(1) Ir izmantots 2. tabulā norādītai konversijas koeficients (2,5 × 10⁻³).
(1) Attiecīgā emisijās lielumi ir saistīti ar 1 % sēra degvielas izmantošanu apvienojumā ar sekundārām attīrīšanas tehniskajiem paņēmiem.
(1) Attiecībā uz lielām lokšķu stikla krāsnīm ar sasniegzamo mazināšana emisijās lielumi saistīti būt dēļ, tai var būt nepieciešama sēra bilances izpēte. Tabulā minētās vērtības var būt grūti sasniegzamas apvienojumā ar izfiltrēto pateikumā pārstādī.
1.3.4. Kausēšanas krāšņu izdalītās ūdeņraža hlorīds (HCl) un ūdeņraža fluorīds (HF)

28. LPTP mērķis ir samazināt kausēšanas krāsns izdalītās HCl un HF emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

Tehniskais paņēmiens

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
<th>LPTP-SEL (2)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>^{1}\text{HCl}</th>
<th>^{2}\text{Kg uz tonnu izkausēta stikla}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Üdeņraža hlorīds, ko izsaka kā HCl</td>
<td>< 10–25</td>
</tr>
<tr>
<td>Üdeņraža fluorīds, ko izsaka kā HF</td>
<td>< 1–4</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.4. nodaļā.

Tehniskais paņēmiens

29. LPTP mērķis ir samazināt kausēšanas krāsns izdalītās metālu emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

Tehniskais paņēmiens

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL (1)</th>
</tr>
</thead>
</table>

Σ (As, Co, Ni, Cd, Se, Cr\text{VI}) | < 0,2–1 | < 0,5–2,5 × 10^{-3} |
Σ (As, Co, Ni, Cd, Se, Cr\text{III}, Sb, Pb, Cr\text{III}, Cu, Mn, V, Sn) | < 1–5 | < 2,5–12,5 × 10^{-3} |

(1) Tehniskie paņēmieni aprakstīti 1.10.5. nodaļā.
30. LPTP mērķis ir samazināt kaušešanas krāsņs izdalītās seleņa emisijas, ja seleņa savienojumus izmanto stikla iekrāsošanai, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmēns (i)</th>
<th>Piemērojamā</th>
<th>LPTP-SEL (m/s) (kg/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Samazināt līdz minimāliem seleņa izgarašanu no sahās sastāvā, izvēloties izveidojās augstāku iesloge-sanas stiklā efektivitāti un mazāku gaistamību.</td>
<td>Piemērojamā</td>
<td>Kgs uz tonnu izkaušā stikla</td>
</tr>
<tr>
<td>ii) Filtrēšanas sistēmas izmantošana.</td>
<td>Tehniskais paņēmēns ir vispārīgi piemērojams.</td>
<td></td>
</tr>
<tr>
<td>iii) Sausā vai pussausā gāzu attīrīšana apvienojumā ar filtrēšanas sistēmu.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmēni aprakstīti 1.10.5. nodalā.

20. tabula

LPTP-SEL kaušešanas krāsņs seleņa emisijām lokšņu stikla ražošanas nozarē krāsainajam stiklam

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL (m/s) (kg/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selēna savienojumi, ko izsaka kā Se</td>
<td>1–3</td>
</tr>
<tr>
<td></td>
<td>2,5–7,5 × 10⁻³</td>
</tr>
</tbody>
</table>

(1) Vērtības attiecīs uz kopsēļo seleņa daudzumu dūmu gāzējas gan cietā, gan gāzevida stāvoklī. (2) Zemākās līmenis atbilst piektiņam pirmlaikā un un filtrējām putekļiem ražošanas samazināšanai. (3) Sājā gadā gadaugstā stehiometriskā.attiecība (reālā/pieskarotajā) un rosda ievērojama cietā atkritumu plūšana. (4) Ir izmantojis 2. tabulā norādītajā konversijā koeficientā (2,5 × 10⁻³).

1.3.6. Emisijas, kas rodas pakārtotu procesu laikā

31. LPTP mērķis ir samazināt pakārtotu procesu laikā radušās emisijas atmosfērā, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmēns (i)</th>
<th>Piemērojamā</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Samazināt līdz minimālim lokšņu stikla pārklašanas produktu zudumam, nodrošinot pilnīgu uzņemšanas sistēmas nobūvēšanu.</td>
<td>Tehniskie paņēmēni ir vispārīgi piemērojami.</td>
</tr>
<tr>
<td>ii) Samazināt līdz minimālim SO₂ zudumam no stikla atlaidināšanas krāsņs, efektīvi izmantojot vadības sistēmu.</td>
<td></td>
</tr>
<tr>
<td>iii) Stikla atlaidināšanas krāsņas SO₂ emisijas sajaukšana kopā ar kaušešanas krāsņs atgāžēm, ja vien tas ir tehniski iespējams un ja tiek izmantota sekundārā attīrīšanas sistēma (filtrs, sausais un pussausais gāzu attīrīšana).</td>
<td></td>
</tr>
<tr>
<td>iv) Sekundārā tehniskā paņēmēna izmantošana, piemēram, slapi gāzu attīrīšana, sausā gāzu attīrīšana un filtrēšana.</td>
<td>Tehniskie paņēmēni ir vispārīgi piemērojami.</td>
</tr>
</tbody>
</table>

(1) Sekundārā attīrīšanas sistēmas ir aprakstītas 1.10.3. un 1.10.6. nodalā.

21. tabula

LPTP-SEL emisijām atmosfērā no pakārtotiem procesiem lokšņu stikla ražošanas nozarē, ja tās attīra atsevišķi

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putekļi</td>
<td>< 15–20</td>
</tr>
</tbody>
</table>
1.4. LPTP secinājumi par vienlaju stiklūķiedras ražošanu

Ja vien nav noteikts citādi, šajā nodalā izklāstītie LPTP secinājumi attiecas uz visām vienlaidu stiklūķiedras ražošanas iekārtām.

1.4.1. Putekļu emisijas no kausēšanas krāsnim

Šajā nodalā aprakstītie LPTP-SEL putekļiem attiecas uz visiem materiāliem, kas mērījumu veikšanas punktā ir cietā stāvoklī, tostarp bora savienojumi. Nav iekļauti bora savienojumi, kas mērījumu veikšanas punktā ir gāzeveida stāvoklī.

32. LPTP mērķis ir samazināt kausēšanas krāsnas putekļu emisijas atgāžēs, izmantojot kādu no turpmāk minētajiem tehnikājiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ģēderu hlorids, ko izsaka kā HCl</td>
<td>< 0,045–0,09</td>
</tr>
<tr>
<td>Ģēderu fluorids, ko izsaka kā HF</td>
<td>< 0–1</td>
</tr>
<tr>
<td>SO₂, ko izsaka kā SO₂</td>
<td>< 200</td>
</tr>
<tr>
<td>Σ (As, Co, Ni, Cd, Sc, CrVI)</td>
<td>< 1</td>
</tr>
<tr>
<td>Σ (As, Co, Ni, Cd, Se, CrVI, Sb, Pb, CrIII, Cu, Mn, V, Sn)</td>
<td>< 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamāba</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Gaistošu sastāvdaļu satura samazināšana, modificējot izejvielas. Šihtas sastāva veidošana, neizmantojot bora savienojumu vai izmantojot vielas ar zemu bora saturu, ir primārais pasākums putekļu emisiju samazināšanai, ko galvenokārt rada vielu gaismam. Kausēšanas krāsns emitēto cieto dārzu galvenā sastāvdaļa ir bors.</td>
<td>Tehniskā paņēmiena izmantošanu ierobežo īpašumtiesību jautājumi, jo šihtas sastāv bez bora vai ar zemu bora saturu aizsargā patents.</td>
</tr>
<tr>
<td>iii) Slapjā gāzu attīrīšanas sistēma.</td>
<td>Piemērojamābā esošām iekārtām var iero- bezot tehnikiski sarežģījumi, piemēram, nepieciešama uzstādīt īpašu note- kudēņu attīrīšanas iekārtu.</td>
</tr>
</tbody>
</table>

(1) Sekundārās attīrīšanas sistēmas ir aprakstītas 1.10.1. un 1.10.7. nodalā.

22. tabula

LPTP-SEL kausēšanas krāsku putekļu emisijām vienlaju stiklūķiedras ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putekļi</td>
<td>mg/Nm³</td>
</tr>
<tr>
<td>< 10–20</td>
<td>< 0,045–0,09</td>
</tr>
</tbody>
</table>

(1) Primāro metojo izmantošanas gadījumā sastāvam, kurā neizmanto boru, ir norādītas vērtības, kas ir mazākas par 30 mg/Nm³ (< 0,14 kg/tonnu izkausēta stikla).
(2) Ir izmantots 2. tabulā norādītās konversijas koeficients (4,5 × 10⁻³).
1.4.2. Kausēšanas krāšņu izdalītie slāpekļa oksīdi (NOₓ)

33. LPTP mērķis ir samazināt kausēšanas krāsnis izdalītās NOₓ emisijas, izmantojot kādu no turpmāk minētajiem tehnikajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Degšanas korekcijas</td>
<td></td>
</tr>
<tr>
<td>b) Pazemināta sadegšanai nepieciešamā gaisa temperatūra.</td>
<td>Attiecas uz konvencionālām ar gaisu/kurināmā darbināmā krāsnīm, ievērojo ierobežojušus, kuras nosaka krāsnis energoeffektivitāte un lielāks kurināmā patērīši. Lielākā daļa krāsna jau ir rekurperatīvās krāsnais.</td>
</tr>
<tr>
<td>c) Pakāpeniska sadedzināšana:</td>
<td>Kurināmā pakāpenisku padevi ir viemērot lielākajai daļai ar gaisu/kurināmā, skābekli/kurināmā darbināmā krāsna. Pakāpeniskai gaisa padevei ir ierobežota piemērojamā tās tehnikās sarežģītības dēļ.</td>
</tr>
<tr>
<td>d) Dūmgāzu recirkulācija.</td>
<td>Šo tehnisko paņēmienu var piemērot tikai speciālu deļu ar automatizēti centāt recirkulāciju izmantošanai.</td>
</tr>
<tr>
<td>e) Zema NOₓ līmeņa deglī.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērots. Maksimālus ieguvumus nodrošina parasta vai krāsns pilnīga pārbūve apvienojumā ar labāko krāns konstrukciju un ģeometriju.</td>
</tr>
<tr>
<td>f) Kurināmā izvēle.</td>
<td>Piemērojamās ierobežo sarežģījumi, kas saistīt ar dažāda veida kurināmā pieejamību, un to var ietekmēt dalību valsts enerģētikas politikā.</td>
</tr>
<tr>
<td>ii) Kausēšana, izmantojot skābekli un kurināmā</td>
<td>Vislēkšanos ieguvumus apkārtnējā videi var nodrošināt pēc krāsnis pārbūves.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.2. nodalā.

23. tabula

LPTP-SEL kausēšanas krāsns NOₓ emisijām vienlaidu stiklēkļedras ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/Nm³</td>
<td>Kg uz tonnu izkausēta stikla</td>
</tr>
<tr>
<td>NOₓ ko izsaka kā NO₂</td>
<td>Degšanas korekcijas</td>
<td>< 600 –1 000</td>
</tr>
<tr>
<td></td>
<td>Kausēšana, izmantojot skābekli un kurināmā (2)</td>
<td>Neattiecas</td>
</tr>
<tr>
<td></td>
<td>Neattiecas</td>
<td>< 0,5–1,5</td>
</tr>
</tbody>
</table>

(1) Ir izmantots 2. tabulā norādītais korekcijas koeficients (4,5 × 10⁻⁵).
(2) Sasnedzamie līmeņi ir atkarīgi no pieejamās dabasgāzes un skābekļa kvalitātes (slāpekļa saturā).

1.4.3. Kausēšanas krāšņu izdalītie sēra oksīdi (SOₓ)

34. LPTP mērķis ir samazināt kausēšanas krāsns izdalītās SOₓ emisijas, izmantojot kādu no turpmāk minētajiem tehnikajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (3)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Sēra satura samazināšana līdz minimumam vietas sagatavošanā un sēra bilances optimizēšana.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērots atbilstoši ierobežojušu, kuras nosaka atkritumu apsaimniekošanu (izņēmētais putekļu).</td>
</tr>
<tr>
<td>ii) Latvijas savienotās valstis enerģētikas politikas noteikumiem, kuras nosaka atkritumu apsaimniekošanu (izņēmētais putekļu).</td>
<td></td>
</tr>
</tbody>
</table>
Tehniskais paņemieni (1)

<table>
<thead>
<tr>
<th>ii) Kurināmā ar zemu sēra saturu izmantošana.</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piemērojamību var ierobežot sarezgījumu, kas saistīt ar zema sēra saturu kurināmā pieejamību, un to var ietekmēt dalībvalsts enerģētikas politika.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>iii) Sausā vai pussausā gāzu attīršana avprienojumā ar filtrešanas sistēmu.</th>
<th>Tehniskais paņemīns ir vispārīgi piemērojams.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tehnisko paņemīmīm ir vispārīgi piemērojams. Augstas bora savienojumu koncentrācijas klātbūtne dūmgāžes var ierobežot sausās vai pussausās gāzu attīršanas sistēmas izmantošā reaģenta attīršanas efektivitāti.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>iv) Slapjā gāzu attīršana.</th>
<th>Tehniskais paņemīns ir vispārīgi piemērojams atkarībā no tehniskajiem sarezgījumiem, piemēram, nepieciešamības uzstādīt īpašu noteikšanā attīršanas iekārtu.</th>
</tr>
</thead>
</table>

(1) Tehniskie paņemieni apraksīti 1.10.3. un 1.10.6. nodaļā.

24. tabula

LPTP-SEL kaussanas krāsns SO\(_x\) emisijām vienlaidu stikliņķiedrās ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>Kurināmās</th>
<th>LPTP-SEL (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(_x) ko izsaka kā SO(_2)</td>
<td>≥ 200–800</td>
<td>Kg uz tonnu izkaušta stikla (2)</td>
</tr>
<tr>
<td>Degvielē</td>
<td>< 500–1 000</td>
<td>< 2,25–4,5</td>
</tr>
</tbody>
</table>

(1) Augstākā diapazona līmeņi ir saistīti ar sulfātu izmantošanu šītas sagatavošanā stikla masas dzidrināšanai.
(2) Ir izmantojis 2. tabulā norādītus konversijas koeficientus (4,3 × 10\(^{-5}\)).
(3) Ar skābekli un kurināmā darbināmā krāsnīm, kurām izmanto slapjā gāzu attīršanu, norādītie LPTP-SEL ir mazāki par 0,1 kg SO\(_x\) ko izsaka kā SO\(_2\), uz tonnu izkaušta stikla.
(4) Attiecīgie emisijas līmeņi ir saistīti ar 1 % zemā degvielas izmantošanu avprienojumā ar sekundārām attīršanas tehniskajiem paņemieniem.
(5) Zemāki līmeņi attīstot apstākļiem, kuros SO\(_x\) samazināšanā ir aukstāka prioritāte nekā mazākai cieto atkritumu ražošanai, proti, ja filtrējot putekļus ir augsts sulfātu satur. Šādā gadījumā zemāki līmeņi ir saistīti ar maisa filtra izmantošanu.

1.4.4. Kaušanas krāšņi izdalītās hlorīds (HCl) un ūdeņraža fluorīds (HF)

35. LPTP mērķis ir samazināt kaušanas krāsnes izdalītās HCl un HF emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņemieniem vai to avprienojumu.

Tehniskais paņemieni (1)

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Izejvielu ar zemu hlora un fluora saturu atlasīšana šītas sagatavošanai.</td>
<td>Tehniskais paņemīns ir vispārīgi piemērojams atbilstoši šītas sagatavošanas ierobežojumiem un iziejvielu pieejamībā.</td>
</tr>
<tr>
<td>ii) Fluora satra samazināšana līdz minimumam šītas sagatavošanā.</td>
<td>Fluora savienojumu aizstāšanu ar alternatīviem materiāliem ierobežo izstrādājuma kvalitātes prasības.</td>
</tr>
<tr>
<td></td>
<td>Fluora savienojumu aizstāšanu ar alternatīviem materiāliem ierobežo izstrādājuma kvalitātes prasības.</td>
</tr>
<tr>
<td></td>
<td>Tehniskais paņemīns ir vispārīgi piemērojams.</td>
</tr>
<tr>
<td>iii) Sausā vai pussausā gāzu attīršana avprienojumā ar filtrešanas sistēmu.</td>
<td>Tehniskais paņemīns ir vispārīgi piemērojams.</td>
</tr>
<tr>
<td>iv) Slapjā gāzu attīršana.</td>
<td>Tehniskais paņemīns ir vispārīgi piemērojams.</td>
</tr>
</tbody>
</table>

(1) Tehnikie paņemieni apraksīti 1.10.4. un 1.10.6. nodaļā.
1.4.6. Ėmisijas, kas rodas pakārtotu procesu laikā

37. LPTP mērķis ir samazināt ēmisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmiem vai to apvienojumu:

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/(Nm³)</td>
<td>Kg uz tonnu izkausēta stikla (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i) Slaļjā gāzu attīrīšanas sistēma.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
<td></td>
</tr>
<tr>
<td>ii) Izejvielu ar zemu metālu saturu atlasīšanas sistēmu.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
<td></td>
</tr>
<tr>
<td>iii) Slaļjā gāzu attīrīšana.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
<td></td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.5. un 1.10.6. nodalā.
27. tabula

LPTP-SEL emisijām atmosfērā no pakārtotiem procesiem vienlaidu stiklšķiedras ražošanas nozarē, ja tās attīra atsevišķi

<table>
<thead>
<tr>
<th>Ražītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/Nm³</td>
</tr>
</tbody>
</table>

Veidošanas un pārklašanas procesa emisijas

<table>
<thead>
<tr>
<th>Putekļi</th>
<th>< 5–20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehīds</td>
<td>< 10</td>
</tr>
<tr>
<td>Amonjaks</td>
<td>< 30</td>
</tr>
<tr>
<td>Kopējā ar C izteikt gaistošo organisko savienojumu koncentrācija</td>
<td>< 20</td>
</tr>
</tbody>
</table>

Griešanas un malšanas procesa emisijas

<table>
<thead>
<tr>
<th>Putekļi</th>
<th>< 5–20</th>
</tr>
</thead>
</table>

1.5. **LPTP secinājumi par šķirnu stikla ražošanu**

Ja vien nav noteikts citādi, šajā nodaļā izklāstītie LPTP secinājumi attiecās uz visām šķirnu stikla ražošanas iekārtām.

1.5.1. **Putekļu emisijas no kausēšanas krāsnēm**

38. LPTP mērķis ir samazināt kausēšanas krāsns putekļu emisijas atgāzēs, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamā ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Gaistošu sastāvdaļu satura samazināšana, modificējot izēvēlās. Šīhtas sastāvā var ietilpīt joti gaistošas sastāvdaļas (pie mēram, bors, fluorīdi), kas ievērojami veicina kausēšanas krāsns putekļu emisiju veidošanos.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams atbilstoši ierobežojumiem, kuras nosaka ražotāja stikla veids un alternātīvi izēvēlē pieejamā.</td>
</tr>
<tr>
<td>ii) Elektriskā kausēšana.</td>
<td>Nav piemērojama lielpjoma (vairāk par 300 tonnām dienā) stikla ražošanai.</td>
</tr>
<tr>
<td></td>
<td>Nav piemērojama ražošanai, kuras laikā ir nepieciešams ievērojami mainīt stikla masas vilkšanas raksturīgumus.</td>
</tr>
<tr>
<td>iii) Kausēšana, izmantojot skābekli un kurināmo.</td>
<td>Vislielākos ieguvumus apkārtojai videi var nodrošināt pēc krāsns pilnīgas pārbūves.</td>
</tr>
<tr>
<td>iv) Filtrēšanas sistēma: elektrostatiskais filtrs vai maisa filtres.</td>
<td>Tehniskie paņēmieni ir vispārīgi piemērojami.</td>
</tr>
<tr>
<td>v) Slapjā gāzu attūrīšanas sistēma.</td>
<td>Ir piemērojama tikai konkrētos gadījumos, jo īpaši elektriskajām kausēšanas krāsnēm, kurām kopumā ir zemā dārgākā un primētu emisiju līmenis, un saistībā ar šīhtas sagatavošanas iznesi.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.5. un 1.10.7. nodaļā.
28. tabula

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putekļi</td>
<td>dB</td>
</tr>
<tr>
<td>< 10–20</td>
<td>< 0,03–0,06</td>
</tr>
<tr>
<td>< 1–10</td>
<td>< 0,003–0,03</td>
</tr>
</tbody>
</table>

(1) Ir izmantots konversijas koeficients 3 × 10⁻³ (skatī 2. tabulu). Tomēr īpašiem ražošanas veidiem var piemērot tieši atbilstošu atšķirīgu konversijas koeficientu.

(2) Tiek zīmots par ekonomiskā lietderīgumu apsārām attiecībā uz LPTP-SEL sasniegšanu silikātstikla ražošanas krāsnīm, kuru ražgums ir mazāks par 80 tonnām dienā.

(3) Šis LPTP-SEL atieceus uz tādas šīhtas sagatavošanu, kuras sastāvā ietilpst lielās tādu bīstamu vielu sastāvdalju daudzums, kas minētas Regulā (EK) Nr. 1272/2008.

1.5.2. Kaušēšanas krāšņu izdalītie slāpekļa oksīdi (NOₓ)

39. LPTP mērķis ir samazināt kaušēšanas krāsnis izdalītās NOₓ emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Degšanas korekcijas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Pazemināta sadegšanai nepieciešamā gaisa temperatūra.</td>
<td>Zemākais krāsnis efektivitātes un lielāka kurināmā patēriņa dēļ var piemērot tikai atbilstoši konkrētajiem iekārtām uzstādīšanas apstākļiem (t. i., rekruperatīvo krāšņu izmantošana regeneratīvo krāšņu vietā).</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Pakāpeniska sadedzināšana:</td>
<td>Kurināmā pakāpenisku padvei var piemērot lielākajai daļai konvencias ar gaisu/kurināmā darbināmā krāsnī. Pakāpeniskai gaisa padevei ir ļoti ierobežota piemērojamība tās tehniskās sarežģītības dēļ.</td>
</tr>
<tr>
<td>f) pakāpeniska gaisa padeve;</td>
<td></td>
</tr>
<tr>
<td>g) pakāpeniska kurināmā padeve.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>d) Dūmāzā re cir kulcij a.</td>
<td>Šo tehnisko paņēmienu var piemērot tikai speciālu dižu ar automātizētu atgāzu re cir kulciju izmantošanai.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>e) Zema NOₓ līmena degli.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams. Kopumā ieguvumi apkārtējai videi ir mazāki, ja Šo tehnisko paņēmienu izmanto ar gāzi darbināmām krāsnīm, kurām ir šķērsvirziena atīkla, jo šādām krāsnīm ir tehniski ierobežojumi un zemāka iekārtu izmantošanā. Maksimālās ieguvumus nodrošina parastā krāsēm ar optimālā krāsnī konstrukcijā un geometrijā.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>f) Kurināmā izvēle.</td>
<td>Piemērojamību ierobežo sarežģījumi, kas saistīti ar dažāda veida kurināmās pieejamību, un to var ietekmēt dalītavstā energētikas politika.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ii) Speciāla krāsns konstrukcija</td>
<td>Var piemērot tikai tādas šīhtas sagatavošanai, kuras sastāvā lielāko daļu (> 70%) veido no ārejām piegādātajām sapņēmās laukas. Lai tehnisko paņēmienu varētu izmantot, kaušēšanas krāsnis ir pilnībā jāpajānbvē. Krāsns forma (garā un šaTRA) var radīt platības ierobežojumus.</td>
</tr>
</tbody>
</table>
Nav piemērojama lielapjoma (vairāk par 300 tonnām dienā) stikla ražošanai.
Nav piemērojama ražošanai, kuras laikā ir nepieciešams ievērojamā mainīt stikla masas vilkšanas raksturlielumus.

Tehniskā paņēmēna ieviešanai ir nepieciešama pilnīga krāsas pārbūve.

Vislielākos ieguvumus apkārtējai videi var nodrošināt pēc krāsas pilnīgas pārbūves.

(1) Tehniskie paņēmieni aprakstīti 1.10.2. nodaļā.

29. tabula

<table>
<thead>
<tr>
<th>LPTP-SEL kaušēšanas krāsns NOₓ emisijām šķirņu stikla ražošanas nozarē</th>
<th>LPTP-SEL</th>
<th>LPTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ, ko izsaka kā NO₂</td>
<td>< 500–1 000</td>
<td>< 1,25–2,5</td>
</tr>
<tr>
<td>Degšanas korekcijas, speciālā krāsns konstrukcija</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektriskā kaušēšana</td>
<td>< 100</td>
<td></td>
</tr>
<tr>
<td>Kaušēšana, izmantojo skābekli un kurināmo (2)</td>
<td>Neattiecas</td>
<td>< 0,5–1,5</td>
</tr>
</tbody>
</table>

(1) Degšanas korekcijām un speciālam krāsnam konstrukcijām ir izmantojots konversijas koeficients 2,5 × 10⁻³ un elektriskajai kaušēšai ir izmantojots konversijas koeficients 3 × 10⁻³ (sk. 2. tabulu). Tomēr ķipāiem ražošanas veidām var piemērot tiem atbilstošu atšķirīgu konversijas koeficientu.
(2) Sasniegtam tieši ir atkarīgi no pieejamās dabasgāzes un skābekla kvalitātes (slāpekla satura).

40. Ja šīsatas sagatavošanai izmanoto nitrātus, LPTP mērķis ir samazināt NOₓ emisijas, līdz minimālām samazinātām šādu iezīmētu izmantošanu apvienojumā ar primārājiem vai sekundārājiem tehniskajiem paņēmieniem.

LPTP-SEL ir izklāstīts 29. tabulā.

Ja šīsatas sagatavošanā izmanoto nitrātus ierobežotam skaitam šā darba ciklu vai kaušēšanas krāsām, kuru ražīgums ir mazāks par 100 tonnām dienā, lai ražotu speciālu silikāsitikla veidus (dzidrs/ultradzidrs stikls vai ar selēnu iekrāsots stikls) vai citu speciālo stiku (piemēram, borosilikāts, stikla keramika, opālstikls, kristālstikls, svina Kristāla stikls), tad ir spēkā 30. tabulā izklāstīte LPTP-SEL.

30. tabula

<table>
<thead>
<tr>
<th>Tehniskais paņēmēns (1)</th>
<th>Piemērojamās</th>
<th>Nitrātu aizstāšanu šīsatas sagatavošanā var ierobežot lielas izmaksas un/vai alternatīvo materiālu lielākā ietekme uz apkārtējo vidi.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primārie tehniskie paņēmieni:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nitrātu izmanotojamās samazināšana līdz minimumam šīsatas sagatavošanai.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrātu izmantojot ļoti augstu kvalitāti izstrādājumām, kuriem ir nepieciešams pilnībā bezkrāsains (dzidrs) stikls, vai arī speciālu stikla ražošanai. Efektīvi alternatīvie materiāli ir sulfurī, arsēna oksīdi, cērīja oksīds.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Tehniskā paņēmēna apraksts 1.10.2. nodaļā.
30. tabula

LPTP-SEL kausēšanas krāsns NOₓ emisijām šķirņu stikla rašošanas nozarē, ja šīs sagatavošanā izmanto nitrušus ierobežotam skaītam un gar darba ciklu vai kausēšanas krāsnim, kuru ražīgums ir mazāks par 100 tonnām dienā, lai ražotu speciālus silikātstikli veidās (dzīdru/ultradzīdru stiklus vai ar seļēnu iekrāsot stiklus) vai citu speciālo stiklu (piemēram, borosilikāts, stikla keramika, opālātiskuls, kristālistiks un svina kristāla stikls)

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>Krāsns veids</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mg/Nm⁻³</td>
</tr>
<tr>
<td>NOₓ, ko izsaka kā NO₂</td>
<td>Tipveida ar kurināmaju/gaisu darbināmas krāsnis</td>
<td>< 500–1 500</td>
</tr>
<tr>
<td></td>
<td>Elektriskā kaušēšana</td>
<td>< 300–500</td>
</tr>
</tbody>
</table>

(¹) Ir izmantots 2. tabulā sīkāstiklām norādītais konverzijas koeficients (2,5 × 10⁻³).

1.5.3. Kausēšanas krāsu izdalīšie sēra oksīdi (SOₓ)

41. LPTP mērķis ir samazināt kausēšanas krāsna izdalīšas SOₓ emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmienīm vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmienī (¹)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Sēra satura samazināšana līdz minimāmām šītās sagatavošanā un sēra bilancē optimizēšana.</td>
<td>Sēra satura samazināšana līdz minimāmām šītās sagatavošanā ir vispārīgi piemērojama, ievērojot stīka gāja izstrādājuma kvalitātes prasību noteikto ierobežojojumus. Lai varētu izmantot sēra bilancē optimizēšanas tehnisko paņēmieni, ir nepieciešams rast kompromisa risinājumu starp SOₓ emisiju mazināšanu un cieto atkritumu apsaimniekošanu (izfiltrējot putekļus).</td>
</tr>
<tr>
<td>ii) Kurināmā ar zemu sēra satura izmantošana.</td>
<td>Piemērojamību var ierobežot sarežģījumi, kas saistīti ar zema sēra satura kurināmā piejamību, un to var ietekmēt dalībvalsts enerģētikas politika.</td>
</tr>
<tr>
<td>iii) Sausā vai pussausā gāzu attīrīšana apvienojumā ar filtrēšanas sistēmu.</td>
<td>Tehniskie paņēmieni ir vispārīgi piemērojami.</td>
</tr>
</tbody>
</table>

(¹) Tehniskie paņēmieni aprakstīti 1.10.3. nodalā.

31. tabula

LPTP-SEL kausēšanas krāsna SOₓ emisijām šķirņu stikla rašošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>Kurināmās/kaušēšanas tehnoloģija</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mg/Nm⁻³</td>
</tr>
<tr>
<td>SOₓ, ko izsaka kā SO₂</td>
<td>Dabasgāze</td>
<td>< 200–300</td>
</tr>
<tr>
<td></td>
<td>Degviela (²)</td>
<td>< 1 000</td>
</tr>
<tr>
<td></td>
<td>Elektriskā kaušēšana</td>
<td>< 100</td>
</tr>
</tbody>
</table>

(¹) Ir izmantots konverzijas koeficients 2,5 × 10⁻³ (iskatīt 2. tabulā). Tomēr ūpiņiem ražota veidem var piemērot tiem atbilstošu atšķirību konverzijas koeficientu.
(²) Līmeņi ir saistīti ar 1 % sēra degvielējas izmantošanu apvienojumā, ar sekundārāmatt attīrīšanas tehniskajiem paņēmieniem.

1.5.4. Kausēšanas krāsu izdalīšais ķīm. hlorids (HCl) un ķīm. fluorīds (HF)

42. LPTP mērķis ir samazināt kausēšanas krāsna izdalīšas HCl un HF emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmienīm vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmienī (¹)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Iezīveļu ar zemu hloru un fluora saturu atlasēšana šītās sagatavošanai.</td>
<td>Piemērojamību var ierobežot sarežģījumi, kas saistīti ar šīs sagatavošanu iekārtā ražotā stīka veidum un izevīelu piejamību.</td>
</tr>
<tr>
<td>Tehniskais paņēmiens (1)</td>
<td>Piemērojamība</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ii) Fluora saturā samazināšana līdz minimumam šītas sagatavošanā un fluora masas bilances optimizēšana. Kausēšanas procesa radītā fluora emisijas var samazināt līdz minimumam, samazinot ierobežojojot šītas sagatavošanā izmantojamo fluora savienojumu (piemēram, kašļu ķipas) daudzumu tikšālā, ciklālā to pielājot gāla izstrādājuma kvalitātes prasības. Fluora savienojumu pievieno šītas sastāvām, lai piešķirtu stiklam necaurspīdīgumu vai dūmakaunu izskatu.</td>
<td></td>
</tr>
<tr>
<td>iii) Sausā vai pussausā gāzu attīrīšana avprienojumā ar filtrēšanas sistēmu.</td>
<td></td>
</tr>
<tr>
<td>iv) Slapjā gāzu attīrīšana.</td>
<td></td>
</tr>
</tbody>
</table>

Tehniskais paņēmiens ir vispārīgi piemērojams.

Šī tehniskā paņemiena piemērojamību var ierobežot augstā izmaksas un jautājumi, kas saistīti ar noteikumu attīrīšanu, tostarp satecū ūdenī vai ūdens attīrīšanas laikā radušos cietvielu atlikumu pārstrādes ierobežoju.

(1) Tehniskie paņēmieni aprakstīti 1.10.4. un 1.10.6. nodaļā.

32. tabula

<table>
<thead>
<tr>
<th>LPTP-SEL kausēšanas krāsns HCl un HF emisijām šķirņu stikla ražošanas nozare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rādītājs</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ūdeņraža hlorāds, ko izsaka kā HCl (3) (4)</td>
</tr>
<tr>
<td>ūdeņraža fluorāds, ko izsaka kā HF (4)</td>
</tr>
</tbody>
</table>

(1) Ir izmantojot konversijas koeficientus 3 × 10⁻³ (skatīt 2. tabulu). Tomēr ipašiem ražošanas veidiem var piemērot tiem atbilstošu atšķirīgu konversijas koeficientu.

(1) Zemākā ķīmeņa ir saistīta ar elektriskās kausēšanas izmantošanu.

(1) Gadijumos, kuros stikla masas dzirdrināšanas vietā izmanto KCl vai NaCl, LPTP-SEL ir mazāks par 30 mg/Nm³ jeb mazāk par 0.09 kg uz tonnu izkaušēta stikla.

(1) Zemākā ķīmeņa ir saistīta ar elektriskās kausēšanas izmantošanu. Augstākā ķīmeņa ir saistīta ar opārlietīdu ražošanu, iezīmējot putekļu pārstrādi vai ari gadijumiem, kuros šītas sagatavošanā izmanto liehu daudzumu no ārējiem piegādātājiem saņemtu lauku.

1.5.5. Kausēšanas krāšņu izdalitie metāli

43. LPTP mērķis ir samazināt kausēšanas krāsns izdalītās metālu emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to avprienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Izejvielu ar zemu metālu saturu atlasišana šītas sagatavošanai. Piemērojamību var ierobežot sarežģījumi, kas saistīti ar iekārtā ražot stikla veidu un izejvielu pieejamību.</td>
<td></td>
</tr>
<tr>
<td>iii) Sausā vai pussausā gāzu attīrīšana avprienojumā ar filtrēšanas sistēmu. Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
<td></td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.5. nodaļā.
33. tabula
LPTP-SEL kausēšanas krāsns metāļu emisijām šķirņu stikla ražošanas nozarē, izpemot ar selēnu atkrāsotu stiklu

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL (1)</th>
<th>LPTP-SEL (1')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ (As, Co, Ni, Cd, Se, CrVI)</td>
<td>< 0,2–1</td>
<td>< 0,6–3 × 10⁻³</td>
</tr>
<tr>
<td>Σ (As, Co, Ni, Cd, Se, CrV, Sb, Pb, CrIII, Cu, Mn, V, Sn)</td>
<td>< 1–5</td>
<td>< 3–15 × 10⁻³</td>
</tr>
</tbody>
</table>

(1) Līmeņi attiecas uz kopējo metālu daudzumu dūmgāzās gan cietā, gan gāzevida stāvoklī.

44. Ja selēna savienojumus izmanto stikla atkrāsotanai, LPTP mērķis ir samazināt kausēšanas krāsns izdalītās selēna emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmējiem vai to apvienojumam.

<table>
<thead>
<tr>
<th>Tehniskais paņēmējs (1)</th>
<th>Piemērojamāba</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Selēna savienojumu izmantošanas samazināšana līdz minimumam šītas sagatavošanā, atlasot piemērotas izejvielas.</td>
<td>Piemērojamāba var ierobežot sarežģījumus, kas saistīti ar iekārtā ražotā stikla veidu un izvejvielu piejamām.</td>
</tr>
<tr>
<td>ii) Sausā vai pussausā gāzu attīrīšana apvienojumā ar filtriem</td>
<td>Tehniskais paņēmēns ir vispārīgi piemērojams.</td>
</tr>
</tbody>
</table>

(1') Tehniskie paņēmēji apraksīti 1.10.5. nodalā.

34. tabula
LPTP-SEL kausēšanas krāsns selēna emisijām šķirņu stikla ražošanas nozarē, ja stikla atkrāsotanai izmanto selēna savienojumus

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL (1)</th>
<th>Piemērojamāba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selēna savienojumi, ko izsaka kā Se</td>
<td>mg/Nm³</td>
<td>Kg uz tonnu izkausēta stikla (1)</td>
</tr>
</tbody>
</table>

(1) Līmeņi attiecas uz kopējo selēnu daudzumu dūmgāzās gan cietā, gan gāzevida stāvoklī.

(1') Līmeņi attiecas uz kopējo selēnu daudzumu dūmgāzās gan cietā, gan gāzevida stāvoklī.

45. Ja svina kristāla stikla ražošanai izmanto svina savienojumus, LPTP mērķis ir samazināt kausēšanas krāsns izdalītās svina emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmējiem vai to apvienojumam.

<table>
<thead>
<tr>
<th>Tehniskais paņēmējs (1)</th>
<th>Piemērojamāba</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Elektriskā kausēšana</td>
<td>Nav piemērojama lielajoma (vairāk par 300 tonnām dienā) stikla ražošanai.</td>
</tr>
<tr>
<td></td>
<td>Nav piemērojama ražošanai, kurā laikā ir nepieciešams ieņemot mainīt stikla masas vilkšanas raksturīgumus. Tehniskajai paņēmēnai ieviešanai ir nepieciešama krāsns pilnīga pārbūve.</td>
</tr>
<tr>
<td>ii) Maisa filtrs</td>
<td>Tehniskais paņēmēns ir vispārīgi piemērojams.</td>
</tr>
<tr>
<td>iii) Elektrostatiskais filtrs</td>
<td></td>
</tr>
<tr>
<td>iv) Sausā vai pussausā gāzu attīrīšana apvienojumā ar filtriem</td>
<td></td>
</tr>
</tbody>
</table>

(1') Tehniskā paņēmēja apraksīts 1.10.1. un 1.10.5. nodalā.
35. tabula

LPTP-SEL kausēšanas krāsns svina emisijām šķiršu stikla ražošanas nozarē, ja svina kristāla stikla ražošanai izmanto svina savienojumus

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL ((^{1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svina savienojumi, ko izsaka kā Pb</td>
<td>< 0,5–1</td>
</tr>
<tr>
<td>Kg uz tonnu izkaušā stikla ((^{2}))</td>
<td>< 1–3 (\times 10^{-3})</td>
</tr>
</tbody>
</table>

\(^{1}\) Vērtības attiecas uz kopējo svina daudzumu dūmgāzēs gan cietā, gan gāzevida stāvoklī.
\(^{2}\) Ir izmantošanās konverzijas koeficients \(3 \times 10^{-3} \) (skatīt 2. tabulu). Tomēr īpašiem ražošanas veidiem var piešķirt atšķirīgu konverzijas koeficientu.

1.5.6. E m i s i j a s , k a s r o d a s p a k ā r t o t u p r o c e s u laikā

46. LPTP mērķis ir samazināt pakārtotu procesu laikā radiātās putekļu un metālu emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

Tehniskais paņēmiens (\(^{1}\))

<table>
<thead>
<tr>
<th>Piemērojamiba</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Darbību veikšana, kuru laikā rodas putekļi (piemēram, griešana, slīpēšana, pulēšana), izmantojot šķidrumu.</td>
</tr>
<tr>
<td>Tehniskie paņēmieni ir vispārīgi piemērojami.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Piemērojamiba</th>
</tr>
</thead>
<tbody>
<tr>
<td>ii)Maisa filtru sistēmas izmantošana.</td>
</tr>
<tr>
<td>Tehniskie paņēmieni aprakstīti 1.10.8. nodalā.</td>
</tr>
</tbody>
</table>

36. tabula

LPTP-SEL putekļu emisijām atmosfērā no pakārtotiem procesiem šķiršu stikla ražošanas nozarē, ja tās attīra atsevišķi

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL ((^{1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putekļi</td>
<td>< 1–0</td>
</tr>
<tr>
<td>(\Sigma (As, Co, Ni, Cd, Sc, Cr(_6))) ((^{1}))</td>
<td>< 1</td>
</tr>
<tr>
<td>(\Sigma (As, Co, Ni, Cd, Sc, Cr({VI}), Sb, Pb, Cr({III}), Cu, Mn, V, Sn)) ((^{2}))</td>
<td>< 1–5</td>
</tr>
<tr>
<td>Svina savienojumi, ko izsaka kā Pb ((^{2}))</td>
<td>< 1–1,5</td>
</tr>
</tbody>
</table>

\(^{1}\) Līmeņi attiecas uz kopējo metālu daudzumu atgāžēs.
\(^{2}\) Līmeņi attiecas uz svina kristālā stikla ražošanas pakārtotajiem procesiem.

47. Attiecībā uz pulēšanu ar skābi LPTP mērķis ir samazināt HF emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

Tehniskais paņēmiens (\(^{1}\))

<table>
<thead>
<tr>
<th>Piemērojamiba</th>
</tr>
</thead>
</table>
| i) Pulēšanas produktu zudumu samazināšana līdz minimu-
mam, kārtīgi nobīvējot pulēšanas sistēmu. |
| Tehniskie paņēmieni ir vispārīgi piemērojami. |

<table>
<thead>
<tr>
<th>Piemērojamiba</th>
</tr>
</thead>
<tbody>
<tr>
<td>ii) Sekundārā tehniskie paņēmieni, piemēram, slapiās gāzu attīrīšanas izmantošana.</td>
</tr>
</tbody>
</table>

\(^{1}\) Tehniskie paņēmieni aprakstīti 1.10.6. nodalā.
1.6. LPTP secinājumi par speciālā stikla ražošanu
Ja vien nav noteikts citādājā izklāstītie LPTP secinājumi attiecas uz visām speciālā stikla ražošanas iekārtām.

1.6.1. Putekļu emisijas no kausēšanas krāsnim
48. LPTP mērķis ir samazināt kausēšanas krāsnī putekļu emisijas atgāzēs, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmieni (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Gaistošu sastāvdaļu satura samazināšana, pārveidojot izveelas.</td>
<td>Tehniskais paņēmieni ir vispārīgi piemērojams atbilstoši ierobežojumiem, kurus nosaka stikla produkcijas kvalitātes prasības.</td>
</tr>
<tr>
<td>Šīhtas sastāvā var ietilpt ļoti gaistošas sastāvdaļas (pie-mēram, bors, fluorīdi), kas ir galvenā kausēšanas krāsnī emītejojo putekļu sastāvdaļa.</td>
<td>Nav piemērojama lielapjoma (vairāk par 300 tonnām dienā) stikla ražošanai.</td>
</tr>
<tr>
<td>ii) Elektriskā kausēšana.</td>
<td>Nav piemērojama ražošanai, kuras laikā ir nepieciešams ievērīti mācīt stikla masas vilkšanas raksturlielumus.</td>
</tr>
<tr>
<td></td>
<td>Tehniskā paņēmiena ieviešana ir nepieciešama krāsnī pilnīgā pārbēve.</td>
</tr>
<tr>
<td>iii) Filtrēšanas sistēma: elektrostatiskais filtrs vai maisa filtrs.</td>
<td>Tehniskais paņēmieni ir vispārīgi piemērojams.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.1. nodalā.

38. tabula

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putekļi</td>
<td>mg/Nm³</td>
</tr>
<tr>
<td>< 10–20</td>
<td>< 0,03–0,13</td>
</tr>
<tr>
<td>< 1–10</td>
<td>< 0,003–0,065</td>
</tr>
</tbody>
</table>

(1) LPTP-SEL diapazona zemākās un augstākās vērtības noteiktā darbojas konvencijas koeficientu 2,5 × 10⁻³ un 6,5 × 10⁻³ (skatīt 2. tabulu), dažas vērtības tuvinot. Tomēr atkarībā no ražotā stikla veida jāpieņemēro tam atbilstoši attīrījuma konvencijas koeficient (sk. 2. tabulu).

(2) Sei LPTP-SEL attiecas uz tādas šīhtas sagatavošanu, kuras sastāvā ietilpst liels bistamu vielu pazīmēm saskaņā ar Regulu (EK) Nr. 1272/2008 atbilstošu sastāvdaļu daudzums.

1.6.2. Kausēšanas krāsnī izdalītie slāpekļa oksidi (NOₓ)
49. LPTP mērķis ir samazināt kausēšanas krāsnī izdalītie NOₓ emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.
I. Primārie tehniskie paņēmieni, piemēram:

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Degšanas korekcijas</td>
<td></td>
</tr>
<tr>
<td>b) Pazemināta sadegšanāi nepieciešamā gaiša temperatūra.</td>
<td>Zemākas krāsna efektivitātes un lielāka kurināmā patēriņa dēļ var piemērot tikai atbilstoši konkrētajiem iespējamām apstākļiem (t. i., reaperatīvo krāstu izmantosanu regeneratīvo krāstu vietā).</td>
</tr>
<tr>
<td>c) Pakāpeniska sadedzināšana:</td>
<td>Kurināmā pakāpenisku padevi ar piemēroti lielākajai daļai konvencionālo krāsnām ar gaisu/kurināmā darbināmām krāsnām. Pakāpeniskai gaiša padevei ir ļoti ierobežota piezīmes sākotnējās dēļ.</td>
</tr>
<tr>
<td>— pakāpeniska gaiša padeve;</td>
<td></td>
</tr>
<tr>
<td>— pakāpeniska kurināmā padeve.</td>
<td></td>
</tr>
<tr>
<td>d) Dūmgāzu recirkulācija.</td>
<td>Šo tehnisko paņēmienu var piemērot tikai speciālu dežu ar automati- zētu atgāzu recirkulāciju izmantošanai.</td>
</tr>
<tr>
<td>e) Zema NOx līmeņa deži.</td>
<td>Tehniskai paņēmiens ir vispārīgi piemērojams. Kopumā ieguvumi apkārtējai vides ir mazāki, ja Šo tehnisko paņēmienu izmanto ar gāzi darbināmām krāsnām, kurām ir ķēdervirziena lienas, jo šādām krāsnām ir tehniski ierobežojumi un zemākā pielagojamība. Maksimālais ieguvums nodrošina parastu vai pilnīgu krāsnu pārbūve aprīkojumu ar labāko krāsniskonstrukciju un geometriji.</td>
</tr>
<tr>
<td>f) Kurināmā izvēle.</td>
<td>Piemērojamā izvēle var ierobežotājs sākotnējās dēļ. Patiesas krāsna efektivitātes un lielākas krāsnas ar dažādām pelsoņu filtriem.</td>
</tr>
<tr>
<td>iii) Kausēšana, izmantojot skābekli un kuri- nāmo.</td>
<td>Vislēkšķs ieguvumu apkārtējai videi var nodrošināt pēc krāsna pārbūves.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmiens aprakstīti 1.10.2. nodalā.

II. Sekundārie tehniskie paņēmieni, piemēram:

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamā</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Selektīva katalitiskā reducēšana (SCR)</td>
<td>Šī tehniskā paņēmiens izmantošanai var būt nepieciešams uzlabot putekļainābas sadegšanu, lai nodrošinātu, ka putekļu koncentrācija nav liela par 10–15 mg/Nm³, kā arī uzlabot atsevošanas sistēmu SO2 emisijas novēršanai. Optimalās darba temperatūras diapazona dēļ tehnisko paņēmienu var piemērot tikai elektrostatisko filtru izmantošanai. Kopumā tehnisko paņēmienu nav izmantojot maizar filtru sistēmu, jo zemās darba temperatūras 180–200 °C diapazona atvainošoa būtu nepieciešama atgāzu atkārtota uzkarsēšana. Šī tehniskā paņēmiens ieviesānu tai būt nepieciešama liela platība.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmiens aprakstīti 1.10.2. nodalā.
39. tabula

LPTP-SEL kausēšanas krāsns NOₓ emisijām speciālā stīkla ražošanas nozare

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ, ko izsaka kā NO₂</td>
<td>Degšanas korekcijas</td>
<td>600–800</td>
</tr>
<tr>
<td></td>
<td>Elektriskā kausēšana</td>
<td>< 100</td>
</tr>
<tr>
<td></td>
<td>Kausēšana, izmantojot skābekli un kurināmo</td>
<td>Neattiecība</td>
</tr>
<tr>
<td></td>
<td>Sekundārie tehniskie paņemieni</td>
<td>< 500</td>
</tr>
</tbody>
</table>

40. tabula

LPTP-SEL kausēšanas krāsns NOₓ emisijām speciālā stīkla ražošanas nozare, ja šīhtas sagatavošanai izmanto nitrātus

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP</th>
<th>LPTP-SEL (mg/Nm³)</th>
<th>Kg uz tonnu izkausēta stīkla (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ, ko izsaka kā NO₂</td>
<td>Nitrātu izmantošanas samaizināšana līdz minimumam šīhtas sagatavošanā. Nitrātu izmanto ţoti augstas kvalitātes izstrādājumu ražošanai, ja stīkla un nepieciešams tiek kārtējs seviskas īpatsvars. Efektīvi alternatīvie materiāli ir sulfāts, arīĀna uzkāde, cēriņa uzkāde.</td>
<td>< 500–1 000</td>
<td>< 1–6</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņemieni aprakstīt 1.10.2. nodalā.

(2) Tehniskais paņemēns aprakstīts 1.10.2. nodalā.

(3) Zemākā līmeņa ir saistīta ar elektriskās kauserēšanas ierobežojumu.
1.6.3. Kausēšanas krāsnu izdalitie sēra oksīdi (SO₂)

51. LPTP mērķis ir samazināt kausēšanas krāsnas izdalitās SO₂ emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Sēra satura samazināšana līdz minimumam šītas sagatavošanā un sēra bilances optimizēšana.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams atbilstoši ierobežojumiem, kurus nosaka stīkla gala izstrādājuma kvalitātes prasības.</td>
</tr>
<tr>
<td>ii) Kurināmā ar zemu sēra satura izmantošana.</td>
<td>Piemērojamību var ierobežot sarežģījumi, kas saistīti ar zema sēra satura kurināmā pieejamību, un to var ietekmēt dalībvalsts enerģētikas politika.</td>
</tr>
<tr>
<td>iii) Sausā vai pussausā gāzu attīrīšana apvienojumā ar filtrēšanas sistēmu.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.3. nodalī.

41. tabula

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>Krūtniecības/kausēšanas tehnoloģija</th>
<th>LPTP-SEL (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SO₂ ko iesaka kā SO₂</td>
<td></td>
</tr>
<tr>
<td>Dabasgāze, elektriskā kausēšana (2)</td>
<td>< 30–200</td>
<td>< 0,08–0,5</td>
</tr>
<tr>
<td>Degvieļa (4)</td>
<td>500–800</td>
<td>1,25–2</td>
</tr>
</tbody>
</table>

(1) Diapazonos ir ieskaitīta vērtība mainīgā sēra bilances, kas ir saistīta ar ražotāja stīkla veidu.
(2) Ir izmantots konverzijas koeficients 2,5 × 10⁻³ (skat. tabulu). Tomēr atkarībā no produkcijas veida var piemērot tai atbilstošu atšķirīgu konverzijas koeficientu.
(3) Zemākā limenī ir saistīta ar elektriskā kausēšanas izmantošanu un nulūtīšu neizmantošanu šītas sagatavošanai.
(4) Attiecīgā emisijas liemenī ir saistīti ar 1 % sēra degvieļās izmantošanu apvienojumā ar sekundārajiem attīrīšanas tehniskajiem paņēmieniem.

1.6.4. Kausēšanas krāsnu izdalitais ķīmiskais un ķīmiskais fluorierība (HCl) un ķīmiskais fluorierība (HF)

52. LPTP mērķis ir samazināt kausēšanas krāsnu izdalitās HCl un HF emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Izejvēlu ar zemu ķīmies un fluorā saturojumu slīdā sākot sagatavosanai.</td>
<td>Piemērojamību var ierobežot sarežģījumi, kas saistīti ar šīs sagatavošanai iekšējā ražotā stīkla veidam un izveidu pieejamību.</td>
</tr>
<tr>
<td>ii) Fluora un/vai ķīmies savienojumu izmantošanas samazināšana līdz minimumam šītas sagatavošanai un fluorā un/vai ķīmies masas bilances optimizēšana.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams atbilstoši ierobežojumiem, kurus nosaka gola izstrādājuma kvalitātes prasības.</td>
</tr>
</tbody>
</table>

Fluora savienojumus izmanto, lai piešķirtu speciālajām stākļam sevīkrās īpašības (piemēram, tumšās gaisienes ķermeņu stāks, optiskais stāks).

Fluora savienojumus var izmantot kā dzidrinātāju boro-silikāta stīkla ražošanā.

| iii) Sausā vai pussausā gāzu attīrīšana apvienojumā ar filtrēšanas sistēmu. | Tehniskais paņēmiens ir vispārīgi piemērojams. |

(1) Tehniskie paņēmieni aprakstīti 1.10.4. nodalī.
1.6.5. Kaušēnas kārtā izdālītie metāli

53. LTP mērķis ir samazināt kaušēnas kārtas izdalīto metālu emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Izvejvīlu ar zemu metālu saturu atlasāšana šītās sagatavošanā.</td>
<td>Piemērojamību var ierobežot sarežģījumi, kas saistīti ar iekārtāt ražotā Blacki veidu un izvejvīlu pieejamību.</td>
</tr>
<tr>
<td>ii) Metāla savienojumu izmantošana samazināšanā līdz minimum šītās sagatavošanā, izvēloties piemērotas izvejvīlas, ja ir nepieciešama stikla iekrāsosana vai atkrāsosana, vai arī ja stiklam ir jālietās konkrētā īpašības.</td>
<td>Tehniskie paņēmieni ir vispārīgi piemērojami.</td>
</tr>
<tr>
<td>iii) Sausā vai pussausā gāzā attīrīšana apvienojumā ar filtrašanas sistēmu.</td>
<td></td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.3. nodaļā.

1.6.6. Emisijas, kas rodas pakārtotu procesu laikā

54. LTP mērķis ir samazināt pakārtotu procesu laikā radātās putekļu un metālu emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Putekļu radotu darbību (piemēram, griešana, slīpēšana, pulēšana) veikšana, izmantojot šķidrumu.</td>
<td>Tehniskie paņēmieni ir vispārīgi piemērojami.</td>
</tr>
<tr>
<td>ii) Māsa filtru sistēmas izmantošana.</td>
<td></td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.8. nodaļā.
44. tabula

LPTP-SEL putekļu un metālu emisijām atmosfērā no pakārtotiem procesiem speciālā stikla ražošanas nozarē, ja tās attīra atsevišķi

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/Nm³</td>
</tr>
<tr>
<td>Putekļi</td>
<td>1–10</td>
</tr>
<tr>
<td>Σ (As, Co, Ni, Cd, Sc, Cr<sup>VI</sup>)<sup>(1)</sup></td>
<td>< 1</td>
</tr>
<tr>
<td>Σ (As, Co, Ni, Cd, Sc, Cr<sup>VI</sup>, Sb, Pb, Cr<sup>III</sup>, Cu, Mn, V, Sn)<sup>(1)</sup></td>
<td>< 1–5</td>
</tr>
</tbody>
</table>

⁽¹⁾ Līmeņi attiecas uz kopējo metālu daudzumu atgāzēs.

55. Attiecinābā uz pulēšanu ar skābekļa LPTP mērķis ir samazināt HF emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens<sup>(1)</sup></th>
<th>Apraksts</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Pulēšanas produktu zudumu samazināšana līdz minimu-mam, kārtīgi noblīvējot pulēšanas sistēmu.</td>
<td>Tehniskie paņēmieni ir vispārīgi piemērojami.</td>
</tr>
<tr>
<td>ii) Sekundārie tehniskie paņēmieni, piemēram, slapjās gāzu attīrīšanas izmantošana.</td>
<td>Tehniskie paņēmieni aprakstīti 1.10.6. nodaļā.</td>
</tr>
</tbody>
</table>

⁽¹⁾ Tehniskie paņēmieni aprakstīti 1.10.1. nodaļā.

45. tabula

LPTP-SEL pulēšanas ar skābekļa procesu laikā raditajām HF emisijām speciālā stikla ražošanas nozarē, ja tās attīra atsevišķi

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/Nm³</td>
</tr>
<tr>
<td>Ūdeņraža fluorēšais, ko izsaka kā HF</td>
<td>< 5</td>
</tr>
</tbody>
</table>

17. LPTP secinājumi par minerālvates ražošanu

Ja vien nav noteikts citādi, šajā nodaļā izklāstītie LPTP secinājumi attiecas uz visām minerālvates ražošanas iekārtām.

17.1. Putekļu emisijas no kaušēšanas krāsnīm

56. LPTP mērķis ir samazināt putekļu emisijas kaušēšanas krāsnīs atgāzēs, izmantojot elektrostatisko filtru vai maisa filtru sistēmu

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens<sup>(1)</sup></th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtrēšanas sistēma: elektrostatiskais filtrs vai maisa filtrs.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
</tr>
</tbody>
</table>

Elektrostatiskie filtri nav izmantojami stāveceļos akmens vates ražošanai, jo pastāv sprādzienbistamība krāsnī veidojošās tvana gāzes aizdegšanās dēļ.

⁽¹⁾ Tehniskie paņēmieni aprakstīti 1.10.1. nodaļā.

46. tabula

LPTP-SEL kaušēšanas krāsnī putekļu emisijām minerālvates ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kg uz tonnu izkausēta stikla<sup>(1)</sup></td>
</tr>
<tr>
<td>Putekļi</td>
<td>< 10–20</td>
</tr>
</tbody>
</table>

⁽¹⁾ LPTP-SEL diapazona zemākās un augstākās vērtības noteikšanai ir izmantojoti konversijas koeficienti 2 × 10⁻³ un 2,5 × 10⁻³ (skatit 2. tabulu), lai aptvertu gan stikla, gan akmeni vates ražošanu.
1.7.2. Kaušēšanas krāšņu izdalītie slāpekļa oksīdi (NO\textsubscript{X})

57. LPTP mērķis ir samazināt kaušēšanas krāsnas izdalītās NO\textsubscript{X} emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu:

<table>
<thead>
<tr>
<th>Tehniskais paņēmienis (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Degšanas korekcijas.</td>
<td></td>
</tr>
<tr>
<td>b) Pazemināta sadegšanai nepieciešamā gāsa temperatūra.</td>
<td>Zemākā krāsns efektivitātes un lielākā kurināmā patēriņa dēļ var piemērot tikai atbilstoši konkrētajam iekārtas uzstādīšanas apstākļiem (t. i., rekuperatīvo krāšņu izmantošana regeneratīvo krāšņu vietā).</td>
</tr>
<tr>
<td>c) Pakāpeniska sadedzināšana:</td>
<td>Kurināmā pakāpenisku padevi var piemērot lielākajā daļai tipveida ar gaisu/kurināmā darbināmā krāsnī. Pakāpeniskai gaisa padevei ir ļoti ierobežota piemērojamība tās tehniskās sarežģītības dēļ.</td>
</tr>
<tr>
<td>— pakāpeniska gāsa padeve;</td>
<td></td>
</tr>
<tr>
<td>— pakāpeniska kurināmā padeve.</td>
<td></td>
</tr>
<tr>
<td>d) Dūmgāzu recirkulācija.</td>
<td>Šo tehnisko paņēmieni var piemērot tikai speciālu deglu ar automātizētu atgāzu recirkulāciju izmantošanai.</td>
</tr>
<tr>
<td>e) Zema NO\textsubscript{X} līmeņa degli.</td>
<td>Tehniskais paņēmienis ir vispārīgi piemērojamā. Kopumā ieguvumi apkārtējai videi ir mazāki, ja Šo tehnisko paņēmienu izmanto ar gāzi darbināmā krāsnī, kurām ir šķirsnīcīgas lietas, jo šādām krāsnīm ir tehniski ierobežojumi un zemā pēdējo darbību. Maksimālus ieguvumus nodrošina parasta vai pilnīga krāsns pārbūve apvienojumā ar optimālu krāsns konstrukciju un ģeometriju.</td>
</tr>
<tr>
<td>f) Kurināmā izvēle.</td>
<td>Piemērojamību ierobežo sarežģītījumi, kas saistīti ar dažāda veida kurināmā pieejamību, un to var ietekmēt dalībvalsts enerģētikas politika.</td>
</tr>
</tbody>
</table>

ii) Elektriskā kaušēšana.

Nav piemērojama lielapjoma (vairāk par 300 tonnām dienā) stikla ražošanai. Nav piemērojama ražošanai, kurās laikā ir nepieciešams ievērojami mainīt stikla masas vilkšanas raksturlielumus. Tehniskā paņēmiena izveidā ir nepieciešama krāsns pilnīga pārbūve.

iii) Kaušēšana, izmantojot skābekli un kurināmo. Vislielākos ieguvumus apkārtējai videi var nodrošināt pēc krāsns pilnīgas pārbūves.

(1) Tehniskie paņēmieni aprakstīti 1.10.2. nodalā.

47. tabula

LPTP-SEL kaušēšanas krāsns NO\textsubscript{X} emisijām minerālvalves ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>Ražojums</th>
<th>Kaušēšanas tehnoloģija</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>mg/Nm3</td>
</tr>
<tr>
<td>NO\textsubscript{X} ko izsaka kā NO\textsubscript{2}</td>
<td>Stikla vate</td>
<td>Kurināmā/gaisa un elektriskās krāsnis</td>
<td>< 200–500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kaušēšana, izmantojot skābekli un kurināmo (2)</td>
<td>Neattiecas</td>
</tr>
<tr>
<td></td>
<td>Akmens vate</td>
<td>Visu veidu krāsns</td>
<td>< 400–500</td>
</tr>
</tbody>
</table>

(1) Stikla vatei ir izmantošanas konversijas koeficients 2 × 10-3, bet akmens vatei – 2,5 × 10-3 (skatīt 2. tabulu).
(2) Sasniedzamie līmeņi ir atkarīgi no pieejamās dabasgāzes un skābekļa kvalitātes (slāpekļa saturā).
58. Ja stīkla vates ražošanā šītas sagatavošanai izmanto nitrātus, LPTP mērķis ir samazināt NOₓ emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Nitrātu izmantošanas samazināšana līdz minimumam šītas sagatavošanā. Nitrātus izmanoto kā oksidētāju tādas šītas sagatavošanā, kurā ir liela no ārējiem piegādātājiem sapņemtu lauku daļa, lai kompensētu lausku esošos organskos materiālus.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams atbilstoši ierobežojumiem, kurus nosaka gāla izstrādājuma kvalitātes prasības.</td>
</tr>
<tr>
<td>iii) Kausēšana, izmantojot skābekli un kurināmo.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams. Visilēkākos ieguvumus āpkrātējai videi var nodrošināt pēc krāsas pilsētas pārbūves.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.2. noladā.

48. tabula

LPTP-SEL kausēšanas krāsas NOₓ emisijām stīkla vates ražošanas nozarē, ja šītas sagatavošanai izmanto nitrātus

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ ko izaaka kā NO₂</td>
<td>Nitrātu izmantošanas samazināšana līdz minimumam šītas sagatavošanā apvienojumā ar primārajiem tehniskajiem paņēmiemi.</td>
<td>< 500–700</td>
</tr>
</tbody>
</table>

(1) Ir izmantots konverzijas koeficients 2 × 10⁻³ (skatīt 2. tabulā).

(2) Zemākā diapazona līmeņi ir saistīti ar skābekļa/kurināmā kausēšanas tehniskā paņēmiena piemērošanu.

1.7.3. **Kausēšanas krāsas izdalītie sēra oksīdi (SOₓ)**

59. LPTP mērķis ir samazināt kausēšanas krāsas izdalītās SOₓ emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Sēra satuva samazināšana līdz minimumam šītas sagatavošanā un šīra bilances optimizēšana.</td>
<td>Stīkla vates ražošanā tehniskais paņēmiens ir vispārīgi piemērojams, ievērojot sarežģījumus, kas saistīti ar zema sēra satuva izveidošanu pieejamā gan nepieciešamas, ja šīta sagatavošanā ierobežojošu iespēju optimizēt sēra bilanci mainīga sēra satura dēļ. Lai sēra bilances optimizēšanu tehnisku paņēmienu varētu izmantot akmens vates ražošanā, var būt nepieciešams rast kompromisa risinājumu starp SOₓ emisiju dūmgāžēm mazināšanu un dūmgāžu attīrīšanas rezultātā un/vai šķiedru veidošanas procesa radušos cieto atkritumu (iztilētātie putekļi) aportām no tām, kurās var būt nepieciešams nodot atkritumus.</td>
</tr>
<tr>
<td>ii) Kurināmā ar zemu sēra satura izmantošana.</td>
<td>Piemērojamība var ierobežot sarežģījumi, kas saistīti ar zema sēra satura kurināmā pieejamā gan nepieciešama, to var tiekemš dalībvalsts enerģētikas politika.</td>
</tr>
<tr>
<td>iii) Sausā vai pussausā gāzē attīrīšana apvienojumā ar filtrēšanas sistēmu.</td>
<td>Elektrostatiskie filtrs nav izmantojams akmens vates ražošanas stāvčeļos (skatīt LPTP 56. punktu).</td>
</tr>
<tr>
<td>iv) Slapjā gāzē attīrīšana.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams atkarībā no tehniskajiem sarežģījumiem, piekārāt, nepieciešamības izveido tās ieskaitīt īpašu noteikumu attīrīšanas iekārtu.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.3. un 1.10.6. noladā.
49. tabula

LPTP-SEL kausēšanas krāsns SO₂ emisijām minerālvates ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>Izstrādājums/ražošanas apstākļi</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mg/Nm³</td>
</tr>
<tr>
<td>SO₂, ko iesaka kā SO₂</td>
<td>Stikla vate</td>
<td>< 50–150</td>
</tr>
<tr>
<td></td>
<td>Akmens vate</td>
<td>< 350</td>
</tr>
<tr>
<td>Ar gāzi darbināmās un elektriskās krāsnis (¹)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stāvecepli, bez brikešu vai izdedzū pārstrādes (²)</td>
<td></td>
<td>< 400</td>
</tr>
<tr>
<td>Stāvecepli, ar cementa brikešu vai izdedzū pārstrādi (³)</td>
<td></td>
<td>< 1 400</td>
</tr>
</tbody>
</table>

(¹) Stīkla vatei ir izmantošos konversijas koeficients 2 × 10⁻³, bet akmens vai 2,5 × 10⁻³ (skatīt 2. tabulu).
(²) Zemākā diapazona līmeni ir saistīti ar elektriskās kausēšanas izmantošanu. Augstāki līmeni ir saistīti ar lielu daudzumu pārstrādājamo lauku.
(³) LPTP-SEL attiecas uz apstākļiem, kuros SO₂ emisiju samazināšanai ir liela lēta prioritāte nekā mazākai cieto atkritumu ražošanai.
(⁴) LPTP-SEL ir liela lēta prioritāte nekā SO₂ emisiju samazināšanai, ir pareizdams, ka emisijas vērtības būs augstākas. Sastiedzamo līmeņu pamanāt vajadzētu būt sēra bilanči.

1.7.4. **Kausēšanas krāsnu izdalītais ūdegraveža hlorīds (HCl) un ūdegraveža fluorīds (HF)**

60. LPTP mērķis ir samazināt kausēšanas krāsns izdalītās HCl un HF emisijas, izmantojot kādu no turpmāk minētajiem tehnikajiem paņēmiem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (⁴)</th>
<th>Apibrēks</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Izveido ar zemu hloru un fluoru saturojumu atveidojumu šīpras sagatavošanai.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērotāks atbilstoši šīpras sagatavošanās ierobežojumiem un izveidojumu pieejamiem.</td>
</tr>
<tr>
<td>ii) Sausā vai pussausā gāzu attīrīšana avpogujojumā ar filtrēšanas sistēmu.</td>
<td>Elektrostatiskie filtri nav izmantojami akmens vates ražošanas vērtības stāvecepli (skatīt LPTP 56. punktu).</td>
</tr>
</tbody>
</table>

(⁴) Tehniskie paņēmiemi aprakstīti 1.10.4. nodalā.

50. tabula

LPTP-SEL kausēšanas krāsns HCl un HF emisijām minerālvates ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>Ražojums</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mg/Nm³</td>
</tr>
<tr>
<td>Udegraveža hlorīds, ko iesaka kā HCl</td>
<td>Stikla vate</td>
<td>< 5–10</td>
</tr>
<tr>
<td></td>
<td>Akmens vate</td>
<td>< 10–30</td>
</tr>
<tr>
<td>Udegraveža fluorīds, ko iesaka kā HF</td>
<td>Visu produkti</td>
<td>< 1–5</td>
</tr>
</tbody>
</table>

(³) Stīkla vatei ir izmantošos konversijas koeficients 2 × 10⁻³, bet akmens vatei – 2,5 × 10⁻³ (skatīt 2. tabulu).
(⁵) LPTP-SEL diapazona zemākās un augstākās vērtības noteikšanai ir izmantošos konversijas koeficients 2 × 10⁻³ un 2,5 × 10⁻³ (skatīt 2. tabulu).
1.7.5. Akmens vates kausēšanas krāšņu izdalītājs sēru deņradis \(\text{H}_2\text{S} \)

61. LPTP mērķis ir samazināt kausēšanas krāsnis izdalītājs \(\text{H}_2\text{S} \) emisijas, izmantojot atgāzu sadedzināšanas sistēmu, lai oksidētu sēru deņradē par \(\text{SO}_2 \).

| Tehniskais paņēmiens \(^{(1)}\) | Piemērojamā ba
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atgāzu sadedzināšanas sistēma</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams akmens vates stāvcepliem.</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Tehniskais paņēmiens aprakstīts 1.10.9. nolādā.

51. tabula

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL kausēšanas krāsnis (\text{H}_2\text{S}) emisijām akmens vates ražošanas nozarē</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{mg/Nm}^3)</td>
</tr>
<tr>
<td>Sēru deņradis, ko izeka (\text{H}_2\text{S})</td>
<td>< 2</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Akmens vatei ir izmantojots konversijas koeficients \(2,5 \times 10^{-3} \) (skatīt 2. tabulu).

1.7.6. Kausēšanas krāšņu izdalītie metaļi

62. LPTP mērķis ir samazināt kausēšanas krāsnis izdalītājs metaļu emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (^{(1)})</th>
<th>Piemērojamā ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Izejvielu ar zemu metālu saturu atlasīšana šihtas sagatavošanai</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams atbilstoši ierobežojumiem, kas saistīti ar izejvielu pieejamību. Stikla vates ražošanā mangāna kā oksidētāja izmanotošana šītas sagatavošanā ir atkarīga no šītas sagatavošanā izmanto no ārēja piegādātāja saņemta lauska daudzuma un kvalitātes, un tā daudzumu var atteicīgi samazināt.</td>
</tr>
<tr>
<td>ii) Filtrēšanas sistēmas izmanotošana.</td>
<td>Elektrostatiskie filtri nav izmantojami akmens vates ražošanas metālu vatecplos (skatīt LPTP 56. punktu).</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Tehniskie paņēmieni aprakstīti 1.10.5. nolādā.

52. tabula

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL kausēšanas krāsnis metālu emisijām minerālvates ražošanas nozarē</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{mg/Nm}^3)</td>
</tr>
<tr>
<td>(\Sigma (\text{As, Co, Ni, Cd, Se, Cr}_{\text{VI}}))</td>
<td>< 0,2–1 (^{(2)})</td>
</tr>
<tr>
<td>(\Sigma (\text{As, Co, Ni, Cd, Se, Cr}{\text{VI}}, \text{Sb, Pb, Cr}{\text{III}}, \text{Cu, Mn, V, Sn}))</td>
<td>< 1–2 (^{(2)})</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Diapazoni attiecas uz kopējo metālu daudzumu dūmgāzes gan čieta, gan gāzuveida stāvoklī.

\(^{(2)}\) LPTP-SEL diapazona zemākās un augstākās vērtības noteiktai ir izmantojots konversijas koeficients \(2 \times 10^{-3} \) un \(2,5 \times 10^{-3} \) (skatīt 2. tabulu).

\(^{(3)}\) Augstākas vērtības ir saistītas ar stāvceļu izmanotošanu akmens vates ražošanai.
1.7.7. Emissijas, kas rodas pakārtotu procesu laikā

63. LPTP mērķis ir samazināt pakārtotu procesu laikā radušās emissijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu:

| Tehniskais paņēmiens (1) | Piemērojamā ba
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Triecienstrūklas un putekļu uztvērēji</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams minerālvates ražošanas nozarei, jo īpaši stikla vates ražošanas procesiem, lai attīrītu emissijas, kas rodas stikla masas veidošanas zonā (pārklājuma uzklāšana šķiedrām). Piemērojamā ba akmens vates ražošanas procesiem ir ieroča bezota, jo šāds tehniskais paņēmiens var nelabvēlīgi ieteikmēt citus izmantojamos attīrīšanas tehniskos paņēmienus.</td>
</tr>
<tr>
<td>ii) Slapķā dzēses filtrs</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams veidošanas procesa laikā radušos atgāzus (pārklājuma uzklāšana šķiedrām) vai jaukto atgāzu (veidošana un vulkanizācijā) attīrīšanai.</td>
</tr>
<tr>
<td>iii) Slapjūtā dzēses filtrs</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams veidošanas procesa laikā radušos atgāzus (pārklājuma uzklāšana šķiedrām), vulkanizācijas krāsā atgāzu vai jaukto atgāzu (veidošana un vulkanizācijā) attīrīšanai.</td>
</tr>
<tr>
<td>iv) Akmens vates filtri</td>
<td>Tehnisko paņēmienu var galvenokārt piemērot akmenī vates ražošanas procesu atgāzēm, kas rodas veidošanas zonā un/vai vulkanizācijas krāsnis.</td>
</tr>
<tr>
<td>v) Atgāzu sadedzināšana</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams vulkanizācijas krāsā atgāzu attīrīšanai, jo īpaši akmenī vates ražošanas procesos. Tehnisko paņēmienu nav ekonomiski lietderīgi izmantot jaukto atgāzu (veidošana un vulkanizācija) attīrīšanai. atgāzēm, kas rodas veidošanas zonā un/vai vulkanizācijas krāsnis.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmieni aprakstīti 1.10.7. un 1.10.9. nodaļā.

53. tabula

<table>
<thead>
<tr>
<th>LPTP-SEL emisijām atmosfērā no pakārtotiem procesiem minerālvates ražošanas nozarē, ja tās attīra atseviški</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rādītājs</td>
<td>mg/Nm³</td>
</tr>
<tr>
<td>Veidošanas zona – apvienotās veidošanas un vulkanizācijas emisijas – apvienotās veidošanas, vulkanizācijas un dzesēšanas emisijas</td>
<td></td>
</tr>
<tr>
<td>Cietās daļās kopā</td>
<td>< 20–50</td>
</tr>
<tr>
<td>Fenols</td>
<td>< 5–10</td>
</tr>
<tr>
<td>Formaldehīds</td>
<td>< 2–5</td>
</tr>
<tr>
<td>Amonjaks</td>
<td>30–60</td>
</tr>
</tbody>
</table>
1.8. LPTP secinājumi par augstas temperatūras izolācijas šķiedru (HTIW) ražošanu
Ja vien nav noteikts citā dienā, šajā nodaļā izklāstītie LPTP secinājumi attiecas uz visām HTIW ražošanas iekārtām.

1.8.1. Putekļu emisijas no kaušēšanas un pakārtotiem procesiem
64. LPTP mērķis ir samazināt putekļu emisijas kaušēšanas krāsns atgāzēs, uzstādot filtrēšanas sistēmu.

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL mg/Nm³</th>
<th>Kg uz tonnu gatavās produkcijas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminī</td>
<td>< 3</td>
<td>—</td>
</tr>
<tr>
<td>Gaistošie organiskie savienojumi kopā, izteikti kā Ĉ</td>
<td>10–30</td>
<td>—</td>
</tr>
<tr>
<td>Vulkanizācijas krāšņu emisijas (1) (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cietās daļņas kopā</td>
<td>< 5–30</td>
<td>< 0,2</td>
</tr>
<tr>
<td>Fenols</td>
<td>< 2–5</td>
<td>< 0,03</td>
</tr>
<tr>
<td>Formaldehīds</td>
<td>< 2–5</td>
<td>< 0,03</td>
</tr>
<tr>
<td>Amonjaks</td>
<td>< 20–60</td>
<td>< 0,4</td>
</tr>
<tr>
<td>Aminī</td>
<td>< 2</td>
<td>< 0,01</td>
</tr>
<tr>
<td>Gaistošie organiskie savienojumi kopā, izteikti kā Ĉ</td>
<td>< 10</td>
<td>< 0,065</td>
</tr>
<tr>
<td>NO₅, ko izsaka kā NO₂</td>
<td>< 100–200</td>
<td>< 1</td>
</tr>
</tbody>
</table>

(1) Emisijas līmenis, kas izteikti kilometramos uz gatavās produkcijas tonnu, neietekmē ne sasauzotās minerālvates mašas biezums, ne ari liela dūmāgių koncentrācija vai šķiedra. Ir izmantojāts konversijas koeficients 6,5 × 10⁻³ .
(2) Ja tiek ražota minerālvate ar lielu blīvumu vai lielu saistvielu saturu, ar nozarē norādījām LPTP metodei saistītie emisijas līmeņi var būt ievērojami augstāki nekā šī LPTP-SEL. Ja tāda veida produkcija veido lielāko daļu konkrētajā iekārtā ražotās produkcijas, tad ir jāapstiprina citu metožu izmantošana.

5. tabula

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP mg/Nm³</th>
<th>LPTP-SEL mg/Nm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putekļi</td>
<td>Dūmāgiu tīrīšana ar filtrēšanas sistēmām.</td>
<td>< 5–20 (1)</td>
</tr>
</tbody>
</table>

(1) Vērtības ir saistītas ar maīsu filtru sistēmas izmantošanu.
65. Attiecībā uz pakārtošanai procesiem, kuru laikā izdalās putekļi, LPTP mērķis ir samazināt emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmieni (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Produkčijas zudumu samazināšana līdz minimumam, nodrošinot kārtīgu ražošanas linijas noblīvēšanu, ja vien tas ir tehniski iespējams. Potenciālie putekļu un šķiedru emisijas avoti ir šādi: — šķiedru veidošana un savvākšana; — mašas veidošana (adatošana); — smērvielas izdegšana; — gatavās produkčijas griešana, apgrīšana un fasēšana. Lai līdz minimumam samazinātu produkcijas izdalīšanos atmosfērā, būtiska ir pakārto apstrādes sistēmu pareiza veidošana, noblīvēšana un tehniskā apkope.</td>
<td></td>
</tr>
<tr>
<td>Tehniskie paņēmieni ir vispārīgi piemērojami.</td>
<td></td>
</tr>
<tr>
<td>ii) Griešana, apgrīšana un fasēšana vakuumā, izmantojot efektīvu ventilācijas sistēmu aprīkoto ar maisa filtru. Darba staciju (piemēram, griešanas mašīnu, fasēšanas kartona kasti) pakļauj negatīvam spiedienam, lai izgūtu cietās daļas un šķiedras un aizvadītu tās uz maisa filtru.</td>
<td></td>
</tr>
<tr>
<td>Tehniskie paņēmieni ir vispārīgi piemērojami.</td>
<td></td>
</tr>
<tr>
<td>iii) Maisa filtra sistēmas izmantošana (1). Pakārtošo procesu (piemēram, šķiedras veidošana, mašas veidošana, smērvielas izdegšana) atgāzes novada uz attīrīšanas sistēmu, kuru veido maisa filtrs.</td>
<td></td>
</tr>
</tbody>
</table>

(1) Tehniskā paņēmiens aprakstīts 1.10.1. nodalā.

55. tabula

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putekļi (1)</td>
<td>1—5 mg/Nm³</td>
</tr>
</tbody>
</table>

(1) Zemākais diapazona līmenis ir saistīts ar aluminija silikātstikla šķiedras/ugunsizturīgas keramikāš šķiedras (ASW/RCF) emisijām.

1.8.2. Kaut arī izdalītie slāpekļu oksīdi (NOx)

66. LPTP mērķis ir samazināt smērvielas izdegšanas krāsns NOx emisijas, izmantojot sadegšanas vadību un/vai korekcijas.

<table>
<thead>
<tr>
<th>Tehniskais paņēmienis</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sadegšanas vadība un/vai korekcijas. Tehniskie paņēmieni termisko NOx emisiju veidošanās samazināšanai ietver galveno sadegšanas raksturlielu vadību: — gaisa/kurināmā attiecība (skābekļa saturs reakcijas zonā); — iesmu temperatūra; — apstrādes augstas temperatūras zonā laiks. Laba sadegšanas vadība nozīmē tādu apstākļu radīšanu, kas ir vismazāk labvēlīgi NOx veidošanās procesiem.</td>
<td></td>
</tr>
<tr>
<td>Tehniskais paņēmienis ir vispārīgi piemērojams.</td>
<td></td>
</tr>
</tbody>
</table>
56. tabula
LPTP-SEL smērvielas izdegšanas krāsns NOₓ emisijām HTIW ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP</th>
<th>LPTP-SEL mg/Nm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ, ko izsaka kā NO₂</td>
<td>Sadegšanas vadība un/vai korekcijas.</td>
<td>100–200</td>
</tr>
</tbody>
</table>

1.8.3. Kausēšanas un pakārtotu procesu laikā izdalītie sēra oksīdi (SOₓ)
67. LPTP mērķis ir samazināt kausēšanas krāšņu un pakārtotu procesu izdalītās SOₓ emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Izejvielu ar zemu sēra saturu atlaššana šīhtas sagatavošanai.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams atbilstoši ierobežojumiem, kas saistīti ar izjēvēlu pieejamību.</td>
</tr>
<tr>
<td>ii) Kurināmā ar zemu sēra saturu izmantošana.</td>
<td>Piemērojamību var ierobežot sarežģījumi, kas saistīti ar zema sēra saturu kurināmā pieejamību, un to var ietekmēt dažādās enerģētikas politika.</td>
</tr>
</tbody>
</table>

(1) Tehniskā paņēmiens aprakstīts 1.10.3. nodalījumā.

57. tabula
LPTP-SEL kausēšanas krāšņu un pakārtotu procesu SOₓ emisijām HTIW ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP</th>
<th>LPTP-SEL mg/Nm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOₓ, ko izsaka kā SO₂</td>
<td>Primārie tehniskie paņēmieni</td>
<td>< 50</td>
</tr>
</tbody>
</table>

1.8.4. Kausēšanas krāšņu izdalītās ūdeņraža hlorīds (HCl) un ūdeņraža fluorīds (HF)
68. LPTP mērķis ir samazināt kausēšanas krāšņs HCl un HF emisijas, atlasot šīhtas sagatavošanai izjēvēlas ar zemu hlora un fluora saturu

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>Izejvielu ar zemu hlora un fluora saturu atlaššana šīhtas sagatavošanai.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
</tr>
</tbody>
</table>

(1) Tehniskā paņēmiens aprakstīts 1.10.4. nodalījumā.

58. tabula
LPTP-SEL kausēšanas krāšņs HCl un HF emisijām HTIW ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL mg/Nm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ūdeņraža hlorīds, ko izsaka kā HCl</td>
<td>< 10</td>
</tr>
<tr>
<td>Ūdeņraža fluorīds, ko izsaka kā HF</td>
<td>< 5</td>
</tr>
</tbody>
</table>
1.8.5. Kausēšanas krāšņu un pakārtotu procesu izdalītie metāli

69. LPTP mērķis ir samazināt kausēšanas krāsņus un/vai pakārtotu procesu laikā izdalītas metālu emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmienis (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Izejvielu ar zemu metālu saturu atlasīšana šītās sagatavojanai.</td>
<td>Tehniskie paņēmieni ir vispārīgi piemērojami.</td>
</tr>
</tbody>
</table>

(1) Tehniskā paņēmiena aprakstīts 1.10.5. nodaļā.

59. Tabula

LPTP-SEL kausēšanas krāsņu un/vai pakārtotu procesu metālu emisijām HTIW ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL (1) mg/Nm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ (As, Co, Ni, Cd, Se, CrVI)</td>
<td>< 1</td>
</tr>
<tr>
<td>Σ (As, Co, Ni, Cd, Se, CrVI, Sb, Pb, CrIII, Cu, Mn, V, Sn)</td>
<td>< 5</td>
</tr>
</tbody>
</table>

(1) Līmeņi attiecas uz kopējo metālu daudzumu dūms metāla emisijās gan cietā, gan gāzeveida stāvokļā.

1.8.6. Gaistoši organiskie savienojumi pakārtotos procesos

70. LPTP mērķis ir samazināt gaistošo organisko savienojumu (VOC) emisijas no smērvielas izdegšanas krāsņs, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmieniem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmienis (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Sadegšanas vadība, tostarp saistīto CO emisiju monitērings.</td>
<td>Tehniskais paņēmienis ir vispārīgi piemērojams.</td>
</tr>
</tbody>
</table>

Tehniskais paņēmienis ietver sadegšanas raksturlielumu vadību (piemēram, skābekļa saturu reakcijas zonā, liemenetemperatūra), lai nodrošinātu atgāzēs esošo organisko savienojumu (piemēram, polietilēna glikols) pilnīgu sadegšanu. Oglekļa monoksīda emisiju monitērings šajā kontroļē nesadegus u organisko materiālu klātbūtni.

ii) Atgāzu sagedzināšana. | Šo metožu piemērojamību var ierobežot ekonomiskā liederība, jo atgāzēm ir mazs apjoms un zema gaistošu organisko savienojumu koncentrācija. |

iii) Slapjā gāzu attirīšana. |

(1) Tehniskie paņēmieni aprakstīti 1.10.6. un 1.10.9. nodaļā.

60. Tabula

LPTP-SEL gaistošu organisko savienojumu emisijām no smērvielas izdegšanas krāsņs HTIW ražošanas nozarē, ja tās attīra atsevišķi

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaistoši organiskie savienojumi, izteikti kā C</td>
<td>Primārie un/vai sekundārie tehniskie paņēmieni</td>
<td>10–20</td>
</tr>
</tbody>
</table>
1.9. LPTP secinājumi par frites ražošanu
Ja vien nav noteikts citādi, saij nodalā izklāstītie LPTP secinājumi attiecas uz visām frites stikla ražošanas iekārtām.

1.9.1. Putekļu emisijas no kausēšanas krāsnīm

71. LPTP mērķis ir samazināt putekļu emisijas kausēšanas krāsnīs atgāzēs, izmantojot elektrostatisko filtru vai maisa filtru sistēmu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamāba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtrēšanas sistēma: elektrostatiskais filtrs vai maisa filtrs.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
</tr>
</tbody>
</table>

(1) Tehniskais paņēmiens aprakstīts 1.10.1. no 0,05–0,15

61. tabula

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putekļi</td>
<td>mg/Nm³</td>
</tr>
<tr>
<td></td>
<td>Kg uz tonnu izkausēta stikla (2)</td>
</tr>
<tr>
<td>< 10–20</td>
<td>< 0,05–0,15</td>
</tr>
</tbody>
</table>

(2) LPTP-SEL diapazona zemākās un augstākās vērtības noteikšanai ir izmanto par konversijas koeficienti 5 × 10⁻³ un 7,5 × 10⁻³ (skatīt 2. tabulu). Tomēr atkarībā no sadegšanas veida vērtība var būt nepieciešams piemērot tai atbilstošo atšķirīgo konversijas koeficientu.

1.9.2. Kausēšanas krāsu izdalītie slāpekļa oksīdi (NOₓ)

72. LPTP mērķis ir samazināt kausēšanas krāsnīs izdalītās NOₓ emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmiem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamāba</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Nitrātu izmantošanas samazināšana līdz minimumam šītas sagatavošanā. Frites ražošanā nitrātu izmanto daudzus izstrādājumu šītas sagatavošanā, lai iegūtu nepieciešamās ipašības.</td>
<td>Nitrātu aizstāšanu šītas sagatavošanā var ierobežot lielas izmaksas un/vai alternatīvo materiālu lielāka ietekme uz apkārtējo viidi un/vai gāda produkcijas kvalitātes prasības.</td>
</tr>
</tbody>
</table>

ii) Pārmērīgas gaisa pieplūdes krāsnī samazināšana. Tehniskais paņēmiens ietver gaisa iekšējās krāsnī novēršanu, nobīvējošu degū blūkšu, šītas materiāla transportieru un jebkādas citas kausēšanas krāsīs atve-

res. | Tehniskais paņēmiens ir vispārīgi piemērojams. |

iii) Degšanas korekcijas.

a) Gaisa/kurināmā attiecības samazināšana. | Piemērojama konvencionālajām ar gaisu/kurināmo darbī-

nāmām krāsnīm. Maksimālus ieguvumus nodrošina parasta vai pilnīgs krāsns pārbove apvienojumā ar labāko krāsns konstrukciju un ģeometriju. |

b) Pazemināta sadegšanai nepieciešamā gaisa tempera-

tūra. | Zemākais krāsns efektivitātes un lielāka kurināmā patēriņa

dēj vari piemērot tikai atbilstoši konkrētajai iekārtās uzstā-

dīšanas apstākļiem. |

c) Pakāpeniska sadedzināšana: — pakāpeniska gaisa padeve; — pakāpeniska kurināmā padeve. | Kurināmā pakāpenisku padevi var piemērot lielākajai daļai

īpveida ar gaisu/kurināmo darbīnāmām krāsnīm. Pakāpeniskai gaisa padevei ir ļoti ierobežota piemērojamība tās tehniskās sarežģītības dēļ. |
62. tabula

LPTP-SEL kausēšanas krāsns NOₓ emisijām frites stikla ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP</th>
<th>Ekspluatācijas noteikumi</th>
<th>LPTP-SEL (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOₓ ko izeka kā NO₂</td>
<td>Primārie tehniskie paņēmiens</td>
<td>Ar skābekli un kurināmo darbināma krāsna, bez nitrātiem (1)</td>
<td>Neattiecas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ar skābekli un kurināmo darbināma krāsnī, izmantojot nitrātus</td>
<td>Neattiecas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sadedzināšana ar kurināmo/gaisu, kurināmo/ar skābekli bagātinātu gaisu, bez nitrātiem</td>
<td>500–1 000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sadedzināšana ar kurināmo/gaisu, kurināmo/ar skābekli bagātinātu gaisu, izmantojot nitrātus</td>
<td>< 1 600</td>
</tr>
</tbody>
</table>

(1) Diapazonos ir ķerems vērtā krāszu ar dažādu kausēšanas tehnoloģiju dūmēzā apvienojums un dažādu veidu frites ražošana ar nitrātu izmantošanu šītas sagatavošanā vai bez tiem, iespējot, ka šādu produkuju piemēram to var nozīmēt uzglabāšanai vienā vietā, kas liedz iespēju raksturot katru izmantojoto kausēšanas tehnoloģiju un dažādu izstrādājumu.

(2) Diapazona zemākās un augstākās vietas noteikšana ir izmantojo konversijas koeficients 5 × 10⁻³ un 7,5 × 10⁻³. Tomēr atkarībā no sadalīšanas veida var piemērot tai atbilstošu atkarīgu konversijas koeficients (skatīt 2. tabulā).

(3) Sastāvdaļes līmeni ir attīrīti no pieejamās dabasgāzes un skābekļa kvalitātes (slāpēkļa satura).

1.9.3. Kausēšanas krāsnu izdalītā sēra oksīdi (SOₓ)

73. LPTP mērķis ir kontrolēt kausēšanas krāsns izdalītās SOₓ emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmiem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Izejvielu ar zemu sēra saturu atstāšana šītas sagatavošanai.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams atbilstoši ierobežojumiem, kas saistīti ar izejvielu pieejamību.</td>
</tr>
<tr>
<td>ii) Sausa vīzu pussausā gāzu attīrīšana apvienojumā ar filtrēšanas sistēmu.</td>
<td>Tehniskais paņēmiens ir vispārīgi piemērojams.</td>
</tr>
<tr>
<td>iii) Kurināmā vēl zemā sēra saturu izmantošana.</td>
<td>Piemērojamību var ierobežot sarežģījumi, kas saistīti ar zema sēra saturu kausēšanas pieejamību, un to var ietekmēt dalībvalstīs enerģētikas politika.</td>
</tr>
</tbody>
</table>

(1) Tehniskie paņēmiemi aprakstīti 1.10.3. nolūkā.
1.9.4. Kausēšanas krāsnu izdalītās ķīmisko ražošanai nepieciešamais LPTP mērķis

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂, ko iesaka kā SO₂</td>
<td>< 50–200</td>
</tr>
<tr>
<td>Kg uz tonnu izkausēta stikla (1)</td>
<td>< 0,25–1,5</td>
</tr>
</tbody>
</table>

(1) Ir izmantots konversijas koeficients 5×10^{-3} un $7,5 \times 10^{-3}$, taču tabulā norādītās vērtības var būt nozīmētas. Atkarībā no sadegšanas veida var būt nepieciešams piemērot tai atbilstošu atšķirīgu konversijas koeficientu (skatīt 2. tabulu).

1.9.5. Kausēšanas krāsnu izdalītie metāli

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Údenraža hlorīds, ko iesaka kā HCl</td>
<td>< 10</td>
</tr>
<tr>
<td>Kg uz tonnu izkausēta stikla (1)</td>
<td>< 0,05</td>
</tr>
<tr>
<td>Údenraža fluorīds, ko iesaka kā HF</td>
<td>< 5</td>
</tr>
<tr>
<td>Kg uz tonnu izkausēta stikla (1)</td>
<td>< 0,03</td>
</tr>
</tbody>
</table>

(1) Ir izmantots konversijas koeficients 5×10^{-3}, dažas vērtības tuvinot. Atkarībā no sadegšanas veida var būt nepieciešams piemērot tai atbilstošu atšķirīgu konversijas koeficientu (skatīt 2. tabulu).
Tehniskais paņēmiens (1)

<table>
<thead>
<tr>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tehniskie paņēmiens ir vispārīgi piemērojami.</td>
</tr>
</tbody>
</table>

ii) Metāla savienojumu izmantošanas samazināšana līdz minimumam šīs sagatavošanā, ja ir nepieciešama frites iekrāšanās vai arī tai ir jāpiecieš kādas citas konkrētas iepašības.

iii) Sausā vai pussausā gāzu attīrīšana apvienojumā ar filtrēšanas sistēmu.

(1) Tehniskie paņēmiens aprakstīti 1.10.5. nodaļā.

65. tabula

LPTP-SEL kausēšanas krāsas metālu emisijas frites ražošanas nozarē

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ (As, Co, Ni, Cd, Se, Cr VI)</td>
<td>mg/Nm³</td>
</tr>
<tr>
<td>< 1</td>
<td>< 7,5 × 10⁻³</td>
</tr>
<tr>
<td>Σ (As, Co, Ni, Cd, Se, Cr VI, Sb, Pb, Cr III, Cu, Mn, V, Sn)</td>
<td>< 5</td>
</tr>
</tbody>
</table>

(1) Līmeņi attiecas uz kopējo metālu daudzumu dūmēs gan cietā, gan gāzveida stāvoklī.
(2) Ir izmantots konversijas koeficients 7,5 × 10⁻³. Atkarībā no sadegšanas veida var būt nepieciešams piemērot tai atbilstošu atlikušo konversijas koeficientu (skatīt 2. tabulu).

1.9.6. E m i s i j a s , k a s r o d a s p a k ā r t o t u p r o c e s u l a i k ā 76. Attiecībā uz pakārtotiem procesiem, kuri laikā izdalīšu putekļus, LPTP mērķis ir samazināt emisijas, izmantojot kādu no turpmāk minētajiem tehniskajiem paņēmiem vai to apvienojumu.

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens (1)</th>
<th>Piemērojamība</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tehniskie paņēmiens ir vispārīgi piemērojami.</td>
<td></td>
</tr>
</tbody>
</table>

i) Slapjās mašās tehniskā paņemiena izmantošana. Tehniskais paņēmiens atver frites sadrupināšanu līdz vēlamajam cieto daļu izmēram, izmantojot pietiekami daudz ūdens, lai veidotos suspensija. Process parasti notiek alumīnija oksīda granulatorā, izmantojot ūdeni.

ii) Sausā mašā un sausā produkcijas fasēšana, izmantojot efektīvu ventilācijas sistēmu apvienojumā ar maisa filtru. Mašās iekārtā vai darba stacijā, kur notiek fasēšana, tiek pakļauta negatīvam spiedienam, lai novadītu putekļu emisijas uz maisa filtru.

iii) Filtrēšanas sistēmas izmantošana.

(1) Tehniskie paņēmiens aprakstīti 1.10.1. nodaļā.

66. tabula

LPTP-SEL emisijas atmosfērā no pakārtotiem procesiem frites ražošanas nozarē, ja tās attīra atsevišķi

<table>
<thead>
<tr>
<th>Rādītājs</th>
<th>LPTP-SEL (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Putekļi</td>
<td>mg/Nm³</td>
</tr>
<tr>
<td>5–10</td>
<td></td>
</tr>
<tr>
<td>Σ (As, Co, Ni, Cd, Se, Cr VI)</td>
<td>< 1 (1)</td>
</tr>
<tr>
<td>Σ (As, Co, Ni, Cd, Se, Cr VI, Sb, Pb, Cr III, Cu, Mn, V, Sn)</td>
<td>< 5 (1)</td>
</tr>
</tbody>
</table>

(1) Līmeņi attiecas uz kopējo metālu daudzumu atgāzēs.
Glosārijs

1.10. Metotu apraksts

1.10.1. Putekļu emisijas

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens</th>
<th>Apraksts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrostatiskais filtrs</td>
<td>Elektrostatiskajos filtro daļās uzlādē un atdala elektriskā lauka iedarbinā. Elektrostatiskos filtri var izmantot ļoti dažādos eksploatacijas apstākļos.</td>
</tr>
<tr>
<td>Maisa filtrs</td>
<td>Maisa filtras veido no porama auduma vai filca materiāla, caur kuru laiž gāzes, lai atdalītu cietas daļas. Lai izmantotu maisa filtru, ir jāizvēlas tūds auduma materiāls, kas atbilst atgāzu īpašībām un maksimālajai darba temperatūrai.</td>
</tr>
<tr>
<td>Gaistošu sastāvdaļu satura samazināšana</td>
<td>Šītas sastāvā var ietilpīt ļoti gaistošas sastāvdaļas (piemēram, bora savienojumi), kuras var samazināt līdz minimumam vai aizstāt, lai samazinātu putekļu emisijas, ko rada galvenokārt vielu gaistamība.</td>
</tr>
<tr>
<td>Elektriskā kausēšana</td>
<td>Tehnoloģija ietver kausēšanas krāsnī, kurā enerģiju nodrošina pretestības siltums. Krāsnis ar auksto velvi (kurās elektrodi parasti ir ievietoti krāsns apakšējā daļā) šītas slānis ir uzkāts uz kauku joma virsmā, kā rezultātā tiek ievērojami samazināta šītas sastāvdaļu (piemēram, svinā savienojumu) iztvaikošana.</td>
</tr>
</tbody>
</table>

1.10.2. NO_x emisijas

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens</th>
<th>Apraksts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degšanas korekcijas</td>
<td>Tehniskais paņēmiens galvenokārt ietver:</td>
</tr>
</tbody>
</table>

- Gaisa/kurināma attiecības samazināšana
 — gaisa iepildes krāsnī samazināšanu līdz minimumam;
 — sadegšanai nepieciešamā gaisa rūpīgu kontroli;
 — krāsns degkameras konstrukcijas izmaiņas. |

- Pazemināta sadegšanai nepieciešamā gaisa temperatūra
 Reģeneratīvo krātņu vietā izmantojot rekuperatīvās krāsnis, samazinās gaisa iepiektēšanās uzlādes temperatūra un attiecīgi samazinās liezu temperatūra. Tomēr tas ir saistīts ar zemāku krāsnu efektivitāti (zemāka īpašību vērtību), zemāku kūrīnu efektivitāti un lielāku kūrināmā patēriņu, kas, iespējams, var izraisīt lielākas emisijas (kg uz tonnu izkaušā stikla). |

- Pakāpeniska sasedzināšana
 — Pakāpeniska gaisa padeve – ietver aizdedzināšanu ar nepietiekamu gaisa piegādi un gaisa atlikuma vai skābekļa piegādi krāsnī degšanas pabeigušanai.
 — Pakāpeniska kūrīnu gaisa padeve – nozīmē zema impulsa primāras liezas veidošanos atveres kanālā (10 % kopējas enerģijas); sekundārā liezas apvērt primāras liezas pamatni, samazinot tās ieķējo temperatūru. |

- Dūmgāzu recirkulācija
 Nozīmē krāsnu atgāzu iepildināšanu liezām, lai samazinātu skābekļa saturu un attiecīgi liezas temperatūru. Speciālo degļu izmantošanas pamatā ir degšanas gāzu iekšēja recirkušanā, kas atdzesē liezu pamatni un samazina skābekļa saturu liezu karstākajā daļā. |

- Zema NO_x līmeņa degļi
 Tehniskā paņēmiens pamatā ir liezas augšējās daļas temperatūras samazināšanas princips, kas palēnina un vienlaikus pabeidz degšanu un palīdzina siltuma pārnesi (palēnināta liezas iestarošanas spēja). Tā var būt saistīta ar krāsnu degkameras konstrukcijas izmaiņām. |
<table>
<thead>
<tr>
<th>Tehniskais paņēmiens</th>
<th>Apraksts</th>
</tr>
</thead>
<tbody>
<tr>
<td>vi) Kurināmā izvēle</td>
<td>Kopumā ar šķidro kurināmo darbināmām krāsnām ir zemākas NOₓ emisijas nekā ar gāzi darbināmām krāsnām labākās termiskās izstarošanas spējas un zemākas līsmu temperatūras dēļ.</td>
</tr>
<tr>
<td>Speciāla krāsnī konstrukcija</td>
<td>Rekuperācijas tipa krāsnis, kurā ir apvienotas dažādas īpašības, kas ļauj samazināt līsmu temperatūru. Galvenās īpatnības ir šādas:</td>
</tr>
<tr>
<td></td>
<td>— īpaša veida degiļi (to skaits un novietojums);</td>
</tr>
<tr>
<td></td>
<td>— izmainīta krāsnī geometrija (augstums un izmērs);</td>
</tr>
<tr>
<td></td>
<td>— izejvēlēs ipriešķītā uz kurošanas dīv os posmos, novirzot atgāzes uz krāsnī ievietojamajām izejvēlēm un uzstādot no arījem piegādātājiem saņemto lauksus ipriešķītā uz kurošanas iekārtu aiz rekupera, ko izmanto sadegšanas gaisa uzkurošanai.</td>
</tr>
<tr>
<td>Elektriskā kausēšana</td>
<td>Tehnoloģija ietver kausēšanas krāsnī, kurā energiju nodrošina pretetūtības siltums. Galvenās īpatnības ir šādas:</td>
</tr>
<tr>
<td></td>
<td>— elektrodi parasti ir ievietoti krāsnī apakšējā daļā (krāsns ar auksto velvi);</td>
</tr>
<tr>
<td></td>
<td>— elektriskajās krāsnēs ar auksto velvi izmantojamā sīkās sagatavošanai bieži ir nepieciešami nitrāti, lai radītu nepieciešamās oksīdēšanas aplūkos brīvi, drošām un efektīvam ražošanām procesam.</td>
</tr>
<tr>
<td>Kausēšana, izmantojot skābekli un kurināmo</td>
<td>Tehniskais paņēmiens ietver sadegšanas gaisa aizstāvu ar skābekli (tīrība > 90 %), kā rezultātā var pārtraukt/samazināt NOₓ termisko veidošanos no krāsnī ievaditā slipekā. Slipekā satura atlikums krāsnī ir atkarīgs no ievaditā skābekļa tīrības; kurināma kvalitātes (procentuāla N₂ atsauces darbas gāzā) un iespējamas gaisa iepluedes.</td>
</tr>
<tr>
<td>Ķīmiska reducēšana ar kurināmā palidzību</td>
<td>Tehniskā paņēmiena pamatā ir fosilā kurināmā kurošanas atgāžēs, kā rezultātā pēc vairākām ķīmiskām reakcijām NOₓ tiek ķīmiski reducēts par NOₓ. 3R procesā kurināmo (dabasgāzi vai šķidro kurināmo) ievada pie regeneratora iesas. Tehnoloģija ir paredzēta izmantošanai re generatīvajā krāsnī.</td>
</tr>
<tr>
<td>Selektīva katalītiskā reducēšana (SCR)</td>
<td>Tehniskā paņēmienā pamatā ir NOₓ reducēšana par skābekli katalītiskajā vannā, izmantojot reagēšanu ar amonjaku (vispārējā īdens skābēm) optimālā (apmēram 300–450 °C) darba temperatūrā. Vari izmantot vienu vai divus katalizatoru slāņus. Lielāku NOₓ redukciju var sasniegt, izmantojot lielāku katalizatora audzumu (divi slāņi).</td>
</tr>
<tr>
<td>Selektīva nekatalītiskā reducēšana (SNCR)</td>
<td>Tehniskā paņēmienā pamatā ir NOₓ reducēšana par skābekli, izmantojot reagēšanu ar amonjaku vai karbamidu augstā temperatūrā. Darba temperatūras diapazonā jābūt no 900 līdz 1050 °C.</td>
</tr>
<tr>
<td>Nitratu izmantošanas samazināšana līdz minimumam</td>
<td>Nitratu samazināšanu līdz minimumam izmanto, lai samazinātu NOₓ emisijas, kas rodas šādu iezīmēju sadalāmām procesām, izmantojot tos par oksidētājiem ļoti augstas kvalitātes izstrādājumiem, ja ir nepieciešams iegūt ļoti bezkrāsainu (dzidru) stiku vai piegādātāru nepieciešamās īpašības cita veida stiklim. Pastāv šādas iespējas:</td>
</tr>
<tr>
<td></td>
<td>— nitratu saturu samazināšana līdz minimumam sliktas sastāvā, ievērojot prasības, kas attiecas uz izstrādājumu un kausēšanu;</td>
</tr>
<tr>
<td></td>
<td>— nitratu aizstāšana ar alternatīviem materiāliem; efektīvi aizstāvēji ir sulfāti, arūša oksīds, cērija oksīds;</td>
</tr>
<tr>
<td></td>
<td>— veikt procesa izmaiņas (piemēram, īpaši oksīdojošs sadegšanas apstākļi).</td>
</tr>
</tbody>
</table>
1.10.3. SO_x emisijas

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens</th>
<th>Apraksts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sausā vai pussausā gāzu attīrīšana avpriejojumā ar filtrēšanas sistēmu</td>
<td>Atgāzu plūsmā ievada un izkliedē sausa pulvera vai sārmaina reaģenta suspensiju/šķidumu. Materiāls reaģē ar sēra gāzveida dalījām, veidojot cietus dalījus, kuras var atdalit ar filtru (maisa filtra vai elektrostatiskais filtra). Parasti attīrīšanas sistēmas filtrēšanas efektivitāti uzlabo reaģēšanas iekārta izmantošana.</td>
</tr>
<tr>
<td>Sēra saturas samazināšana līdz minimumam šīhtas sagatavošanā un sēra bilances optimizēšana.</td>
<td>Sēra saturas samazināšanu līdz minimumam šīhtas sagatavošanā izmanto, lai samazinātu SO_x emisijas, kas rodas dizdīrīšanās izmantojamo sēru satu saturošu iezījvēl un sēra bilances optimizēšanas var būtiski atšķirties.</td>
</tr>
<tr>
<td>Kurināmā ar zemu sēra saturas izmantošana</td>
<td>Dubasgāzi vai zema sēra saturas degvieļu izmantojumu, lai samazinātu SO_x emisiju apjomu, kas rodas, dešļanas laikā oksīdejoties kurināmā sastāvā esošajam sēram.</td>
</tr>
</tbody>
</table>

1.10.4. HCl, HF emisijas

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens</th>
<th>Apraksts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iezījvēl ar zemu hlora un fluora saturu atlasīšana šīhtas sagatavošanai</td>
<td>Tehniskais paņēmiens ietver rūpīgu tādu izdēšanas atlašana, kurās var būt tādi piemēsījumi kā hloridi un fluoridi (piemēram, sintētiskās kalciņa, tās sausa pulvera vai sārsavienojumu saturošu iezījvēlu satura samazināšanai dzīvojoties kurināmā sastāvā esošajam sēram.</td>
</tr>
<tr>
<td>Fluora un/vai hloras savienojumu izmantošanas samazināšana līdz minimumam šīhtas sagatavošanā un hloras masas bilances optimizēšana</td>
<td>Kausēšanas procesa radītās fluorā un/vai hlora emisijas var samazināt līdz minimumam, samazinot ierobežojot šādu vielu izmantošanu. Fluora savienojumus (piemēram, hloru špats, kriolītu, fluorsilikātu) izmanto, lai piešķirtu speciālamām stiklām veidojot seviškas īpašības (piemēram, tumšīgais ķermeņu stikls, optiskais stikls). Hlora savienojumus var izmantot dzirdrīšanās.</td>
</tr>
<tr>
<td>Sausā vai pussausā gāzu attīrīšana avpriejojumā ar filtrēšanas sistēmu</td>
<td>Atgāzu plūsmā ievada un izkliedē sausa pulvera vai sārmaina reaģenta suspensiju/šķidumu. Materiāls reaģē ar gāzveida hloridiem un fluoridiem, veidojot cietus dalījus, kuras var atdalit ar filtru (maisa filtra vai elektrostatiskais filtra) izmantošanu.</td>
</tr>
</tbody>
</table>

1.10.5. Metālu emisijas

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens</th>
<th>Apraksts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iezījvēl ar zemu metālu saturu atlasīšana šīhtas sagatavošanai</td>
<td>Tehniskais paņēmiens ietver rūpīgu tädu izdēšanas materiālu atlašana, kas kā piemērojumiem var saturēt metālus (piemēram, no ķermēju piegādātājiem saņemtas lauskas), lai samazinātu metālu emisiju avotus, kas rodas, kušanas procesā esošajām stiklām izdēšanām.</td>
</tr>
<tr>
<td>Samazināt līdz minimumam metālu savienojumu izmantošanu šīhtas sagatavošanai, ja ir nepieciešama stikla iekrāsošana vai atkrāsošana atbilstoši patēriņam paredzētā stikla kvalitātes prasībām</td>
<td>Metālu emisijas kausēšanas procesa laikā var samazināt līdz minimumam šīhtas savienojumus:</td>
</tr>
<tr>
<td></td>
<td>— līdz minimumam samazinot metālu savienojumu (piemēram, dzēls, hroma, kobalta, vara, mangāna savienojumi) daudzumu krāsnā stikla ražošanā;</td>
</tr>
<tr>
<td></td>
<td>— līdz minimumam samazinot seļļa savienojumu un ķermēju oksīda daudzumu, kuras izmanto atkrāsošanai dzirdrīšanā stikla ražošanā.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tehniskais paņēmiens</th>
<th>Apraksis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10.8. Emisijas, kas rodas griešanas, slipēšanas, pulēšanas laikā</td>
<td></td>
</tr>
<tr>
<td>Puteklus radošu darbību (piemēram, griešana, slipēšana, pulēšana) veikšana, izmantojot šķidrumu</td>
<td>Ļūdens parasti izmanto kā dzezinošu smērēmulsiju griešanas, slipēšanas un pulēšanas laikā un lai novērstu puteklus emisijas. Var būt nepieciešams uzstādīt ar mitruma uzvērēju aprīkotu ventilācijas sistēmu.</td>
</tr>
<tr>
<td>Tehnisks paņēmiens</td>
<td>Apraksts</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Maisa filtru sistēmas izmantošana</td>
<td>Maisa filtrs var izmantot gan putekļu, gan metālu emisiju samazināšanai, jo pakārtotu procesu laikā izdalītās metālu emisijas galveno-kārt ir cieto dalīju formā.</td>
</tr>
<tr>
<td>Pulēšanas produkta zudumu samazināšana līdz minimumam, kārtīgi noblvējot pulēšanas sistēmu</td>
<td>Pulēšanu ar skābi veic, ievietojot tikla izstrādājumus pulēšanas vannā ar fluorūdeņražskābi un sērskābi. Izgarojumu izdalīšanos var samazināt līdz minimumam, nodrošinot labu iekārtas konstrukciju un tehnisko apkopi, lai samazinātu zudumus.</td>
</tr>
<tr>
<td>Sekundārā tehniskie paņēmieni, piemēram, slapjā gāzu attīrīšanai izmantošana</td>
<td>Slapjo gāzu attīrīšanu ar ūdeni izmanto atgāzu attīrīšanai emisiju skābuma un lielā atdalāmo gāzveida piesārnotāju šķidrās dēļ.</td>
</tr>
</tbody>
</table>

1.10.9. \(\text{H}_2\text{S} \), gāistošu organisko savienojumu emisijas

Atgāzu sagedzināšana | Tehniskais paņēmiens ietver izdedzinātāju sistēmu, kas oksidē sērūdeņradi (kas veidojas spēcīgu reducējošo apstākļu kausēšanas krāsni ietekmē) par sēra dioksīdu un oglekļa monoksīdu par oglekļa dioksīdu. Gaistoši organiskie savienojumi tiek termiski sagedzināti un pēc tam oksidējas par oglekļa dioksīdu, ūdeni un citiem degšanas produktiem (piemēram, \(\text{NO}_x \), \(\text{SO}_x \)). |