Journal officiel

des Communautés européennes

ISSN 0378-7060

L 159

39° année 29 juin 1996

Édition de langue française

Législation

Sommaire	I Actes dont la publication est une condition de leur applicabilité
	II Actes dont la publication n'est pas une condition de leur applicabilité
	Conseil
	★ Directive 96/29/Euratom du Conseil, du 13 mai 1996, fixant les normes de base relatives à la protection sanitaire de la population et des travailleurs contre les dangers résultant des rayonnements ionisants

Prix: 25 ECU

Les actes dont les titres sont imprimés en caractères maigres sont des actes de gestion courante pris dans le cadre de la politique agricole et ayant généralement une durée de validité limitée.

Les actes dont les titres sont imprimés en caractères gras et précédés d'un astérisque sont tous les autres actes.

H

(Actes dont la publication n'est pas une condition de leur applicabilité)

CONSEIL

DIRECTIVE 96/29/EURATOM DU CONSEIL

du 13 mai 1996

fixant les normes de base relatives à la protection sanitaire de la population et des travailleurs contre les dangers résultant des rayonnements ionisants

LE CONSEIL DE L'UNION EUROPÉENNE,

vu le traité instituant la Communauté européenne de l'énergie atomique, et notamment ses articles 31 et 32,

vu la proposition de la Commission, élaborée après consultation d'un groupe de personnalités désignées par le comité scientifique et technique parmi les experts scientifiques des États membres,

vu l'avis du Parlement européen (1),

vu l'avis du Comité économique et social (2),

considérant que le traité prévoit à l'article 2 point b) l'établissement de normes de sécurité uniformes pour la protection sanitaire de la population et des travailleurs;

considérant que, selon l'article 30 du traité, les normes de base relatives à la protection sanitaire de la population et des travailleurs contre les dangers résultant des radiations ionisantes se définissent comme:

- a) les doses maximales admissibles avec une sécurité suffisante;
- b) les expositions et les contaminations maximales admissibles;
- c) les principes fondamentaux de surveillance médicale des travailleurs;

considérant que, conformément à l'article 33 du traité, chaque État membre établit les dispositions législatives, réglementaires et administratives propres à assurer le resepct des normes de base fixées et prend les mesures nécessaires en ce qui concerne l'enseignement, l'éducation et la formation professionnelle;

considérant que, pour remplir sa mission, la Communauté a établi des normes de base pour la première fois en 1959, conformément à l'article 218 du traité au moyen des directives du 2 février 1959 fixant les normes de base relatives à la protection sanitaire de la population et des travailleurs contre les dangers résultant des radiations ionisantes (³), que lesdites directives du Conseil ont été révisées en 1962 par la directive du 5 mars 1962 (⁴), en 1966 par la directive 66/45/Euratom (⁵), en 1976 par la directive 76/579/Euratom (°), en 1979 par la directive 79/343/Euratom (⁻), en 1980 par la directive 80/836/Euratom (8) et en 1984 par la directive 84/467/Euratom (°);

considérant que les directives établissant des normes de base ont été complétées par la directive 84/466/Euratom du Conseil, du 3 septembre 1984, fixant les mesures fondamentales relatives à la protection radiologique des personnes soumises à des examens et traitements médicaux (10), la décision 87/600/Euratom du Conseil, du 14 décembre 1987, concernant des modalités communautaires en vue de l'échange rapide d'informations dans le cas d'une situation d'urgence radiologique (11), le règle-

⁽¹) JO n° C 128 du 9. 5. 1994, p. 209.

⁽²⁾ JO n° C 108 du 19. 4. 1993, p. 48.

⁽³⁾ JO nº 11 du 20. 2. 1959, p. 221/59.

⁽⁴⁾ JO n° 57 du 6. 7. 1962, p. 1633/62.

⁽⁵⁾ JO nº 216 du 26. 11. 1966, p. 3693/66.

⁽⁶⁾ JO nº L 187 du 12. 7. 1976, p. 1.

^{(&}lt;sup>7</sup>) JO nº L 83 du 3. 4. 1979, p. 18.

⁽⁸⁾ JO nº L 246 du 17. 9. 1980, p. 1.

⁽⁹⁾ JO nº L 265 du 5. 10. 1984, p. 4. (10) JO nº L 265 du 5. 10. 1984, p. 1.

⁽¹¹⁾ JO nº L 371 du 30. 12. 1987, p. 76.

ment (Euratom) nº 3954/87 du Conseil, du 22 décembre 1987, fixant les niveaux maximaux admissibles de contamination radioactive pour les denrées alimentaires et les aliments pour bétail après un accident nucléaire ou dans toute autre situation d'urgence radiologique (1), la directive 89/618/Euratom du Conseil, du 27 novembre 1989, concernant l'information de la population sur les mesures de protection sanitaire applicables et sur le comportement à adopter en cas d'urgence radiologique (2), la directive 90/641/Euratom du Conseil, du 4 décembre 1990, concernant la protection opérationnelle des travailleurs extérieurs exposés à un risque de rayonnements ionisants au cours de leur intervention en zone contrôlée (3), la directive 92/3/Euratom du Conseil, du 3 février 1992, relative à la surveillance et au contrôle des transferts de déchets radioactifs entre États membres ainsi qu'à l'entrée et à la sortie de la Communauté (4) et le règlement (Euratom) nº 1493/93 du Conseil, du 8 juin 1993, concernant les transferts de substances radioactives entre les États membres (5);

considérant que, du fait de l'évolution des connaissances scientifiques en matière de radioprotection, reflétée notamment par la recommandation n° 60 de la Commission internationale de protection contre les radiations, il convient de réviser les normes de base et d'établir un nouvel instrument juridique;

considérant l'importance particulière des normes de base, en ce qui concerne les risques dus aux rayonnements ionisants pour d'autres directives traitant d'autres types de risques, et la nécessité de progresser dans leur application de manière uniforme au sein de la Communauté;

considérant qu'il est souhaitable, de tenir compte, dans le champ d'application des normes de base, de pratiques ou d'activités susceptibles d'entraîner une augmentation notable, non négligeable du point de vue de la protection contre les rayonnements, de l'exposition des travailleurs et des personnes du public à des rayonnements ionisants provenant de sources artificielles ou de sources naturelles, ainsi que de mesures appropriées de protection en cas d'intervention;

considérant que, pour assurer le respect des normes de base, les États membres sont tenus de soumettre certaines pratiques présentant un risque dû aux rayonnements ionisants à un régime de déclaration et d'autorisation préalable ou d'interdire ces pratiques;

considérant qu'un système de protection radiologique applicable aux pratiques devrait rester fondé sur les principes de justification de l'exposition, d'optimisation de la protection et de limitation des doses; qu'il convient de fixer des limites de doses en fonction de la situation particulière des différents groupes de personnes exposées, tels que les travailleurs, les apprentis, les étudiants et les autres personnes du public;

considérant que la protection opérationnelle des travailleurs exposés, des apprentis et des étudiants impose la mise en œuvre de mesures sur le lieu de travail; que ces mesures doivent comprendre l'évaluation préalable des risques, la classification des lieux de travail et des travailleurs, la surveillance des zones et des conditions de travail ainsi que la surveillance médicale;

considérant que l'obligation devrait être imposée aux États membres de repérer les activités comportant, pour les travailleurs ou les personnes du public, des niveaux notablement accrus, non négligeables du point de vue de la radioprotection, d'exposition à des sources de rayonnement naturel; que les États membres devraient prendre des mesures de protection appropriées pour les activités déclarées comme étant préoccupantes;

considérant que la protection opérationnelle de la population en situation normale exige la création par les États membres d'un système d'inspection permettant d'exercer un contrôle strict sur la protection radiologique de la population et de vérifier le respect des normes de base;

considérant que les États membres devraient être préparés à l'éventualité d'une situation d'urgence radiologique sur leur territoire et qu'ils devraient coopérer avec les autres États membres et les pays tiers pour se préparer à de telles situations et les gérer plus facilement;

considérant qu'il convient d'abroger les directives établissant les normes de base, telles que modifiées en dernier lieu par la directive 84/467/Euratom, avec effet à la date d'entrée en vigueur de la présente directive,

A ARRÊTÉ LA PRÉSENTE DIRECTIVE:

⁽¹) JO nº L 371 du 30. 12. 1987, p. 11. Règlement modifié par le règlement (Euratom) nº 2218/89 (JO nº L 211 du 22. 7. 1989, p. 1).

⁽²⁾ JO nº L 357 du 7. 12. 1989, p. 31.

⁽³⁾ JO nº L 349 du 13, 12, 1990, p. 21. Directive modifiée par l'acte d'adhésion de 1994.

⁽⁴⁾ JO nº L 35 du 12. 2. 1992, p. 24.

⁽⁵⁾ JO nº L 148 du 19. 6. 1993, p. 1.

TITRE PREMIER

DÉFINITIONS

Article premier

Les définitions suivantes s'appliquent aux fins de la présente directive.

Dose absorbée (D): énergie absorbée par unité de masse

$$D = \frac{d\overline{\epsilon}}{dm}$$

où:

- d
 est l'énergie moyenne communiquée par le rayonnement ionisant à la matière dans un élément de volume,
- dm est la masse de la matière contenue dans cet élément de volume.

Dans la présente directive, le terme «dose absorbée» désigne la dose moyenne reçue par un tissu ou un organe. L'unité de dose absorbée est le gray (Gy).

Accélérateur: appareillage ou installation dans lesquels les particules sont soumises à une accélération, émettant des rayonnements ionisants d'une énergie supérieure à 1 mégaélectronvolt (MeV).

Exposition accidentelle: exposition de personnes par suite d'un accident. Elle ne comprend pas l'exposition d'urgence.

Activation: processus par lequel un nucléide stable est transformé en un radionucléide par irradiation de la substance qui le contient au moyen de particules ou de rayons gamma à haute énergie.

Activité (A): l'activité A d'une quantité d'un radionucléide à un état énergétique déterminé et à un moment donné est le quotient de dN par dt, où dN est le nombre probable de transitions nucléaires spontanées à partir de cet état énergétique dans l'intervalle de temps dt.

$$A = \frac{dN}{dt}$$

L'unité d'activité est le becquerel.

Apprenti: personne recevant une formation ou une instruction dans une entreprise en vue d'exercer des compétences spécifiques.

Service de dosimétrie agréé: organisme responsable de l'étalonnage, de la lecture ou de l'interprétation des appareils de contrôle individuels, ou de la mesure de la radioactivité dans le corps humain ou dans des échantil-

lons biologiques, ou de l'évaluation des doses, et dont la qualification pour cette tâche est reconnue par les autorités compétentes.

Médecin agréé: médecin responsable de la surveillance médicale des travailleurs de la catégorie A au sens de l'article 21 et dont la qualification pour cette tâche est reconnue par les autorités compétentes.

Services agréés de médecine du travail: organisme(s) qui peu(ven)t être chargé(s) de la protection radiologique des travailleurs exposés et/ou de la surveillance médicale des travailleurs de la catégorie A et dont la qualification pour cette tâche est reconnue par les autorités compétentes.

Sources artificielles: sources de rayonnement autres que des sources naturelles de rayonnement.

Autorisation: permis d'exercer une pratique ou toute autre action relevant de la présente directive, accordé à la demande par l'autorité compétente dans un document écrit, ou accordé par voie de législation nationale.

Becquerel (Bq): nom de l'unité d'activité. Un becquerel équivaut à une transition par seconde:

1. Bq =
$$1 \text{ s}^{-1}$$

Seuils de libération: valeurs, fixées par les autorités nationales compétentes et exprimées en concentration d'activité et/ou en activité totale, auxquelles ou en dessous desquelles les substances radioactives ou les matières contenant des substances radioactives résultant de pratiques soumises à l'obligation de déclaration ou d'autorisation peuvent être dispensées de se conformer aux exigences de la présente directive.

Dose efficace engagée [$E(\tau)$]: somme des doses équivalentes engagées dans les divers tissus ou organes [$H_T(\tau)$] par suite d'une incorporation, multipliées chacune par le facteur de pondération tissulaire w_T approprié. Elle est donnée par la formule:

$$E(\tau) = \sum_T w_T H_T(\tau)$$

Dans $E(\tau)$, τ est indiqué pour le nombre d'années sur lequel est faite l'intégration. L'unité de dose efficace engagée est le sievert.

Dose équivalente engagée $[H_T(\tau)]$: intégrale sur le temps (t) du débit de dose équivalente au tissu ou à l'organe T qui sera reçu par un individu à la suite de l'incorporation de matière radioactive. Pour une incorporation d'activité à un moment t_0 , elle est définie par la formule:

$$H_{T}(\tau) = \int_{t_{0}}^{t_{0}+\tau} \dot{H}_{T}(t)dt$$

où:

- $\dot{H}_T(t)$ est le débit de dose équivalente à l'organe ou au tissu T au moment t,
- τ, la période sur laquelle l'intégration est effectuée.

Dans $H_T(\tau)$, τ est indiqué en années. Si la valeur de τ n'est pas donnée, elle est implicitement, pour les adultes, de cinquante années et, pour les enfants, du nombre d'années restant jusqu'à l'âge de 70 ans. L'unité de dose équivalente engagée est le sievert.

Autorités compétentes: toute autorité désignée par un État membre.

Zone contrôlée: zone soumise à une réglementation spéciale pour des raisons de protection contre les rayonnements ionisants et de confinement de la contamination radioactive, et dont l'accès est réglementé.

Élimination: stockage de déchets dans un dépôt ou un site donné sans intention de les récupérer. L'élimination comprend également le rejet autorisé de déchets directement dans l'environnement et leur dispersion ultérieure.

Contrainte de dose: restriction imposée aux doses éventuelles qu'une source déterminée peut délivrer aux individus et utilisée dans la phase de planification de la protection contre les rayonnements pour toute optimisation.

Limites de dose: valeurs maximales de référence fixées au titre IV pour les doses résultant de l'exposition des travailleurs, des apprentis et des étudiants, ainsi que des autres personnes du public, aux rayonnements ionisants visés par la présente directive et qui s'appliquent à la somme des doses concernées résultant de sources externes de rayonnement pendant la période spécifiée et des doses engagées sur cinquante années (jusqu'à l'âge de 70 ans pour les enfants) par suite des incorporations pendant la même période.

Dose efficace (E): somme des doses équivalentes pondérées délivrées aux différents tissus et organes du corps mentionnés à l'annexe II par l'irradiation interne et externe. Elle est définie par la formule:

$$E = \sum_{T} w_{T} H_{T} = \sum_{T} w_{T} \sum_{R} w_{R} D_{T,R}$$

où:

- D_{T,R} est la moyenne pour l'organe ou le tissu T de la dose absorbée du rayonnement R,
- w_R est le facteur de pondération radiologique

et

→ w_T est le facteur de pondération tissulaire valable pour le tissu ou l'organe T.

Les valeurs appropriées de w_T et w_R sont indiquées à l'annexe II. L'unité de dose efficace est le sievert (Sv).

Exposition d'urgence: exposition de personnes engagées dans des interventions rapides nécessaires pour porter secours à des personnes, pour empêcher l'exposition d'un grand nombre de personnes ou pour sauver une installation ou des biens de grande valeur, et au cours de laquelle une des limites de dose individuelles égale à celle qui est fixée pour les travailleurs exposés pourrait être dépassée. L'exposition d'urgence n'est applicable qu'à des volontaires.

Dose équivalente (H_T) : dose absorbée par le tissu ou l'organe T, pondérée suivant le type et la qualité du rayonnement R. Elle est donnée par la formule:

$$H_{T,R} = w_R D_{T,R}$$

où:

 D_{T,R} est la moyenne pour l'organe ou le tissu T de la dose absorbée du rayonnement R

et

— w_R est le facteur de pondération radiologique.

Lorsque le champ de rayonnement comprend des rayonnements de types et d'énergies correspondant à des valeurs différentes de w_R , la dose équivalente totale H_T est donnée par la formule:

$$H_{T} = \sum_{R} w_{R} D_{T,R}$$

Les valeurs appropriées de w_R sont indiquées à l'annexe II. L'unité de dose équivalente est le sievert (Sv).

Travailleurs exposés: personnes, travaillant à leur compte ou pour un employeur, soumises pendant leur travail à une exposition provenant de pratiques visées dans la présente directive et susceptibles d'entraîner des doses supérieures à l'un quelconque des niveaux de dose égaux aux limites de dose fixées pour les citoyens.

Exposition: fait d'être exposé à des rayonnements ionisants.

Gray (Gy): nom de l'unité de dose absorbée. Un gray équivaut à un joule par kilogramme:

$$1 \text{ Gy} = 1 \text{ J kg}^{-1}$$

Détriment sanitaire: estimation du risque de réduction de l'espérance et de la qualité de vie d'une population résultant de l'exposition à des rayonnements ionisants. Cette définition comprend les pertes dues tant aux effets somatiques et au cancer qu'aux perturbations génétiques graves.

Incorporation: activité des radionucléides pénétrant dans l'organisme à partir du milieu ambiant.

Intervention: activité humaine destinée à prévenir ou à réduire l'exposition des individus aux rayonnements à partir de sources qui ne font pas partie d'une pratique ou ne sont pas maîtrisées en agissant sur les sources de rayonnement, les voies d'exposition et les individus euxmêmes.

Niveau d'intervention: valeur de dose équivalente évitable ou de dose efficace évitable, ou valeur dérivée à laquelle certaines interventions devraient être envisagées. La valeur de dose évitable ou la valeur dérivée est exclusivement celle qui se rapporte à la voie d'exposition sur laquelle portera l'intervention.

Rayonnement ionisant: transport d'énergie sous la forme de particules ou d'ondes électromagnétiques d'une longueur d'ondes inférieure ou égale à 100 nanomètres ou d'une fréquence supérieure ou égale à 3×10^{15} hertz pouvant produire des ions directement ou indirectement.

Personnes du public: individus de la population, à l'exception des travailleurs exposés, des apprentis et des étudiants pendant leurs heures de travail et des individus soumis à une exposition dans les cas prévus à l'article 6 paragraphe 4 points a), b) et c).

Source naturelle de rayonnement: source de rayonnement ionisant d'origine terrestre ou cosmique naturelle.

Exposition potentielle: exposition dont la survenance n'est pas certaine et dont la probabilité d'apparition peut être évaluée à l'avance.

Pratique: activité humaine susceptible d'accroître l'exposition des individus au rayonnement provenant d'une source artificielle ou d'une source naturelle de rayonnement lorsque des radionucléides naturels sont traités en raison de leurs propriétés radioactives, fissiles ou fertiles, sauf dans le cas d'une exposition d'urgence.

Expert qualifié: personne ayant les connaissances et l'entraînement nécessaires pour effectuer des examens physiques, techniques ou radiochimiques permettant d'évaluer les doses et pour donner des conseils afin d'assurer une protection efficace des individus et un fonctionnement correct des moyens de protection, et dont la capacité d'agir comme expert qualifié est reconnue par les autorités compétentes. Un expert qualifié peut se voir assigner la responsabilité technique des tâches de radioprotection des travailleurs et des personnes du public.

Contamination radioactive: contamination d'une matière, d'une surface, d'un milieu quelconque ou d'un individu par des substances radioactives. Dans le cas particulier du corps humain, cette contamination radioactive comprend

à la fois la contamination externe cutanée et la contamination interne par quelque voie que ce soit.

Substance radioactive: toute substance contenant un ou plusieurs radionucléides dont l'activité ou la concentration ne peut être négligée du point de vue de la radioprotection.

Situation d'urgence radiologique: situation qui appelle des mesures d'urgence afin de protéger les travailleurs, les personnes du public, ou l'ensemble ou une partie de la population.

Groupe de référence de la population: groupe comprenant des individus dont l'exposition à une source est assez uniforme et représentative de celle des individus qui, parmi la population, sont plus particulièrement exposés à ladite source.

Déclaration: obligation de soumettre un document à l'autorité compétente pour notifier l'intention d'exercer une pratique ou toute autre action relevant de la présente directive.

Source radioactive scellée: source dont la structure empêche, en utilisation normale, toute dispersion de matières radioactives dans le milieu ambiant.

Sievert (Sv): nom de l'unité de dose équivalente ou de dose efficace. Un sievert équivaut à un joule par kilogramme:

$$1 \text{ Sv} = 1 \text{ J kg}^{-1}$$

Source: appareil, substance radioactive ou installation pouvant émettre des rayonnements ionisants ou des substances radioactives.

Zone surveillée: zone faisant l'objet d'une surveillance appropriée à des fins de protection contre les rayonnements ionisants.

Entreprise: toute personne physique ou morale utilisant des pratiques ou exerçant des activités professionnelles visées à l'article 2 et juridiquement responsable, au regard de la législation nationale, desdites pratiques ou activités.

TITRE II

CHAMP D'APPLICATION

Article 2

1. La présente directive s'applique à toutes les pratiques comportant un risque dû aux rayonnements ionisants émanant soit d'une source artificielle, soit d'une source naturelle de rayonnement lorsque les radionucléides naturels sont traités, ou l'ont été, en raison de leurs propriétés radioactives, fissiles ou fertiles, et notamment:

- a) à la production, au traitement, à la manipulation, à l'emploi, à la détention, au stockage, au transport, à l'importation dans la Communauté, à l'exportation à partir de la Communauté et à l'élimination de substances radioactives;
- b) à l'utilisation de tout appareil électrique émettant des rayonnements ionisants et dont les éléments fonctionnent sous une différence de potentiel supérieure à 5 kV;
- c) à toute autre pratique désignée par l'État membre.
- 2. Conformément au titre VII, elle s'applique également aux activités professionnelles qui ne sont pas couvertes par le paragraphe 1 mais qui impliquent la présence de sources naturelles de rayonnement et entraînent une augmentation notable de l'exposition des travailleurs ou du public, non négligeable du point de vue de la protection contre les rayonnements.
- 3. Conformément au titre IX, elle s'applique également à tout intervention en cas de situation d'urgence radiologique ou en cas d'exposition durable résultant des suites d'une situation d'urgence radiologique ou de l'exercice d'une pratique ou d'une activité professionnelle, passée ou ancienne.
- 4. La présente directive ne s'applique ni à l'exposition au radon dans les habitations ni au niveau naturel de rayonnement, c'est-à-dire aux radionucléides contenus dans l'organisme humain, au rayonnement cosmique régnant au niveau du sol ou à l'exposition en surface aux radionucléides présents dans la croûte terrestre non perturbée.

TITRE III

DÉCLARATION ET AUTORISATION DES PRATIQUES

Article 3

Déclaration

- 1. Chaque État membre exige que l'exercice des pratiques visées à l'article 2 paragraphe 1 soit déclaré, sauf dans les cas prévus au présent article.
- 2. La déclaration peut ne pas être appliquée pour les pratiques comportant les éléments suivants:
- a) des substances radioactives en quantités ne dépassant pas au total les valeurs d'exemption indiquées à l'annexe I tableau A deuxième colonne ou, dans des circonstances exceptionnelles prévalant dans un État membre, d'autres valeurs autorisées par les autorités compétentes et satisfaisant néanmoins aux critères généraux de base énoncés à l'annexe I

ou

 b) des substances radioactives dont la concentration d'activité par unité de masse ne dépasse pas les valeurs d'exemption indiquées à l'annexe I tableau A troisième colonne ou, dans des circonstances exceptionnelles prévalant dans un État membre, d'autres valeurs autorisées par les autorités compétentes et satisfaisant néanmoins aux critères généraux de base énoncés à l'annexe I

ou

- c) un appareillage contenant des substances radioactives dans des quantités ou des concentrations supérieures à celles indiquées aux points a) et b) pour autant que soit remplie chacune des conditions suivantes:
 - i) l'appareillage est d'un type agréé par les autorités compétentes de l'État membre;

- ii) il présente les caractéristiques d'une source scellée;
- iii) en fonctionnement normal, il ne crée, en aucun point situé à une distance de 0,1 m de sa surface accessible, un débit de dose supérieur à 1 μSv h⁻¹;
- iv) les conditions d'élimination ont été spécifiées par les autorités compétentes

ou

- d) l'emploi d'un appareillage électrique auquel la présente directive s'applique, à l'exception de celui visé au point e), à condition:
 - i) que cet appareillage soit d'un type agréé par les autorités compétentes de l'État membre

et

 ii) que, en fonctionnement normal, il ne crée en aucun point situé à une distance de 0,1 m de sa surface accessible, un débit de dose supérieur à 1 μSv h⁻¹

ou

e) l'emploi de tout tube cathodique destiné à l'affichage d'images visibles ou de tout autre appareillage électrique fonctionnant sous une différence de potentiel inférieure ou égale à 30 kV, pour autant que, en fonctionnement normal, il ne crée, en aucun point situé à 0,1 m de sa surface accessible, un débit de dose supérieur à 1 μSv h⁻¹

ou

f) des matières contaminées par des substances radioactives résultant de sorties autorisées, dont les autorités compétentes ont déclaré qu'elles n'étaient pas soumises à d'autres contrôles.

Article 4

Autorisation

- 1. Chaque État membre exige une autorisation préalable pour les pratiques suivantes, sous réserve des exceptions prévues au présent article:
- a) l'exploitation et le déclassement de toute installation du cycle du combustible nucléaire, ainsi que l'exploitation et la fermeture de mines d'uranium;
- b) l'addition intentionnelle de substances radioactives dans la production et la fabrication de médicaments ainsi que l'importation et l'exportation de tels produits:
- c) l'addition intentionnelle de substances radioactives dans la production et la fabrication de produits de consommation ainsi que l'importation et l'exportation de tels produits;
- d) l'administration intentionnelle de substances radioactives à des personnes et, pour autant qu'il s'agisse de radioprotection humaine, à des animaux à des fins de diagnostic, de traitement ou de recherche médical ou vétérinaire;
- e) l'emploi d'appareils à rayons X ou de sources radioactives à des fins de radiographie industrielle ou de traitement de produits ou de recherche ou pour l'exposition de personnes à des fins de traitement médical et l'emploi d'accélérateurs autres que les microscopes électroniques.
- 2. Une autorisation préalable peut être exigée pour d'autres pratiques que celles indiquées au paragraphe 1.

- 3. Les États membres peuvent préciser qu'une pratique ne requiert pas d'autorisation lorsque:
- a) s'agissant des pratiques visées au paragraphe 1 points a), c) et e), la pratique en question est dispensée de déclaration

ou

 s'agissant de cas comportant un risque limité d'exposition pour des êtres humaines et ne nécessitant pas un examen cas par cas, la pratique en question est réalisée selon des modalités prévues par la législation nationale.

Article 5

Autorisation et libération pour l'élimination, le recyclage ou la réutilisation

- 1. L'élimination, le recyclage ou la réutilisation de substances radioactives ou de matières contenant des substances radioactives résultant d'une pratique soumise à l'obligation de déclaration ou d'autorisation sont subordonnés à une autorisation préalable.
- 2. Toutefois, l'élimination, le recyclage ou la réutilisation de telles substances ou matières peuvent être dispensés du respect des exigences de la présente directive pour autant qu'ils respectent les seuils de libération fixés par les autorités compétentes nationales. Ces seuils respectent les critères de base utilisés à l'annexe I et tiennent compte de toute autre recommandation technique donnée par la Communauté.

TITRE IV

JUSTIFICATION, OPTIMISATION ET LIMITATION DE DOSE POUR LES PRATIQUES

CHAPITRE PREMIER

PRINCIPES GÉNÉRAUX

Article 6

- 1. Les États membres veillent à ce que toute nouvelle catégorie ou tout nouveau type de pratique entraînant une exposition à des rayonnements ionisants soient, avant leur première adoption ou leur première approbation, justifiés par leurs avantages économiques, sociaux ou autres par rapport au détriment sanitaire qu'ils sont susceptibles de provoquer.
- 2. La justification des catégories ou types de pratiques existants peut faire l'objet d'une révision chaque fois que des connaissances nouvelles et importantes concernant leur efficacité ou leurs conséquences sont acquises.
- 3. Chaque État membre veille, en outre, à ce que:

- a) dans le contexte de l'optimisation, toutes les expositions soient maintenues au niveau le plus faible raisonnablement possible, compte tenu des facteurs économiques et sociaux;
- b) sans préjudice de l'article 12, la somme des doses reçues du fait des différentes pratiques ne dépasse pas les limites de dose fixées au présent titre pour les travailleurs exposés, les apprentis, les étudiants et le public.
- 4. Le principe énoncé au paragraphe 3 point a) s'applique à toutes les expositions aux rayonnements ionisants dues aux pratiques visées à l'article 2 paragraphe 1. Le principe énoncé au paragraphe 3 point b) ne s'applique à aucune des expositions suivantes:
- a) l'exposition de personnes pour les besoins des diagnostics et traitements médicaux qu'elles subissent;
- b) l'exposition de personnes qui, en connaissance de cause et de leur plein gré, participent à titre privé au

- soutien et au réconfort de patients subissant un diagnostic ou un traitement médical;
- c) l'exposition de volontaires participant à des programmes de recherche médicale et biomédicale.
- 5. Les États membres n'autorisent ni l'addition intentionnelle de substances radioactives dans la production de denrées alimentaires, de jouets, de parures et de produits cosmétiques, ni l'importation ou l'exportation de tels produits.

Article 7

Contraintes de dose

- 1. Des contraintes de dose devraient, le cas échéant, être utilisées dans le cadre des efforts visant à assurer l'optimisation de la protection radiologique.
- 2. Les lignes directrices fixées par chaque État membre en ce qui concerne les procédures qu'il convient d'appliquer aux personnes exposées dans les conditions visées à l'article 6 paragraphe 4 points b) et c) peuvent inclure des contraintes de dose.

CHAPITRE II

LIMITATION DES DOSES

Article 8

Limite d'âge pour les travailleurs exposés

Sans préjudice de l'article 11 paragraphe 2, les personnes de moins de 18 ans ne peuvent être affectées à aucun travail qui en ferait des travailleurs exposés.

Article 9

Limites de dose pour les travailleurs exposés

- 1. La dose efficace pour les travailleurs exposés est limitée à 100 mSv sur cinq années consécutives, à condition que la dose efficace ne dépasse pas 50 mSv au cours d'une année quelconque. Les États membres peuvent fixer une dose annuelle.
- 2. Sans préjudice du paragraphe 1:
- a) la limite de dose équivalente pour le cristallin est de 150 mSv par an;
- b) la limite de dose équivalente pour la peau est de 500 mSv par an. Cette limite s'applique à la dose moyenne sur toute surface de 1 cm², quelle que soit la surface exposée;
- c) la limite de dose équivalente pour les mains, les avant-bras, les pieds et les chevilles est de 500 mSv par an.

Article 10

Protection particulière pendant la grossesse et l'allaitement

- 1. Dès qu'une femme enceinte informe de son état l'entreprise conformément à la législation et/ou aux usages nationaux, la protection de l'enfant à naître est comparable à celle offerte aux citoyens. Les conditions auxquelles est soumise la femme enceinte dans le cadre de son emploi sont donc telles que la dose équivalente reçue par l'enfant à naître soit la plus faible qu'il est raisonnablement possible d'obtenir et qu'il est peu probable que cette dose dépasse 1 mSv pendant au moins le reste de la grossesse.
- 2. Dès qu'une femme allaitante informe l'entreprise de son état, elle n'est pas affectée à des travaux comportant un risque important de contamination radioactive corporelle.

Article 11

Limites de dose pour les apprentis et les étudiants

- 1. Pour les apprentis âgés de 18 ans au moins et pour les étudiants âgés de 18 ans au moins qui, dans leurs études, sont amenés à employer des sources, les limites de dose sont égales à celles fixées à l'article 9 pour les travailleurs exposés.
- 2. Pour les apprentis âgés de 16 à 18 ans et pour les étudiants âgés de 16 à 18 ans qui, dans leurs études, sont amenés à employer des sources, la limite de dose efficace est de 6 mSv par an.

Sans préjudice de cette limite de dose:

- a) la limite de dose équivalente pour le cristallin est de 50 mSv par an;
- b) la limite de dose équivalente pour la peau est de 150 mSv par an. Cette limite s'applique à la dose moyenne sur toute surface de 1 cm², quelle que soit la surface exposée;
- la limite de dose équivalente pour les mains, les avant-bras, les pieds et les chevilles est de 150 mSv par an.
- 3. Pour les apprentis et étudiants qui ne relèvent pas des paragraphes 1 et 2, les limites de dose sont égales à celles fixées à l'article 13 pour les citoyens.

Article 12

Expositions sous autorisation spéciale

1. Dans ces circonstances exceptionnelles, exception faite des situations d'urgence radiologique, et à apprécier

cas par cas, les autorités compétentes peuvent, si des opérations déterminées l'exigent, autoriser qu'un certain nombre de travailleurs désignés nommément subissent des expositions professionnelles individuelles supérieures aux limites de dose indiquées à l'article 9, mais ne dépassant pas les plafonds qu'elles auront fixés spécialement, pour autant que ces expositions soient d'une durée limitée et ne se produisent que dans certaines zones de travail. Les conditions à respecter sont les suivantes:

- a) seuls peuvent être soumis à des expositions sous autorisation spéciale les travailleurs de la catégorie A au sens de l'article 21;
- b) les apprentis, les étudiants, les femmes enceintes et allaitantes, pour lesquelles existe un risque de contamination corporelle en sont exclus;
- c) l'entreprise donne une justification préalable rigoureuse de ces expositions et les examine de façon approfondie avec les travailleurs volontaires, leurs représentants, le médecin agréé, les services agréés de médecine du travail ou l'expert qualifié;
- d) des informations sont préalablement données aux travailleurs concernés sur les risques courus et sur les précautions à prendre pendant l'opération;
- e) toutes les doses consécutives à ces expositions sont enregistrées séparément dans le dossier médical visé à l'article 34, ainsi que dans le dossier individuel visé à l'article 28.
- 2. Le dépassement des limites de dose par suite d'une exposition sous autorisation spéciale ne constitue pas nécessairement une raison pour exclure le travailleur de

son emploi normal ou l'affecter à un autre emploi sans son consentement.

Article 13

Limites de dose pour les personnes du public

- 1. Sans préjudice de l'article 14, les limites de dose à respecter pour les personnes du public sont celles fixées aux paragraphes 2 et 3.
- 2. La limite de dose efficace est de 1 mSv par an. Toutefois, dans des circonstances particulières, une valeur supérieure peut être autorisée pendant une année quelconque et pour autant que la moyenne sur cinq années consécutives ne dépasse pas 1 mSv par an.
- 3. Sans préjudice du paragraphe 2:
- a) la limite de dose équivalente pour le cristallin est de 15 mSv par an;
- b) la limite de dose équivalente pour la peau est de 50 mSv par an en valeur moyenne pour toute surface de 1 cm² de peau, quelle que soit la surface exposée.

Article 14

Exposition de la population dans son ensemble

Chaque État membre prend des mesures suffisantes pour faire en sorte que la contribution de chaque pratique à l'exposition de la population dans son ensemble soit maintenue au niveau le plus faible qu'il est raisonnablement possible d'atteindre, compte tenu des facteurs économiques et sociaux.

Le total de toutes ces expositions est évalué périodique-

TITRE V

ESTIMATION DE LA DOSE EFFICACE

Article 15

Pour l'estimation de la dose efficace et de la dose équivalente, il est fait usage des valeurs et corrélations visées au présent titre. Les autorités compétentes peuvent autoriser le recours à des méthodes équivalentes.

Article 16

Sans préjudice de l'article 15:

- a) en cas d'irradiation externe, les valeurs et corrélations indiquées à l'annexe II sont utilisées pour estimer les doses efficaces et équivalentes correspondantes;
- en cas d'exposition interne provoquée par un radionucléide ou un mélange de radionucléides, les valeurs et corrélations indiquées aux annexes II et III peuvent être utilisées pour estimer les doses efficaces.

TITRE VI

PRINCIPES FONDAMENTAUX DE LA PROTECTION OPÉRATIONNELLE DES TRAVAILLEURS EXPOSÉS, DES APPRENTIS ET DES ÉTUDIANTS, APPLICABLES AUX PRATIQUES

Article 17

La protection opérationnelle des travailleurs exposés repose notamment sur les principes suivants:

- a) l'évaluation préalable permettant d'identifier la nature et l'ampleur du risque radiologique couru par les travailleurs exposés et la mise en œuvre de l'optimisation de la radioprotection, quelles que soient les conditions de travail;
- b) la classification des lieux de travail en différentes zones, en fonction, le cas échéant, d'une évaluation des doses annuelles prévisibles ainsi que de la probabilité et de l'ampleur des expositions potentielles;
- c) la classification des travailleurs dans différentes catégories;
- d) la mise en œuvre d'une réglementation et d'une surveillance adaptées aux différentes zones et aux différentes conditions de travail, y compris, le cas échéant, d'une surveillance individuelle;
- e) la surveillance médicale.

CHAPITRE PREMIER

MESURES DE PRÉVENTION DE L'EXPOSITION

Section 1

Classification et délimitation des zones

Article 18

Dispositions à prendre sur les lieux de travail

- 1. Aux fins de la radioprotection, des dispositions sont prises concernant tous les lieux de travail où existe une possibilité d'exposition à des rayonnements ionisants supérieure à 1 mSv par an ou à une dose équivalente d'un dixième des limites de dose fixées à l'article 9 paragraphe 2. Ces dispositions doivent être adaptées à la nature des installations et des sources ainsi qu'à l'ampleur et à la nature des risques. L'envergure des moyens de prévention et de surveillance ainsi que leur nature et leur qualité doivent être fonction des risques liés au travail entraînant l'exposition à des rayonnements ionisants.
- 2. Une distinction est faite entre les zones contrôlées et les zones surveillées.
- 3. Les autorités compétentes arrêtent des lignes directrices pour la délimination des zones contrôlées et surveil-lées adaptées à chaque situation.

4. L'entreprise exerce un contrôle strict sur les conditions de travail dans les zones contrôlées et surveillées.

Article 19

Prescriptions applicables aux zones contrôlées

- 1. Les prescriptions minimales applicables à une zone contrôlée sont les suivantes:
- a) elle doit être délimitée et n'être accessible qu'à des personnes ayant reçu des instructions appropriées, l'accès à ladite zone étant contrôlé selon une réglementation écrite établie par l'entreprise. Des dispositions spéciales sont prises chaque fois qu'il existe un risque notable de dispersion de la contamination radioactive, notamment à l'accès et à la sortie des personnes et des marchandises;
- b) en fonction de la nature et de l'ampleur des risques radiologiques régnant dans les zones contrôlées, une surveillance radiologique du milieu de travail est organisée conformément à l'article 24;
- c) des indications précisant le type de zone, la nature des sources et les risques qu'elles comportent sont affichées;
- d) des consignes de travail adaptées au risque radiologique tenant aux sources et aux opérations effectuées sont établies.
- 2. Ces tâches seront exécutées sous la responsabilité de l'entreprise à la suite de consultations avec les services agréés de médecine du travail ou les experts qualifiés.

Article 20

Prescriptions applicables aux zones surveillées

- 1. Les prescriptions applicables à une zone surveillée sont les suivantes:
- a) au minimum, en fonction de la nature et de l'ampleur des risques radiologiques régnant dans la zone surveillée, une surveillance radiologique du milieu de travail est organisée conformément aux dispositions de l'article 24;
- b) le cas échéant, des indications précisant le type de zone, la nature des sources et les risques qu'elles comportent sont affichées;
- c) le cas échéant, des consignes de travail adaptées au risque radiologique tenant aux sources et aux opérations effectuées sont établies.

2. Ces tâches seront exécutées sous la responsabilité de l'entreprise à la suite de consultations avec les experts qualifiés ou les services agréés de médecine du travail.

une formation appropriée dans le domaine de la radioprotection.

Section 2

Classification des travailleurs exposés, des apprentis et des étudiants

Article 21

Classification des travailleurs exposés

Pour les besoins de la surveillance, on distingue deux catégories de travailleurs exposés:

- a) catégorie A: les travailleurs exposés qui sont susceptibles de recevoir une dose efficace supérieure à 6 mSv par an ou une dose équivalente supérieure aux trois dixièmes des limites de dose fixées à l'article 9 paragraphe 2 pour le cristallin, la peau et les extrémités;
- b) catégorie B: les travailleurs exposés qui ne relèvent pas de la catégorie A.

Article 22

Information et formation

- 1. Les États membres imposent à l'entreprise l'obligation d'informer les travailleurs exposés, les apprentis et les étudiants qui, dans leurs études, sont amenés à utiliser des sources:
- a) des risques que leur travail comporte pour leur santé:
 - des procédures générales de radioprotection et des précautions à prendre, en particulier de celles qui ont trait aux conditions d'exploitation et de travail en ce qui concerne aussi bien la pratique en général que chaque type de poste de travail ou d'emploi auquel ils peuvent être affectés;
 - de l'importance que revêt le respect des prescriptions techniques, médicales et administratives;
- b) s'ils sont de sexe féminin, de la nécessité de présenter rapidement une déclaration de grossesse, eu égard aux risques d'exposition pour l'enfant à naître et au risque de contaminer le nourrisson allaité au sein en cas de contamination radioactive corporelle.
- 2. Les États membres imposent à l'entreprise l'obligation de prendre les dispositions nécessaires pour donner aux travailleurs exposés, aux apprentis et aux étudiants,

Section 3

Évaluation et application des dispositions relatives à la radioprotection des travailleurs exposés

Article 23

- 1. L'entreprise est responsable de l'évaluation et de l'application des dispositions visant à assurer la radioprotection des travailleurs exposés.
- 2. Les États membres imposent à l'entreprise l'obligation de consulter les experts qualifiés ou les services agréés de médecine du travail au sujet de l'examen et du contrôle des dispositifs de protection et des instruments de mesure, comprenant notamment:
- a) l'examen critique préalable, du point de vue de la radioprotection, des plans des installations;
- b) la réception, du point de vue de la radioprotection, des sources nouvelles ou modifiées;
- c) la vérification périodique de l'efficacité des dispositifs et techniques de protection;
- d) l'étalonnage périodique des instruments de mesure et la vérification périodique de leur bon fonctionnement et de leur emploi correct.

CHAPITRE II

ÉVALUATION DE L'EXPOSITION

Section 1

Surveillance du lieu de travail

Article 24

- 1. La surveillance radiologique du milieu de travail, visée à l'article 19 paragraphe 1 point b) et à l'article 20 paragraphe 1 point a), comprend, le cas échéant:
- a) la mesure des débits de dose externes avec indication de la nature et de la qualité des rayonnements en cause;
- b) la mesure de la concentration de l'activité de l'air et de la densité superficielle des substances radioactives contaminantes avec indication de leur nature et de leurs états physique et chimique.
- 2. Les résultats de ces mesures sont enregistrés et, au besoin, servent à estimer les doses individuelles de la manière prévue à l'article 25.

Section 2

Surveillance individuelle

Article 25

Surveillance — Généralités

- 1. La surveillance individuelle est systématique pour les travailleurs exposés de la catégorie A. Elle repose sur des mesures individuelles établies par un service de dosimétrie agréé. Lorsque des travailleurs de la catégorie A sont susceptibles de subir une contamination interne notable, un système adéquat de surveillance devrait être mis en place; les autorités compétentes peuvent arrêter des directives générales pour l'identification de ces travailleurs.
- 2. La surveillance des travailleurs de la catégorie B doit au moins suffire à démontrer que c'est à juste titre que ces travailleurs sont classés dans la catégorie B. Les États membres peuvent exiger que les travailleurs de la catégorie B soient soumis à une surveillance individuelle et, au besoin, à des mesures individuelles établies par un service de dosimétrie agréé.
- 3. Lorsque les mesures individuelles se révèlent impossibles ou insuffisantes, la surveillance individuelle repose sur une estimation effectuée soit à partir de mesures individuelles prises sur d'autres travailleurs exposés, soit à partir des résultats de la surveillance du lieu de travail, telle qu'elle est prévue à l'article 24.

Section 3

Surveillance dans le cas d'exposition accidentelle ou d'urgence

Article 26

En cas d'exposition accidentelle, les doses reçues et leur répartition dans l'organisme sont évaluées.

Article 27

En cas d'exposition d'urgence, la surveillance individuelle ou l'évaluation des doses individuelles sont effectuées de manière appropriée selon les circonstances.

Section 4

Relevé et notification des résultats

Article 28

1. Un relevé contenant les résultats de la surveillance individuelle est tenu pour chaque travailleur exposé de la catégorie A.

- 2. Aux fins du paragraphe 1, les documents ci-après sont conservés pendant toute la vie professionnelle comportant une exposition des travailleurs aux rayonnements ionisants puis jusqu'au moment où l'intéressé a ou aurait atteint l'âge de 75 ans, et en tout cas pendant une période d'au moins trente ans à compter de la fin de l'activité professionnelle comportant une exposition:
- a) un relevé des expositions mesurées ou estimées, selon le cas, des doses individuelles en application des articles 12, 25, 26 et 27;
- b) en cas d'exposition d'un genre visé aux articles 26 et 27, les rapports décrivant les circonstances et les actions exécutées;
- c) le cas échéant, les résultats de la surveillance du lieu du travail qui ont servi à l'évaluation des doses individuelles.
- 3. Les expositions visées aux articles 12, 26 et 27 sont enregistrées séparément dans le relevé des doses visé au paragraphe 1.

Article 29

- 1. Les résultats de la surveillance individuelle exercée en application des articles 25, 26 et 27 sont:
- a) mis à la disposition des autorités compétentes et de l'entreprise;
- b) mis à la disposition du travailleur concerné conformément à l'article 38 paragraphe 2;
- c) soumis au médecin agréé ou aux services agréés de médecine du travail pour une interprétation de leurs incidences sur la santé humaine, conformément à l'article 31.
- 2. Les États membres définissent les modalités régissant la transmission des résultats de la surveillance individuelle.
- 3. En cas d'exposition accidentelle ou d'urgence, les résultats de la surveillance individuelle sont communiqués sans tarder.

CHAPITRE III

SURVEILLANCE MÉDICALE DES TRAVAILLEURS EXPOSÉS

Article 30

La surveillance médicale des travailleurs exposés se fonde sur les principes qui régissent la médecine du travail en général.

Section 1

Surveillance médicale des travailleurs de la catégorie A

Article 31

Surveillance médicale

1. Nonobstant la responsabilité générale de l'entreprise, la surveillance médicale des travailleurs de la catégorie A incombe aux médecins agréés ou aux services agréés de la médecine du travail.

Cette surveillance médicale doit permettre de déterminer l'état de santé des travailleurs sous surveillance pour ce qui est de leur capacité à remplir les tâches qui leur sont assignées. À cette fin, le médecin agréé ou les services agréés de la médecine du travail doivent avoir accès à toute information pertinente qu'ils estiment nécessaire, y compris aux conditions ambiantes régnant sur les lieux de travail.

- 2. La surveillance médicale comprend:
- a) un examen médical préalable à l'embauche ou à la classification en tant que travailleur de la catégorie A

Cet examen approfondi a pour but de déterminer l'aptitude du travailleur à occuper un poste dans la catégorie A auquel il est destiné;

b) des examens de santé périodiques

L'état de santé de chaque travailleur de la catégorie A est vérifié au moins une fois par an pour déterminer si les travailleurs restent aptes à exercer leurs fonctions. La nature de ces examens, auxquels il peut être procédé aussi souvent que le médecin agréé l'estime nécessaire, dépend du type de travail et de l'état de santé du travailleur concerné.

3. Le médecin agréé ou les services agréés de la médecine du travail indiquent éventuellement que la surveillance médicale doit se prolonger après la cessation du travail pendant le temps qu'ils jugent nécessaire pour sauvegarder la santé de l'intéressé.

Article 32

Classification médicale

La classification suivante est adoptée en ce qui concerne l'aptitude médicale des travailleurs de la catégorie A:

- a) apte;
- b) apte, sous certaines conditions;
- c) inapte.

Article 33

Aucun travailleur n'est employé pendant une période quelconque à un poste spécifique en tant que travailleur

de la catégorie A, ni classé dans cette catégorie si les examens médicaux concluent à l'inaptitude de ce travailleur à occuper ce poste spécifique.

Article 34

Dossiers médicaux

- 1. Un dossier médical est créé pour chaque travailleur de la catégorie A et il est tenu à jour aussi longtemps que l'intéressé reste dans cette catégorie. Il est ensuite conservé jusqu'au moment où l'intéressé a ou aurait atteint l'âge de 75 ans et, en tout cas, pendant une période d'au moins trente ans à compter de la fin de l'activité professionnelle comportant une exposition aux rayonnements ionisants.
- 2. Le dossier médical contient des renseignements concernant la nature de l'activité professionnelle, les résultats des examens médicaux préalables à l'embauche ou à la classification en tant que travailleur de la catégorie A, les bilans de santé périodiques ainsi que le relevé des doses prescrit par l'article 28.

Section 2

Surveillance médicale exceptionnelle des travailleurs exposés

Article 35

- 1. Une surveillance médicale exceptionnelle est exercée chaque fois que l'une des limites de dose fixées à l'article 9 a été dépassée.
- 2. Les conditions ultérieures d'exposition sont subordonnées à l'accord du médecin agréé ou des services agréés de médecine du travail.

Article 36

La surveillance médicale prévue aux articles 30 et 31 pour les travailleurs exposés est complétée par toute mesure en rapport avec la protection sanitaire de l'individu exposé que le médecin agréé ou les services agréés de la médecine du travail estiment nécessaire, et notamment des examens complémentaires, des opérations de décontamination ou un traitement curatif d'urgence.

Section 3

Recours

Article 37

Chaque État membre arrête les modalités de recours contre les conclusions tirées et les décisions prises en application des articles 32, 33 et 35.

CHAPITRE IV

TÂCHES DES ÉTATS MEMBRES À L'ÉGARD DE LA PROTECTION DES TRAVAILLEURS EXPOSÉS

Article 38

- 1. Chaque État membre crée un ou plusieurs systèmes d'inspection pour faire respecter les dispositions adoptées en application de la présente directive et pour lancer des opérations de surveillance et des interventions chaque fois que cela est nécessaire.
- 2. Chaque État membre exige que les travailleurs aient, à leur demande, accès aux résultats relatifs à leur surveillance individuelle, y compris aux résultats de mesures qui ont pu être utilisées pour les estimations les concernant, ou aux résultats des évaluations de dose faites à partir des mesures réalisées sur le lieu de travail.
- 3. Chaque État membre prend les dispositions nécessaires pour valider la compétence:
- des médecins agréés,
- des services agréés de la médecine du travail,
- des services de dosimétrie agréés,
- des experts qualifiés.

À cet effet, il veille à la formation de ces spécialistes.

4. Chaque État membre exige que les moyens nécessaires à une radioprotection appropriée soient mis à la disposition des services responsables. Un service spécialisé de radioprotection, à distinguer des services de production et des services opérationnels s'il s'agit d'un service

interne, habilité à effectuer des tâches de radioprotection et à fournir des conseils spécifiques, est requis pour les installations pour lesquelles les autorités compétentes le jugent nécessaire. Ce service peut être commun à plusieurs installations.

5. Chaque État membre facilite l'échange entre les autorités compétentes, entre les médecins agréés, entre les services agréés de la médecine du travail, entre les experts qualifiés ou entre les services de dosimétrie agréés au sein de la Communauté européenne, de tout renseignement utile concernant les doses reçues antérieurement par un travailleur, afin d'effectuer l'examen préalable à l'embauche ou à la classification en tant que travailleur de la catégorie A, prescrit par l'article 31, et de contrôler l'exposition ultérieure des travailleurs.

CHAPITRE V

PROTECTION OPÉRATIONNELLE DES APPRENTIS ET DES ÉTUDIANTS

Article 39

- 1. Les conditions d'exposition et la protection opérationnelle des apprentis et des étudiants âgés de 18 ans ou plus visés à l'article 11 paragraphe 1 sont équivalentes à celles des travailleurs exposés de la catégorie A ou B, selon le cas.
- 2. Les conditions d'exposition et la protection opérationnelle des apprentis et des étudiants âgés de 16 à 18 ans visés à l'article 11 paragraphe 2 sont équivalentes à celles des travailleurs exposés de la catégorie B.

TITRE VII

AUGMENTATION NOTABLE DE L'EXPOSITION DUE AUX SOURCES NATURELLES DE RAYONNEMENT

Article 40

Application

- 1. Le présent titre s'applique aux activités professionnelles non couvertes par l'article 2 paragraphe 1 au cours desquelles la présence de sources naturelles de rayonnement entraîne une augmentation notable de l'exposition des travailleurs ou des personnes du public, non négligeable du point de vue de la protection contre les rayonnements.
- 2. Chaque État membre veille à ce que soient identifiées, à l'aide de relevés ou par tout autre moyen approprié, les activités professionnelles susceptibles d'être concernées. Il s'agit notamment:
- a) d'activités professionnelles pendant lesquelles les travailleurs et, le cas échéant, les personnes du public sont exposés à des produits de filiation du thoron ou

- du radon, au rayonnement gamma ou à toute autre exposition sur des lieux de travail tels que les établissements thermaux, les grottes, les mines, les lieux de travail souterrains et les lieux de travail en surface dans des zones déterminées;
- d'activités professionnelles impliquant l'emploi ou le stockage de matières, non considérées habituellement comme radioactives, mais qui contiennent naturellement des radionucléides, provoquant une augmentation notable de l'exposition des travailleurs et, le cas échéant, des personnes du public;
- c) d'activités professionnelles entraînant la production de résidus, non considérés habituellement comme radioactifs, mais qui contiennent naturellement des radionucléides provoquant une augmentation notable de l'exposition des personnes du public et, le cas échéant, des travailleurs;
- d) de l'exploitation d'avions.

3. Les articles 41 et 42 s'appliquent dans la mesure où les États membres ont déclaré que les expositions aux sources naturelles de rayonnement dues aux activités professionnelles identifiées conformément au paragraphe 2 devaient faire l'objet d'une attention particulière et devaient être soumises à contrôle.

Article 41

Protection contre l'exposition aux sources naturelles terrestres de rayonnement

Pour chaque activité professionnelle déclarée concernée par les États membres, ceux-ci exigent la mise en place de dispositifs appropriés pour la surveillance de l'exposition et, selon les besoins:

- a) la mise en œuvre d'actions correctives destinées à réduire l'exposition conformément à l'ensemble des dispositions du titre IX ou à certaines d'entre elles;
- b) l'application de mesures de protection contre les rayonnements conformément à l'ensemble des dispositions des titres III, IV, V, VI et VIII ou à certaines d'entre elles.

Article 42

Protection du personnel navigant

Chaque État membre prend les dispositions nécessaires pour que les entreprises exploitant des avions prennent en compte l'exposition au rayonnement cosmique du personnel navigant susceptible de subir une exposition supérieure à 1 mSv par an. Les entreprises prennent les mesures appropriées, afin notamment:

- d'évaluer l'exposition du personnel concerné,
- de tenir compte de l'exposition évaluée pour l'organisation des programmes de travail, en vue de réduire les doses du personnel navigant fortement exposé,
- d'informer les travailleurs concernés des risques pour la santé que leur travail comporte,
- d'appliquer l'article 10 au personnel navigant fémi-

TITRE VIII

MISE EN ŒUVRE DE LA RADIOPROTECTION POUR LA POPULATION EN SITUATION NORMALE

Article 43

Principes fondamentaux

Chaque État membre instaure les conditions nécessaires pour assurer la meilleure protection possible de la population, sur la base des principes énoncés à l'article 6, et pour appliquer les principes fondamentaux régissant la protection opérationnelle de la population.

Article 44

Conditions d'autorisation des pratiques impliquant un risque de rayonnement ionisant pour la population

On entend par protection opérationnelle de la population en situation normale au regard des pratiques soumises à autorisation préalable, l'ensemble des dispositions et contrôles qui servent à dépister et à éliminer les facteurs qui, au cours d'une opération quelconque entraînant une exposition aux rayonnements ionisants, sont susceptibles de créer pour la population un risque d'exposition non négligeable du point de vue de la protection contre les rayonnements. Cette protection comporte l'exécution des tâches suivantes:

 a) l'examen et l'approbation, du point de vue de la radioprotection, des projets d'installations comportant un risque d'exposition ainsi que des sites envisagés pour l'implantation de ces installations sur le territoire concerné;

- b) la réception des installations nouvelles de ce genre, après vérification qu'elles offrent une protection suffisante contre toute exposition ou contamination radioactive susceptible de déborder de leur périmètre, avec prise en compte, s'il y a lieu, des conditions démographiques, météorologiques, géologiques, hydrologiques et écologiques;
- c) examen et approbation des projets de rejet d'effluents radioactifs.

Ces tâches sont exécutées conformément aux règles fixées par les autorités compétentes en fonction du degré de risque d'exposition impliqué.

Article 45

Estimation des doses auxquelles la population est soumise

Les autorités compétentes:

- a) veillent à ce que les doses résultant des pratiques visées à l'article 44 soient estimées de façon aussi réaliste que possible pour l'ensemble de la population et pour les groupes de référence de celle-ci, en tous lieux où de tels groupes peuvent exister;
- b) fixent la fréquence des évaluations et prennent toutes les dispositions nécessaires pour identifier les groupes de référence de la population en tenant compte des

voies effectives de transmission des substances radioactives;

- veillent à ce que, compte tenu des risques radiologiques, les estimations des doses auxquelles la population est soumise incluent les opérations suivantes:
 - l'évaluation des doses dues à l'irradiation externe, avec indication, le cas échéant, de la qualité des rayonnements en cause,
 - l'évaluation de l'incorporation de radionucléides, avec indication de leur nature et, au besoin, de leurs états physique et chimique, et détermination de l'activité et des concentrations de ces radionucléides,
 - l'évaluation des doses que les groupes de référence de la population sont susceptibles de recevoir, avec indication des caractéristiques de ces groupes;
- d) imposent la conservation des documents relatifs aux mesures de l'exposition externe, aux estimations des incorporations de radionucléides et de la contamination radioactive ainsi qu'aux résultats de l'évaluation des doses reçues par les groupes de référence et par la population.

Article 46

Inspection

En ce qui concerne la protection sanitaire de la population, chaque État membre crée un système d'inspection afin de faire respecter les dispositions adoptées conformément à la présente directive et de lancer des opérations de surveillance dans le domaine de la radioprotection.

Article 47

Responsabilités des entreprises

- 1. Chaque État membre impose à l'entreprise responsable de pratiques visées à l'article 2 de les mettre en œuvre en respectant les principes de protection sanitaire de la population dans le domaine de la radioprotection et, en particulier, d'accomplir les tâches suivantes au sein de ses installations:
- a) atteindre et maintenir un niveau optimal de protection de l'environnement et de la population;
- b) contrôler l'efficacité des dispositifs techniques de protection de l'environnement et de la population;
- c) réceptionner, du point de vue de la surveillance de la radioprotection, le matériel et les procédures de mesure ou d'évaluation, selon le cas, de l'exposition et de la contamination radioactive de l'environnement et de la population;
- d) étalonner périodiquement les instruments de mesure et vérifier périodiquement qu'ils sont en bon état et utilisés correctement.
- 2. Des experts qualifiés ainsi que, le cas échéant, le service spécialisé de radioprotection prévu à l'article 38 paragraphe 4 sont chargés de l'exécution de ces tâches.

TITRE IX

INTERVENTIONS

Article 48

Application

- 1. Le présent titre s'applique aux interventions en cas de situation d'urgence radiologique ou en cas d'exposition durable résultant des suites d'une situation d'urgence radiologique ou de l'exercice d'une pratique ou d'une activité professionnelle passée ou ancienne.
- 2. La mise en œuvre et le périmètre de toute intervention sont considérés dans le respect des principes suivants:
- une intervention n'est entreprise que si la réduction du détriment d'origine radiologique est suffisante pour justifier les préjudices et les coûts, y compris les coûts sociaux, liés à l'intervention,
- le type, l'ampleur et la durée de l'intervention sont optimisés afin que le bénéfice correspondant à la réduction du détriment sanitaire, déduction faite du détriment lié à l'intervention, soit maximal,

— les limites de dose fixées aux articles 9 et 13 ne s'appliquent pas en cas d'intervention; toutefois, les niveaux d'intervention établis en application de l'article 50 paragraphe 2 constituent des indications sur les situations dans lesquelles une intervention est appropriée; en outre, dans les cas d'une exposition à long terme visée à l'article 53, les limites de dose fixées à l'article 9 devraient normalement être appropriées pour les travailleurs participant à des interventions.

Section 1

Intervention en cas de situation d'urgence radiologique

Article 49

Expositions potentielles

Lorsqu'il y a lieu, les États membres exigent:

 que soit envisagée l'éventualité de situations d'urgence radiologique résultant de l'exercice de pratiques sou-

- mises au régime de déclaration ou d'autorisation défini au titre III,
- que soit évaluée la répartition dans l'espace et dans le temps des substances radioactives dispersées lors d'une éventuelle situation d'urgence radiologique,
- que soient évaluées les expositions potentielles correspondantes.

Article 50

Préparation de l'intervention

- 1. Chaque État membre veille à ce qu'il soit tenu compte du fait que des situations d'urgence radiologique peuvent survenir dans le cadre de pratiques exercées à l'intérieur ou à l'extérieur de son territoire et affecter celui-ci.
- 2. Chaque État membre veille à ce que des plans appropriés d'intervention, tenant compte des principes généraux de radioprotection en cas d'intervention, visés à l'article 48 paragraphe 2, et des niveaux d'intervention appropriés fixés par les autorités compétentes, soient dressés au niveau national ou local, y compris à l'intérieur des installations, pour faire face aux différents types de situations d'urgence radiologique et que, dans une mesure appropriée, ces plans fassent l'objet d'exercices périodiques.
- 3. Chaque État membre veille à ce que des dispositions soient prises, lorsqu'il y a lieu, pour la création et la formation appropriée d'équipes spéciales d'intervention technique, médicale et sanitaire.
- 4. Chaque État membre s'efforce de collaborer avec les autres États membres ou avec les pays tiers concernant les situations d'urgence radiologique susceptibles de survenir dans des installations situées sur son territoire et de porter atteinte à d'autres États membres ou à des pays tiers afin de faciliter l'organisation de la radioprotection dans ces États et pays.

Article 51

Mise en œuvre des interventions

- 1. Chaque État membre veille à ce que toute situation d'urgence radiologique survenant sur son territoire soit notifiée immédiatement aux autorités compétentes par l'entreprise responsable des pratiques en cause et exige que toutes les mesures appropriées soient prises pour en limiter les conséquences.
- 2. Chaque État membre veille à ce que, en cas de situation d'urgence radiologique survenant sur son territoire, l'entreprise responsable des pratiques en cause procède à une première évaluation provisoire des circonstances et des conséquences de la situation et apporte son concours aux interventions.
- 3. Chaque État membre veille à ce que soient effectuées, si la situation l'exige, des interventions concernant:

- la source, afin de réduire ou d'arrêter l'émission de rayonnements et la dispersion de radionucléides,
- l'environnement, afin de réduire le transfert de substances radioactives aux individus,
- les individus, afin de réduire l'exposition et d'organiser le traitement des victimes.
- 4. En cas de situation d'urgence radiologique à l'intérieur ou à l'extérieur de son territoire, chaque État membre exige:
- a) l'organisation d'une intervention appropriée tenant compte des caractéristiques réelles de la situation;
- l'évaluation et l'enregistrement des conséquences de la situation d'urgence radiologique et de l'efficacité de l'intervention.
- 5. En cas de situation d'urgence radiologique survenant dans une installation située sur son territoire ou risquant d'avoir des conséquences radiologiques sur son territoire, chaque État membre établit des contacts afin de collaborer avec tout autre État membre ou pays tiers qui pourrait être concerné.

Article 52

Exposition professionnelle d'urgence

- 1. Chaque État membre prend des dispositions pour les situations dans lesquelles des travailleurs ou du personnel d'intervention participant à différents genres d'intervention sont susceptibles de subir des expositions d'urgence engendrant des doses supérieures aux limites fixées pour les travailleurs exposés. Il fixe à cet effet des niveaux d'exposition prenant en compte les nécessités techniques et les risques sanitaires. Ces niveaux constituent des repères pratiques. Un dépassement de ces niveaux spéciaux peut être admis exceptionnellement pour sauver des vies humaines, mais exclusivement pour des volontaires informés des risques que comporte leur intervention.
- 2. Chaque État membre impose une surveillance radiologique et médicale des équipes spéciales d'intervention en cas d'urgence.

Section 2

Intervention en cas d'exposition durable

Article 53

Lorsque les États membres ont identifié une situation conduisant à une exposition durable résultant des suites d'une situation d'urgence radiologique ou de l'exercice d'une pratique ou d'une activité professionnelle passée ou ancienne, ils veillent, au besoin, et en fonction du risque d'exposition, à:

- a) la délimitation du périmètre concerné;
- b) la mise en place d'un dispositif de surveillance des expositions;
- c) la mise en œuvre de toute intervention appropriée tenant compte des caractéristiques réelles de la situation;
- d) la réglementation de l'accès ou de l'usage des terrains et des bâtiments situés dans le périmètre délimité.

TITRE X

DISPOSITIONS FINALES

Article 54

La présente directive fixe les normes de base relatives à la protection sanitaire des travailleurs et de la population contre les dangers résultant des rayonnements ionisants en vue de leur application uniforme par les États membres. Si un État membre prévoit d'adopter des limites de dose plus strictes que celles fixées par la présente directive, il en informe la Commission et les autres États membres.

Article 55

Mise en œuvre dans la législation des États membres

1. Les États membres mettent en vigueur les dispositions législatives, réglementaires et administratives nécessaires pour se conformer à la présente directive avant le 13 mai 2000. Ils en informent immédiatement la Commission.

Lorsque les États membres adoptent ces dispositions, celles-ci contiennent une référence à la présente directive ou sont accompagnées d'une telle référence lors de leur publication officielle. Les modalités de cette référence sont arrêtées par les États membres.

2. Les États membres communiquent à la Commission le texte des dispositions essentielles de droit interne qu'ils adoptent dans le domaine régi par la présente directive.

Article 56

Abrogations

Les directives du 2 février 1959, la directive du 5 mars 1962, la directive 66/45/Euratom, la directive 76/579/Euratom, la directive 79/343/Euratom, la directive 80/836/Euratom et la directive 84/467/Euratom sont abrogées avec effet au 13 mai 2000.

Article 57

Les États membres sont destinataires de la présente directive.

Fait à Bruxelles, le 13 mai 1996.

Par le Conseil Le président S. AGNELLI

ANNEXE I

CRITÈRES À PRENDRE EN CONSIDÉRATION POUR L'APPLICATION DE L'ARTICLE 3

- 1. Une pratique peut ne pas être soumise à l'obligation de déclaration, conformément à l'article 3 paragraphe 2 point a) ou point b), respectivement, dès lors que la quantité ou la concentration d'activité des radionucléides concernés ne dépasse pas les valeurs indiquées au tableau A colonne 2 ou 3.
- 2. Les critères fondamentaux servant au calcul des valeurs figurant au tableau A pour les exemptions applicables aux pratiques sont les suivants:
 - a) les risques radiologiques, pour les individus, pouvant résulter de la pratique faisant l'objet d'une exemption sont suffisamment faibles pour ne pas entrer dans le champ de la réglementation

et

b) l'impact radiologique collectif de la pratique faisant l'objet d'une exemption est suffisamment faible pour ne pas entrer dans le champ de la réglementation dans les circonstances qui prévalent

et

- c) la pratique faisant l'objet d'une exemption est (intrinsèquement dépourvue d'importance radiologique) (¹), et la probabilité d'apparition d'une situation pouvant conduire au non-respect des critères énoncés aux points a) et b) est négligeable.
- 3. À titre exceptionnel, comme le prévoit l'article 3, un État membre peut décider qu'une pratique peut, le cas échéant, faire l'objet d'une exemption, conformément aux critères fondamentaux, même si les radionucléides concernés s'écartent des valeurs figurant au tableau A, dès lors qu'il est satisfait aux critères ci-après dans toutes les circonstances réalisables:
 - a) la dose efficace pouvant être reçue par tout citoyen en raison de la pratique faisant l'objet d'une exemption est de l'ordre de $10~\mu Sv$ par an ou moins

et

- b) soit la dose efficace collective engagée par une année d'exercice de la pratique n'est pas supérieure à environ 1 homme x Sv, soit une évaluation en vue de l'optimisation de la protection montre que l'exemption est la meilleure solution.
- 4. En ce qui concerne les radionucléides qui ne figurent pas dans le tableau A, les autorités compétentes établissent, en cas de besoin, les quantités et les concentrations d'activités par unité de masse qui sont appropriées. Les valeurs ainsi fixées complètent celles du tableau A.
- 5. Les valeurs figurant dans le tableau A s'appliquent au stock total des substances radioactives détenues à un moment quelconque par un individu ou une entreprise dans le cadre d'une pratique spécifique.
- 6. Les nucléides du tableau A suivis du signe «+» ou des lettres «sec» correspondent à des nucléides pères en équilibre avec les nucléides de filiation correspondants qui figurent dans le tableau B. Dans ce cas, les valeurs indiquées dans le tableau A correspondent aux nucléides pères exclusivement, mais prennent déjà en compte le(s) nucléide(s) de filiation présent(s).
- 7. Dans tous les autres cas de mélanges de nucléides, l'obligation de déclaration peut être levée si la somme des quotients de la division, pour chacun des nucléides, de la quantité totale présente par la valeur indiquée dans le tableau A est inférieure ou égale à 1. Cette règle d'addition s'applique également aux concentrations d'activités lorsque les différents nucléides concernés figurent dans le même tableau.

^{(1) «}Intrinsèquement dépourvue de conséquence radiologique» ou «ne porte pas à conséquence sur le plan radiologique».

TABLEAU A

Nucléide	Quantité (Bq)	Concentration (kBq/kg)	Nucléide	Quantité (Bq)	Concentration (kBq/kg)
H-3	10 ⁹	10 ⁶	Zn-69	10 ⁶	10 ⁴
Be-7	10 ⁷	10^{3}	Zn-69m	10 ⁶	10 ²
C-14	10 ⁷	104	Ga-72	10 ⁵	10
O-15	109	10 ²	Ge-71	10 ⁸	10 ⁴
F-18	10^{6}	10	As-73	10 ⁷	10^{3}
Na-22	10^{6}	10	As-74	10 ⁶	10
Na-24	10 ⁵	10	As-76	10 ⁵	10 ²
Si-31	10^{6}	10^{3}	As-77	10 ⁶	10^{3}
P-32	10^{5}	10^{3}	Se-75	10 ⁶	10 ²
P-33	108	105	Br-82	10 ⁶	10
S-35	10^{8}	105	Kr-74	109	10 ²
Cl-36	10^{6}	104	Kr-76	109	10 ²
Cl-38	105	10	Kr-77	109	10 ²
Ar-37	10^{8}	106	Kr-79	10 ⁵	10 ³
Ar-41	109	10^{2}	Kr-81	10 ⁷	104
K-40	10^{6}	10^{2}	Kr-83m	1012	105
K-42	10^{6}	10^{2}	Kr-85	10 ⁴	105
K-43	10^{6}	10	Kr-85m	10 ¹⁰	10^{3}
Ca-45	10 ⁷	104	Kr-87	109	10 ²
Ca-47	10^{6}	10	. Kr-88	109	10 ²
Sc-46	10^{6}	10	Rb-86	10 ⁵	10 ²
Sc-47	10^{6}	10^{2}	Sr-85	10 ⁶	10 ²
Sc-48	105	10	Sr-85m	10 ⁷	10 ²
V-48	105	10	Sr-87m	106	10 ²
Cr-51	107	10^{3}	Sr-89	10 ⁶	10^{3}
Mn-51	10 ⁵	10	Sr-90+	10 ⁴	10 ²
Mn-52	10 ⁵	10	Sr-91	10 ⁵	10
Mn-52m	10^{5}	10	Sr-92	10 ⁶	10
Mn-53	10 ⁹	104	Y-90	10 ⁵	10^{3}
Mn-54	10^{6}	10	.• Y-91	10 ⁶	10^{3}
Mn-56	10 ⁵	10	Y-91m	106	10 ²
Fe-52	10^{6}	10	Y-92	105	10^{2}
Fe-55	10^6	104	Y-93	10 ⁵	10 ²
1	10^{6}			10 ⁷	103
Fe-59		10	Zr-93+	i i	1
Co-55	10 ⁶	10	Zr-95	106	10
Co-56	105	10	Zr-97+	105	10
Co-57	10^{6}	10 ²	Nb-93m	107	10 ⁴
Co-58	10^{6}	10	Nb-94	10^{6}	10
Co-58m	10^{7}	104	Nb-95	10^{6}	10
Co-60	10 ⁵	10	Nb-97	10 ⁶	10
Co-60m	10^{6}	10^{3}	Nb-98	105	10
Co-61	10^{6}	102	Mo-90	10^{6}	10
Co-62m	10 ⁵	10	Mo-93	108	10 ³
	10^{8}	104		106	102
Ni-59			Mo-99		1
Ni-63	108	105	Mo-101	106	10
Ni-65	106	10	Tc-96	106	10
Cu-64	10^{6}	10 ²	Tc-96m	107	10^{3}
Zn-65	10^{6}	10	Tc-97	108	10^{3}

Nucléide Quantité (Bq)		Concentration (kBq/kg)	Nucléide	Quantité (Bq)	Concentration (kBq/kg)	
Tc-97m	10^7	103	Xe-135	1010	10^{3}	
Tc-99	10 ⁷	104	Cs-129	10 ⁵	10 ²	
Tc-99m	10^{7}	10^{2}	Cs-131	10^{6}	10^{3}	
Ru-97	10 ⁷	10 ²	Cs-132	10 ⁵	10	
Ru-103	10^{6}	10^{2}	Cs-134m	10 ⁵	10^{3}	
Ru-105	10^{6}	10	Cs-134	10 ⁴	10	
Ru-106+	105	10^{2}	Cs-135	10 ⁷	104	
Rh-103m	10^{8}	104	Cs-136	105	10	
Rh-105	10 ⁷	10 ²	Cs-137+	10 ⁴	10	
Pd-103	108	10^{3}	Cs-138	10 ⁴	10	
Pd-109	10^{6}	10^{3}	Ba-131	106	10 ²	
Ag-105	10^{6} .	10^{2}	Ba-140+	105	10	
Ag-108m+	10^{6}	10	La-140	105	10	
Ag-110m	10^{6}	10	Ce-139	10 ⁶	10 ²	
Ag-111	10^{6}	10^{3}	Ce-141	10 ⁷	10 ²	
Cd-109	10^{6}	104	Ce-143	106	10 ²	
Cd-115	106	10 ²	Ce-144+	10°	10^2	
Cd-115m	106	10 ³	Pr-142	10° 10°	10^{2}	
In-111	106	10 ²		10^{6}	10 ⁴	
In-113m	106	10 ²	Pr-143		1	
In-114m	106	10 ²	Nd-147	106	10 ²	
In-115m	106	10^{2}	Nd-149	106	10 ²	
Sn-113	107	10 ³	Pm-147	107	104	
Sn-125	10 ^s	10 ²	Pm-149	106	103	
Sb-122	104	10^{2}	Sm-151	108	104	
Sb-124	10 ⁶	10	Sm-153	106	10 ²	
Sb-125	10^{6}	10 ²	Eu-152	106	10	
Te-123m	10 ⁷	10^{2}	Eu-152m	106	10 ²	
Te-125m	10^{7}	10^{3}	Eu-154	106	10	
Te-127	10^{6}	10 ³	Eu-155	107	10 ²	
Te-127m	10 ⁷	10^{3}	Gd-153	10 ⁷	102	
Te-129	10^{6}	10 ²	Gd-159	106	10^{3}	
Te-129m	10^{6}	103	Tb-160	10^{6}	10	
Te-131	105	10 ²	Dy-165	106	10 ³	
Te-131m	10^{6}	10	Dy-166	10^{6}	10^{3}	
Te-132	10^{7}	10^{2}	Ho-166	105	103	
Te-133	10 ⁵	10	Er-169	107	104	
Te-133m	10 ⁵	10	Er-171	106	10 ²	
Te-134	10^{6}	10	Tm-170	106	103	
I-123	10 ⁷	102	Tm-171	108	104	
I-125	10 ⁶	10 ³	Yb-175	10 ⁷	10^{3}	
i	10^{6}	102	Lu-177	107	10^{3}	
I-126	10 ⁵	10^{2} 10^{2}	Hf-181	10^{6}	10	
I-129			Ta-182	10 ⁴	10	
I-130	10^6	10	W-181	10^{7}	10^{3}	
I-131	106	10 ²	W-185	10^{7}	10 ⁴	
I-132	105	10	W-187	10^{6}	10 ²	
I-133	10 ⁶	10	Re-186	10^{6}	10^{3}	
I-134	10 ⁵	10	Re-188	10^{5}	10^{2}	
I-135	10^{6}	10	Os-185	10^{6}	10	
Xe-131m	10 ⁴	10 ⁴	Os-191	10^{7}	10 ²	
Xe-133	10 ⁴	10^{3}	Os-191m	10^{7}	10^{3}	

Nucléide	Quantité Concentration (Bq) (kBq/kg)		Nucléide	Quantité (Bq)	Concentration (kBq/kg)	
Os-193	10^{6}	10 ²	U-231	10 ⁷	10 ²	
Ir-190	10^{6}	10	U-232+	10^{3}	1	
Ir-192	10 ⁴	10	U-233	10 ⁴	10	
Ir-194	105	10 ²	U-234	10 ⁴	10	
Pt-191	10^{6}	10 ²	U-235+	10 ⁴	10	
Pt-193m	10 ⁷	10 ³	U-236	104	10	
Pt-197	10^{6}	10 ³	U-237	10 ⁶	10 ²	
Pt-197m	10^{6}	10 ²	U-238+	10 ⁴	10	
Au-198	10^{6}	10^{2}	U-238sec	10^{3}	1	
Au-199	10^{6}	10^{2}	U-239	10^{6}	10^{2}	
Hg-197	10 ⁷	10 ²	U-240	. 107	103	
Hg-197m	10^{6}	10^{2}	U-240+	106	10	
Hg-203	105	10 ²	Np-237+	10^{3}	1	
Tl-200	10^{6}	10	Np-239	10^{7}	10 ²	
Tl-201	10^{6}	10 ²	Np-240	10^{6}	10	
Tl-202	10 ⁶	10 ²	Pu-234	107	10 ²	
Tl-204	10 ⁴	104	Pu-235	10 ⁷	10 ²	
Pb-203	10^6	10 ²	Pu-236	10 ⁴	10	
Pb-210+	10 ⁴	10	Pu-237	10 ⁷	10^3	
Pb-212+	10 ⁵	10	Pu-238	10 ⁴	1	
Bi-206	10 ⁵	10	Pu-239	10 ⁴	1	
Bi-207	10^{6}	10	Pu-240	10^{3}	1	
Bi-207	10^{6}	10 ³	Pu-241	10 ⁵	102	
Bi-212+	10 ⁵	10	Pu-242	10 ⁴	1	
Po-203	10 ⁶	10	Pu-243	10 ⁷	103	
	10 ⁶	10	Pu-244	10⁴ 10⁴	1	
Po-205			Am-241	10 ⁴	1	
Po-207	10 ⁶	10	Am-242	10 ⁶	103	
Po-210	10 ⁴	10	Am-242m+	10 ⁴	10	
At-211	10 ⁷	103	Am-243+	10^{3}	1	
Rn-220+	107	10⁴	Cm-242	10 ⁵	102	
Rn-222+	108	10	Cm-243	10⁴ 10⁴	1	
Ra-223+	105	10 ²	Cm-244	10 ⁴	10	
Ra-224+	105	10	Cm-245	10^{3}	1	
Ra-225	105	10 ²	Cm-246	10^{3}	1	
Ra-226+	10 ⁴	10	Cm-247	10 ⁴	1	
Ra-227	10^{6}	10 ²	Cm-248	10 ³	1	
Ra-228+	10 ⁵	10	Bk-249	10^{6}	103	
Ac-228	10^{6}	10	Cf-246	10^{6}	103	
Th-226+	10 ⁷	10 ³	Cf-248	10 ⁴	10	
Th-227	10 ⁴	10	Cf-249	10^{3}	1	
Th-228+	10 ⁴	1	Cf-250	10 ⁴	10	
Th-229+	10^{3}	1	Cf-251	10 ³	1	
Th-230	10 ⁴	1	Cf-252	10 ⁴	10	
Th-231	10 ⁷	10 ³	Cf-253	10 ⁵	10 ²	
Th-232sec	10^{3}	1	Cf-254	10^{3}	1	
Th-234+	10 ⁵	103	Es-253	10 ⁵	10 ²	
Pa-230	10 ⁶	10	Es-254	10 ⁴	10	
Pa-231	10 ³	1	Es-254m	10 ⁶	10 ²	
	10 ⁷	102	Fm-254	10 ⁷	104	
Pa-233 U-230+	10 ⁵	10	Fm-255	10^{6}	10^{3}	

TABLEAU B

Liste des nucléides en équilibre séculaire visés au point 6 de la présente annexe

Nucléide père	Nucléides descendants
Sr-80+	Rb-80
Sr-90+	Y-90
Zr-93+	Nb-93m
Zr-97+	Nb-97
Ru-106+	Rh-106
Ag-108m+	Ag-108
Cs-137+	Ba-137
Ba-140+	La-140
Ce-134+	La-134
Ce-144+	Pr-144
Pb-210+	Bi-210, Po-210
Pb-212+	Bi-212, Tl-208, Po-212
Bi-212+	Tl-208, Po-212
Rn-220+	Po-216
Rn-222+	Po-218, Pb-214, Bi-214, Po-214
Ra-223+	Rn-219, Po-215, Pb-211, Bi-211, Tl-207
Ra-224+	Rn-220, Po-216, Pb-212, Bi-212, Tl-208, Po-212
Ra-226+	Rn-222, Po-218, Pb-214, Bi-214, Pb-210, Bi-210, Po-210, Po-214
Ra-228+	Ac-228
Th-226+	Ra-222, Rn-218, Po-214
Th-228+	Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208, Po-212
Th-229+	Ra-225, Ac-225, Fr-221, At-217, Bi-213, Po-213, Pb-209
Th-232sec	Ra-228, Ac-228, Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208, Po-212
Th-234+	Pa-234m
U-230+	Th-226, Ra-222, Rn-218, Po-214
U-232+	Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208, Po-212
U-235+	Th-231
U-238+	Th-234, Pa-234m
U-238sec	Th-234, Pa-234m, U-234, Th-230, Ra-226, Rn-222, Po-218, Pb-214, Bi-214, Pb-210, Bi-210, Po-210, Po-214
U-240+	Np-240
Np-237+	Pa-233
Am-242m+	Am-242
Am-243+	Np-239

ANNEXE II

A. Définition des termes utilisés dans la présente annexe:

Équivalent de dose ambiant $H^*(d)$: équivalent de dose en un point du champ de rayonnement qui serait produit par le champ expansé et unidirectionnel correspondant, dans la sphère de la Commission internationale des unités et mesures de radiation (ICRU), à une profondeur d, sur le rayon opposé à la direction du champ unidirectionnel. L'unité d'équivalent de dose ambiant est le sievert (Sv).

Équivalent de dose directionnel $H'(d,\Omega)$: équivalent de dose en un point du champ de rayonnement qui serait produit par le champ expansé correspondant dans la sphère de l'ICRU, à une profondeur d, sur un rayon d'une direction spécifiée Ω . L'unité d'équivalent de dose directionnel est le sievert (Sv).

Champ expansé et unidirectionnel: champ de rayonnement dans lequel la fluence et ses distributions directionnelle et énergétique sont les mêmes que dans le champ expansé mais où la fluence est unidirectionnelle.

Champ expansé: champ dérivé du champ réel, où la fluence et ses distributions directionnelle et énergétique ont les mêmes valeurs dans tout le volume concerné que le champ réel au point de référence.

Fluence Φ : le quotient de dN par da, dN étant le nombre de particules entrant dans une sphère de section da:

$$\Phi = \frac{dN}{da}$$

Facteur de qualité moyen (\overline{Q}) : valeur moyenne du facteur de qualité en un point de tissu lorsque la dose absorbée est délivrée par des particules ayant différentes valeurs de L. Il est calculé au moyen de la formule suivante:

$$\overline{Q} = 1/\overline{D} \int_{\Omega}^{\infty} Q(L)D(L)dL$$

D(L)dL étant la dose absorbée à 10 mm entre le transfert linéique d'énergie L et L + dL, et Q(L) le facteur de qualité correspondant au point considéré. Les rapports Q-L sont donnés au point C.

Équivalent de dose individuel H_p (d): équivalent de dose dans les tissus mous, à une profondeur appropriée d, en un point spécifié du corps. L'unité d'équivalent de dose individuel est le sievert (Sv).

Facteur de qualité (Q): fonction du transfert linéique d'énergie (L) utilisée pour pondérer les doses absorbées en un point afin de tenir compte de la qualité d'un rayonnement.

Facteur de pondération radiologique (w_R) : facteur adimensionnel utilisé pour pondérer la dose absorbée par le tissu ou l'organe. Les valeurs appropriées de w_R sont indiquées au point D.

Dose à l'organe (D_T) : quotient de l'énergie totale transmise à un tissu ou un organe par la masse du tissu ou de l'organe.

Facteur de pondération tissulaire (w_T) : facteur adimensionnel utilisé pour pondérer la dose équivalente dans un tissu ou un organe (T). Les valeurs appropriées (w_T) sont indiquées au point D.

Transfert linéique non restreint d'énergie (L∞): quantité définie par la formule suivante:

$$L \infty = \frac{dE}{dl}$$

où dE est l'énergie moyenne perdue par une particule d'énergie E en parcourant une distance dI dans l'eau. Dans la présente directive, L∞ est noté L.

Sphère de l'ICRU: corps créé par la Commission internationale des unités et des mesures de radiation (ICRU) pour figurer l'absorption par le corps humain de l'énergie produite par les rayonnements ionisants; il s'agit d'une sphère d'équivalent-tissu de 30 cm de diamètre, ayant une densité de 1 g. cm⁻³ et une composition massique de 76,2 % d'oxygène, 11,1 % de carbone, 10,1 % d'hydrogène et 2,6 % d'azote.

B. Valeurs du facteur de pondération radiologique w_R

Les valeurs du facteur de pondération radiologique w_R dépendent du type et de la qualité du champ externe de rayonnement ou du type et de la qualité du rayonnement émis par un radionucléide incorporé.

Lorsque le champ de rayonnement se compose de types et d'énergies possédant des valeurs différentes de w_R , la dose absorbée doit être divisée en blocs affectés chacun de leur propre valeur de w_R et additionnés pour obtenir la dose équivalente totale. Elle peut aussi s'exprimer par une distribution continue en énergie où chaque élément de dose absorbée provenant de la gamme d'énergies comprise entre E et E + dE est multiplié par la valeur attribuée à w_R conformément au tableau ci-dessous.

Type et gamme d'énergie	Facteur de pondération radiologique w _R
Photons, toutes énergies	1
Électrons et muons, toutes énergies	1
Neutrons, énergie de moins de 10 keV	5
plus de 10 à 100 keV	10
plus de 100 keV à 2 MeV	20
plus de 2 MeV à 20 MeV	10
plus de 20 MeV	5
Protons, autres que les protons de recul, énergie supérieure à 2 MeV	5
Particules alpha, fragments de fission, noyaux lourds	20

Dans les calculs où interviennent des neutrons, l'application de valeurs de fonction étagée peut comporter des difficultés. Il peut alors être préférable d'utiliser la foncton continue décrite par la relation mathématique suivante:

$$W_R = 5 + 17e^{-(\ln(2E))^2/_6}$$

où E est l'énergie neutronique en MeV.

Une comparaison directe des deux approches est présentée à la figure 1.

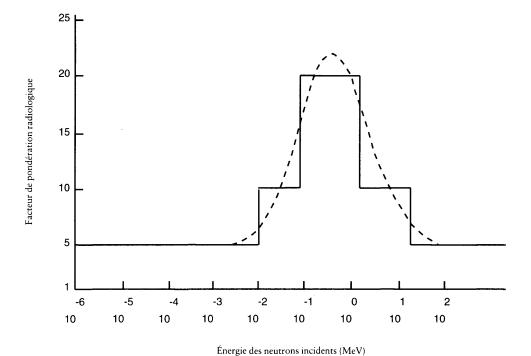


Figure 1

Facteurs de pondération radiologique pour les neutrons. La courbe lisse est à considérer comme une approximation.

Pour les types de rayonnement et les énergies qui ne figurent pas dans le tableau, on peut obtenir une approximation de w_R en calculant le facteur de qualité moyen \bar{Q} à 10 mm de profondeur dans une sphère de l'ICRU.

C. Corrélation entre le facteur de qualité Q(L) et le transfert linéique non restreint d'énergie L

Transfert linéique non restreint d'énergie L dans l'eau $({\sf keV}\ \mu{\sf m}^{-1})$	Q(L)
< 10	1
10-100	0,32L-2,2
> 100	300/√L

D. Valeurs du facteur de pondération tissulaire, $\mathbf{w}_{T}(^{1})$

Les valeurs du facteur de pondération tissulaire w_T sont les suivantes:

0,20
0,20
0,12
0,12
0,12
0,12
0,05
0,05
0,05
0,05
0,05
0,01
0,01
0,05(1)(2)

⁽¹) Pour les calculs, les tissus et organes «autres» sont les suivants: surrénales, cerveau, cæcum, intestin grêle, reins, muscles, pancréas, rate, thymus et utérus. La liste contient des organes susceptibles d'une irradiation sélective. Certains de ces organes sont connus comme sièges possibles d'une induction cancéreuse. Si dans l'avenir d'autres tissus et organes se révèlent présenter un risque notable de cancer induit, ils seront ajoutés soit dans la liste principale avec un W_T spécial soit dans la présente liste additionnelle détaillant les tissus et organes «autres». D'autres tissus ou organes irradiés sélectivement peuvent également figurer parmi ces derniers.

E. Quantités à utiliser pour le rayonnement externe

Ces quantités sont utilisées pour la surveillance individuelle à des fins de radioprotection.

1) Surveillance individuelle:

équivalent de dose individuel Hp(d),

d: profondeur en mm dans le corps.

2) Surveillance de zone:

équivalent de dose ambiant H* (d),

équivalent de dose directionnel H' (d, Ω),

d: profondeur en mm sous la surface de la sphère indiquée au point A,

 Ω : angle d'incidence.

3) Pour les rayonnements fortement pénétrants, la profondeur recommandée est de 10 mm; pour les rayonnements faiblement pénétrants, elle est de 0,07 mm pour la peau et de 3 mm pour l'œil.

⁽²⁾ Dans les cas exceptionnels où un seul des tissus ou organes «divers» reçoit une dose équivalente dépassant la dose la plus élevée d'un quelconque des douze organes auxquels un facteur de pondération est attribué, il y a lieu d'appliquer un facteur de pondération de 0,025 à ce tissu ou cet organe et un facteur de pondération de 0,025 à la dose moyenne reçue par le reste des tissus et organes «divers» tels qu'ils sont définis ci-dessus.

⁽¹) Les valeurs ont été déterminées à partir d'une population de référence comprenant un nombre égal de personnes des deux sexes et représentant un large éventail d'âges. Dans la détermination de la dose efficace, elles s'appliquent aux travailleurs et à la population dans son ensemble, indépendamment du sexe.

ANNEXE III

A. Dans l'ensemble de la directive, sauf indication contraire, les prescriptions relatives aux doses s'appliquent à la somme des doses résultant de l'irradiation externe dans une période spécifiée et des doses engagées sur cinquante ans (jusqu'à l'âge de 70 ans pour les enfants) résultant d'incorporations pendant la même période. La période spécifiée est celle indiquée aux articles 9 et 13 pour les limites de doses

En règle générale, la dose efficace E reçue par un individu du groupe d'âge (g) est déterminée par la formule suivante:

$$E = E_{externe} + \sum_{j} h(g)_{j,ing} J_{j,ing} + \sum_{j} h(g)_{j,inh} J_{j,inh}$$

où $E_{externe}$ est la dose efficace correspondante résultant de l'irradiation externe; $h(g)_{j,inh}$ sont les doses efficaces engagées par unité d'incorporation d'un radionucléide j (Sv/Bq) ingéré ou inhalé par un individu du groupe d'âge g; $J_{j,ing}$ et $J_{j,inh}$ sont respectivement l'incorporation par ingestion ou par inhalation du radionucléide j(Bq).

B. Sauf pour les descendants du radon et du thoron, les tableaux A et B de la présente annexe indiquent les valeurs de dose efficace engagée par unité d'incorporation de radionucléides ingérés ou inhalés pour les personnes du public ainsi que pour les apprentis et les étudiants dont l'âge est compris entre 16 et 18 ans.

Sauf pour les descendants du radon et du thoron, le tableau C indique les valeurs de dose efficace engagée par unité d'incorporation de radionucléides ingérés ou inhalés pour les travailleurs ainsi que pour les apprentis et les étudiants âgés de 18 ans ou plus.

En ce qui concerne l'exposition des personnes du public, le tableau A présente, pour l'ingestion, les valeurs correspondant à différents facteurs de transit intestinal f₁ pour les jeunes enfants et les personnes âgées. De même, pour l'inhalation, le tableau B présente des valeurs correspondant à différents types de rétention pulmonaire avec des valeurs appropriées de f₁ pour l'élément de l'incorporation évacué vers le tractus digestif. S'il existe des données sur ces paramètres, la valeur correspondante devra être utilisée; dans le cas contraire, la valeur la plus restrictive sera utilisée. Pour l'exposition sur les lieux de travail, le tableau C comprend des valeurs pour l'ingestion correspondant à différents facteurs de transit intestinal f₁ et des valeurs pour l'inhalation correspondant à différents types de rétention pulmonaire avec des valeurs appropriées de f₁ pour l'élément de l'incorporation évacué vers le tractus digestif.

Le tableau D présente, pour l'incorporation par ingestion, les facteurs de transit intestinal f_1 par élément et par composé pour les travailleurs et, le cas échéant, les personnes du public. Le tableau E présente, pour l'incorporation par inhalation, les types d'absorption pulmonaire et les facteurs de transit intestinal f_1 , également par élément et par composé, pour les travailleurs exposés et les apprentis et étudiants âgés de 18 ans ou plus.

Pour les personnes du public, les types d'absorption pulmonaire et les facteurs de transit intestinal f_1 doivent tenir compte de la forme chimique de l'élément sur la base des recommandations internationales disponibles. En règle générale, s'il n'existe aucune donnée sur ces paramètres, la valeur la plus restrictive devrait être utilisée.

C. Pour les descendants du radon et du thoron seront appliqués les facteurs de conversion conventionnels exprimant la dose efficace par unité d'exposition à l'énergie potentielle alpha (Sv par J.h.m⁻³).

Radon dans les habitations:

1,1,

Radon sur les lieux de travail:

1 4

Thoron sur les lieux de travail: 0,5.

Énergie potentielle alpha (des descendants du radon et du thoron): énergie alpha totale émise lors de la désintégration des descendants du radon et du thoron dans la chaîne de désintégration, jusqu'au Pb²¹⁰ non compris pour la filiation du Rn²²² et au Pb²⁰⁸ stable pour la filiation du Rn²²⁰. L'unité est le Joule (J). Pour une exposition à une concentration donnée pendant un temps donnée, l'unité est J.h.m⁻³.

D. Tableaux:

- A) Coefficients de dose incorporée par ingestion pour les personnes du public
- B) Coefficients de dose incorporée par inhalation pour les personnes du public
- C) Coefficients de dose incorporée par inhalation et ingestion pour les travailleurs
- D) Valeurs de f₁ pour le calcul des coefficients de dose incorporée par ingestion
- E) Types d'absorption pulmonaire et valeurs de f₁ pour les formes chimiques des éléments, utilisés pour le calcul des coefficients de dose incorporée par inhalation et par ingestion.

OBT: Tritium dans un composé organique.

N. 101	Période	Âge ≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	f_1 pour $g \le 1$ a $h(g)$	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Hydrogène								
Eau tritiée	12,3 a	1,000 6,4 10 ⁻¹¹	1,000	4,8 10 ⁻¹¹			1,8 10-11	1,8 10 ⁻¹¹
OBT	12,3 a	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,000	1,2 10 ⁻¹⁰	7,3 10 ⁻¹¹	5,7 10 ⁻¹¹	4,2 10 ⁻¹¹	4,2 10 ⁻¹¹
Beryllium								
Be-7	53,3 d	0,020 1,8 10 ⁻¹⁰	0,005	1,3 10 ⁻¹⁰	7,7 10 ⁻¹¹ 4,1 10 ⁻⁹	5,3 10 ⁻¹¹	3,5 10 ⁻¹¹	2,8 10 ⁻¹¹
Be-10	1,60 10 ⁶ a	0,020 1,4 10 ⁻⁸	0,005	8,0 10-9	4,1 10-9	2,4 10 ⁻⁹	1,4 10 ⁻⁹	1,1 10-9
Carbone								
C-11	0,340 h	1,000 2,6 10 ⁻¹⁰	1,000	1,5 10 ⁻¹⁰	7,3 10 ⁻¹¹	4,3 10-11	3,0 10 ⁻¹¹ 5,7 10 ⁻¹⁰	2,4 10 ⁻¹¹
C-14	$5,73 \ 10^3 \ a$	1,000 1,4 10 ⁻⁹	1,000	1,6 10-9	9,9 10 ⁻¹⁰	8,0 10 ⁻¹⁰	5,7 10 ⁻¹⁰	5,8 10 ⁻¹⁰
Fluor								
F-18	1,83 h	1,000 5,2 10 ⁻¹⁰	1,000	3,0 10 ⁻¹⁰	$ 1,5 \ 10^{-10}$	9,1 10 ⁻¹¹	6,2 10 ⁻¹¹	4,9 10-11
Sodium								
Na-22	2,60 a	1,000 2,1 10 ⁻⁸	1,000	1,5 10 ⁻⁸ 2,3 10 ⁻⁹	8,4 10 ⁻⁹	5,5 10-9	3,7 10-9	3,2 10-9
Na-24	15,0 h	1,000 3,5 10 ⁻⁹	1,000	2,3 10-9	1,2 10-9	7,7 10 ⁻¹⁰	5,2 10 ⁻¹⁰	4,3 10 ⁻¹⁰
Magnésium								
Mg-28	20,9 h	$ 1,000 1,2 10^{-8}$	0,500	1,4 10 ⁻⁸	7,4 10 ⁻⁹	4,5 10-9	2,7 10-9	2,2 10-9
Aluminium								
Al-26	7,16 10 ⁵ a	$0,020$ 3,4 10^{-8}	0,010	$ 2,1 \ 10^{-8}$	1,1 10-8	7,1 10-9	4,3 10-9	3,5 10 ⁻⁹
Silicium								
Si-31	2,62 h	0,020 1,9 10 ⁻⁹	0,010	1,0 10-9	5,1 10 ⁻¹⁰	3,0 10 ⁻¹⁰	7,0 10 ⁻¹⁰	1,6 10 ⁻¹⁰
Si-32	$4,50 \ 10^2 \ a$	0,020 7,3 10 ⁻⁹	0,010	4,1 10-9	2,0 10-9	1,2 10-9	7,0 10 ⁻¹⁰	5,6 10 ⁻¹⁰
Phosphore								
P-32	14,3 d	1,000 3,1 10 ⁻⁸	0,800	1,9 10-8	9,4 10-9	5,3 10-9	3,1 10-9	2,4 10 ⁻⁹
P-33	25,4 d	1,000 2,7 10 ⁻⁹	0,800	1,8 10-9	9,1 10 ⁻¹⁰	5,3 10 ⁻¹⁰	3,1 10 ⁻¹⁰	2,4 10 ⁻¹⁰
Soufre								
S-35 (inorganique)	87,4 d	1,000 1,3 10 ⁻⁹	1,000	8,7 10 ⁻¹⁰	4,4 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,3 10 ⁻¹⁰
S-35 (organique)	87,4 d	1,000 7,7 10 ⁻⁹	1,000	5,4 10 ⁻⁹	2,7 10-9	1,6 10-9	9,5 10 ⁻¹⁰	7,7 10 ⁻¹⁰
Chlore								
Cl-36	3,01 10 ⁵ a	1,000 9,8 10 ⁻⁹	1,000	6,3 10-9	3,2 10-9	1,9 10 ⁻⁹	1,2 10-9	9,3 10 ⁻¹⁰
Cl-38	0,620 h	1,000 1,4 10 ⁻⁹	1,000	7,7 10 ⁻¹⁰	3,8 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,2 10 ⁻¹⁰
Cl-39	0,927 h	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,000	5,5 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,1 10 ⁻¹⁰	8,5 10 ⁻¹¹

Nucléide	Période	Âge ≤ 1 a		Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucleide	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Potassium									
K-40	1,28 10 ⁹ a	1,000	6,2 10 ⁻⁸	1,000	4,2 10-8	2,1 10-8	1,3 10-8	7,6 10 ⁻⁹	6,2 10-9
K-42	12,4 h	1,000	5,1 10 ⁻⁹	1,000	3,0 10 ⁻⁹	1,5 10-9	8,6 10 ⁻¹⁰	5,4 10 ⁻¹⁰	4,3 10 ⁻¹⁰
K-43	22,6 h	1,000	2,3 10-9	1,000	1,4 10 ⁻⁹	7,6 10 ⁻¹⁰	4,7 10 ⁻¹⁰	3,0 10 ⁻¹⁰	2,5 10 ⁻¹⁰
K-44	0,369 h	1,000	1,0 10-9	1,000	5,5 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,1 10 ⁻¹⁰	8,4 10 ⁻¹¹
K-45	0,333 h	1,000	6,2 10 ⁻¹⁰	1,000	3,5 10 ⁻¹⁰	1,7 10 ⁻¹⁰	9,9 10 ⁻¹¹	6,8 10 ⁻¹¹	5,4 10 ⁻¹¹
Calcium a)									
Ca-41	1,40 10 ⁵ a	0,600	1,2 10 ⁻⁹	0,300	5,2 10 ⁻¹⁰	3,9 10 ⁻¹⁰	4,8 10 ⁻¹⁰	5,0 10 ⁻¹⁰	1,9 10-10
Ca-45	163 d	0,600	1,1 10-8	0,300	4,9 10 ⁻⁹	2,6 10-9	1,8 10-9	1,3 10-9	7,1 10-10
Ca-47	4,53 d	0,600	1,3 10 ⁻⁸	0,300	9,3 10 ⁻⁹	4,9 10-9	3,0 10 ⁻⁹	1,8 10-9	1,6 10-9
Scandium									
Sc-43	3,89 h	0,001	1,8 10 ⁻⁹	1,0 10-4	1,2 10-9	6,1 10 ⁻¹⁰	3,7 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,9 10-10
Sc-44	3,93 h	0,001	3,5 10-9	1,0 10-4	2,2 10-9	1,2 10-9	7,1 10 ⁻¹⁰	4,4 10 ⁻¹⁰	3,5 10 ⁻¹⁰
Sc-44m	2,44 d	0,001	2,4 10-8	1,0 10-4	1,6 10 ⁻⁸	8,3 10-9	5,1 10-9	3,1 10-9	2,4 10-9
Sc-46	83,8 d	0,001	1,1 10-8	1,0 10-4	7,9 10 ⁻⁹	4,4 10 ⁻⁹	2,9 10-9	1,8 10-9	1,5 10-9
Sc-47	3,35 d	0,001	6,1 10-9	1,0 10-4	3,9 10-9	2,0 10-9	1,2 10-9	6,8 10 ⁻¹⁰	5,4.10 ⁻¹⁰
Sc-48	1,82 d	0,001	1,3 10-8	1,0 10-4	9,3 10-9	5,1 10-9	3,3 10-9	2,1 10-9	1,7 10-9
Sc-49	0,956 h	0,001	1,0 10-9	1,0 10-4	5,7 10 ⁻¹⁰	2,8 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,0 10 ⁻¹⁰	8,2 10 ⁻¹¹
Titane									
Ti-44	47,3 a	0,020	5,5 10 ⁻⁸	0,010	3,1 10-8	1,7 10-8	1,1 10-8	6,9 10-9	5,8 10-9
Ti-45	3,08 h	0,020	1,6 10-9	0,010	9,8 10 ⁻¹⁰	5,0 10 ⁻¹⁰	3,1 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,5 10 ⁻¹⁰
Vanadium	-								
V-47	0,543 h	0,020	7,3 10 ⁻¹⁰	0,010	4,1 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,2 10 ⁻¹⁰	8,0 10 ⁻¹¹	6,3 10-11
V-48	16,2 d	0,020	1,5 10 ⁻⁸	0,010	1,1 10 ⁻⁸	5,9 10-9	3,9 10-9	2,5 10 ⁻⁹	2,0 10-9
V-49	330 d	. 0,020	2,2 10 ⁻¹⁰	0,010	1,4 10 ⁻¹⁰	6,9 10 ⁻¹¹	4,0 10-11	2,3 10 ⁻¹¹	1,8 10-11
Chrome									
Cr-48	23,0 h	0,200 0,020	1,4 10 ⁻⁹ 1,4 10 ⁻⁹	0,100 0,010	9,9 10 ⁻¹⁰ 9,9 10 ⁻¹⁰	5,7 10 ⁻¹⁰ 5,7 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,5 10 ⁻¹⁰ 2,5 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cr-49	0,702 h	0,200 0,020	6,8 10 ⁻¹⁰ 6,8 10 ⁻¹⁰	0,100 0,010	3,9 10 ⁻¹⁰ 3,9 10 ⁻¹⁰	2,0 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,7 10 ⁻¹¹ 7,7 10 ⁻¹¹	6,1 10 ⁻¹¹ 6,1 10 ⁻¹¹
Cr-51	27,7 d	0,200 0,020	3,5 10 ⁻¹⁰ 3,3 10 ⁻¹⁰	0,100 0,010	2,3 10 ⁻¹⁰ 2,2 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	7,8 10 ⁻¹¹ 7,5 10 ⁻¹¹	4,8 10 ⁻¹¹ 4,6 10 ⁻¹¹	3,8 10 ⁻¹¹ 3,7 10 ⁻¹¹
Manganèse		·							
Mn-51	0,770 h	0,200	1,1 10-9	0,100	6,1 10 ⁻¹⁰	3,0 10 ⁻¹⁰	1,8 10 ⁻¹⁰	1,2 10 ⁻¹⁰	9,3 10-11
Mn-52	5,59 d	0,200	$1,2 \ 10^{-8}$	0,100	8,8 10 ⁻⁹	5,1 10-9	3,4 10 ⁻⁹	2,2 10 ⁻⁹	1,8 10-9
Mn-52m	0,352 h	0,200	7,8 10 ⁻¹⁰	0,100	4,4 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,3 10 ⁻¹⁰	8,8 10 ⁻¹¹	6,9 10 ⁻¹¹
Mn-53	3,70 10 ⁶ a	0,200	4,1 10 ⁻¹⁰	0,100	2,2 10 ⁻¹⁰	1,1 10 ⁻¹⁰	6,5 10 ⁻¹¹	3,7 10 ⁻¹¹	3,0 10 ⁻¹¹
Mn-54	312 d	0,200	5,4 10 ⁻⁹	0,100	3,1 10 ⁻⁹	1,9 10-9	1,3 10-9	8,7 10 ⁻¹⁰	7,1 10 ⁻¹⁰
Mn-56	2,58 h	0,200	2,7 10 ⁻⁹	0,100	1,7 10 ⁻⁹	8,5 10 ⁻¹⁰	5,1 10 ⁻¹⁰	3,2 10 ⁻¹⁰	2,5 10-10

a) La valeur de f_1 pour les individus de 1 à 15 ans est 0,4.

		1							
Nucléide	Période	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
- Tuelelde	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Fer a)									
Fe-52	8,28 h	0,600	1,3 10-8	0,100	9,1 10-9	4,6 10-9	2,8 10-9	1,7 10-9	1,4 10-9
Fe-55	2,70 a	0,600	7,6 10 ⁻⁹	0,100	2,4 10 ⁻⁹	1,7 10-9	1,1 10-9	7,7 10-10	3,3 10 ⁻¹⁰
Fe-59	44,5 d	0,600	3,9 10-8	0,100	1,3 10 ⁻⁸	7,5 10-9	4,7 10-9	3,1 10-9	1,8 10-9
Fe-60	1,00 10 ⁵ a	0,600	7,9 10 ⁻⁷	0,100	2,7 10 ⁻⁷	2,7 10 ⁻⁷	2,5 10-7	2,3 10 ⁻⁷	1,1 10-7
Cobalt b)							,		
Co-55	17,5 h	0,600	6,0 10-9	0,100	5,5 10 ⁻⁹	2,9 10-9	1,8 10-9	1,1 10-9	1,0 10-9
Co-56	78,7 d	0,600	$2,5 \ 10^{-8}$	0,100	1,5 10 ⁻⁸	8,8 10-9	5,8 10-9	3,8 10-9	2,5 10-9
Co-57	271 d	0,600	2,9 10-9	0,100	1,6 10 ⁻⁹	8,9 10 ⁻¹⁰	5,8 10 ⁻¹⁰	3,7 10 ⁻¹⁰	2,1 10 ⁻¹⁰
Co-58	70,8 d	0,600	7,3 10 ⁻⁹	0,100	4,4 10 ⁻⁹	2,6 10-9	1,7 10-9	1,1 10-9	7,4 10 ⁻¹⁰
Co-58m	9,15 h	0,600	2,0 10 ⁻¹⁰	0,100	1,5 10 ⁻¹⁰	7,8 10 ⁻¹¹	4,7 10-11	2,8 10-11	2,4 10-11
Co-60	5,27 a	0,600	5,4 10-8	0,100	2,7 10-8	1,7 10-8	1,1 10-8	7,9 10-9	3,4 10-9
Co-60m	0,174 h	0,600	2,2 10 ⁻¹¹	0,100	1,2 10 ⁻¹¹	5,7 10 ⁻¹²	3,2 10 ⁻¹²	2,2 10 ⁻¹²	1,7 10-12
Co-61	1,65 h	0,600	8,2 10 ⁻¹⁰	0,100	$5,1 \ 10^{-10}$	2,5 10 ⁻¹⁰	1,4 10 ⁻¹⁰	9,2 10 ⁻¹¹	7,4 10 ⁻¹¹
Co-62m	0,232 h	0,600	$5,3 \ 10^{-10}$	0,100	3,0 10 ⁻¹⁰	1,5 10 ⁻¹⁰	8,7 10-11	6,0 10-11	4,7 10-11
Nickel									
Ni-56	6,10 d	0,100	5,3 10 ⁻⁹	0,050	4, 0 10 ⁻⁹	2,3 10-9	1,6 10-9	1,1 10-9	8,6 10 ⁻¹⁰
Ni-57	1,50 d	0,100	6,8 10-9	0,050	4,9 10 ⁻⁹	2,7 10-9	1,7 10-9	1,1 10 ⁻⁹	8,7 10 ⁻¹⁰
Ni-59	7,50 10 ⁴ a	0,100	6,4 10 ⁻¹⁰	0,050	3,4 10 ⁻¹⁰	1,9 10-10	1,1 10 ⁻¹⁰	7,3 10 ⁻¹¹	6,3 10 ⁻¹¹
Ni-63	96,0 a	0,100	1,6 10-9	0,050	8,4 10 ⁻¹⁰	4, 6 10 ⁻¹⁰	2,8 10 ⁻¹⁰	1,8 10-10	1,5 10 ⁻¹⁰
Ni-65	2,52 h	0,100	2,1 10-9	0,050	1,3 10-9	6,3 10 ⁻¹⁰	3,8 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,8 10 ⁻¹⁰
Ni-66	2,27 d	0,100	3,3 10-8	0,050	2,2 10-8	1,1 10-8	6,6 10 ⁻⁹	3,7 10-9	3,0 10-9
Cuivre									
Cu-60	0,387 h	1,000	7,0 10 ⁻¹⁰	0,500	4,2 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,3 10 ⁻¹⁰	8,9 10-11	7,0 10-11
Cu-61	3,41 h	1,000	7,1 10 ⁻¹⁰	0,500	7,5 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,5 10-10	1,2 10 ⁻¹⁰
Cu-64	12,7 h	1,000	5,2 10 ⁻¹⁰	0,500	8,3 10 ⁻¹⁰	4,2 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,5 10-10	1,2 10 ⁻¹⁰
Cu-67	2,58 d	1,000	2,1 10-9	0,500	2,4 10 ⁻⁹	1,2 10-9	7,2 10 ⁻¹⁰	4,2 10 ⁻¹⁰	3,4 10 ⁻¹⁰
Zinc									
Zn-62	9,26 h	1,000	4,2 10-9	0,500	6,5 10 ⁻⁹	3,3 10-9	2,0 10-9	1,2 10-9	9,4 10 ⁻¹⁰
Zn-63	0,635 h	1,000	8,7 10 ⁻¹⁰	0,500	5,2 10 ⁻¹⁰	2,6 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,0 10 ⁻¹⁰	7,9 10-11
Zn-65	244 d	1,000	3,6 10-8	0,500	1,6 10 ⁻⁸	9,7 10-9	6,4 10 ⁻⁹	4,5 10-9	3,9 10 ⁻⁹
Zn-69	0,950 h	1,000	3,5 10 ⁻¹⁰	0,500	2,2 10 ⁻¹⁰	1,1 10 ⁻¹⁰	6,0 10 ⁻¹¹	3,9 10 ⁻¹¹	3,1 10 ⁻¹¹
Zn-69m	13,8 h	1,000	1,3 10-9	0,500	2,3 10-9	1,2 10-9	7,0 10 ⁻¹⁰	4,1 10 ⁻¹⁰	3,3 10 ⁻¹⁰
Zn-71m	3,92 h	1,000	1,4 10 ⁻⁹	0,500	1,5 10 ⁻⁹	7,8 10 ⁻¹⁰	4,8 10 ⁻¹⁰	3,0 10 ⁻¹⁰	2,4 10 ⁻¹⁰
Zn-72	1,94 d	1,000	8,7 10 ⁻⁹	0,500	8,6 10 ⁻⁹	4,5 10-9	2,8 10-9	1,7 10-9	1,4 10 ⁻⁹
Gallium	1 /	, ,	,	1 / 1	,	,	,	,	,
Ga-65	0,253 h	0,010	4,3 10-10	0,001	2,4 10 ⁻¹⁰	1,2 10-10	6,9 10-11	4,7 10-11	3,7 10 ⁻¹¹
Ga-66	9,40 h	0,010	1,2 10 ⁻⁸	0,001	7,9 10 ⁻⁹	4,0 10 ⁻⁹	2,5 10 ⁻⁹	1,5 10 ⁻⁹	1,2 10 ⁻⁹
Ga-67	3,26 d	0,010	1,8 10 ⁻⁹	0,001	1,2 10 ⁻⁹	6,4 10 ⁻¹⁰	4,0 10 ⁻¹⁰	2,4 10 ⁻¹⁰	1,2 10 1,9 10 ⁻¹⁰
Ga-68	1,13 h	0,010	1,3 10 1,2 10 ⁻⁹	0,001	6,7 10 ⁻¹⁰	3,4 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,3 10 ⁻¹⁰	1,0 10 ⁻¹⁰
Ga-68 Ga-70			3,9 10 ⁻¹⁰	0,001	2,2 10 ⁻¹⁰	1,0 10 ⁻¹⁰	5,9 10 ⁻¹¹	4,0 10 ⁻¹¹	3,1 10 ⁻¹¹
	0,353 h	0,010	1,0 10 ⁻⁸		6,8 10 ⁻⁹	3,6 10 ⁻⁹	2,2 10 ⁻⁹	1,4 10 ⁻⁹	1,1 10 ⁻⁹
Ga-72	14,1 h	1		0,001					
Ga-73	4,91 h	0,010	3,0 10-9	0,001	1,9 10 ⁻⁹	9,3 10 ⁻¹⁰	5,5 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,6 10 ⁻¹⁰

<sup>a) La valeur de f₁ pour les individus de 1 à 15 ans est 0,2.
b) La valeur de f₁ pour les individus de 1 à 15 ans est 0,3.</sup>

N7 14:1	Période	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Germanium									
Ge-66	2,27 h	1,000	8,3 10 ⁻¹⁰	1,000	5,3 10 ⁻¹⁰	2,9 10 ⁻¹⁰	1,9 10-10	1,3 10-10	1,0 10-10
Ge-67	0,312 h	1,000	7,7 10 ⁻¹⁰	1,000	4,2 10 ⁻¹⁰	2,1 10-10	1,2 10 ⁻¹⁰	8,2 10-11	6,5 10 ⁻¹¹
Ge-68	288 d	1,000	1,2 10-8	1,100	8,0 10-9	4,2 10-9	2,6 10-9	1,6 10-9	1,3 10-9
Ge-69	1,63 d	1,000	2,0 10-9	1,000	1,3 10 ⁻⁹	7,1 10 ⁻¹⁰	4,6 10 ⁻¹⁰	3,0 10 ⁻¹⁰	2,4 10 ⁻¹⁰
Ge-71	11,8 d	1,000	1,2 10 ⁻¹⁰	1,000	7,8 10 ⁻¹¹	4,0 10-11	2,4 10 ⁻¹¹	1,5 10-11	1,2 10-11
Ge-75	1,38 h	1,000	5,5 10 ⁻¹⁰	1,000	3,1 10 ⁻¹⁰	1,5 10-10	8,7 10-11	5,9 10 ⁻¹¹	4,6 10 ⁻¹¹
Ge-77	11,3 h	1,000	3,0 10-9	1,000	1,8 10 ⁻⁹	9,9 10 ⁻¹⁰	6,2 10 ⁻¹⁰	4,1 10 ⁻¹⁰	3,3 10 ⁻¹⁰
Ge-78	1,45 h	1,000	1,2 10-9	1,000	7,0 10 ⁻¹⁰	3,6 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,2 10 ⁻¹⁰
Arsenic									
As-69	0,253 h	1,000	6,6 10 ⁻¹⁰	0,500	$3,7 \ 10^{-10}$	1,8 10 ⁻¹⁰	1,1 10 ⁻¹⁰	7,2 10 ⁻¹¹	5,7 10-11
As-70	0,876 h	1,000	1,2 10-9	0,500	7,8 10 ⁻¹⁰	4,1 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,3 10 ⁻¹⁰
As-71	2,70 d	1,000	$2,8 \ 10^{-9}$	0,500	2,8 10 ⁻⁹	1,5 10 ⁻⁹	9,3 10 ⁻¹⁰	5,7 10 ⁻¹⁰	4,6 10 ⁻¹⁰
As-72	1,08 d	1,000	$1,1 \ 10^{-8}$	0,500	$1,2\ 10^{-8}$	6,3 10-9	3,8 10-9	2,3 10-9	1,8 10-9
As-73	80,3 d	1,000	2,6 10 ⁻⁹	0,500	1,9 10 ⁻⁹	9,3 10 ⁻¹⁰	5,6 10 ⁻¹⁰	3,2 10 ⁻¹⁰	2,6 10 ⁻¹⁰
As-74	17,8 d	1,000	$1,0\ 10^{-8}$	0,500	8,2 10-9	4,3 10-9	2,6 10-9	1,6 10-9	1,3 10-9
As-76	1,10 d	1,000	$1,0\ 10^{-8}$	0,500	$1,1 \ 10^{-8}$	5,8 10 ⁻⁹	3,4 10 ⁻⁹	2,0 10-9	1,6 10-9
As-77	1,62 d	1,000	2,7 10 ⁻⁹	0,500	2,9 10 ⁻⁹	1,5 10 ⁻⁹	8,7 10 ⁻¹⁰	5,0 10 ⁻¹⁰	4,0 10 ⁻¹⁰
As-78	1,51 h	1,000	$2,0\ 10^{-9}$	0,500	1,4 10 ⁻⁹	7,0 10 ⁻¹⁰	4,1 10 ⁻¹⁰	2,7 10 ⁻¹⁰	2,1 10 ⁻¹⁰
Sélénium									
Se-70	0,683 h	1,000	$1,0\ 10^{-9}$	0,800	$7,1 \ 10^{-10}$	3,6 10 ⁻¹⁰	$2,2 \ 10^{-10}$	1,5 10 ⁻¹⁰	1,2 10 ⁻¹⁰
Se-73	7,15 h	1,000	1,6 10 ⁻⁹	0,800	1,4 10 ⁻⁹	7,4 10 ⁻¹⁰	4,8 10 ⁻¹⁰	2,5 10 ⁻¹⁰	2,1 10 ⁻¹⁰
Se-73m	0,650 h	1,000	2,6 10 ⁻¹⁰	0,800	$1,8 \ 10^{-10}$	9,5 10 ⁻¹¹	5,9 10 ⁻¹¹	3,5 10 ⁻¹¹	2,8 10 ⁻¹¹
Se-75	120 d	1,000	$2,0\ 10^{-8}$	0,800	$1,3 \ 10^{-8}$	8,3 10 ⁻⁹	6,0 10-9	3,1 10 ⁻⁹	2,6 10-9
Se-79	6,50 10 ⁴ a	1,000	$4,1 \ 10^{-8}$	0,800	2,8 10 ⁻⁸	1,9 10-8	1,4 10 ⁻⁸	4,1 10 ⁻⁹	2,9 10-9
Se-81	0,308 h	1,000	3,4 10 ⁻¹⁰	0,800	1,9 10-10	9,0 10 ⁻¹¹	5,1 10 ⁻¹¹	3,4 10 ⁻¹¹	2,7 10-11
Se-81m	0,954 h	1,000	6,0 10 ⁻¹⁰	0,800	3,7 10 ⁻¹⁰	1,8 10 ⁻¹⁰	1,1 10 ⁻¹⁰	6,7 10 ⁻¹¹	5,3 10-11
Se-83	0,375 h	1,000	4, 6 10 ⁻¹⁰	0,800	2,9 10 ⁻¹⁰	1,5 10 ⁻¹⁰	8,7 10-11	5,9 10-11	4,7 10-11
Brome 4									
Br-74	0,422 h	1,000	9,0 10 ⁻¹⁰	1,000	$5,2\ 10^{-10}$	2,6 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,1 10 ⁻¹⁰	8,4 10-11
Br-74m	0,691 h	1,000	1,5 10 ⁻⁹	1,000	8,5 10 ⁻¹⁰	4, 3 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,4 10 ⁻¹⁰
Br-75	1,63 h	1,000	8,5 10 ⁻¹⁰	1,000	4,9 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,5 10 ⁻¹⁰	9,9 10-11	7,9 10-11
Br-76	16,2 h	1,000	4,2 10 ⁻⁹	1,000	2,7 10-9	1,4 10 ⁻⁹	8,7 10-10	5,6 10 ⁻¹⁰	4,6 10 ⁻¹⁰
Br-77	2,33 d	1,000	6,3 10 ⁻¹⁰	1,000	4,4 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,1 10 ⁻¹⁰	9,6 10-11
Br-80	0,290 h	1,000	3,9 10 ⁻¹⁰	1,000	2,1 10 ⁻¹⁰	1,0 10 ⁻¹⁰	5,8 10-11	3,9 10-11	3,1 10 ⁻¹¹
Br-80m	4,42 h	1,000	1,4 10 ⁻⁹	1,000	8,0 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,1 10 ⁻¹⁰
Br-82	1,47 d	1,000	3,7 10-9	1,000	2,6 10 ⁻⁹	1,5 10 ⁻⁹	9,5 10 ⁻¹⁰	6,4 10 ⁻¹⁰	5,4 10 ⁻¹⁰
Br-83	2,39 h	1,000	5,3 10 ⁻¹⁰	1,000	3,0 10 ⁻¹⁰	1,4 10 ⁻¹⁰	8,3 10 ⁻¹¹	5,5 10 ⁻¹¹	4,3 10 ⁻¹¹
Br-84	0,530 h	1,000	1,0 10 ⁻⁹	1,000	5,8 10 ⁻¹⁰	2,8 10 ⁻¹⁰	1,6 10 ⁻¹⁰	$1,1 \ 10^{-10}$	8,8 10 ⁻¹¹
Rubidium									
Rb-79	0,382 h	1,000	5,7 10-10	1,000	3,2 10 ⁻¹⁰	1,6 10 ⁻¹⁰	9,2 10-11	6,3 10 ⁻¹¹	5,0 10-11
Rb-81	4,58 h	1,000	5,4 10 ⁻¹⁰	1,000	3,2 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,0 10-10	6,7 10 ⁻¹¹	5,4 10 ⁻¹¹
Rb-81m	0,533 h	1,000	1,1 10 ⁻¹⁰	1,000	6,2 10 ⁻¹¹	3,1 10 ⁻¹¹	1,8 10 ⁻¹¹	1,2 10 ⁻¹¹	9,7 10 ⁻¹²
			8,7 10 ⁻¹⁰	1,000	5,9 10 ⁻¹⁰	3,4 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,3 10 ⁻¹⁰
Rb-82m	6,20 h	1,000							1
Rb-83	86,2 d	1,000	$1,1 \ 10^{-8}$	1,000	8,4 10 ⁻⁹	4,9 10 ⁻⁹	3,2 10-9	2,2 10 ⁻⁹	1,9 10-9

Nucléide	Période physique	Âge ≤ 1 a		Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
		f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Rb-84	32,8 d	1,000	2,0 10-8	1,000	1,4 10-8	7,9 10-9	5,0 10-9	3,3 10 ⁻⁹	2,8 10-
Rb-86	18,7 d	1,000	$3,1 \ 10^{-8}$	1,000	2,0 10-8	9,9 10-9	5,9 10-9	3,5 10-9	2,8 10
Rb-87	4,70 10 ¹⁰ a	1,000	1,5 10-8	1,000	1,0 10-8	5,2 10-9	3,1 10-9	1,8 10-9	1,5 10-
Rb-88	0,297 h	1,000	1,1 10-9	1,000	6,2 10 ⁻¹⁰	3,0 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,2 10 ⁻¹⁰	9,0 10
Rb-89	0,253 h	1,000	5,4 10 ⁻¹⁰	1,000	3,0 10 ⁻¹⁰	1,5 10 ⁻¹⁰	8,6 10 ⁻¹¹	5,9 10-11	4,7 10
Strontium a)									
Sr-80	1,67 h	0,600	3,7 10 ⁻⁹	0,300	$2,3 \ 10^{-9}$	1,1 10-9	6,5 10-10	4,2 10 ⁻¹⁰	3,4 10
Sr-81	0,425 h	0,600	$8,4 \ 10^{-10}$	0,300	4,9 10 ⁻¹⁰	2,4 10 ⁻¹⁰	1,4 10 ⁻¹⁰	9,6 10-11	7,7 10
Sr-82	25,0 d	0,600	$7,2 \ 10^{-8}$	0,300	$4,1 \ 10^{-8}$	2,1 10-8	1,3 10-8	8,7 10-9	6,1 10
Sr-83	1,35 d	0,600	3,4 10-9	0,300	2,7 10-9	1,4 10 ⁻⁹	9,1 10 ⁻¹⁰	5,7 10 ⁻¹⁰	4,9 10
5r-85	64,8 d	0,600	7,7 10 ⁻⁹	0,300	3,1 10-9	1,7 10-9	1,5 10-9	1,3 10-9	5,6 10 ⁻
r-85m	1,16 h	0,600	4,5 10 ⁻¹¹	0,300	3,0 10-11	1,7 10 ⁻¹¹	1,1 10-11	7,8 10 ⁻¹²	6,1 10 ⁻
Sr-87m	2,80 h	0,600	2,4 10 ⁻¹⁰	0,300	1,7 10 ⁻¹⁰	9,0 10-11	5,6 10-11	3,6 10 ⁻¹¹	3,0 10
5r-89	50,5 d	0,600	3,6 10 ⁻⁸	0,300	1,8 10 ⁻⁸	8,9 10 ⁻⁹	5,8 10-9	4,0 10-9	2,6 10
5r-90	29,1 a	0,600	2,3 10 ⁻⁷	0,300	7,3 10 ⁻⁸	4,7 10 ⁻⁸	6,0 10 ⁻⁸	8,0 10 ⁻⁸	2,8 10
5r-91	9,50 h	0,600	5,2 10 ⁻⁹	0,300	4,0 10-9	2,1 10 ⁻⁹	1,2 10-9	7,4 10 ⁻¹⁰	6,5 10
Sr-92	2,71 h	0,600	3,4 10 ⁻⁹	0,300	2,7 10 ⁻⁹	1,4 10 ⁻⁹	8,2 10 ⁻¹⁰	4,8 10 ⁻¹⁰	4,3 10
(ttrium	1 -,-	1	,	1 / 1	, .	,	,	, , , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7-86	14,7 h	0,001	7,6 10 ⁻⁹	1,0 10 ⁻⁴	5,2 10 ⁻⁹	2,9 10-9	1,9 10-9	1,2 10-9	9,6 10
r-86m	0,800 h	0,001	4,5 10 ⁻¹⁰	1,0 10-4	3,1 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,1 10 ⁻¹⁰	7,1 10-11	5,6 10
Y-87	3,35 d	0,001	4,6 10 ⁻⁹	1,0 10-4	3,2 10 ⁻⁹	1,8 10 ⁻⁹	1,1 10-9	7,0 10 ⁻¹⁰	5,5 10
Y-88	107 d	0,001	8,1 10-9	1,0 10-4	6,0 10 ⁻⁹	3,5 10 ⁻⁹	2,4 10 ⁻⁹	1,6 10-9	1,3 10
Y-90	2,67 d	0,001	$3,1 \ 10^{-8}$	1,0 10-4	2,0 10-8	1,0 10 ⁻⁸	5,9 10-9	3,3 10 ⁻⁹	2,7 10
Y-90m	3,19 h	0,001	$1.8 \ 10^{-9}$	1,0 10	1,2 10 ⁻⁹	6,1 10 ⁻¹⁰	3,7 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,7 10
Y-91	58,5 d	0,001	2,8 10 ⁻⁸	1,0 10-4	1,8 10-8	8,8 10-9	5,2 10-9	2,9 10-9	2,4 10
Y-91m	0,828 h	0,001	9,2 10-11	1,0 10-4	6,0 10-11	3,3 10-11	2,1 10-11	1,4 10-11	1,1 10
Y-92	3,54 h	0,001	5,9 10 ⁻⁹	1,0 10-4	3,6 10-9	1,8 10-9	1,0 10-9	6,2 10 ⁻¹⁰	4,9 10 ⁻
Y-93	10,1 h	0,001	$1,4 \ 10^{-8}$	1,0 10-4	$8,5 \ 10^{-9}$	4,3 10-9	$2,5 \ 10^{-9}$	1,4 10-9	1,2 10
Y-94	0,318 h	0,001	$9,9\ 10^{-10}$	1,0 10-4	$5,5 \ 10^{-10}$	2,7 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,0 10-10	8,1 10
Y-95	0,178 h	0,001	$5,7 \ 10^{-10}$	1,0 10-4	$3,1 \ 10^{-10}$	1,5 10 ⁻¹⁰	8,7 10-11	5,9 10 ⁻¹¹	4,6 10 ⁻
Zirconium									
Zr-86	16,5 h	0,020	6,9 10 ⁻⁹	0,010	$4.8 \ 10^{-9}$	2,7 10-9	1,7 10-9	1,1 10-9	8,6 10
Zr-88	83,4 d	0,020	$2,8 \ 10^{-9}$	0,010	2,0 10 ⁻⁹	1,2 10 ⁻⁹	8,0 10 ⁻¹⁰	5,4 10 ⁻¹⁰	4,5 10°
Zr-89	3,27 d	0,020	6,5 10-9	0,010	4,5 10 ⁻⁹	2,5 10 ⁻⁹	1,6 10-9	9,9 10 ⁻¹⁰	7,9 10 ⁻
Zr-93	1,53 10 ⁶ a	0,020	1,2 10-9	0,010	7,6 10 ⁻¹⁰	5,1 10 ⁻¹⁰	5,8 10 ⁻¹⁰	8,6 10 ⁻¹⁰	1,1 10
Zr-95	64,0 d	0,020	8,5 10-9	0,010	5,6 10 ⁻⁹	3,0 10-9	1,9 10-9	1,2 10 ⁻⁹	9,5 10
Zr-97	16,9 h	0,020	2,2 10 ⁻⁸	0,010	1,4 10 ⁻⁸	7,3 10 ⁻⁹	4,4 10-9	2,6 10 ⁻⁹	2,1 10
Niobium			c = 10		2 2 4 2 10	10	10	. = 0 . 0 11	
Nb-88	0,238 h	0,020	6,7 10 ⁻¹⁰	0,010	3,8 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,1 10 ⁻¹⁰	7,9 10-11	6,3 10
Nb-89	2,03 h	0,020	3,0 10-9	0,010	2,0 10 ⁻⁹	1,0 10-9	6,0 10 ⁻¹⁰	3,4 10 ⁻¹⁰	2,7 10
Nb-89	1,10 h	0,020	1,5 10 ⁻⁹	0,010	8,7 10 ⁻¹⁰	4,4 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,8 10 ⁻¹⁰	1,4 10
Nb-90	14,6 h	0,020	1,1 10 ⁻⁸	0,010	7,2 10 ⁻⁹	3,9 10 ⁻⁹	2,5 10 ⁻⁹	1,6 10 ⁻⁹	1,2 10
Nb-93m	13,6 a	0,020	1,5 10 ⁻⁹	0,010	9,1 10 ⁻¹⁰	4,6 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,2 10
Nb-94	2,03 10 ⁴ a	0,020	$1,5 \ 10^{-8}$	0,010	9,7 10 ⁻⁹	5,3 10-9	3,4 10 ⁻⁹	2,1 10 ⁻⁹	1,7 10
Nb-95	35,1 d	0,020	4,6 10 ⁻⁹	0,010	3,2 10 ⁻⁹	1,8 10-9	1,1 10-9	7,4 10 ⁻¹⁰	5,8 10
Nb-95m	3,61 d	0,020	6,4 10 ⁻⁹	0,010	4,1 10 ⁻⁹	2,1 10 ⁻⁹	1,2 10-9	7,1 10 ⁻¹⁰	5,6 10
Nb-96	23,3 h	0,020	9,2 10 ⁻⁹	0,010	$6,3 \ 10^{-9}$	3,4 10 ⁻⁹	2,2 10 ⁻⁹	1,4 10 ⁻⁹	1,1 10
Nb-97	1,20 h	0,020	7,7 10 ⁻¹⁰	0,010	$4,5 \ 10^{-10}$	$2,3 10^{-10}$	1,3 10 ⁻¹⁰	8,7 10 ⁻¹¹	6,8 10
Nb-98	0,858 h	0,020	1,2 10-9	0,010	7,1 10 ⁻¹⁰	$3,6\ 10^{-10}$	2,2 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,1 10

Nucléide	Période physique	Âge ≤ 1 a		Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
		f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Molybdène									
Mo-90	5,67 h	1,000	1,7 10 ⁻⁹	1,000	1,2 10-9	6,3 10 ⁻¹⁰	4,0 10 ⁻¹⁰	2,7 10 ⁻¹⁰	2,2 10 ⁻¹⁰
Mo-93	$3,50 \ 10^3 \ a$	1,000	7,9 10 ⁻⁹	1,000	6,9 10 ⁻⁹	5,0 10 ⁻⁹	4,0 10 ⁻⁹	3,4 10 ⁻⁹	3,1 10 ⁻⁹
Mo-93m	6,85 h	1,000	8,0 10 ⁻¹⁰	1,000	5,4 10 ⁻¹⁰	3,1 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,1 10 ⁻¹⁰
Mo-99	2,75 d	1,000	5,5 10 ⁻⁹	1,000	3,5 10 ⁻⁹	1,8 10 ⁻⁹	1,1 10 ⁻⁹	7,6 10 ⁻¹⁰	6,0 10 ⁻¹⁰
Mo-101	0,244 h	1,000	4,8 10 ⁻¹⁰	1,000	$2,7 \ 10^{-10}$	1,3 10 ⁻¹⁰	7,6 10 ⁻¹¹	5,2 10 ⁻¹¹	4,1 10 ⁻¹¹
Technétium									
Tc-93	2,75 h	1,000	2,7 10 ⁻¹⁰	0,500	2,5 10 ⁻¹⁰	1,5 10 ⁻¹⁰	9,8 10-11	6,8 10 ⁻¹¹	5,5 10 ⁻¹¹
Tc-93m	0,725 h	1,000	2,0 10 ⁻¹⁰	0,500	1,3 10 ⁻¹⁰	7,3 10 ⁻¹¹	4,6 10 ⁻¹¹	3,2 10 ⁻¹¹	2,5 10 ⁻¹¹
Tc-94	4,88 h	1,000	1,2 10-9	0,500	1,0 10 ⁻⁹	5,8 10 ⁻¹⁰	3,7 10 ⁻¹⁰	2,5 10 ⁻¹⁰	2,0 10 ⁻¹⁰
Tc-94m	0,867 h	1,000	1,3 10 ⁻⁹	0,500	6,5 10 ⁻¹⁰	3,3 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,3 10 ⁻¹⁰	1,0 10 ⁻¹⁰
Tc-95	20,0 h	1,000	9,9 10 ⁻¹⁰	0,500	8,7 10 ⁻¹⁰	5,0 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,8 10 ⁻¹⁰
Tc-95m	61,0 d	1,000	4,7 10 ⁻⁹	0,500	2,8 10 ⁻⁹	1,6 10-9	1,0 10 ⁻⁹	7,0 10 ⁻¹⁰	5,6 10 ⁻¹⁰
Tc-96	4,28 d	1,000	6,7 10 ⁻⁹	0,500	5,1 10 ⁻⁹	3,0 10-9	2,0 10-9	1,4 10-9	1,1 10 ⁻⁹
Tc-96m	0,858 h	1,000	1,0 10 ⁻¹⁰	0,500	6,5 10 ⁻¹¹	3,6 10 ⁻¹¹	2,3 10 ⁻¹¹	1,6 10 ⁻¹¹	1,2 10 ⁻¹¹
Tc-97	$2,60 \ 10^6 \ a$	1,000	9,9 10 ⁻¹⁰	0,500	4,9 10 ⁻¹⁰	2,4 10 ⁻¹⁰	1,4 10 ⁻¹⁰	8,8 10 ⁻¹¹	6,8 10 ⁻¹¹
Tc-97m	87,0 d	1,000	8,7 10 ⁻⁹	0,500	4,1 10-9	2,0 10-9	1,1 10 ⁻⁹	7,0 10 ⁻¹⁰	5,5 10 ⁻¹⁰
Tc-98	4,20 10 ⁶ a	1,000	2,3 10 ⁻⁸	0,500	1,2 10 ⁻⁸	6,1 10-9	3,7 10 ⁻⁹	2,5 10-9	2,0 10-9
Tc-99	$2,13 \ 10^5 \ a$	1,000	1,0 10 ⁻⁸	0,500	4,8 10 ⁻⁹	2,3 10 ⁻⁹	1,3 10-9	8,2 10 ⁻¹⁰	6,4 10 ⁻¹⁰
Tc-99m	6,02 h	1,000	2,0 10 ⁻¹⁰	0,500	1,3 10 ⁻¹⁰	7,2 10 ⁻¹¹	4,3 10 ⁻¹¹	2,8 10 ⁻¹¹	2,2 10 ⁻¹¹
Tc-101	0,237 h	1,000	2,4 10 ⁻¹⁰	0,500	1,3 10 ⁻¹⁰	6,1 10 ⁻¹¹	3,5 10 ⁻¹¹	2,4 10 ⁻¹¹	1,9 10-11
Tc-104	0,303 h	1,000	1,0 10 ⁻⁹	0,500	5,3 10 ⁻¹⁰	2,6 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,0 10 ⁻¹⁰	8,0 10-11
Ruthénium						•			
Ru-94	0,863 h	0,100	9,3 10 ⁻¹⁰	0,050	5,9 10 ⁻¹⁰	3,1 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,2 10 ⁻¹⁰	9,4 10-11
Ru-97	2,90 d	0,100	1,2 10-9	0,050	8,5 10 ⁻¹⁰	4, 7 10 ⁻¹⁰	3,0 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,5 10 ⁻¹⁰
Ru-103	39,3 d	0,100	7,1 10 ⁻⁹	0,050	4,6 10 ⁻⁹	2,4 10-9	1,5 10-9	9,2 10 ⁻¹⁰	7,3 10 ⁻¹⁰
Ru-105	4,44 h	0,100	2,7 10 ⁻⁹	0,050	1,8 10 ⁻⁹	9,1 10 ⁻¹⁰	5,5 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,6 10 ⁻¹⁰
Ru-106	1,01 a	0,100	8,4 10 ⁻⁸	0,050	4,9 10-8	2,5 10 ⁻⁸	1,5 10-8	8,6 10-9	7,0 10 ⁻⁹
Rhodium									
Rh-99	16,0 d	0,100	4,2 10 ⁻⁹	0,050	2,9 10-9	1,6 10-9	1,0 10-9	6,5 10 ⁻¹⁰	5,1 10 ⁻¹⁰
Rh-99m	4,70 h	0,100	4,9 10 ⁻¹⁰	0,050	3,5 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,3 10 ⁻¹⁰	8,3 10 ⁻¹¹	6,6 10 ⁻¹¹
Rh-100	20,8 h	0,100	4,9 10 ⁻⁹	0,050	3,6 10 ⁻⁹	2,0 10-9	1,4 10 ⁻⁹	8,8 10 ⁻¹⁰	7,1 10 ⁻¹⁰
Rh-101	3,20 a	0,100	4,9 10 ⁻⁹	0,050	2,8 10-9	1,6 10-9	1,0 10-9	6,7 10 ⁻¹⁰	5,5 10 ⁻¹⁰
Rh-101 Rh-101m	4,34 d	0,100	1,7 10-9	0,050	1,2 10 ⁻⁹	6,8 10 ⁻¹⁰	4,4 10 ⁻¹⁰	2,8 10 ⁻¹⁰	2,2 10 ⁻¹⁰
Rh-101m	2,90 a	0,100	1,9 10 ⁻⁸	0,050	1,0 10 ⁻⁸	6,4 10 ⁻⁹	4,3 10 ⁻⁹	3,0 10-9	2,6 10 ⁻⁹
Rh-102m	2,50 d	0,100	1,2 10 ⁻⁸	0,050	7,4 10 ⁻⁹	3,9 10 ⁻⁹	2,4 10 ⁻⁹	1,4 10 ⁻⁹	1,2 10 ⁻⁹
Rh-103m	0,935 h	0,100	4,7 10 ⁻¹¹	0,050	2,7 10 ⁻¹¹	1,3 10 ⁻¹¹	7,4 10 ⁻¹²	4,8 10 ⁻¹²	3,8 10 ⁻¹²
Rh-105III	1,47 d	0,100	4,0 10 ⁻⁹	0,050	2,7 10 ⁻⁹	1,3 10-9	8,0 10 ⁻¹⁰	4,6 10 ⁻¹⁰	3,7 10 ⁻¹⁰
Rh-106m	2,20 h	0,100	1,4 10 ⁻⁹	0,050	9,7 10 ⁻¹⁰	5,3 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,6 10 ⁻¹⁰
Rh-107	0,362 h	0,100	2,9 10 ⁻¹⁰	0,050	1,6 10 ⁻¹⁰	7,9 10 ⁻¹¹	4,5 10 ⁻¹¹	3,1 10 ⁻¹¹	2,4 10 ⁻¹¹
	0,502 11	3,100		, 5,050	1 -,0 10	1 7,5 10	1,5 10	1 3,1 10	_, -, - 10
Palladium	1 2 (2 1	1 0.050	7 / 10-9		1 5 2 10-9	1 20 10-9	l 1010-9	l 1 2 10-9	L 0.4.10-10
Pd-100	3,63 d	0,050	7,4 10 ⁻⁹	0,005	5,2 10 ⁻⁹	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,9 10 ⁻⁹	1,2 10 ⁻⁹	9,4 10 ⁻¹⁰
Pd-101	8,27 h	0,050	8,2 10 ⁻¹⁰	0,005	5,7 10 ⁻¹⁰	$3,1 \ 10^{-10}$	1,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,4 10 ⁻¹¹
Pd-103	17,0 d	0,050	2,2 10 ⁻⁹	0,005	1,4 10 ⁻⁹	7,2 10 ⁻¹⁰	4,3 10 ⁻¹⁰	2,4 10 ⁻¹⁰	1,9 10 ⁻¹⁰
Pd-107	6,50 10 ⁶ a	0,050	4,4 10 ⁻¹⁰	0,005	2,8 10 ⁻¹⁰	1,4 10 ⁻¹⁰	8,1 10 ⁻¹¹	4,6 10 ⁻¹¹	3,7 10 ⁻¹¹
Pd-109	13,4 h	0,050	6,3 10 ⁻⁹	0,005	4,1 10 ⁻⁹	2,0 10-9	1,2 10-9	6,8 10 ⁻¹⁰	5,5 10 ⁻¹⁰

Nucléide	Période physique	Âge ≤ 1 a		Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
		f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Argent									
Ag-102	0,215 h	0,100	4,2 10 ⁻¹⁰	0,050	2,4 10 ⁻¹⁰	1,2 10-10	7,3 10-11	5,0 10-11	4,0 10-11
Ag-103	1,09 h	0,100	$4,5 \ 10^{-10}$	0,050	2,7 10 ⁻¹⁰	1,4 10 ⁻¹⁰	8,3 10-11	5,5 10-11	4,3 10 ⁻¹¹
Ag-104	1,15 h	0,100	4,3 10 ⁻¹⁰	0,050	2,9 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,1 10-10	7,5 10-11	6,0 10 ⁻¹¹
Ag-104m	0,558 h	0,100	5,6 10 ⁻¹⁰	0,050	3,3 10 ⁻¹⁰	1,7 10-10	1,0 10-10	6,8 10-11	5,4 10 ⁻¹¹
Ag-105	41,0 d	0,100	3,9 10 ⁻⁹	0,050	2,5 10 ⁻⁹	1,4 10 ⁻⁹	9,1 10 ⁻¹⁰	5,9 10 ⁻¹⁰	4,7 10 ⁻¹⁰
Ag-106	0,399 h	0,100	3,7 10 ⁻¹⁰	0,050	$2,1 \ 10^{-10}$	1,0 10 ⁻¹⁰	6,0 10 ⁻¹¹	4,1 10 ⁻¹¹	3,2 10 ⁻¹¹
Ag-106m	8,41 d	0,100	9,7 10 ⁻⁹	0,050	6,9 10 ⁻⁹	4,1 10-9	2,8 10-9	1,8 10-9	1,5 10 ⁻⁹
Ag-108m	$1,27 \ 10^2 \ a$	0,100	$2,1 \ 10^{-8}$	0,050	$1,1 \ 10^{-8}$	6,5 10 ⁻⁹	4,3 10-9	2,8 10-9	2,3 10-9
Ag-110m	250 d	0,100	2,4 10 ⁻⁸	0,050	1,4 10-8	7,8 10 ⁻⁹	5,2 10-9	.3,4 10-9	2,8 10-9
Ag-111	7,45 d	0,100	1,4 10 ⁻⁸	0,050	9,3 10-9	4,6 10 ⁻⁹	2,7 10-9	1,6 10-9	1,3 10-9
Ag-112	3,12 h	0,100	4,9 10 ⁻⁹	0,050	3,0 10-9	1,5 10-9	8,9 10 ⁻¹⁰	5,4 10 ⁻¹⁰	4,3 10 ⁻¹⁰
Ag-115	0,333 h	0,100	7,2 10 ⁻¹⁰	0,050	4, 1 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,2 10 ⁻¹⁰	7,7 10-11	6,0 10 ⁻¹¹
Cadmium									
Cd-104	0,961 h	0,100	4,2 10 ⁻¹⁰	0,050	2,9 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,1 10-10	7,2 10-11	5,4 10-11
Cd-107	6,49 h	0,100	7,1 10 ⁻¹⁰	0,050	4,6 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,3 10-10	7,8 10-11	6,2 10 ⁻¹¹
Cd-109	1,27 a	0,100	$2,1 \ 10^{-8}$	0,050	9,5 10-9	5,5 10 ⁻⁹	3,5 10 ⁻⁹	2,4 10-9	2,0 10-9
Cd-113	9,30 10 ¹⁵ a	0,100	1,0 10 ⁻⁷	0,050	4,8 10 ⁻⁸	3,7 10 ⁻⁸	3,0 10-8	2,6 10-8	2,5 10 ⁻⁸
Cd-113m	13,6 a	0,100	1,2 10-7	0,050	5,6 10 ⁻⁸	3,9 10-8	2,9 10-8	2,4 10-8	2,3 10 ⁻⁸
Cd-115	2,23 d	0,100	$1,4 \ 10^{-8}$	0,050	9,7 10-9	4,9 10 ⁻⁹	2,9 10 ⁻⁹	1,7 10-9	1,4 10 ⁻⁹
Cd-115m	44,6 d	0,100	4,1 10 ⁻⁸	0,050	1,9 10-8	9,7 10 ⁻⁹	6,9 10 ⁻⁹	4,1 10 ⁻⁹	3,3 10 ⁻⁹
Cd-117	2,49 h	0,100	2,9 10-9	0,050	1,9 10 ⁻⁹	9,5 10 ⁻¹⁰	5,7 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,8 10 ⁻¹⁰
Cd-117m	3,36 h	0,100	2,6 10-9	0,050	1,7 10-9	9,0 10 ⁻¹⁰	5,6 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,8 10 ⁻¹⁰
Indium									
In-109	4,20 h	0,040	5,2 10 ⁻¹⁰	0,020	3,6 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,3 10 ⁻¹⁰	8,2 10-11	6,6 10 ⁻¹¹
In-110	4,90 h	0,040	1,5 10 ⁻⁹	0,020	1,1 10-9	6,5 10 ⁻¹⁰	4,4 10 ⁻¹⁰	3,0 10 ⁻¹⁰	2,4 10 ⁻¹⁰
In-110	1,15 h	0,040	1,1 10-9	0,020	6,4 10 ⁻¹⁰	3,2 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,3 10 ⁻¹⁰	1,0 10 ⁻¹⁰
In-111	2,83 d	0,040	2,4 10-9	0,020	1,7 10-9	9,1 10 ⁻¹⁰	5,9 10 ⁻¹⁰	3,7 10 ⁻¹⁰	2,9 10 ⁻¹⁰
In-112	0,240 h	0,040	1,2 10 ⁻¹⁰	0,020	6,7 10-11	3,3 10 ⁻¹¹	1,9 10-11	1,3 10-11	1,0 10-11
In-113m	1,66 h	0,040	3,0 10 ⁻¹⁰	0,020	1,8 10 ⁻¹⁰	9,3 10 ⁻¹¹	6,2 10 ⁻¹¹	3,6 10 ⁻¹¹	2,8 10 ⁻¹¹
In-114m	49,5 d	0,040	5,6 10-8	0,020	3,1 10-8	1,5 10-8	9,0 10 ⁻⁹	5,2 10 ⁻⁹	4,1 10-9
In-115	5,10 10 ¹⁵ a	0,040	1,3 10 ⁻⁷	0,020	6,4 10-8	4,8 10-8	4,3 10-8	3,6 10-8	3,2 10-8
In-115m	4,49 h	0,040	9,6 10 ⁻¹⁰	0,020	6,0 10 ⁻¹⁰	3,0 10 ⁻¹⁰	1,8 10 ⁻¹⁰	1,1 10 ⁻¹⁰	8,6 10 ⁻¹¹
In-116m	0,902 h	0,040	5,8 10 ⁻¹⁰	0,020	3,6 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,2 10 ⁻¹⁰	8,0 10-11	6,4 10 ⁻¹¹
In-117	0,730 h	0,040	3,3 10 ⁻¹⁰	0,020	1,9 10 ⁻¹⁰	9,7 10-11	5,8 10 ⁻¹¹	3,9 10 ⁻¹¹	3,1 10 ⁻¹¹
In-117m	1,94 h	0,040	1,4 10 ⁻⁹	0,020	8,6 10 ⁻¹⁰	4,3 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,2 10 ⁻¹⁰
In-119m	0,300 h	0,040	5,9 10 ⁻¹⁰	0,020	3,2 10 ⁻¹⁰	1,6 10 ⁻¹⁰	8,8 10 ⁻¹¹	6,0 10 ⁻¹¹	4,7 10-11
Étain	,	'	·	'	·	·	·	·	
Sn-110	4,00 h	0,040	3,5 10-9	0,020	2,3 10-9	1,2 10-9	7 ,4 10 ⁻¹⁰	4,4 10 ⁻¹⁰	3,5 10 ⁻¹⁰
Sn-111	0,588 h	0,040	2,5 10 ⁻¹⁰	0,020	1,5 10 ⁻¹⁰	7,4 10-11	4,4 10 ⁻¹¹	3,0 10 ⁻¹¹	2,3 10 ⁻¹¹
Sn-113	115 d	0,040	7,8 10 ⁻⁹	0,020	5,0 10-9	2,6 10 ⁻⁹	1,6 10-9	9,2 10 ⁻¹⁰	7,3 10 ⁻¹⁰
Sn-117m	13,6 d	0,040	7,7 10 ⁻⁹	0,020	5,0 10 ⁻⁹	2,5 10 ⁻⁹	1,5 10 ⁻⁹	8,8 10 ⁻¹⁰	7,1 10 ⁻¹⁰
Sn-119m	293 d	0,040	4,1 10 ⁻⁹	0,020	2,5 10-9	1,3 10 ⁻⁹	7,5 10 ⁻¹⁰	4,3 10 ⁻¹⁰	3,4 10 ⁻¹⁰
Sn-121	1,13 d	0,040	2,6 10 ⁻⁹	0,020	1,7 10 ⁻⁹	8,4 10 ⁻¹⁰	5,0 10 ⁻¹⁰	2,8 10 ⁻¹⁰	2,3 10 ⁻¹⁰
Sn-121m	55,0 a	0,040	4,6 10 ⁻⁹	0,020	2,7 10-9	1,4 10-9	8,2 10 ⁻¹⁰	4,7 10 ⁻¹⁰	3,8 10 ⁻¹⁰

	Période	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	f_1 pour $g \le 1$ a	h(g)	f ₁ pour g > 1 a	h(g)	h(g)	h(g)	h(g)	h(g)
Sn-123	129 d	0,040	2,5 10-8	0,020	1,6 10 ⁻⁸	7,8 10 ⁻⁹	4,6 10 ⁻⁹	2,6 10 ⁻⁹	2,1 10 ⁻⁹
Sn-123m	0,668 h	0,040	4,7 10 ⁻¹⁰	0,020	2,6 10 ⁻¹⁰	1,3 10-10	7,3 10 ⁻¹¹	4,9 10 ⁻¹¹	3,8 10 ⁻¹¹
Sn-125	9,64 d	0,040	$3,5 \ 10^{-8}$	0,020	$2,2 \ 10^{-8}$	1,1 10-8	6,7 10-9	3,8 10-9	3,1 10-9
Sn-126	1,00 10 ⁵ a	0,040	5,0 10-8	0,020	$3,0 \ 10^{-8}$	1,6 10-8	9,8 10-9	5,9 10 ⁻⁹	4,7 10-9
Sn-127	2,10 h	0,040	2,0 10-9	0,020	1,3 10 ⁻⁹	6,6 10 ⁻¹⁰	4,0 10 ⁻¹⁰	2,5 10 ⁻¹⁰	2,0 10 ⁻¹⁰
Sn-128	0,985 h	0,040	1,6 10-9	0,020	9,7 10 ⁻¹⁰	4,9 10 ⁻¹⁰	3,0 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,5 10 ⁻¹⁰
Antimoine	1 3,7 33 11	1 -,0.0	-,	1 5,0=0	7,7 = 5	1,92 2.5	3,0 20		1 -,0 -0
Sb-115	0,530 h	0,200	2,5 10 ⁻¹⁰	0,100	1,5 10 ⁻¹⁰	7,5 10-11	4,5 10 ⁻¹¹	3,1 10 ⁻¹¹	2,4 10 ⁻¹¹
Sb-116	0,263 h	0,200	$2,7 \ 10^{-10}$	0,100	1,6 10 ⁻¹⁰	8,0 10-11	4,8 10 ⁻¹¹	3,3 10 ⁻¹¹	2,6 10-11
Sb-116m	1,00 h	0,200	5,0 10 ⁻¹⁰	0,100	3,3 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,2 10 ⁻¹⁰	8,3 10 ⁻¹¹	6,7 10-11
Sb-117	2,80 h	0,200	1,6 10 ⁻¹⁰	0,100	1,0 10 ⁻¹⁰	5,6 10-11	3,5 10 ⁻¹¹	2,2 10 ⁻¹¹	1,8 10-11
Sb-118m	5,00 h	0,200	1,3 10 ⁻⁹	0,100	1,0 10 ⁻⁹	5,8 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,6 10 ⁻¹⁰	2,1 10 ⁻¹⁰
Sb-119	1,59 d	0,200	8,4 10 ⁻¹⁰	0,100	$5,8 \ 10^{-10}$	3,0 10 ⁻¹⁰	$1,8 \ 10^{-10}$	1,0 10 ⁻¹⁰	8,0 10-11
Sb-120	5,76 d	0,200	8,1 10-9	0,100	6,0 10 ⁻⁹	3,5 10 ⁻⁹	2,3 10-9	1,6 10-9	1,2 10-9
Sb-120	0,265 h	0,200	1,7 10 ⁻¹⁰	0,100	9,4 10 ⁻¹¹	4,6 10-11	2,7 10 ⁻¹¹	1,8 10 ⁻¹¹	1,4 10 ⁻¹¹
Sb-122	2,70 d	0,200	1,8 10-8	0,100	1,2 10-8	6,1 10 ⁻⁹	3,7 10 ⁻⁹	2,1 10-9	1,7 10-9
Sb-124	60,2 d	0,200	2,5 10-8	0,100	1,6 10-8	8,4 10-9	5,2 10 ⁻⁹	3,2 10-9	2,5 10-9
Sb-124m	0,337 h	0,200	8,5 10 ⁻¹¹	0,100	4,9 10 ⁻¹¹	2,5 10 ⁻¹¹	1,5 10-11	1,0 10-11	8,0 10 ⁻¹²
Sb-125	2,77 a	0,200	1,1 10-8	0,100	6,1 10 ⁻⁹	3,4 10-9	2,1 10-9	1,4 10-9	1,1 10-9
Sb-126	12,4 d	0,200	2,0 10-8	0,100	1,4 10-8	7,6 10 ⁻⁹	4,9 10-9	3,1 10-9	2,4 10-9
Sb-126m	0,317 h	0,200	3,9 10 ⁻¹⁰	0,100	2,2 10 ⁻¹⁰	1,1 10 ⁻¹⁰	6,6 10-11	4,5 10 ⁻¹¹	3,6 10 ⁻¹¹
Sb-127	3,85 d	0,200	1,7 10 ⁻⁸	0,100	1,2 10-8	5,9 10 ⁻⁹	3,6 10-9	2,1 10-9	1,7 10-9
Sb-128	9,01 h	0,200	6,3 10 ⁻⁹	0,100	4,5 10 ⁻⁹	2,4 10 ⁻⁹	1,5 10 ⁻⁹	9,5 10 ⁻¹⁰	7,6 10 ⁻¹⁰
Sb-128	0,173 h	0,200	3,7 10 ⁻¹⁰	0,100	2,1 10 ⁻¹⁰	1,0 10 ⁻¹⁰	6,0 10 ⁻¹¹	4,1 10 ⁻¹¹	3,3 10 ⁻¹¹
Sb-129	4,32 h	0,200	4,3 10 ⁻⁹	0,100	2,8 10 ⁻⁹	1,5 10 ⁻⁹	8,8 10 ⁻¹⁰	5,3 10 ⁻¹⁰	4,2 10 ⁻¹⁰
Sb-130	0,667 h	0,200	9,1 10 ⁻¹⁰	0,100	5,4 10 ⁻¹⁰	2,8 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,2 10 ⁻¹⁰	9,1 10 ⁻¹¹
Sb-131	0,383 h	0,200	1,1 10-9	0,100	7,3 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,0 10-10
Tellure	,	,	,	,	,	1 1	,	,	,
Te-116	2,49 h	0,600	1,4 10-9	0,300	1,0 10-9	5,5 10-10	3,4 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,7 10-10
Te-121	17,0 d	0,600	3,1 10 ⁻⁹	0,300	2,0 10 ⁻⁹	1,2 10 ⁻⁹	8,0 10 ⁻¹⁰	5,4 10 ⁻¹⁰	4,3 10 ⁻¹⁰
Te-121m	154 d	0,600	$2,7 \ 10^{-8}$	0,300	1,2 10 ⁻⁸	6,9 10 ⁻⁹	4,2 10 ⁻⁹	2,8 10 ⁻⁹	2,3 10 ⁻⁹
Te-123	1,00 10 ¹³ a	0,600	2,0 10-8	0,300	9,3 10-9	6,9 10-9	5,4 10-9	4,7 10 ⁻⁹	4,4 10 ⁻⁹
Te-123m	120 d	0,600	1,9 10-8	0,300	8,8 10-9	4,9 10-9	2,8 10-9	1,7 10-9	1,4 10-9
Te-125m	58,0 d	0,600	1,3 10-8	0,300	6,3 10-9	3,3 10-9	1,9 10-9	1,1 10-9	8,7 10 ⁻¹⁰
Te-127	9,35 h	0,600	1,5 10-9	0,300	1,2 10-9	6,2 10 ⁻¹⁰	3,6 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,7 10 ⁻¹⁰
Te-127m	109 d	0,600	4,1 10-8	0,300	1,8 10-8	9,5 10-9	5,2 10-9	3,0 10-9	2,3 10-9
Te-129	1,16 h	0,600	7,5 10 ⁻¹⁰	0,300	4,4 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,2 10 ⁻¹⁰	8,0 10-11	6,3 10 ⁻¹¹
Te-129m	33,6 d	0,600	4,4 10 ⁻⁸	0,300	2,4 10-8	1,2 10-8	6,6 10-9	3,9 10-9	3,0 10-9
Te-131	0,417 h	0,600	9,0 10 ⁻¹⁰	0,300	6,6 10 ⁻¹⁰	3,5 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,2 10 ⁻¹⁰	8,7 10 ⁻¹¹
Te-131m	1,25 d	0,600	2,0 10 ⁻⁸	0,300	1,4 10 ⁻⁸	7,8 10 ⁻⁹	4,3 10-9	2,7 10-9	1,9 10-9
Te-132	3,26 d	0,600	4,8 10 ⁻⁸	0,300	3,0 10-8	1,6 10 ⁻⁸	8,3 10-9	5,3 10-9	3,8 10-9
Te-133	0,207 h	0,600	8,4 10 ⁻¹⁰	0,300	6,3 10 ⁻¹⁰	3,3 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,1 10 ⁻¹⁰	7,2 10 ⁻¹¹
Te-133m	0,923 h	0,600	3,1 10-9	0,300	2,4 10 ⁻⁹	1,3 10 ⁻⁹	6,3 10 ⁻¹⁰	4,1 10 ⁻¹⁰	2,8 10 ⁻¹⁰
Te-134	0,696 h	0,600	1,1 10-9	0,300	7,5 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,1 10 ⁻¹⁰
Iode									
I-120	1,35 h	1,000	3,9 10-9	1,000	2,8 10-9	1,4 10-9	7,2 10 ⁻¹⁰	4,8 10 ⁻¹⁰	3,4 10-10
I-120m	0,883 h	1,000	2,3 10 ⁻⁹	1,000	1,5 10 ⁻⁹	7,8 10 ⁻¹⁰	4,2 10 ⁻¹⁰	2,9 10 ⁻¹⁰	2,1 10 ⁻¹⁰
I-121	2,12 h	1,000	6,2 10 ⁻¹⁰	1,000	5,3 10 ⁻¹⁰	3,1· 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,2 10 ⁻¹⁰	8,2 10 ⁻¹¹
I-123	13,2 h	1,000	2,2 10 ⁻⁹	1,000	1,9 10 ⁻⁹	1,1 10 ⁻⁹ 6,3 10 ⁻⁸	4,9 10 ⁻¹⁰	$3,3 \ 10^{-10}$	2,1 10 ⁻¹⁰
I-124	4,18 d	1,000	1,2 10 ⁻⁷	1,000	1,1 10 ⁻⁷	0,3 10	3,1 10 ⁻⁸	2,0 10 ⁻⁸	1,3 10 ⁻⁸

	T	1		1					
Nucléide	Période	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
I-125	60,1 d	1,000	5,2 10 ⁻⁸	1,000	5,7 10-8	4, 1 10 ⁻⁸	3,1 10 ⁻⁸	2,2 10 ⁻⁸	1,5 10-8
I-126	13,0 d	1,000	2,1 10 ⁻⁷	1,000	2,1 10 ⁻⁷	1,3 10-7	6,8 10-8	4,5 10-8	2,9 10-8
I-128	0,416 h	1,000	5,7 10 ⁻¹⁰	1,000	3,3 10 ⁻¹⁰	1,6 10 ⁻¹⁰	8,9 10-11	6,0 10-11	4,6 10-11
I-129	$1,57 \ 10^7 \ a$	1,000	1,8 10 ⁻⁷	1,000	2,2 10 ⁻⁷	1,7 10-7	1,9 10 ⁻⁷	1,4 10 ⁻⁷	1,1 10 ⁻⁷
I-130	12,4 h	1,000	$2,1 \ 10^{-8}$	1,000	1,8 10-8	9,8 10-9	4,6 10 ⁻⁹	3,0 10-9	2,0 10-9
I-131	8,04 d	1,000	1,8 10 ⁻⁷	1,000	1,8 10 ⁻⁷	1,0 10-7	5,2 10-8	3,4 10-8	2,2 10-8
I-132	2,30 h	1,000	3,0 10-9	1,000	2,4 10-9	1,3 10-9	6,2 10 ⁻¹⁰	4,1 10 ⁻¹⁰	2,9 10 ⁻¹⁰
I-132m	1,39 h	1,000	2,4 10 ⁻⁹	1,000	2,0 10 ⁻⁹	1,1 10-9	5,0 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,2 10 ⁻¹⁰
I-133	20,8 h	1,000	4, 9 10 ⁻⁸	1,000	4,4 10 ⁻⁸	2,3 10-8	1,0 10-8	6,8 10-9	4,3 10-9
I-134	0,876 h	1,000	1,1 10 ⁻⁹	1,000	7,5 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,1 10 ⁻¹⁰
I-135	6,61 h	1,000	$1,0 \ 10^{-8}$	1,000	8,9 10 ⁻⁹	4, 7 10 ⁻⁹	2,2 10-9	1,4 10-9	9,3 10 ⁻¹⁰
Césium									
Cs-125	0,750 h	1,000	$3,9 \ 10^{-10}$	1,000	2,2 10 ⁻¹⁰	1,1 10 ⁻¹⁰	6,5 10-11	4,4 10-11	3,5 10-11
Cs-127	6,25 h	1,000	1,8 10 ⁻¹⁰	1,000	1,2 10 ⁻¹⁰	6,6 10 ⁻¹¹	4,2 10-11	2,9 10-11	2,4 10 ⁻¹¹
Cs-129	1,34 d	1,000	4,4 10 ⁻¹⁰	1,000	3,0 10 ⁻¹⁰	1,7 10-10	1,1 10 ⁻¹⁰	7,2 10-11	6,0 10-11
Cs-130	0,498 h	1,000	$3,3 \ 10^{-10}$	1,000	1,8 10 ⁻¹⁰	9,0 10-11	5,2 10 ⁻¹¹	3,6 10-11	2,8 10 ⁻¹¹
Cs-131	9,69 d	1,000	4, 6 10 ⁻¹⁰	1,000	2,9 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,0 10 ⁻¹⁰	6,9 10 ⁻¹¹	5,8 10-11
Cs-132	6,48 d	1,000	2,7 10-9	1,000	1,8 10-9	1,1 10-9	7,7 10 ⁻¹⁰	5,7 10-10	5,0 10 ⁻¹⁰
Cs-134	2,06 a	1,000	2,6 10 ⁻⁸	1,000	1,6 10-8	1,3 10-8	1,4 10 ⁻⁸	1,9 10-8	1,9 10-8
Cs-134m	2,90 h	1,000	2,1 10 ⁻¹⁰	1,000	1,2 10 ⁻¹⁰	5,9 10 ⁻¹¹	3,5 10 ⁻¹¹	2,5 10 ⁻¹¹	2,0 10 ⁻¹¹
Cs-135	$2,30 \ 10^6 \ a$	1,000	4,1 10-9	1,000	2,3 10 ⁻⁹	1,7 10-9	1,7 10-9	2,0 10-9	2,0 10-9
Cs-135m	0,883 h	1,000	1,3 10 ⁻¹⁰	1,000	8,6 10-11	4,9 10 ⁻¹¹	3,2 10 ⁻¹¹	2,3 10 ⁻¹¹	1,9 10 ⁻¹¹
Cs-136	13,1 d	1,000	1,5 10-8	1,000	9,5 10-9	6,1 10-9	4,4 10-9	3,4 10-9	3,0 10-9
Cs-137	30,0 a	1,000	2,1 10 ⁻⁸	1,000	1,2 10 ⁻⁸	9,6 10 ⁻⁹	1,0 10-8	1,3 10 ⁻⁸	1,3 10-8
Cs-138	0,536 h	1,000	1,1 10-9	1,000	5,9 10 ⁻¹⁰	2,9 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,2 10 ⁻¹⁰	9,2 10 ⁻¹¹
Baryum a)			1 2 7 40-9	1 0.200	1 7 10-9	L 0 5 40-10	50.40-10	1 2 4 40=10	1 0 < 40-10
Ba-126	1,61 h	0,600	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,200	$\begin{array}{c c} 1,7 & 10^{-9} \\ 1,7 & 10^{-8} \end{array}$	$\begin{array}{ c c c c c c } 8,5 & 10^{-10} \\ 9,0 & 10^{-9} \end{array}$	5,0 10 ⁻¹⁰ 5,2 10 ⁻⁹	3,1 10 ⁻¹⁰	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Ba-128 Ba-131	2,43 d 11,8 d	0,600	4,2 10 ⁻⁹	0,200 0,200	2,6 10 ⁻⁹	1,4 10 ⁻⁹	9,4 10 ⁻¹⁰	3,0 10 ⁻⁹ 6,2 10 ⁻¹⁰	4,5 10 ⁻¹⁰
	1						9,4 10 9,3 10 ⁻¹²	1	
Ba-131m	0,243 h	0,600	5,8 10 ⁻¹¹	0,200	3,2 10 ⁻¹¹	1,6 10 ⁻¹¹		6,3 10 ⁻¹²	4,9 10 ⁻¹²
Ba-133	10,7 a	0,600	2,2 10 ⁻⁸	0,200	6,2 10-9	3,9 10-9	4,6 10-9	7,3 10-9	1,5 10-9
Ba-133m	1,62 d	0,600	4,2 10 ⁻⁹	0,200	3,6 10-9	1,8 10 ⁻⁹	1,1 10-9	5,9 10 ⁻¹⁰	5,4 10 ⁻¹⁰
Ba-135m	1,20 d	0,600	3,3 10-9	0,200	2,9 10 ⁻⁹	1,5 10-9	8,5 10 ⁻¹⁰	4,7 10 ⁻¹⁰	4,3 10 ⁻¹⁰
Ba-139	1,38 h	0,600	1,4 10 ⁻⁹	0,200	8,4 10 ⁻¹⁰	4, 1 10 ⁻¹⁰	2,4 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,2 10 ⁻¹⁰
Ba-140	12,7 d	0,600	3,2 10 ⁻⁸	0,200	1,8 10-8	9,2 10-9	5,8 10-9	3,7 10-9	2,6 10-9
Ba-141	0,305 h	0,600	7,6 10 ⁻¹⁰	0,200	4, 7 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,3 10 ⁻¹⁰	8,6 10-11	7,0 10-11
Ba-142	0,177 h	0,600	3,6 10 ⁻¹⁰	0,200	2,2 10 ⁻¹⁰	1,1 10-10	6,6 10-11	4,3 10-11	3,5 10 ⁻¹¹
Lanthane									
La-131	0,983 h	0,005	3,5 10 ⁻¹⁰	5,0 10-4	2,1 10 ⁻¹⁰	1,1 10 ⁻¹⁰	6,6 10 ⁻¹¹	4,4 10-11	3,5 10-11
La-132	4,80 h	0,005	3,8 10-9	5,0 10-4	2,4 10-9	1,3 10-9	7,8 10 ⁻¹⁰	4,8 10 ⁻¹⁰	3,9 10-10
La-135	19,5 h	0,005	2,8 10 ⁻¹⁰	5,0 10-4	1,9 10 ⁻¹⁰	1,0 10 ⁻¹⁰	6,4 10 ⁻¹¹	3,9 10 ⁻¹¹	3,0 10 ⁻¹¹
La-137	6,00 10 ⁴ a	0,005	1,1 10-9	5,0 10-4	4,5 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,0 10 ⁻¹⁰	8,1 10 ⁻¹¹
La-137	1,35 10 ¹¹ a	0,005	1,1 10 1,3 10 ⁻⁸	5,0 10	4,6 10 ⁻⁹	2,7 10 ⁻⁹	1,9 10-9	1,3 10-9	1,1 10 ⁻⁹
La-138 La-140	1,55 To a	0,005	2,0 10 ⁻⁸	5,0 10	1,3 10 ⁻⁸	6,8 10 ⁻⁹	4,2 10 ⁻⁹	2,5 10 ⁻⁹	2,0 10-9
La-140 La-141	3,93 h	0,005	4,3 10 ⁻⁹	5,0 10	2,6 10 ⁻⁹	1,3 10-9	7,6 10 ⁻¹⁰	4,5 10 ⁻¹⁰	3,6 10 ⁻¹⁰
La-141 La-142	1,54 h	0,005	1,9 10-9	5,0 10	1,1 10-9	5,8 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,8 10 ⁻¹⁰
La-142 La-143	0,237 h	0,005	6,9 10 ⁻¹⁰	5,0 10	3,9 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,1 10 ⁻¹⁰	7,1 10 ⁻¹¹	5,6 10 ⁻¹¹
	<u>-</u>	ividus de 1 à 15	'	1 0,0 10	1 5,5 10	1 -9- 10	1 -,- 10	1 ,,1 10	1 5,5 10
, La vaicui de	. Il pour les mu	iriuus ut I a I.	- ans εδι υ,τ.						

Nucléide	Période	Âge ≤	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Cerium									
Ce-134	3,00 d	0,005	2,8 10-8	5,0 10-4	$1,8 \ 10^{-8}$	9,1 10-9	5,5 10-9	3,2 10-9	2,5 10-9
Ce-135	17,6 h	0,005	7,0 10 ⁻⁹	5,0 10-4	4,7 10 ⁻⁹	2,6 10-9	1,6 10 ⁻⁹	1,0 10-9	7,9 10 ⁻¹⁰
Ce-137	9,00 h	0,005	2,6 10 ⁻¹⁰	5,0 10-4	$1,7 \ 10^{-10}$	8,8 10-11	5,4 10 ⁻¹¹	3,2 10 ⁻¹¹	2,5 10 ⁻¹¹
Ce-137m	1,43 d	0,005	6,1 10 ⁻⁹	5,0 10-4	3,9 10 ⁻⁹	2,0 10-9	1,2 10 ⁻⁹	6,8 10 ⁻¹⁰	5,4 10 ⁻¹⁰
Ce-139	138 d	0,005	2,6 10-9	5,0 10-4	1,6 10 ⁻⁹	8,6 10 ⁻¹⁰	5,4 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,6 10 ⁻¹⁰
Ce-141	32,5 d	0,005	8,1 10-9	5,0 10-4	5,1 10-9	2,6 10-9	1,5 10 ⁻⁹	8,8 10 ⁻¹⁰	7,1 10 ⁻¹⁰
Ce-143	1,38 d	0,005	1,2 10-8	5,0 10-4	8,0 10-9	4,1 10 ⁻⁹	2,4 10 ⁻⁹	1,4 10 ⁻⁹	1,1 10 ⁻⁹
Ce-144	284 d	0,005	6,6 10-8	5,0 10-4	3,9 10-8	1,9 10-8	1,1 10 ⁻⁸	6,5 10-9	5,2 10 ⁻⁹
Praséodyme	•	' '							
Pr-136	0,218 h	0,005	3,7 10 ⁻¹⁰	5,0 10-4	2,1 10 ⁻¹⁰	1,0 10 ⁻¹⁰	6,1 10 ⁻¹¹	4,2 10-11	3,3 10-11
Pr-137	1,28 h	0,005	4,1 10 ⁻¹⁰	5,0 10-4	2,5 10 ⁻¹⁰	1,3 10 ⁻¹⁰	7,7 10 ⁻¹¹	5,0 10 ⁻¹¹	4,0 10 ⁻¹¹
Pr-138m	2,10 h	0,005	1,0 10-9	5,0 10-4	7,4 10 ⁻¹⁰	4,1 10 ⁻¹⁰	2,6 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,3 10 ⁻¹⁰
Pr-139	4,51 h	0,005	3,2 10 ⁻¹⁰	5,0 10-4	2,0 10 ⁻¹⁰	1,1 10 ⁻¹⁰	6,5 10 ⁻¹¹	4,0 10 ⁻¹¹	3,1 10 ⁻¹¹
Pr-142	19,1 h	0,005	1,5 10 ⁻⁸	5,0 10-4	9,8 10-9	4,9 10 ⁻⁹	2,9 10 ⁻⁹	1,6 10-9	1,3 10-9
Pr-142m	0,243 h	0,005	2,0 10 ⁻¹⁰	5,0 10-4	1,2 10 ⁻¹⁰	6,2 10 ⁻¹¹	3,7 10 ⁻¹¹	2,1 10 ⁻¹¹	1,7 10 ⁻¹¹
Pr-143	13,6 d	0,005	$1,4 \ 10^{-8}$	5,0 10-4	8,7 10 ⁻⁹	4,3 10 ⁻⁹	2,6 10 ⁻⁹	1,5 10-9	1,2 10 ⁻⁹
Pr-144	0,288 h	0,005	6,4 10 ⁻¹⁰	5,0 10-4	3,5 10 ⁻¹⁰	1,7 10 ⁻¹⁰	9,5 10 ⁻¹¹	6,5 10 ⁻¹¹	5,0 10 ⁻¹¹
Pr-145	5,98 h	0,005	4,7 10 ⁻⁹	5,0 10-4	2,9 10 ⁻⁹	1,4 10 ⁻⁹	8,5 10 ⁻¹⁰	4,9 10 ⁻¹⁰	3,9 10 ⁻¹⁰
Pr-147	0,227 h	0,005	3,9 10 ⁻¹⁰	5,0 10-4	2,2 10 ⁻¹⁰	1,1 10 ⁻¹⁰	6,1 10 ⁻¹¹	4,2 10 ⁻¹¹	3,3 10 ⁻¹¹
Néodyme	,	, , ,	,	1 ′ 1	,	1 ′	,	1 /	, ,,
Nd-136	0,844 h	0,005	1,0 10 ⁻⁹	5,0 10 ⁻⁴	6,1 10 ⁻¹⁰	3,1 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,2 10 ⁻¹⁰	9,9 10-11
Nd-138	5,04 h	0,005	$7,2 \ 10^{-9}$	5,0 10-4	4, 5 10 ⁻⁹	2,3 10-9	1,3 10-9	8,0 10 ⁻¹⁰	6,4 10 ⁻¹⁰
Nd-139	0,495 h	0,005	$2,1 \ 10^{-10}$	5,0 10-4	1,2 10 ⁻¹⁰	6,3 10 ⁻¹¹	3,7 10 ⁻¹¹	2,5 10 ⁻¹¹	2,0 10-11
Nd-139m	5,50 h	0,005	$2,1 \ 10^{-9}$	5,0 10-4	1,4 10 ⁻⁹	7,8 10 ⁻¹⁰	5,0 10 ⁻¹⁰	3,1 10 ⁻¹⁰	2,5 10 ⁻¹⁰
Nd-141	2,49 h	0,005	7,8 10 ⁻¹¹	5,0 10-4	5,0 10 ⁻¹¹	2,7 10 ⁻¹¹	1,6 10 ⁻¹¹	1,0 10 ⁻¹¹	8,3 10 ⁻¹²
Nd-147	11,0 d	0,005	$1,2 \ 10^{-8}$	5,0 10-4	7,8 10 ⁻⁹	3,9 10 ⁻⁹	2,3 10-9	1,3 10-9	1,1 10 ⁻⁹
Nd-149	1,73 h	0,005	1,4 10 ⁻⁹	5,0 10-4	8,7 10 ⁻¹⁰	4,3 10 ⁻¹⁰	2,6 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,2 10 ⁻¹⁰
Nd-151	0,207 h	0,005	$3,4 \ 10^{-10}$	5,0 10-4	$2,0\ 10^{-10}$	9,7 10-11	5,7 10 ⁻¹¹	3,8 10 ⁻¹¹	3,0 10 ⁻¹¹
Prométhium									
Pm-141	0,348 h	0,005	$4,2 \ 10^{-10}$	5,0 10-4	2,4 10 ⁻¹⁰	1,2 10 ⁻¹⁰	6,8 10 ⁻¹¹	4,6 10 ⁻¹¹	3,6 10 ⁻¹¹
Pm-143	265 d	0,005	1,9 10-9	5,0 10-4	1,2 10-9	6,7 10 ⁻¹⁰	4,4 10 ⁻¹⁰	2,9 10 ⁻¹⁰	2,3 10 ⁻¹⁰
Pm-144	363 d	0,005	7,6 10 ⁻⁹	5,0 10-4	4,7 10-9	2,7 10-9	1,8 10-9	1,2 10-9	9,7 10 ⁻¹⁰
Pm-145	17,7 a	0,005	1,5 10-9	5,0 10-4	6,8 10 ⁻¹⁰	3,7 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,1 10 ⁻¹⁰
Pm-146	5,53 a	0,005	1,0 10 ⁻⁸	5,0 10-4	5,1 10-9	2,8 10 ⁻⁹	1,8 10 ⁻⁹	1,1 10-9	9,0 10-10
Pm-147	2,62 a	0,005	3,6 10 ⁻⁹	5,0 10-4	1,9 10-9	9,6 10 ⁻¹⁰	5,7 10 ⁻¹⁰	3,2 10 ⁻¹⁰	2,6 10 ⁻¹⁰
Pm-148	5,37 d	0,005	3,0 10 ⁻⁸	5,0 10-4	1,9 10 ⁻⁸	9,7 10 ⁻⁹	5,8 10 ⁻⁹	3,3 10-9	2,7 10-9
Pm-148m	41,3 d	0,005	1,5 10 ⁻⁸	5,0 10-4	1,0 10 ⁻⁸	5,5 10-9	3,5 10 ⁻⁹	2,2 10 ⁻⁹	1,7 10-9
Pm-149	2,21 d	0,005	1,2 10 ⁻⁸	5,0 10-4	7,4 10 ⁻⁹	3,7 10-9	2,2 10 ⁻⁹	1,2 10-9	9,9 10 ⁻¹⁰
Pm-150	2,68 h	0,005	2,8 10 ⁻⁹	5,0 10-4	1,7 10-9	8,7 10 ⁻¹⁰	5,2 10 ⁻¹⁰	3,2 10 ⁻¹⁰	2,6 10 ⁻¹⁰
Pm-151	1,18 d	0,005	8,0 10 ⁻⁹	5,0 10-4	$5,1 \ 10^{-9}$	2,6 10 ⁻⁹	1,6 10 ⁻⁹	9,1 10 ⁻¹⁰	7,3 10 ⁻¹⁰
Samarium									
Sm-141	0,170 h	0,005	$4,5 \ 10^{-10}$	5,0 10-4	2,5 10 ⁻¹⁰	1,3 10 ⁻¹⁰	7,3 10 ⁻¹¹	5,0 10-11	3,9 10 ⁻¹¹
Sm-141m	0,377 h	0,005	7,0 10 ⁻¹⁰	5,0 10-4	4, 0 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,2 10 ⁻¹⁰	8,2 10 ⁻¹¹	6,5 10 ⁻¹¹
Sm-142	1,21 h	0,005	2,2 10 ⁻⁹	5,0 10-4	1,3 10 ⁻⁹	6,2 10 ⁻¹⁰	3,6 10 ⁻¹⁰	2,4 10 ⁻¹⁰	1,9 10 ⁻¹⁰
Sm-145	340 d	0,005	2,4 10 ⁻⁹	5,0 10-4	1,4 10 ⁻⁹	7,3 10 ⁻¹⁰	4,5 10 ⁻¹⁰	2,7 10 ⁻¹⁰	2,1 10 ⁻¹⁰
Sm-146	1,03 10 ⁸ a	0,005	1,5 10 ⁻⁶	5,0 10-4	1,5 10 ⁻⁷	1,0 10 ⁻⁷	7,0 10 ⁻⁸	5,8 10 ⁻⁸	5,4 10 ⁻⁸
Sm-147	1,06 10 ¹¹ a	0,005	$1,4 \ 10^{-6}$	5,0 10-4	1,4 10 ⁻⁷	9,2 10-8	6,4 10 ⁻⁸	5,2 10-8	4,9 10-8

XT 101	Période	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide 	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Sm-151	90,0 a	0,005	1,5 10-9	5,0 10-4	6,4 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,2 10 ⁻¹⁰	9,8 10-11
Sm-153	1,95 d	0,005	$8,4 \ 10^{-9}$	5,0 10-4	5,4 10-9	2,7 10-9	1,6 10-9	9,2 10 ⁻¹⁰	7,4 10 ⁻¹⁰
Sm-155	0,368 h	0,005	3,6 10 ⁻¹⁰	5,0 10-4	2,0 10 ⁻¹⁰	9,7 10-11	5,5 10-11	3,7 10-11	2,9 10-11
Sm-156	9,40 h	0,005	2,8 10 ⁻⁹	5,0 10-4	1,8 10-9	9,0 10-10	5,4 10 ⁻¹⁰	3,1 10 ⁻¹⁰	2,5 10 ⁻¹⁰
Europium	,	,		•	•	,	,	,	•
Eu-145	5,94 d	0,005	5,1 10-9	5,0 10-4	3,7 10-9	2,1 10-9	1,4 10-9	9,4 10 ⁻¹⁰	7,5 10-10
Eu-146	4,61 d	0,005	$8,5 \ 10^{-9}$	5,0 10-4	6,2 10 ⁻⁹	3,6 10-9	2,4 10-9	1,6 10-9	1,3 10-9
Eu-147	24,0 d	0,005	3,7 10 ⁻⁹	5,0 10-4	2,5 10-9	1,4 10-9	8,9 10 ⁻¹⁰	5,6 10 ⁻¹⁰	4,4 10 ⁻¹⁰
Eu-148	54,5 d	0,005	8,5 10 ⁻⁹	5,0 10-4	6,0 10-9	3,5 10-9	2,4 10-9	1,6 10-9	1,3 10-9
Eu-149	93,1 d	0,005	$9,7 \ 10^{-10}$	5,0 10-4	6,3 10 ⁻¹⁰	3,4 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,3 10 ⁻¹⁰	$1,0 \ 10^{-10}$
Eu-150	34,2 a	0,005	$1,3 \ 10^{-8}$	5,0 10-4	5,7 10 ⁻⁹	3,4 10-9	2,3 10-9	1,5 10-9	1,3 10-9
Eu-150	12,6 h	0,005	4,4 10 ⁻⁹	5,0 10-4	2,8 10-9	1,4 10-9	8,2 10 ⁻¹⁰	4,7 10 ⁻¹⁰	3,8 10 ⁻¹⁰
Eu-152	13,3 a	0,005	$1,6 \ 10^{-8}$	5,0 10-4	7,4 10 ⁻⁹	4,1 10-9	2,6 10-9	1,7 10-9	1,4 10 ⁻⁹
Eu-152m	9,32 h	0,005	5,7 10 ⁻⁹	5,0 10-4	3,6 10 ⁻⁹	1,8 10-9	1,1 10-9	6,2 10 ⁻¹⁰	5,0 10 ⁻¹⁰
Eu-154	8,80 a	0,005	$2,5 \ 10^{-8}$	5,0 10-4	1,2 10-8	6,5 10-9	4, 1 10 ⁻⁹	2,5 10-9	2,0 10-9
Eu-155	4,96 a	0,005	4,3 10 ⁻⁹	5,0 10-4	2,2 10-9	1,1 10-9	6,8 10 ⁻¹⁰	4, 0 10 ⁻¹⁰	3,2 10 ⁻¹⁰
Eu-156	15,2 d	0,005	$2,2\ 10^{-8}$	5,0 10-4	1,5 10-8	7,5 10-9	4,6 10-9	2,7 10-9	2,2 10-9
Eu-157	15,1 h	0,005	6,7 10 ⁻⁹	5,0 10-4	4,3 10-9	2,2 10-9	1,3 10-9	7,5 10 ⁻¹⁰	6,0 10 ⁻¹⁰
Eu-158	0,765 h	0,005	1,1 10-9	5,0 10-4	6,2 10 ⁻¹⁰	3,1 10 ⁻¹⁰	1,8 10 ⁻¹⁰	1,2 10 ⁻¹⁰	9,4 10 ⁻¹¹
Gadolinium									
Gd-145	0,382 h	0,005	4,5 10 ⁻¹⁰	5,0 10-4	2,6 10 ⁻¹⁰	1,3 10-10	8,1 10-11	5,6 10-11	4,4 10 ⁻¹¹
Gd-146	48,3 d	0,005	9,4 10 ⁻⁹	5,0 10-4	6,0 10 ⁻⁹	3,2 10-9	2,0 10-9	1,2 10-9	9,6 10-10
Gd-147	1,59 d	0,005	4,5 10-9	5,0 10-4	3,2 10-9	1,8 10-9	1,2 10-9	7,7 10 ⁻¹⁰	6,1 10 ⁻¹⁰
Gd-148	93,0 a	0,005	1,7 10 ⁻⁶	5,0 10-4	1,6 10 ⁻⁷	1,1 10 ⁻⁷	7,3 10-8	5,9 10 ⁻⁸	5,6 10-8
Gd-149	9,40 d	0,005	4,0 10-9	5,0 10-4	2,7 10-9	1,5 10-9	9,3 10 ⁻¹⁰	5,7 10 ⁻¹⁰	4,5 10 ⁻¹⁰
Gd-151	120 d	0,005	$2,1 \ 10^{-9}$	5,0 10-4	1,3 10 ⁻⁹	6,8 10 ⁻¹⁰	4,2 10 ⁻¹⁰	2,4 10 ⁻¹⁰	2,0 10 ⁻¹⁰
Gd-152	1,08 10 ¹⁴ a	0,005	1,2 10 ⁻⁶	5,0 10-4	1,2 10 ⁻⁷	7,7 10-8	5,3 10-8	4,3 10 ⁻⁸	4,1 10-8
Gd-153	242 d	0,005	2,9 10 ⁻⁹	5,0 10-4	1,8 10 ⁻⁹	9,4 10 ⁻¹⁰	5,8 10 ⁻¹⁰	3,4 10 ⁻¹⁰	$2,7 \ 10^{-10}$
Gd-159	18,6 h	0,005	5,7 10 ⁻⁹	5,0 10-4	3,6 10 ⁻⁹	1,8 10-9	1,1 10 ⁻⁹	6,2 10 ⁻¹⁰	4,9 10 ⁻¹⁰
Terbium									
Tb-147	1,65 h	0,005	1,5 10 ⁻⁹	5,0 10-4	1,0 10 ⁻⁹	5,4 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,0 10 ⁻¹⁰	$1,6 \ 10^{-10}$
Tb-149	4,15 h	0,005	2,4 10 ⁻⁹	5,0 10-4	1,5 10 ⁻⁹	8,0 10 ⁻¹⁰	5,0 10 ⁻¹⁰	3,1 10 ⁻¹⁰	2,5 10 ⁻¹⁰
Tb-150	3,27 h	0,005	2,5 10 ⁻⁹	5,0 10-4	1,6 10 ⁻⁹	8,3 10 ⁻¹⁰	5,1 10 ⁻¹⁰	3,2 10 ⁻¹⁰	2,5 10 ⁻¹⁰
Tb-151	17,6 h	0,005	$2,7 \ 10^{-9}$	5,0 10-4	1,9 10 ⁻⁹	1,0 10-9	6,7 10 ⁻¹⁰	4,2 10 ⁻¹⁰	3,4 10 ⁻¹⁰
Tb-153	2,34 d	0,005	2,3 10 ⁻⁹	5,0 10-4	1,5 10-9	8,2 10 ⁻¹⁰	5,1 10 ⁻¹⁰	3,1 10 ⁻¹⁰	2,5 10 ⁻¹⁰
Tb-154	21,4 h	0,005	4,7 10 ⁻⁹	5,0 10-4	3,4 10 ⁻⁹	1,9 10-9	1,3 10-9	8,1 10 ⁻¹⁰	6,5 10 ⁻¹⁰
Tb-155	5,32 d	0,005	1,9 10-9	5,0 10-4	1,3 10-9	6,8 10 ⁻¹⁰	4,3 10 ⁻¹⁰	2,6 10 ⁻¹⁰	2,1 10 ⁻¹⁰
Tb-156	5,34 d	0,005	9,0 10-9	5,0 10-4	6,3 10 ⁻⁹	3,5 10-9	2,3 10-9	1,5 10-9	1,2 10-9
Tb-156m	1,02 d	0,005	1,5 10 ⁻⁹	5,0 10-4	1,0 10-9	5,6 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,7 10 ⁻¹⁰
Tb-156m	5,00 h	0,005	8,0 10 ⁻¹⁰	5,0 10-4	5,2 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,0 10-10	8,1 10-11
Tb-157	$1,50 \ 10^2 \ a$	0,005	4,9 10 ⁻¹⁰	5,0 10-4	$2,2 \ 10^{-10}$	1,1 10 ⁻¹⁰	6,8 10 ⁻¹¹	4,1 10 ⁻¹¹	3,4 10 ⁻¹¹
Tb-158	$1,50 \ 10^2 \ a$	0,005	1,3 10-8	5,0 10-4	5,9 10-9	3,3 10-9	2,1 10-9	1,4 10-9	1,1 10-9
Tb-160	72,3 d	0,005	1,6 10 ⁻⁸	5,0 10-4	$1,0 \ 10^{-8}$	5,4 10-9	3,3 10-9	2,0 10-9	1,6 10 ⁻⁹
Tb-161	6,91 d	0,005	8,3 10 ⁻⁹	5,0 10-4	5,3 10 ⁻⁹	2,7 10 ⁻⁹	1,6 10-9	9,0 10 ⁻¹⁰	7,2 10 ⁻¹⁰
Dysprosium			0 = 15 10	1 50 - 6 4 :	CO 10 10	1 20 40 10	1 0 5 1 6 10	١٥ مه د ۱۵	1 4 2 4 2 10
Dy-155	10,0 h	0,005	9,7 10 ⁻¹⁰	5,0 10-4	6,8 10 ⁻¹⁰	3,8 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,3 10 ⁻¹⁰
Dy-157	8,10 h	0,005	4,4 10 ⁻¹⁰	5,0 10-4	3,1 10 ⁻¹⁰	1,8 10 ⁻¹⁰	1,2 10 ⁻¹⁰	7,7 10 ⁻¹¹	6,1 10 ⁻¹¹
Dy-159	144 d	0,005	1,0 10 ⁻⁹	5,0 10-4	6,4 10 ⁻¹⁰	3,4 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,3 10 ⁻¹⁰	1,0 10 ⁻¹⁰
Dy-165	2,33 h	0,005	1,3 10 ⁻⁹	5,0 10-4	7,9 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,1 10 ⁻¹⁰
Dy-166	3,40 d	0,005	$1,9 \ 10^{-8}$	5,0 10-4	1,2 10 ⁻⁸	6,0 10 ⁻⁹	3,6 10-9	2,0 10-9	1,6 10-9

Nialáida	Période	Âge ≤	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Holmium									
Ho-155	0,800 h	0,005	3,8 10 ⁻¹⁰	5,0 10-4	2,3 10 ⁻¹⁰	1,2 10 ⁻¹⁰	7,1 10 ⁻¹¹	4,7 10-11	3,7 10-11
Ho-157	0,210 h	0,005	5,8 10 ⁻¹¹	5,0 10-4	$3,6\ 10^{-11}$	1,9 10-11	1,2 10 ⁻¹¹	8,1 10 ⁻¹²	6,5 10 ⁻¹²
Ho-159	0,550 h	0,005	$7,1 \ 10^{-11}$	5,0 10-4	$4,3 \ 10^{-11}$	2,3 10-11	1,4 10 ⁻¹¹	9,9 10 ⁻¹²	7,9 10 ⁻¹²
Ho-161	2,50 h	0,005	$1,4 \ 10^{-10}$	5,0 10-4	$8,1 \ 10^{-11}$	4,2 10-11	2,5 10 ⁻¹¹	1,6 10-11	1,3 10-11
Ho-162	0,250 h	0,005	$3,5 \ 10^{-11}$	5,0 10-4	$2,0\ 10^{-11}$	1,0 10 ⁻¹¹	6,0 10 ⁻¹²	4,2 10 ⁻¹²	3,3 10 ⁻¹²
Ho-162m	1,13 h	0,005	$2,4 \ 10^{-10}$	5,0 10-4	1,5 10 ⁻¹⁰	7,9 10 ⁻¹¹	4,9 10 ⁻¹¹	3,3 10-11	2,6 10 ⁻¹¹
Ho-164	0,483 h	0,005	$1,2 \ 10^{-10}$	5,0 10-4	6,5 10 ⁻¹¹	3,2 10 ⁻¹¹	1,8 10 ⁻¹¹	1,2 10-11	9,5 10-12
Ho-164m	0,625 h	0,005	$2,0\ 10^{-10}$	5,0 10-4	$1,1 \ 10^{-10}$	5,5 10 ⁻¹¹	3,2 10 ⁻¹¹	2,1 10 ⁻¹¹	1,6 10-11
Ho-166	1,12 d	0,005	1,6 10 ⁻⁸	5,0 10-4	$1,0\ 10^{-8}$	5,2 10-9	3,1 10-9	1,7 10-9	1,4 10-9
Ho-166m	$1,20 \ 10^3 \ a$	0,005	$2,6\ 10^{-8}$	5,0 10-4	9,3 10-9	5,3 10-9	3,5 10-9	2,4 10-9	2,0 10-9
Ho-167	3,10 h	0,005	8,8 10 ⁻¹⁰	5,0 10-4	$5,5 \ 10^{-10}$	2,8 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,0 10-10	8,3 10 ⁻¹¹
Erbium	•					,	•	•	
Er-161	3,24 h	0,005	6,5 10 ⁻¹⁰	5,0 10-4	4,4 10 ⁻¹⁰	2,4 10 ⁻¹⁰	1,6 10-10	1,0 10-10	8,0 10-11
Er-165	10,4 h	0,005	1,7 10 ⁻¹⁰	5,0 10-4	1,1 10 ⁻¹⁰	6,2 10 ⁻¹¹	3,9 10 ⁻¹¹	2,4 10 ⁻¹¹	1,9 10-11
Er-169	9,30 d	0,005	4,4 10-9	5,0 10-4	2,8 10-9	1,4 10-9	8,2 10-10	4,7 10 ⁻¹⁰	3,7 10 ⁻¹⁰
Er-171	7,52 h	0,005	4,0 10-9	5,0 10-4	2,5 10 ⁻⁹	1,3 10-9	7,6 10 ⁻¹⁰	4,5 10 ⁻¹⁰	3,6 10 ⁻¹⁰
Er-172	2,05 d	0,005	1,0 10-8	5,0 10-4	6,8 10-9	3,5 10-9	2,1 10 ⁻⁹	1,3 10 ⁻⁹	1,0 10-9
Thulium	_, =, = =	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,* -*	1 -, 1	0,0 00	1 0,0 20	_,	1 2,0 20	1 2,0 20
Tm-162	0,362 h	0,005	2,9 10 ⁻¹⁰	5,0 10-4	1,7 10 ⁻¹⁰	8,7 10-11	5,2 10-11	3,6 10-11	2,9 10-11
Tm-166			2,9 10 2,1 10 ⁻⁹	5,0 10	1,7 10 1,5 10 ⁻⁹	8,7 10 8,3 10 ⁻¹⁰	5,5 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,8 10 ⁻¹⁰
	7,70 h	0,005		1 1	3,9 10 ⁻⁹	2,0 10 ⁻⁹	1	7,0 10 ⁻¹⁰	
Tm-167	9,24 d	0,005	6,0 10 ⁻⁹	5,0 10-4	9,8 10 ⁻⁹	4,9 10 ⁻⁹	1,2 10 ⁻⁹		5,6 10 ⁻¹⁰
Tm-170	129 d	0,005	1,6 10 ⁻⁸	5,0 10-4		3,9 10 ⁻¹⁰	2,9 10 ⁻⁹	1,6 10 ⁻⁹	1,3 10-9
Tm-171	1,92 a	0,005	1,5 10 ⁻⁹	5,0 10-4	7,8 10 ⁻¹⁰		2,3 10 ⁻¹⁰	1,3 10 ⁻¹⁰	1,1 10 ⁻¹⁰
Tm-172	2,65 d	0,005	1,9 10 ⁻⁸ 3,3 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$1,2 \ 10^{-8}$ $2,1 \ 10^{-9}$	6,1 10 ⁻⁹	$\begin{array}{c c} 3,7 & 10^{-9} \\ 6,5 & 10^{-10} \end{array}$	2,1 10 ⁻⁹ 3,8 10 ⁻¹⁰	1,7 10 ⁻⁹ 3,1 10 ⁻¹⁰
Tm-173	8,24 h	0,005	3,3 10 3,1 10 ⁻¹⁰	5,0 10	2,1 10 1,7 10 ⁻¹⁰	1,1 10 ⁻⁹ 8,6 10 ⁻¹¹	5,0 10 ⁻¹¹	3,8 10 3 3,4 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tm-175	0,253 h	0,003	3,1 10	3,0 10	1,7 10	8,6 10	3,0 10	3,4 10	2,7 10
Ytterbium			10	1	10				
Yb-162	0,315 h	0,005	2,2 10 ⁻¹⁰	5,0 10-4	1,3 10 ⁻¹⁰	6,9 10 ⁻¹¹	4,2 10 ⁻¹¹	2,9 10 ⁻¹¹	2,3 10 ⁻¹¹
Yb-166	2,36 d	0,005	7,7 10 ⁻⁹	5,0 10-4	5,4 10-9	2,9 10 ⁻⁹	1,9 10-9	1,2 10-9	9,5 10 ⁻¹⁰
Yb-167	0,292 h	0,005	7,0 10 ⁻¹¹	5,0 10-4	4,1 10 ⁻¹¹	2,1 10 ⁻¹¹	1,2 10 ⁻¹¹	8,4 10 ⁻¹²	6,7 10 ⁻¹²
Yb-169	32,0 d	0,005	7,1 10 ⁻⁹	5,0 10-4	4,6 10 ⁻⁹	2,4 10 ⁻⁹	1,5 10-9	8,8 10 ⁻¹⁰	7,1 10 ⁻¹⁰
Yb-175	4,19 d	0,005	5,0 10-9	5,0 10-4	3,2 10 ⁻⁹	1,6 10-9	9,5 10 ⁻¹⁰	5,4 10 ⁻¹⁰	4,4 10 ⁻¹⁰
Yb-177	1,90 h	0,005	1,0 10-9	5,0 10 ⁻⁴	6,8 10 ⁻¹⁰	3,4 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,1 10 ⁻¹⁰	8,8 10 ⁻¹¹
Yb-178	1,23 h	0,005	1,4 10-9	5,0 10-4	8,4 10 ⁻¹⁰	4,2 10 ⁻¹⁰	2,4 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,2 10 ⁻¹⁰
Lutetium									
Lu-169	1,42 d	0,005	3,5 10 ⁻⁹	5,0 10-4	2,4 10 ⁻⁹	1,4 10-9	8,9 10 ⁻¹⁰	5,7 10 ⁻¹⁰	4,6 10-10
Lu-170	2,00 d	0,005	$7,4 \ 10^{-9}$	5,0 10-4	5,2 10 ⁻⁹	2,9 10 ⁻⁹	1,9 10-9	1,2 10-9	9,9 10 ⁻¹⁰
Lu-171	8,22 d	0,005	5,9 10-9	5,0 10-4	4, 0 10 ⁻⁹	2,2 10-9	1,4 10 ⁻⁹	8,5 10 ⁻¹⁰	6,7 10 ⁻¹⁰
Lu-172	6,70 d	0,005	1,0 10 ⁻⁸	5,0 10-4	7,0 10 ⁻⁹	3,9 10-9	2,5 10-9	1,6 10-9	1,3 10 ⁻⁹
Lu-173	1,37 a	0,005	2,7 10-9	5,0 10-4	1,6 10-9	8,6 10 ⁻¹⁰	5,3 10 ⁻¹⁰	3,2 10 ⁻¹⁰	2,6 10 ⁻¹⁰
Lu-174	3,31 a	0,005	3,2 10-9	5,0 10-4	1,7 10-9	9,1 10 ⁻¹⁰	5,6 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,7 10 ⁻¹⁰
Lu-174m	142 d	0,005	6,2 10 ⁻⁹	5,0 10-4	3,8 10 ⁻⁹	1,9 10-9	1,1 10-9	6,6 10 ⁻¹⁰	5,3 10 ⁻¹⁰
Lu-176	3,60 10 ¹⁰ a	0,005	$2,4 \ 10^{-8}$	5,0 10-4	$1,1 \ 10^{-8}$	5,7 10-9	3,5 10 ⁻⁹	2,2 10 ⁻⁹	1,8 10 ⁻⁹
Lu-176m	3,68 h	0,005	2,0 10 ⁻⁹	5,0 10-4	1,2 10 ⁻⁹	6,0 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,7 10 ⁻¹⁰
Lu-177	6,71 d	0,005	6,1 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,9 10 ⁻⁹ 1,1 10 ⁻⁸	2,0 10 ⁻⁹	1,2 10 ⁻⁹	6,6 10 ⁻¹⁰	5,3 10 ⁻¹⁰
Lu-177m	161 d	0,005 0,005	$1,7 \ 10^{-8}$ $5,9 \ 10^{-10}$	5,0 10	3,3 10 ⁻¹⁰	5,8 10 ⁻⁹ 1,6 10 ⁻¹⁰	3,6 10 ⁻⁹ 9,0 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,7 10 ⁻⁹ 4,7 10 ⁻¹¹
Lu-178 Lu-178m	0,473 h 0,378 h	0,005	4,3 10 ⁻¹⁰	5,0 10	2,4 10 ⁻¹⁰	1,6 10 11	7,1 10 ⁻¹¹	4,9 10 ⁻¹¹	3,8 10 ⁻¹¹
Lu-178111 Lu-179	4,59 h	0,005	2,4 10 ⁻⁹	5,0 10	1,5 10 ⁻⁹	7,5 10 ⁻¹⁰	4,4 10 ⁻¹⁰	2,6 10 ⁻¹⁰	2,1 10 ⁻¹⁰
Lu-1//	7,57 11	1 0,003	2,7 10	3,010	1,5 10	/,5 10	7,7 10	2,0 10	2,1 10

Nucléide	Période	Âge ≤		Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucleide	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Hafnium									
Hf-170	16,0 h	0,020	3,9 10 ⁻⁹	0,002	2,7 10 ⁻⁹	1,5 10-9	9,5 10-10	6,0 10-10	4,8 10 ⁻¹⁰
Hf-172	1,87 a	0,020	1,9 10-8	0,002	6,1 10 ⁻⁹	3,3 10 ⁻⁹	2,0 10-9	1,3 10-9	1,0 10-9
Hf-173	24,0 h	0,020	1,9 10 ⁻⁹	0,002	1,3 10-9	7,2 10 ⁻¹⁰	4,6 10 ⁻¹⁰	2,8 10 ⁻¹⁰	2,3 10 ⁻¹⁰
Hf-175	70,0 d	0,020	3,8 10 ⁻⁹	0,002	2,4 10 ⁻⁹	1,3 10 ⁻⁹	8,4 10 ⁻¹⁰	5,2 10 ⁻¹⁰	4,1 10 ⁻¹⁰
Hf-177m	0,856 h	0,020	7,8 10 ⁻¹⁰	0,002	4,7 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,0 10-10	8,1 10-11
Hf-178m	31,0 a	0,020	7,0 10-8	0,002	$1,9 \ 10^{-8}$	1,1 10 ⁻⁸	7,8 10 ⁻⁹	5,5 10-9	4,7 10 ⁻⁹
Hf-179m	25,1 d	0,020	$1,2 \ 10^{-8}$	0,002	7,8 10 ⁻⁹	4,1 10 ⁻⁹	2,6 10 ⁻⁹	1,6 10-9	1,2 10-9
Hf-180m	5,50 h	0,020	1,4 10 ⁻⁹	0,002	9,7 10 ⁻¹⁰	5,3 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,7 10 ⁻¹⁰
Hf-181	42,4 d	0,020	$1,2\ 10^{-8}$	0,002	7,4 10 ⁻⁹	3,8 10-9	2,3 10 ⁻⁹	1,4 10-9	1,1 10 ⁻⁹
Hf-182	9,00 10 ⁶ a	0,020	5,6 10 ⁻⁸	0,002	7,9 10 ⁻⁹	5,4 10 ⁻⁹	4,0 10 ⁻⁹	3,3 10-9	3,0 10-9
Hf-182m	1,02 h	0,020	4,1 10 ⁻¹⁰	0,002	2,5 10 ⁻¹⁰	1,3 10 ⁻¹⁰	7,8 10 ⁻¹¹	5,2 10-11	4,2 10 ⁻¹¹
Hf-183	1,07 h	0,020	8,1 10 ⁻¹⁰	0,002	4,8 10 ⁻¹⁰	2,4 10 ⁻¹⁰	1,4 10 ⁻¹⁰	9,3 10-11	7,3 10 ⁻¹¹
Hf-184	4,12 h	0,020	5,5 10 ⁻⁹	0,002	3,6 10 ⁻⁹	1,8 10-9	1,1 10 ⁻⁹	6,6 10 ⁻¹⁰	5,2 10 ⁻¹⁰
Tantale								•	
Ta-172	0,613 h	0,010	5,5 10 ⁻¹⁰	0,001	3,2 10 ⁻¹⁰	1,6 10 ⁻¹⁰	9,8 10 ⁻¹¹	6,6 10-11	5,3 10 ⁻¹¹
Ta-173	3,65 h	0,010	2,0 10-9	0,001	1,3 10-9	6,5 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,4 10 ⁻¹⁰	1,9 10 ⁻¹⁰
Ta-174	1,20 h	0,010	6,2 10 ⁻¹⁰	0,001	$3,7 \ 10^{-10}$	1,9 10 ⁻¹⁰	1,1 10 ⁻¹⁰	7,2 10-11	5,7 10 ⁻¹¹
Ta-175	10,5 h	0,010	1,6 10 ⁻⁹	0,001	1,1 10 ⁻⁹	6,2 10 ⁻¹⁰	4,0 10 ⁻¹⁰	2,6 10 ⁻¹⁰	2,1 10 ⁻¹⁰
Ta-176	8,08 h	0,010	2,4 10-9	0,001	1,7 10 ⁻⁹	9,2 10 ⁻¹⁰	6,1 10 ⁻¹⁰	3,9 10 ⁻¹⁰	3,1 10 ⁻¹⁰
Ta-177	2,36 d	0,010	1,0 10 ⁻⁹	0,001	6,9 10 ⁻¹⁰	3,6 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,3 10 ⁻¹⁰	1,1 10 ⁻¹⁰
Ta-178	2,20 h	0,010	6,3 10 ⁻¹⁰	0,001	4,5 10 ⁻¹⁰	2,4 10 ⁻¹⁰	1,5 10 ⁻¹⁰	9,1 10 ⁻¹¹	7,2 10 ⁻¹¹
Ta-179	1,82 a	0,010	6,2 10 ⁻¹⁰	0,001	4,1 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,3 10 ⁻¹⁰	8,1 10 ⁻¹¹	6,5 10 ⁻¹¹
Ta-180	1,00 10 ¹³ a	0,010	8,1 10 ⁻⁹	0,001	5,3 10-9	2,8 10-9	1,7 10-9	1,1 10-9	8,4 10 ⁻¹⁰
Ta-180m	8,10 h	0,010	5,8 10 ⁻¹⁰	0,001	3,7 10 ⁻¹⁰	1,9 10-10	1,1 10 ⁻¹⁰	6,7 10-11	5,4 10 ⁻¹¹
Ta-182	115 d	0,010	1,4 10-8	0,001	9,4 10 ⁻⁹	5,0 10 ⁻⁹	3,1 10-9	1,9 10-9	1,5 10-9
Ta-182m	0,264 h	0,010	1,4 10 ⁻¹⁰	0,001	7,5 10 ⁻¹¹	3,7 10 ⁻¹¹	2,1 10-11	1,5 10-11	1,2 10-11
Ta-183	5,10 d	0,010	1,4 10 ⁻⁸	0,001	9,3 10-9	4, 7 10 ⁻⁹	2,8 10-9	1,6 10-9	1,3 10-9
Ta-184	8,70 h	0,010	6,7 10-9	0,001	4,4 10 ⁻⁹	2,3 10-9	1,4 10 ⁻⁹	8,5 10 ⁻¹⁰	6,8 10 ⁻¹⁰
Ta-185	0,816 h	0,010	8,3 10 ⁻¹⁰	0,001	4,6 10 ⁻¹⁰	$2,3 \ 10^{-10}$	1,3 10 ⁻¹⁰	8,6 10 ⁻¹¹	6,8 10 ⁻¹¹
Ta-186	0,175 h	0,010	3,8 10 ⁻¹⁰	0,001	2,1 10 ⁻¹⁰	1,1 10 ⁻¹⁰	6,1 10 ⁻¹¹	4,2 10 ⁻¹¹	3,3 10 ⁻¹¹
Tungstène	1 1	1 1		1 '		1	,	,	,
W-176	2,30 h	0,600	6,8 10 ⁻¹⁰	0,300	5,5 10 ⁻¹⁰	3,0 10 ⁻¹⁰	2,0 10-10	1,3 10-10	1,0 10-10
W-177	2,25 h	0,600	4,4 10 ⁻¹⁰	0,300	$3,2 \ 10^{-10}$	1,7 10 ⁻¹⁰	1,1 10 ⁻¹⁰	7,2 10 ⁻¹¹	5,8 10 ⁻¹¹
W-178	21,7 d	0,600	1,8 10 ⁻⁹	0,300	1,4 10 ⁻⁹	7,3 10 ⁻¹⁰	4,5 10 ⁻¹⁰	2,7 10 ⁻¹⁰	2,2 10 ⁻¹⁰
W-179	0,625 h	0,600	3,4 10 ⁻¹¹	0,300	2,0 10 ⁻¹¹	1,0 10 ⁻¹¹	6,2 10 ⁻¹²	4,2 10 ⁻¹²	3,3 10 ⁻¹²
W-181	121 d	0,600	6,3 10 ⁻¹⁰	0,300	4, 7 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,6 10 ⁻¹⁰	9,5 10 ⁻¹¹	7,6 10 ⁻¹¹
W-185	75,1 d	0,600	4,4 10 ⁻⁹	0,300	3,3 10 ⁻⁹	1,6 10-9	9,7 10 ⁻¹⁰	5,5 10 ⁻¹⁰	4,4 10 ⁻¹⁰
W-187	23,9 h	0,600	5,5 10 ⁻⁹	0,300	4,3 10 ⁻⁹	2,2 10 ⁻⁹	1,3 10-9	7,8 10 ⁻¹⁰	6,3 10 ⁻¹⁰
W-187 W-188	69,4 d	0,600	2,1 10 ⁻⁸	0,300	1,5 10 ⁻⁸	7,7 10 ⁻⁹	4,6 10 ⁻⁹	2,6 10 ⁻⁹	2,1 10 ⁻⁹
	69,4 u	0,600	2,1 10	0,300	1,5 10	/,/ 10	4,6 10	2,6 10	2,1 10
Rhénium	1 02221	I 1000 !	2 5 40-10	1 0.000	1 4 10-10	I 73 40-11	L 4 4 40=11	1 20 40-11	1 22 40-11
Re-177	0,233 h	1,000	$2,5 ext{ } 10^{-10}$	0,800	1,4 10 ⁻¹⁰	7,2 10 ⁻¹¹	4,1 10 ⁻¹¹	2,8 10 ⁻¹¹	2,2 10 ⁻¹¹
Re-178	0,220 h	1,000	2,9 10 ⁻¹⁰	0,800	1,6 10 ⁻¹⁰	7,9 10 ⁻¹¹	4,6 10 ⁻¹¹	3,1 10 ⁻¹¹	2,5 10 ⁻¹¹
Re-181	20,0 h	1,000	4,2 10 ⁻⁹	0,800	2,8 10 ⁻⁹	1,4 10-9	8,2 10 ⁻¹⁰	5,4 10 ⁻¹⁰	4,2 10 ⁻¹⁰
Re-182	2,67 d	1,000	$1,4 \ 10^{-8}$	0,800	8,9 10 ⁻⁹	4,7 10 ⁻⁹	2,8 10 ⁻⁹	1,8 10 ⁻⁹	1,4 10 ⁻⁹
Re-182	12,7 h	1,000	2,4 10 ⁻⁹	0,800	1,7 10 ⁻⁹	8,9 10 ⁻¹⁰	5,2 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,7 10 ⁻¹⁰
Re-184	38,0 d	1,000	8,9 10 ⁻⁹	0,800	5,6 10 ⁻⁹	3,0 10-9	1,8 10-9	1,3 10-9	1,0 10-9
Re-184m	165 d	1,000	$1,7 \ 10^{-8}$	0,800	9,8 10 ⁻⁹	4,9 10 ⁻⁹	2,8 10 ⁻⁹	1,9 10-9	1,5 10-9

NT., .14: J.	Période	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Re-186	3,78 d	1,000	1,9 10-8	0,800	1,1 10-8	5,5 10-9	3,0 10-9	1,9 10-9	1,5 10 ⁻⁹
Re-186m	2,00 10 ⁵ a	1,000	3,0 10-8	0,800	1,6 10-8	7,6 10 ⁻⁹	4,4 10 ⁻⁹	2,8 10-9	2,2 10-9
Re-187	5,00 10 ¹⁰ a	1,000	6,8 10-11	0,800	3,8 10 ⁻¹¹	1,8 10-11	1,0 10-11	6,6 10 ⁻¹²	5,1 10 ⁻¹²
Re-188	17,0 h	1,000	1,7 10-8	0,800	1,1 10-8	5,4 10 ⁻⁹	2,9 10 ⁻⁹	1,8 10-9	1,4 10 ⁻⁹
Re-188m	0,310 h	1,000	3,8 10 ⁻¹⁰	0,800	2,3 10 ⁻¹⁰	1,1 10-10	6,1 10 ⁻¹¹	4,0 10-11	3,0 10-11
Re-189	1,01 d	1,000	9,8 10-9	0,800	6,2 10-9	3,0 10-9	1,6 10 ⁻⁹	1,0 10-9	7,8 10 ⁻¹⁰
Osmium	•	,	•			•	•	'	
Os-180	0,366 h	0,020	1,6 10 ⁻¹⁰	0,010	9,8 10 ⁻¹¹	5,1 10 ⁻¹¹	3,2 10 ⁻¹¹	2,2 10 ⁻¹¹	1,7 10-11
Os-181	1,75 h	0,020	7,6 10 ⁻¹⁰	0,010	5,0 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,1 10 ⁻¹⁰	8,9 10-11
Os-182	22,0 h	0,020	4,6 10-9	0,010	3,2 10 ⁻⁹	1,7 10-9	1,1 10 ⁻⁹	7,0 10 ⁻¹⁰	5,6 10 ⁻¹⁰
Os-185	94,0 d	0,020	3,8 10-9	0,010	2,6 10-9	1,5 10 ⁻⁹	9,8 10 ⁻¹⁰	6,5 10 ⁻¹⁰	5,1 10 ⁻¹⁰
Os-189m	6,00 h	0,020	2,1 10 ⁻¹⁰	0,010	1,3 10 ⁻¹⁰	6,5 10 ⁻¹¹	3,8 10 ⁻¹¹	2,2 10 ⁻¹¹	1,8 10 ⁻¹¹
Os-191	15,4 d	0,020	6,3 10 ⁻⁹	0,010	4,1 10 ⁻⁹	2,1 10-9	1,2 10-9	7,0 10 ⁻¹⁰	5,7 10 ⁻¹⁰
Os-191m	13,0 h	0,020	1,1 10-9	0,010	7,1 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,2 10 ⁻¹⁰	9,6 10-11
Os-193	1,25 d	0,020	9,3 10-9	0,010	6,0 10 ⁻⁹	3,0 10-9	1,8 10 ⁻⁹	1,0 10-9	8,1 10 ⁻¹⁰
Os-194	6,00 a	0,020	2,9 10 ⁻⁸	0,010	1,7 10 ⁻⁸	8,8 10-9	5,2 10-9	3,0 10-9	2,4 10-9
Iridium									
Ir-182	0,250 h	0,020	5,3 10 ⁻¹⁰	0,010	3,0 10 ⁻¹⁰	1,5 10 ⁻¹⁰	8,9 10 ⁻¹¹	6,0 10 ⁻¹¹	4,8 10 ⁻¹¹
Ir-184	3,02 h	0,020	1,5 10-9	0,010	9,7 10 ⁻¹⁰	5,2 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,7 10 ⁻¹⁰
Ir-185	14,0 h	0,020	2,4 10 ⁻⁹	0,010	1,6 10 ⁻⁹	8,6 10 ⁻¹⁰	5,3 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,6 10 ⁻¹⁰
Ir-186	15,8 h	0,020	3,8 10-9	0,010	2,7 10-9	1,5 10-9	9,6 10 ⁻¹⁰	6,1 10 ⁻¹⁰	4,9 10 ⁻¹⁰
Ir-186	1,75 h	0,020	5,8 10 ⁻¹⁰	0,010	3,6 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,3 10 ⁻¹⁰	7,7 10 ⁻¹¹	6,1 10-11
Ir-187	10,5 h	0,020	1,1 10-9	0,010	7,3 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,2 10 ⁻¹⁰
Ir-188	1,73 d	0,020	4,6 10-9	0,010	3,3 10-9	1,8 10-9	1,2 10-9	7,9 10 ⁻¹⁰	6,3 10 ⁻¹⁰
Ir-189	13,3 d	0,020	2,5 10-9	0,010	1,7 10-9	8,6 10 ⁻¹⁰	5,2 10 ⁻¹⁰	3,0 10 ⁻¹⁰	2,4 10 ⁻¹⁰
Ir-190	12,1 d	0,020	1,0 10-8	0,010	7,1 10 ⁻⁹	3,9 10-9	2,5 10-9	1,6 10-9	1,2 10-9
Ir-190m	3,10 h	0,020	9,4 10 ⁻¹⁰	0,010	6,4 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,2 10 ⁻¹⁰
Ir-190m	1,20 h	0,020	7,9 10 ⁻¹¹	0,010	5,0 10 ⁻¹¹	2,6 10-11	1,6 10 ⁻¹¹	1,0 10 ⁻¹¹	8,0 10 ⁻¹²
Ir-192	74,0 d	0,020	1,3 10-8	0,010	8,7 10-9	4,6 10-9	2,8 10 ⁻⁹	1,7 10-9	1,4 10-9
Ir-192m	$2,41 \ 10^2 \ a$	0,020	2,8 10-9	0,010	1,4 10-9	8,3 10 ⁻¹⁰	5,5 10 ⁻¹⁰	3,7 10 ⁻¹⁰	3,1 10 ⁻¹⁰
Ir-193m	11,9 d	0,020	3,2 10-9	0,010	2,0 10-9	1,0 10-9	6,0 10 ⁻¹⁰	3,4 10 ⁻¹⁰	2,7 10 ⁻¹⁰
Ir-194	19,1 h	0,020	1,5 10 ⁻⁸	0,010	9,8 10-9	4,9 10-9	2,9 10 ⁻⁹	1,7 10-9	1,3 10-9
Ir-194m	171 d	0,020	1,7 10 ⁻⁸	0,010	1,1 10-8	6,4 10-9	4,1 10-9	2,6 10-9	2,1 10-9
Ir-195	2,50 h	0,020	1,2 10-9	0,010	7,3 10 ⁻¹⁰	3,6 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,3 10 ⁻¹⁰	1,0 10 ⁻¹⁰
Ir-195m	3,80 h	0,020	2,3 10-9	0,010	1,5 10-9	7,3 10 ⁻¹⁰	4,3 10 ⁻¹⁰	2,6 10 ⁻¹⁰	2,1 10 ⁻¹⁰
Platine									
Pt-186	2,00 h	0,020	7,8 10 ⁻¹⁰	0,010	5,3 10 ⁻¹⁰	2,9 10 ⁻¹⁰	1,8 10 ⁻¹⁰	1,2 10 ⁻¹⁰	9,3 10-11
Pt-188	10,2 d	0,020	6,7 10-9	0,010	4,5 10-9	2,4 10-9	1,5 10-9	9,5 10 ⁻¹⁰	7,6 10 ⁻¹⁰
Pt-189	10,9 h	0,020	1,1 10-9	0,010	7,4 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,2 10 ⁻¹⁰
Pt-191	2,80 d	0,020	3,1 10-9	0,010	2,1 10-9	1,1 10-9	6,9 10 ⁻¹⁰	4,2 10 ⁻¹⁰	3,4 10 ⁻¹⁰
Pt-193	50,0 a	0,020	3,7 10 ⁻¹⁰	0,010	2,4 10 ⁻¹⁰	1,2 10 ⁻¹⁰	6,9 10 ⁻¹¹	3,9 10-11	3,1 10 ⁻¹¹
Pt-193m	4,33 d	0,020	5,2 10-9	0,010	3,4 10 ⁻⁹	1,7 10-9	9,9 10 ⁻¹⁰	5,6 10 ⁻¹⁰	4,5 10 ⁻¹⁰
Pt-195m	4,02 d	0,020	7,1 10-9	0,010	4,6 10 ⁻⁹	2,3 10-9	1,4 10-9	7,9 10-10	6,3 10 ⁻¹⁰
Pt-197	18,3 h	0,020	4,7 10-9	0,010	3,0 10-9	1,5 10-9	8,8 10 ⁻¹⁰	5,1 10 ⁻¹⁰	4,0 10 ⁻¹⁰
Pt-197m	1,57 h	0,020	1,0 10-9	0,010	6,1 10 ⁻¹⁰	3,0 10 ⁻¹⁰	1,8 10 ⁻¹⁰	1,1 10 ⁻¹⁰	8,4 10 ⁻¹¹
Pt-199	0,513 h	0,020	4,7 10 ⁻¹⁰	0,010	2,7 10 ⁻¹⁰	1,3 10 ⁻¹⁰	7,5 10 ⁻¹¹	5,0 10 ⁻¹¹	3,9 10 ⁻¹¹
	1		1,4 10 ⁻⁸	1		4,4 10-9	1		i
Pt-200	12,5 h	0,020	1,4 10	0,010	8,8 10-9	4,4 10	2,6 10 ⁻⁹	1,5 10-9	1,2 10-9

Nucláida	Période	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide 	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Or									
Au-193	17,6 h	0,200	1,2 10 ⁻⁹	0,100	8,8 10 ⁻¹⁰	4,6 10 ⁻¹⁰	2,8 10 ⁻¹⁰	1,7 10-10	1,3 10-10
Au-194	1,65 h	0,200	2,9 10-9	0,100	2,2 10-9	1,2 10-9	8,1 10 ⁻¹⁰	5,3 10-10	4,2 10-10
Au-195	183 d	0,200	2,4 10-9	0,100	1,7 10-9	8,9 10 ⁻¹⁰	5,4 10 ⁻¹⁰	3,2 10 ⁻¹⁰	2,5 10 ⁻¹⁰
Au-198	2,69 d	0,200	$1,0\ 10^{-8}$	0,100	7,2 10-9	3,7 10-9	2,2 10-9	1,3 10-9	1,0 10-9
Au-198m	2,30 d	0,200	$1,2 \ 10^{-8}$	0,100	8,5 10-9	4,4 10 ⁻⁹	2,7 10-9	1,6 10-9	1,3 10-9
Au-199	3,14 d	0,200	4,5 10-9	0,100	3,1 10-9	1,6 10-9	9,5 10 ⁻¹⁰	5,5 10 ⁻¹⁰	4,4 10 ⁻¹⁰
Au-200	0,807 h	0,200	$8,3 \ 10^{-10}$	0,100	$4,7 \ 10^{-10}$	2,3 10 ⁻¹⁰	1,3 10 ⁻¹⁰	8,7 10-11	6,8 10 ⁻¹¹
Au-200m	18,7 h	0,200	$9,2\cdot 10^{-9}$	0,100	6,6 10 ⁻⁹	3,5 10-9	2,2 10-9	1,3 10-9	1,1 10 ⁻⁹
Au-201	0,440 h	0,200	3,1 10 ⁻¹⁰	0,100	$1,7 \ 10^{-10}$	8,2 10 ⁻¹¹	4,6 10 ⁻¹¹	3,1 10-11	2,4 10-11
Mercure	1					'	,	'	
Hg-193	3,50 h	1,000	3,3 10-10	1,000	$1,9 \ 10^{-10}$	9,8 10 ⁻¹¹	5,8 10 ⁻¹¹	3,9 10-11	3,1 10-11
(organique)		0,800	$4,7 \ 10^{-10}$	0,400	$4,4 \ 10^{-10}$	$2,2 \ 10^{-10}$	1,4 10 ⁻¹⁰	8,3 10 ⁻¹¹	$6,6\ 10^{-11}$
Hg-193 (inorganique)	3,50 h	0,040	8,5 10 ⁻¹⁰	0,020	5,5 10 ⁻¹⁰	2,8 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,0 10-10	8,2 10 ⁻¹¹
Hg-193m	11,1 h	1,000	$1,1 \ 10^{-9}$	1,000	$6.8 \ 10^{-10}$	$3,7 \ 10^{-10}$	2,3 10 ⁻¹⁰	$1,5 \ 10^{-10}$	$1,3 \ 10^{-10}$
(organique)	11 1 h	0,800	1,6 10 ⁻⁹ 3,6 10 ⁻⁹	0,400	1,8 10 ⁻⁹ 2,4 10 ⁻⁹	9,5 10 ⁻¹⁰ 1,3 10 ⁻⁹	6,0 10 ⁻¹⁰ 8,1 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3,0 \ 10^{-10}$ $4,0 \ 10^{-10}$
Hg-193m (inorganique)		0,040		0,020				·	
Hg-194	$2,60 \ 10^2 \ a$	1,000	$1,3 \ 10^{-7}$	1,000	$1,2 10^{-7}$ $4,8 10^{-8}$	8,4 10 ⁻⁸	6,6 10 ⁻⁸	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5,1 \ 10^{-8}$
(organique) Hg-194	$2,60 \ 10^2 \ a$	0,800 0,040	1,1 10 ⁻⁷ 7,2 10 ⁻⁹	0,400	3,6 10 ⁻⁹	$3.5 ext{ } 10^{-8}$ $2.6 ext{ } 10^{-9}$	2,7 10 ⁻⁸ 1,9 10 ⁻⁹	1,5 10	$2,1 10^{-8}$ $1,4 10^{-9}$
(inorganique)	1	0,040	7,2 10	0,020	3,0 10	2,0 10	1,9 10	1,3 10	1,4 10
Hg-195	9,90 h	1,000	3,0 10 ⁻¹⁰	1,000	2,0 10-10	1,0 10-10	6,4 10-11	4,2 10-11	$3,4 \ 10^{-11}$
(organique)		0,800	4,6 10 ⁻¹⁰	0,400	$4.8 \ 10^{-10}$	$2,5 \ 10^{-10}$	1,5 10 ⁻¹⁰	9,3 10 ⁻¹¹	7,5 10 ⁻¹¹
Hg-195 (inorganique)	9,90 h	0,040	9,5 10 ⁻¹⁰	0,020	6,3 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,0 10-10	1,2 10 ⁻¹⁰	9,7 10-11
Hg-195m	1,73 d	1,000	$2,1 \ 10^{-9}$	1,000	1,3 10-9	6,8 10 ⁻¹⁰	4,2 10 ⁻¹⁰	2,7 10-10	2,2 10 ⁻¹⁰
(organique)		0,800	2,6 10-9	0,400	2,8 10-9	1,4 10-9	8,7 10 ⁻¹⁰	$5,1 \ 10^{-10}$	4,1 10 ⁻¹⁰
Hg-195m (inorganique)	1,73 d	0,040	5,8 10 ⁻⁹	0,020	3,8 10 ⁻⁹	2,0 10-9	1,2 10-9	7,0 10-10	5,6 10 ⁻¹⁰
Hg-197	2,67 d	1,000	9,7 10 ⁻¹⁰	1,000	6,2 10 ⁻¹⁰	3,1 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,2 10 ⁻¹⁰	9,9 10 ⁻¹¹
(organique)		0,800	$1,3 \ 10^{-9}$	0,400	1,2 10-9	6,1 10 ⁻¹⁰	3,7 10 ⁻¹⁰	2,2 10 ⁻¹⁰	$1,7 \ 10^{-10}$
Hg-197 (inorganique)	2,67 d	0,040	2,5 10-9	0,020	1,6 10-9	8,3 10 ⁻¹⁰	5,0 10 ⁻¹⁰	2,9 10 ⁻¹⁰	2,3 10 ⁻¹⁰
Hg-197m	23,8 h	1,000	$1,5 \ 10^{-9}$	1,000	$9,5 \ 10^{-10}$	4,8 10 ⁻¹⁰	2,9 10 ⁻¹⁰	1,8 10-10	$1,5 \ 10^{-10}$
(organique)		0,800	2,2 10-9	0,400	2,5 10 ⁻⁹	1,2 10-9	7,3 10 ⁻¹⁰	4,2 10:10	3,4 10 ⁻¹⁰
Hg-197m (inorganique)	23,8 h	0,040	5,2 10 ⁻⁹	0,020	3,4 10 ⁻⁹	1,7 10-9	1,0 10-9	5,9 10 ⁻¹⁰	4,7 10 ⁻¹⁰
Hg-199m	0,710 h	1,000	$3,4 \ 10^{-10}$	1,000	$1,9 \ 10^{-10}$	9,3 10-11	5,3 10-11	3,6 10-11	$2,8 \ 10^{-11}$
(organique)		0,800	3,6 10 ⁻¹⁰	0,400	2,1 10 ⁻¹⁰	1,0 10 ⁻¹⁰	5,8 10-11	3,9 10-11	3,1 10-11
Hg-199m (inorganique)	0,710 h	0,040	3,7 10 ⁻¹⁰	0,020	2,1 10 ⁻¹⁰	1,0 10 ⁻¹⁰	5,9 10-11	3,9 10-11	3,1 10 ⁻¹¹
Hg-203 (organique)	46,6 d	1,000 0,800	1,5 10 ⁻⁸ 1,3 10 ⁻⁸	1,000 0,400	1,1 10 ⁻⁸ 6,4 10 ⁻⁹	5,7 10 ⁻⁹ 3,4 10 ⁻⁹	3,6 10 ⁻⁹ 2,1 10 ⁻⁹	2,3 10 ⁻⁹ 1,3 10 ⁻⁹	1,9 10 ⁻⁹ 1,1 10 ⁻⁹
Hg-203 (inorganique)	46,6 d	0,040	5,5 10-9	0,020	3,6 10-9	1,8 10-9	1,1 10-9	6,7 10 ⁻¹⁰	5,4 10 ⁻¹⁰
Thallium		,					·	'	
Tl-194	0,550 h	1,000	6,1 10-11	1,000	3,9 10-11	2,2 10 ⁻¹¹	1,4 10-11	1,0 10-11	$8,1 \ 10^{-12}$
Tl-194m	0,546 h	1,000	3,8 10 ⁻¹⁰	1,000	2,2 10 ⁻¹⁰	1,2 10 ⁻¹⁰	7,0 10 ⁻¹¹ .	4,9 10-11	4,0 10-11
Tl-194III			2,3 10 ⁻¹⁰		1,4 10 ⁻¹⁰	7,5 10 ⁻¹¹	4,7 10 ⁻¹¹	3,3 10 ⁻¹¹	$2,7 10^{-11}$
	1,16 h	1,000		1,000		-			
Tl-197	2,84 h	1,000	2,1 10 ⁻¹⁰	1,000	1,3 10 ⁻¹⁰	6,7 10 ⁻¹¹	4,2 10 ⁻¹¹	2,8 10-11	2,3 10 ⁻¹¹
Tl-198	5,30 h	1,000	4,7 10 ⁻¹⁰	1,000	3,3 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,2 10 ⁻¹⁰	8,7 10-11	7,3 10-11
Tl-198m	1,87 h	1,000	$4,8 \ 10^{-10}$	1,000	3,0 10 ⁻¹⁰	1,6 10-10	9,7 10-11	6,7 10-11	5,4 10-11

Nucléide	Période	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Tl-199	7,42 h	1,000	2,3 10 ⁻¹⁰	1,000	1,5 10 ⁻¹⁰	7,7 10-11	4,8 10 ⁻¹¹	3,2 10 ⁻¹¹	2,6 10 ⁻¹¹
Tl-200	1,09 d	1,000	1,3 10 ⁻⁹	1,000	9,1 10 ⁻¹⁰	5,3 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,4 10 ⁻¹⁰	2,0 10 ⁻¹⁰
Tl-201	3,04 d	1,000	8,4 10 ⁻¹⁰	1,000	5,5 10 ⁻¹⁰	2,9 10 ⁻¹⁰	1,8 10 ⁻¹⁰	1,2 10 ⁻¹⁰	9,5 10-11
Tl-202	12,2 d	1,000	2,9 10-9	1,000	2,1 10-9	1,2 10-9	7,9 10 ⁻¹⁰	5,4 10 ⁻¹⁰	4,5 10 ⁻¹⁰
Tl-204	3,78 a	1,000	1,3 10-8	1,000	8,5 10-9	4,2 10-9	2,5 10-9	1,5 10-9	1,2 10-9
Plomb a		•	•	•	'			'	'
Pb-195m	0,263 h	0,600	2,6 10 ⁻¹⁰	0,200	1,6 10 ⁻¹⁰	8,4 10-11	5,2 10 ⁻¹¹	3,5 10 ⁻¹¹	2,9 10-11
Pb-198	2,40 h	0,600	5,9 10 ⁻¹⁰	0,200	4,8 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,1 10-10	1,0 10 ⁻¹⁰
Pb-199	1,50 h	0,600	3,5 10 ⁻¹⁰	0,200	2,6 10 ⁻¹⁰	1,5 10 ⁻¹⁰	9,4 10 ⁻¹¹	6,3 10 ⁻¹¹	5,4 10-11
Pb-200	21,5 h	0,600	2,5 10-9	0,200	2,0 10-9	1,1 10-9	7,0 10 ⁻¹⁰	4,4 10 ⁻¹⁰	4,0 10 ⁻¹⁰
Pb-201	9,40 h	0,600	9,4 10 ⁻¹⁰	0,200	7,8 10 ⁻¹⁰	4,3 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,8 10 ⁻¹⁰	1,6 10 ⁻¹⁰
Pb-202	$3,00 \ 10^5 \ a$	0,600	3,4 10 ⁻⁸	0,200	1,6 10 ⁻⁸	1,3 10 ⁻⁸	1,9 10-8	2,7 10 ⁻⁸	8,8 10 ⁻⁹
Pb-202m	3,62 h	0,600	7,6 10 ⁻¹⁰	0,200	6,1 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,3 10 ⁻¹⁰
Pb-203			1,6 10 ⁻⁹	I	1,3 10 ⁻⁹	6,8 10 ⁻¹⁰	4,3 10 ⁻¹⁰	2,7 10 ⁻¹⁰	2,4 10 ⁻¹⁰
	2,17 d	0,600	2,1 10 ⁻⁹	0,200	9,9 10 ⁻¹⁰	6,2 10 ⁻¹⁰	6,1 10 ⁻¹⁰	1	2,4 10 2,8 10 ⁻¹⁰
Pb-205	$1,43 \ 10^7 \ a$	0,600		0,200				6,5 10 ⁻¹⁰	
Pb-209	3,25 h	0,600	5,7 10 ⁻¹⁰	0,200	3,8 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,1 10 ⁻¹⁰	6,6 10-11	5,7 10 ⁻¹¹
Pb-210	22,3 a	0,600	8,4 10-6	0,200	3,6 10 ⁻⁶	2,2 10 ⁻⁶	1,9 10 ⁻⁶	1,9 10-6	6,9 10-7
Pb-211	0,601 h	0,600	3,1 10 ⁻⁹	0,200	1,4 10-9	7,1 10 ⁻¹⁰	4,1 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,8 10 ⁻¹⁰
Pb-212	10,6 h	0,600	1,5 10 ⁻⁷	0,200	6,3 10 ⁻⁸	3,3 10 ⁻⁸	2,0 10 ⁻⁸	1,3 10 ⁻⁸	6,0 10-9
Pb-214	0,447 h	0,600	2,7 10 ⁻⁹	0,200	1,0 10-9	5,2 10 ⁻¹⁰	3,1 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,4 10 ⁻¹⁰
Bismuth									
Bi-200	0,606 h	0,100	4,2 10 ⁻¹⁰	0,050	2,7 10 ⁻¹⁰	1,5 10 ⁻¹⁰	9,5 10 ⁻¹¹	6,4 10 ⁻¹¹	5,1 10-11
Bi-201	1,80 h	0,100	1,0 10-9	0,050	6,7 10 ⁻¹⁰	3,6 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,2 10 ⁻¹⁰
Bi-202	1,67 h	0,100	6,4 10 ⁻¹⁰	0,050	4,4 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,1 10-10	8,9 10 ⁻¹¹
Bi-203	11,8 h	0,100	3,5 10-9	0,050	2,5 10 ⁻⁹	1,4 10-9	9,3 10 ⁻¹⁰	6,0 10 ⁻¹⁰	4,8 10 ⁻¹⁰
Bi-205	15,3 d	0,100	6,1 10-9	0,050	4,5 10-9	2,6 10 ⁻⁹	1,7 10-9	1,1 10-9	9,0 10 ⁻¹⁰
Bi-206	6,24 d	0,100	1,4 10 ⁻⁸	0,050	1,0 10-8	5,7 10-9	3,7 10-9	2,4 10 ⁻⁹	1,9 10-9
Bi-207	38,0 a	0,100	1,0 10-8	0,050	7,1 10 ⁻⁹	3,9 10-9	2,5 10-9	1,6 10-9	1,3 10-9
Bi-210	5,01 d	0,100	1,5 10-8	0,050	9,7 10-9	4,8 10 ⁻⁹	2,9 10-9	1,6 10 ⁻⁹	1,3 10-9
Bi-210m	3,00 10 ⁶ a	0,100	2,1 10 ⁻⁷	0,050	9,1 10 ⁻⁸ 1,8 10 ⁻⁹	4,7 10 ⁻⁸	$3,0 \ 10^{-8}$ $5,0 \ 10^{-10}$	1,9 10 ⁻⁸	1,5 10 ⁻⁸
Bi-212	1,01 h 0,761 h	0,100 0,100	3,2 10 ⁻⁹ 2,5 10 ⁻⁹	0,050 0,050	1,8 10 1,4 10 ⁻⁹	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3,0 10 3,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bi-213 Bi-214	0,781 h	0,100	1,4 10 ⁻⁹	0,050	7,4 10 ⁻¹⁰	3,6 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,1 10 ⁻¹⁰
Polonium	0,332 11	0,100	1,4 10	0,030	7,4 10	3,6 10	2,1 10	1,4 10	1,1 10
Po-203	0,612 h	1,000	2,9 10-10	0,500	2,4 10 ⁻¹⁰	1,3 10 ⁻¹⁰	8,5 10-11	5,8 10-11	4,6 10-11
Po-205	1,80 h	1,000	3,5 10 ⁻¹⁰	0,500	2,8 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,1 10 ⁻¹⁰	7,2 10 ⁻¹¹	5,8 10 ⁻¹¹
Po-207	5,83 h	1,000	4,4 10 ⁻¹⁰	0,500	5,7 10 ⁻¹⁰	3,2 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,4 10 ⁻¹⁰	$1,1 \ 10^{-10}$
Po-210	138 d	1,000	2,6 10 ⁻⁵	0,500	8,8 10-6	4,4 10-6	2,6 10-6	1,6 10-6	1,2 10 ⁻⁶
Astate	1 00 %	1 000	2,5 10-9	1 1 000	1,6 10 ⁻⁹	8,0 10-10	4,8 10 ⁻¹⁰	2,9 10 ⁻¹⁰	2,4 10 ⁻¹⁰
At-207 At-211	1,80 h 7,21 h	1,000 1,000	1,2 10 ⁻⁷	1,000 1,000	7,8 10	3,8 10 ⁻⁸	2,3 10 ⁻⁸	1,3 10 ⁻⁸	1,1 10 ⁻⁸
Francium	, ,=== 11	1 1,000	1 -,	1 *,***	1 ',' ''	, 0,0 10	, -,5 15	1 -,5 15	1 -,1 10
Fr-222	0,240 h	1,000	6,2 10-9	1,000	3,9 10-9	2,0 10-9	1,3 10-9	8,5 10-10	7,2 10 ⁻¹⁰
Fr-223	0,363 h	1,000	$2,6\ 10^{-8}$	1,000	1,7 10-8	8,3 10 ⁻⁹	5,0 10-9	2,9 10 ⁻⁹	2,4 10-9
Radium ^b			•				•	•	
Ra-223	11,4 d	0,600	$5,3 \ 10^{-6}$	0,200	1,1 10 ⁻⁶	5,7 10-7	4,5 10 ⁻⁷	3,7 10-7	1,0 10-7
Ra-224 Ra-225	3,66 d 14,8 d	0,600 0,600	2,7 10 ⁻⁶ 7,1 10 ⁻⁶	0,200 0,200	6,6 10 ⁻⁷ 1,2 10 ⁻⁶	3,5 10 ⁻⁷ 6,1 10 ⁻⁷	2,6 10 ⁻⁷ 5,0 10 ⁻⁷	2,0 10 ⁻⁷ 4,4 10 ⁻⁷	6,5 10 ⁻⁸ 9,9 10 ⁻⁸
11a 443		1 0,000	/,1 10	1 0,200	1,2 10	0,1 10	,0 10	', ' 10	1 7,7 10

Ra-225 | 14,8 d | 0,600 | 7,1 10^{-6} ^a) La valeur de f_1 pour les individus de 1 à 15 ans est 0,4. ^b) La valeur de f_1 pour les individus de 1 à 15 ans est 0,3.

	1	1							
Nucléide	Période	Âge :	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Ra-226	1,60 10 ³ a	0,600	4,7 10-6	0,200	9,6 10-7	6,2 10 ⁻⁷	8,0 10 ⁻⁷	1,5 10-6	2,8 10 ⁻⁷
Ra-227	0,703 h	0,600	1,1 10 ⁻⁹	0,200	4,3 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,7 10-10	1,3 10 ⁻¹⁰	8,1 10-11
Ra-228	5,75 a	0,600	3,0 10-5	0,200	5,7 10-6	3,4 10-6	3,9 10-6	5,3 10-6	6,9 10-7
Actinium	'	•	,			•	,		'
Ac-224	2,90 h	0,005	1,0 10-8	5,0 10-4	5,2 10-9	2,6 10-9	1,5 10-9	8,8 10-10	7,0 10-10
Ac-225	10,0 d	0,005	4,6 10 ⁻⁷	5,0 10-4	1,8 10 ⁻⁷	9,1 10-8	5,4 10-8	3,0 10-8	2,4 10-8
Ac-226	1,21 d	0,005	1,4 10 ⁻⁷	5,0 10-4	7,6 10 ⁻⁸	3,8 10-8	2,3 10-8	1,3 10-8	1,0 10-8
Ac-227	21,8 a	0,005	3,3 10 ⁻⁵	5,0 10-4	$3,1 \ 10^{-6}$	$2,2 \ 10^{-6}$	1,5 10-6	1,2 10-6	1,1 10-6
Ac-228	6,13 h	0,005	7,4 10 ⁻⁹	5,0 10-4	$2,8 \ 10^{-9}$	1,4 10-9	8,7 10 ⁻¹⁰	5,3 10 ⁻¹⁰	4,3 10 ⁻¹⁰
Thorium	•		•				'	'	,
Th-226	0,515 h	0,005	4,4 10-9	5,0 10-4	2,4 10-9	1,2 10-9	6,7 10-10	4,5 10-10	3,5 10-10
Th-227	18,7 d	0,005	3,0 10 ⁻⁷	5,0 10-4	7,0 10-8	3,6 10-8	2,3 10-8	1,5 10-8	8,8 10-9
Th-228	1,91 a	0,005	3,7 10-6	5,0 10-4	3,7 10 ⁻⁷	2,2 10-7	1,5 10-7	9,4 10-8	7,2 10-8
Th-229	$7,34\ 10^3 a$	0,005	1,1 10-5	5,0 10-4	1,0 10-6	7,8 10-7	6,2 10 ⁻⁷	5,3 10 ⁻⁷	4,9 10-7
Th-230	7,70 10 ⁴ a	0,005	4,1 10 ⁻⁶	5,0 10-4	4,1 10 ⁻⁷	3,1 10-7	2,4 10 ⁻⁷	2,2 10 ⁻⁷	2,1 10-7
Th-231	1,06 d	0,005	3,9 10 ⁻⁹	5,0 10-4	2,5 10-9	1,2 10-9	7,4 10 ⁻¹⁰	4,2 10 ⁻¹⁰	3,4 10 ⁻¹⁰
Th-232	1,40 10 ¹⁰ a	0,005	4,6 10 ⁻⁶	5,0 10-4	4,5 10 ⁻⁷	3,5 10-7	2,9 10 ⁻⁷	2,5 10-7	2,3 10-7
Th-234	24,1 d	0,005	4, 0 10 ⁻⁸	5,0 10-4	$2,5 \ 10^{-8}$	1,3 10-8	7,4 10 ⁻⁹	4,2 10-9	3,4 10 ⁻⁹
Protactinium						•			
Pa-227	0,638 h	0,005	5,8 10 ⁻⁹	5,0 10-4	$3,2 \ 10^{-9}$	1,5 10-9	8,7 10 ⁻¹⁰	5,8 10 ⁻¹⁰	4,5 10 ⁻¹⁰
Pa-228	22,0 h	0,005	$1,2\ 10^{-8}$	5,0 10-4	4, 8 10 ⁻⁹	2,6 10-9	1,6 10-9	9,7 10 ⁻¹⁰	7,8 10 ⁻¹⁰
Pa-230	17,4 d	0,005	2,6 10 ⁻⁸	5,0 10 ⁻⁴	5,7 10 ⁻⁹	3,1 10-9	1,9 10-9	1,1 10 ⁻⁹	9,2 10 ⁻¹⁰
Pa-231	3,27 10 ⁴ a	0,005	1,3 10 ⁻⁵	5,0 10-4	$1,3 \ 10^{-6}$	1,1 10-6	9,2 10 ⁻⁷	8,0 10 ⁻⁷	7,1 10-7
Pa-232	1,31 d	0,005	6,3 10 ⁻⁹	5,0 10-4	4,2 10 ⁻⁹	2,2 10-9	1,4 10-9	8,9 10 ⁻¹⁰	7,2 10 ⁻¹⁰
Pa-233	27,0 d	0,005	9,7 10-9	5,0 10 ⁻⁴	6,2 10 ⁻⁹	3,2 10 ⁻⁹	1,9 10-9	$1,1 \ 10^{-9}$	8,7 10 ⁻¹⁰
Pa-234	6,70 h	0,005	5,0 10 ⁻⁹	5,0 10 ⁻⁴	3,2 10 ⁻⁹	1,7 10-9	1,0 10-9	6,4 10 ⁻¹⁰	5,1 10 ⁻¹⁰
Uranium									
U-230	20,8 d	0,040	7,9 10 ⁻⁷	0,020	$3,0\ 10^{-7}$	1,5 10 ⁻⁷	1,0 10 ⁻⁷	$6,6 \ 10^{-8}$	5,6 10-8
U-231	4,20 d	0,040	$3,1 \ 10^{-9}$	0,020	$2,0\ 10^{-9}$	1,0 10-9	$6,1 \ 10^{-10}$	$3,5 \ 10^{-10}$	$2,8 \ 10^{-10}$
U-232	72,0 a	0,040	$2,5 \ 10^{-6}$	0,020	$8,2 \ 10^{-7}$	5,8 10 ⁻⁷	5,7 10 ⁻⁷	6,4 10 ⁻⁷	3,3 10 ⁻⁷
U-233	$1,58 \ 10^5 \ a$	0,040	3,8 10 ⁻⁷	0,020	1,4 10 ⁻⁷	9,2 10-8	7,8 10 ⁻⁸	7,8 10 ⁻⁸	5,1 10 ⁻⁸
U-234	2,44 10 ⁵ a	0,040	3,7 10 ⁻⁷	0,020	1,3 10 ⁻⁷	8,8 10-8	7,4 10 ⁻⁸	7,4 10 ⁻⁸	4,9 10 ⁻⁸
U-235	7,04 10 ⁸ a	0,040	3,5 10 ⁻⁷	0,020	1,3 10 ⁻⁷	8,5 10-8	7,1 10 ⁻⁸	7,0 10 ⁻⁸	4,7 10 ⁻⁸
U-236	$2,34 \ 10^7 \ a$	0,040	3,5 10 ⁻⁷	0,020	1,3 10 ⁻⁷	8,4 10 ⁻⁸	7,0 10 ⁻⁸	7,0 10 ⁻⁸	4,7 10 ⁻⁸
U-237	6,75 d	0,040	8,3 10 ⁻⁹	0,020	5,4 10 ⁻⁹	2,8 10 ⁻⁹	1,6 10 ⁻⁹	9,5 10 ⁻¹⁰	7,6 10 ⁻¹⁰
U-238	4,47 10° a	0,040	3,4 10 ⁻⁷ 3,4 10 ⁻¹⁰	0,020	1,2 10 ⁻⁷ 1,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,8 10 ⁻⁸ 5,4 10 ⁻¹¹	$6,7 ext{ } 10^{-8}$ $3,5 ext{ } 10^{-11}$	4,5 10 ⁻⁸ 2,7 10 ⁻¹¹
U-239 U-240	0,392 h 14,1 h	0,040 0,040	1,3 10 ⁻⁸	0,020	8,1 10 ⁻⁹	4,1 10 ⁻⁹	2,4 10 ⁻⁹	1,4 10 ⁻⁹	1,1 10-9
	14,111	0,040	1,5 10	0,020	0,1 10	4,1 10	2,4 10	1,4 10	1,1 10
Neptunium	0,245 h	0,005	8,7 10-11	5,0 10 ⁻⁴	5,1 10-11	2,7 10-11	1,7 10-11	1,2 10-11	9,7 10 ⁻¹²
Np-232 Np-233	0,243 h	0,003	2,1 10 ⁻¹¹	5,0 10	1,3 10 ⁻¹¹	6,6 10 ⁻¹²	4,0 10 ⁻¹²	2,8 10 ⁻¹²	2,2 10 ⁻¹²
Np-234	4,40 d	0,005	6,2 10 ⁻⁹	5,0 10	4,4 10 ⁻⁹	2,4 10 ⁻⁹	1,6 10 ⁻⁹	1,0 10 ⁻⁹	8,1 10 ⁻¹⁰
Np-235	1,08 a	0,005	7,1 10 ⁻¹⁰	5,0 10 ⁻⁴	4,1 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,2 10 ⁻¹⁰	6,8 10 ⁻¹¹	5,3 10 ⁻¹¹
Np-236	1,15 10 ⁵ a	0,005	1,9 10 ⁻⁷	5,0 10-4	2,4 10 ⁻⁸	1,8 10-8	1,8 10 ⁻⁸	1,8 10-8	$1,7 \ 10^{-8}$
Np-236	22,5 h	0,005	2,5 10 ⁻⁹	5,0 10-4	1,3 10 ⁻⁹	6,6 10 ⁻¹⁰	4,0 10 ⁻¹⁰	2,4 10 ⁻¹⁰	1,9 10 ⁻¹⁰
Np-237	2,14 10 ⁶ a	0,005	2,0 10-6	5,0 10-4	2,1 10 ⁻⁷	1,4 10 ⁻⁷	1,1 10-7	1,1 10-7	1,1 10 ⁻⁷
Np-238	2,12 d	0,005	9,5 10 ⁻⁹	5,0 10-4	6,2 10-9	3,2 10-9	1,9 10-9	1,1 10-9	9,1 10 ⁻¹⁰
Np-239	2,36 d	0,005	8,9 10 ⁻⁹	5,0 10-4	5,7 10 ⁻⁹	2,9 10-9	1,7 10-9	1,0 10-9	8,0 10 ⁻¹⁰
Np-240	1,08 h	0,005	8,7 10 ⁻¹⁰	5,0 10-4	$5,2\ 10^{-10}$	2,6 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,0 10-10	8,2 10-11

Nt121 1	Période	Âge ≤	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Plutonium									
Pu-234	8,80 h	0,005	2,1 10 ⁻⁹	5,0 10-4	1,1 10-9	5,5 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,6 10-10
Pu-235	0,422 h	0,005	2,2 10 ⁻¹¹	5,0 10-4	1,3 10-11	$6,5 \ 10^{-12}$	3,9 10 ⁻¹²	2,7 10 ⁻¹²	$2,1 \ 10^{-12}$
Pu-236	2,85 a	0,005	2,1 10-6	5,0 10-4	2,2 10 ⁻⁷	1,4 10 ⁻⁷	1,0 10-7	8,5 10-8	8,7 10-8
Pu-237	45,3 d	0,005	1,1 10-9	5,0 10-4	6,9 10 ⁻¹⁰	3,6 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,3 10-10	1,0 10-10
Pu-238	87,7 a	0,005	$4,0\ 10^{-6}$	5,0 10-4	4, 0 10 ⁻⁷	3,1 10 ⁻⁷	2,4 10 ⁻⁷	2,2 10 ⁻⁷	2,3 10 ⁻⁷
Pu-239	2,41 10 ⁴ a	0,005	4,2 10-6	5,0 10-4	4,2 10 ⁻⁷	3,3 10 ⁻⁷	2,7 10-7	2,4 10-7	2,5 10 ⁻⁷
Pu-240	$6,54 \ 10^3 \ a$	0,005	4,2 10-6	5,0 10-4	4,2 10 ⁻⁷	3,3 10 ⁻⁷	2,7 10 ⁻⁷	2,4 10 ⁻⁷	2,5 10 ⁻⁷
Pu-241	14,4 a	0,005	5,6 10 ⁻⁸	5,0 10-4	5,7 10 ⁻⁹	5,5 10 ⁻⁹	5,1 10 ⁻⁹	4,8 10-9	4,8 10-9
Pu-242	$3,76 \ 10^5 \ a$	0,005	4,0 10-6	5,0 10-4	4,0 10 ⁻⁷	3,2 10 ⁻⁷	2,6 10 ⁻⁷	2,3 10 ⁻⁷	2,4 10 ⁻⁷
Pu-243	4,95 h	0,005	1,0 10-9	5,0 10-4	6,2 10 ⁻¹⁰	$3,1 \ 10^{-10}$	1,8 10 ⁻¹⁰	1,1 10-10	8,5 10 ⁻¹¹
Pu-244	$8,26 \ 10^7 \ a$	0,005	4,0 10-6	5,0 10-4	4,1 10 ⁻⁷	3,2 10 ⁻⁷	2,6 10 ⁻⁷	2,3 10 ⁻⁷	2,4 10 ⁻⁷
Pu-245	10,5 h	0,005	8,0 10-9	5,0 10-4	5,1 10 ⁻⁹	2,6 10-9	1,5 10-9	8,9 10-10	7,2 10 ⁻¹⁰
Pu-246	10,9 d	0,005	3,6 10 ⁻⁸	5,0 10-4	2,3 10 ⁻⁸	1,2 10 ⁻⁸	7,1 10-9	4,1 10-9	3,3 10-9
Americium	1					•	'	1	'
Am-237	1,22 h	0,005	1,7 10-10	5,0 10-4	1,0 10-10	5,5 10-11	3,3 10 ⁻¹¹	2,2 10-11	1,8 10-11
Am-238	1,63 h	0,005	$2,5 \ 10^{-10}$	5,0 10-4	1,6 10 ⁻¹⁰	9,1 10-11	5,9 10-11	4,0 10 ⁻¹¹	3,2 10 ⁻¹¹
Am-239	11,9 h	0,005	2,6 10-9	5,0 10-4	1,7 10-9	8,4 10 ⁻¹⁰	5,1 10 ⁻¹⁰	3,0 10 ⁻¹⁰	2,4 10 ⁻¹⁰
Am-240	2,12 d	0,005	4,7 10-9	5,0 10-4	3,3 10-9	1,8 10-9	1,2 10-9	7,3 10 ⁻¹⁰	5,8 10 ⁻¹⁰
Am-241	$4,32 \ 10^2 \ a$	0,005	3,7 10 ⁻⁶	5,0 10-4	3,7 10 ⁻⁷	2,7 10 ⁻⁷	2,2 10-7	2,0 10 ⁻⁷	2,0 10 ⁻⁷
Am-242	16,0 h	0,005	5,0 10-9	5,0 10-4	2,2 10-9	1,1 10-9	6,4 10 ⁻¹⁰	3,7 10 ⁻¹⁰	3,0 10-10
Am-242m	$1,52 \cdot 10^2 \text{ a}$	0,005	3,1 10-6	5,0 10-4	3,0 10-7	2,3 10-7	2,0 10-7	1,9 10 ⁻⁷	1,9 10-7
Am-243	$7,38 \ 10^3 \ a$	0,005	3,6 10-6	5,0 10-4	3,7 10 ⁻⁷	2,7 10 ⁻⁷	2,2 10 ⁻⁷	2,0 10 ⁻⁷	2,0 10-7
Am-244	10,1 h	0,005	4,9 10 ⁻⁹	5,0 10-4	3,1 10-9	1, 6 10 ⁻⁹	9,6 10 ⁻¹⁰	5,8 10 ⁻¹⁰	4,6 10 ⁻¹⁰
Am-244m	0,433 h	0,005	3,7 10 ⁻¹⁰	5,0 10-4	2,0 10-10	9,6 10-11	5,5 10-11	3,7 10-11	2,9 10 ⁻¹¹
Am-245	2,05 h	0,005	6,8 10 ⁻¹⁰	5,0 10-4	4,5 10 ⁻¹⁰	2,2 10-10	1,3 10-10	7,9 10-11	6,2 10 ⁻¹¹
Am-246	0,650 h	0,005	$6,7 \ 10^{-10}$	5,0 10-4	3,8 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,1 10-10	7,3 10-11	5,8 10 ⁻¹¹
Am-246m	0,417 h	0,005	3,9 10 ⁻¹⁰	5,0 10-4	2,2 10 ⁻¹⁰	1,1 10 ⁻¹⁰	6,4 10-11	4,4 10 ⁻¹¹	3,4 10 ⁻¹¹
Curium						ı '			,
Cm-238	2,40 h	0,005	7,8 10 ⁻¹⁰	5,0 10-4	4,9 10 ⁻¹⁰	2,6 10-10	1,6 10-10	1,0 10-10	8,0 10-11
Cm-240	27,0 d	0,005	$2,2 \ 10^{-7}$	5,0 10 ⁻⁴	4, 8 10 ⁻⁸	2,5 10 ⁻⁸	1,5 10 ⁻⁸	9,2 10 ⁻⁹	7,6 10 ⁻⁹
Cm-241	32,8 d	0,005	1,1 10-8	5,0 10-4	5,7 10-9	3,0 10-9	1,9 10-9	1,1 10-9	9,1 10 ⁻¹⁰
Cm-242	163 d	0,005	5,9 10 ⁻⁷	5,0 10-4	7,6 10-8	3,9 10-8	2,4 10 ⁻⁸	1,5 10-8	1,2 10-8
Cm-243	28,5 a	0,005	$3,2\ 10^{-6}$	5,0 10-4	3,3 10 ⁻⁷	2,2 10 ⁻⁷	1,6 10 ⁻⁷	1,4 10 ⁻⁷	1,5 10 ⁻⁷
Cm-244	18,1 a	0,005	2,9 10-6	5,0 10-4	2,9 10 ⁻⁷	1,9 10 ⁻⁷	1,4 10 ⁻⁷	1,2 10 ⁻⁷	1,2 10 ⁻⁷
Cm-245	$8,50 \ 10^3 \ a$	0,005	$3,7 \ 10^{-6}$	5,0 10-4	3,7 10 ⁻⁷	2,8 10 ⁻⁷	2,3 10 ⁻⁷	2,1 10 ⁻⁷	2,1 10 ⁻⁷
Cm-246	$4,73 \ 10^3 \ a$	0,005	$3,7 \ 10^{-6}$	5,0 10-4	3,7 10 ⁻⁷	2,8 10 ⁻⁷	2,2 10 ⁻⁷	2,1 10 ⁻⁷	2,1 10 ⁻⁷
Cm-247	$1,56 \ 10^7 \ a$	0,005	3,4 10-6	5,0 10-4	3,5 10 ⁻⁷	2,6 10-7	2,1 10 ⁻⁷	1,9 10 ⁻⁷	1,9 10 ⁻⁷
Cm-248	3,39 10 ⁵ a	0,005	1,4 10 ⁻⁵	5,0 10-4	1,4 10-6	1,0 10-6	8,4 10-7	7,7 10 ⁻⁷	7,7 10 ⁻⁷
Cm-249	1,07 h	0,005	3,9 10-10	5,0 10 ⁻⁴	2,2 10 ⁻¹⁰	1,1 10-10	6,1 10 ⁻¹¹	4,0 10-11	3,1 10 ⁻¹¹
Cm-250	6,90 10 ³ a	0,005	7,8 10 ⁻⁵	5,0 10-4	8,2 10-6	6,0 10-6	4,9 10-6	4,4 10-6	4,4 10-6
Berkélium	•	. '				-			•
Bk-245	4,94 d	0,005	6,1 10 ⁻⁹	5,0 10-4	3,9 10-9	2,0 10-9	1,2 10-9	7,2 10-10	5,7 10-10
Bk-246	1,83 d	0,005	3,7 10 ⁻⁹	5,0 10-4	2,6 10-9	1,4 10-9	9,4 10 ⁻¹⁰	6,0 10 ⁻¹⁰	4,8 10 ⁻¹⁰
Bk-247	$1,38 \ 10^3 \ a$	0,005	8,9 10 ⁻⁶	5,0 10 ⁻⁴	8,6 10 ⁻⁷	6,3 10 ⁻⁷	4,6 10 ⁻⁷	3,8 10 ⁻⁷	3,5 10 ⁻⁷
Bk-249	320 d	0,005	2,2 10 ⁻⁸	5,0 10-4	2,9 10-9	1,9 10-9	1,4 10 ⁻⁹	1,1 10 ⁻⁹	9,7 10 ⁻¹⁰
Bk-250	3,22 h	0,005	1,5 10 ⁻⁹	5,0 10 ⁻⁴	8,5 10 ⁻¹⁰	4,4 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,7 10-10	1,4 10 ⁻¹⁰
-n -00	1 5,22 11	1 2,000	1,0 10	1 5,5 10	, 5,5 10	1 .,	1 -,, 10	1 -,/ -0	1 ., . 10

Nucléide	Période	Âge ≤	1 a	Âge	1-2 a `	2-7 a	7-12 a	12-17 a	> 17 a
Nucleide	physique	f_1 pour $g \le 1$ a	h(g)	f_1 pour $g > 1$ a	h(g)	h(g)	h(g)	h(g)	h(g)
Californium									
Cf-244	0,323 h	0,005	9,8 10 ⁻¹⁰	5,0 10-4	4,8 10 ⁻¹⁰	$2,4 \ 10^{-10}$	1,3 10 ⁻¹⁰	8,9 10-11	7,0 10 ⁻¹¹
Cf-246	1,49 d	0,005	5,0 10 ⁻⁸	5,0 10-4	$2,4 \ 10^{-8}$	1,2 10 ⁻⁸	7,3 10 ⁻⁹	4,1 10-9	3,3 10 ⁻⁹
Cf-248	334 d	0,005	$1,5 \ 10^{-6}$	5,0 10-4	1,6 10 ⁻⁷	9,9 10 ⁻⁸	6,0 10-8	3,3 10-8	2,8 10 ⁻⁸
Cf-249	$3,50 \ 10^2 \ a$	0,005	$9,0\ 10^{-6}$	5,0 10-4	$8,7 \ 10^{-7}$	6,4 10 ⁻⁷	4,7 10 ⁻⁷	3,8 10-7	3,5 10 ⁻⁷
Cf-250	13,1 a	0,005	5,7 10-6	5,0 10-4	5,5 10 ⁻⁷	3,7 10 ⁻⁷	2,3 10 ⁻⁷	1,7 10-7	1,6 10 ⁻⁷
Cf-251	$8,98 \ 10^2 \ a$	0,005	$9,1\ 10^{-6}$	5,0 10-4	8,8 10 ⁻⁷	6,5 10 ⁻⁷	4, 7 10 ⁻⁷	3,9 10 ⁻⁷	3,6 10 ⁻⁷
Cf-252	2,64 a	0,005	5,0 10 ⁻⁶	5,0 10-4	$5,1 \ 10^{-7}$	3,2 10 ⁻⁷	1,9 10 ⁻⁷	1,0 10 ⁻⁷	9,0 10-8
Cf-253	17,8 d	0,005	1,0 10 ⁻⁷	5,0 10-4	$1,1 \ 10^{-8}$	6,0 10 ⁻⁹	3,7 10 ⁻⁹	1,8 10-9	1,4 10 ⁻⁹
Cf-254	60,5 d	0,005	$1,1 \ 10^{-5}$	5,0 10-4	2,6 10 ⁻⁶	1,4 10 ⁻⁶	8,4 10 ⁻⁷	5,0 10 ⁻⁷	4, 0 10 ⁻⁷
Einsteinium	•								
Es-250	2,10 h	0,005	2,3 10 ⁻¹⁰	5,0 10 ⁻⁴	9,9 10-11	5,7 10 ⁻¹¹	3,7 10-11	2,6 10 ⁻¹¹	2,1 10-11
Es-251	1,38 d	0,005	1,9 10 ⁻⁹	5,0 10-4	1,2 10 ⁻⁹	6,1 10 ⁻¹⁰	3,7 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,7 10 ⁻¹⁰
Es-253	20,5 d	0,005	1,7 10 ⁻⁷	5,0 10-4	$4,5 \ 10^{-8}$	$2,3 \ 10^{-8}$	1,4 10-8	7,6 10 ⁻⁹	6,1 10 ⁻⁹
Es-254	276 d	0,005	1,4 10 ⁻⁶	5,0 10-4	1,6 10 ⁻⁷	9,8 10 ⁻⁸	6,0 10-8	3,3 10-8	2,8 10 ⁻⁸
Es-254m	1,64 d	0,005	$5,7 \ 10^{-8}$	5,0 10-4	$3,0\ 10^{-8}$	1,5 10-8	9,1 10-9	5,2 10-9	4,2 10 ⁻⁹
Fermium									
Fm-252	22,7 h	0,005	3,8 10 ⁻⁸	5,0 10-4	$2,0\ 10^{-8}$	9,9 10-9	5,9 10-9	3,3 10-9	2,7 10-9
Fm-253	3,00 d	0,005	$2,5 \ 10^{-8}$	5,0 10-4	6,7 10 ⁻⁹	3,4 10 ⁻⁹	2,1 10-9	1,1 10-9	9,1 10 ⁻¹⁰
Fm-254	3,24 h	0,005	5,6 10 ⁻⁹	5,0 10-4	3,2 10 ⁻⁹	1,6 10 ⁻⁹	9,3 10 ⁻¹⁰	5,6 10 ⁻¹⁰	4,4 10 ⁻¹⁰
Fm-255	20,1 h	0,005	$3,3 \ 10^{-8}$	5,0 10-4	1,9 10 ⁻⁸	9,5 10 ⁻⁹	5,6 10-9	3,2 10-9	2,5 10-9
Fm-257	101 d	0,005	9,8 10 ⁻⁷	5,0 10-4	1,1 10 ⁻⁷	6,5 10 ⁻⁸	4,0 10-8	1,9 10-8	1,5 10-8
Mendélévium						-			
Md-257	5,20 h	0,005	3,1 10-9	5,0 10-4	8,8 10 ⁻¹⁰	4,5 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,2 10-10
Md-258	55,0 d	0,005	6,3 10 ⁻⁷	5,0 10-4	8,9 10-8	5,0 10-8	3,0 10-8	1,6 10-8	1,3 10-8

TABLEAU B Dose efficace engagée par unité incorporée par inhalation (Sv Bq⁻¹) pour la population

Ni., al41 da	Période	Т	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Type	f_1	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Hydrogène										
Eau tritiée	12,3 a	F M S	1,000 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,000 0,100 0,010	$\begin{array}{ c c c c c } 2,0 & 10^{-11} \\ 2,7 & 10^{-10} \\ 1,0 & 10^{-9} \end{array}$	$\begin{array}{ c c c c }\hline 1,1 & 10^{-11} \\ 1,4 & 10^{-10} \\ 6,3 & 10^{-10} \\ \end{array}$	$\begin{vmatrix} 8,2 & 10^{-12} \\ 8,2 & 10^{-11} \\ 3,8 & 10^{-10} \end{vmatrix}$	$\begin{array}{c c} 5,9 & 10^{-12} \\ 5,3 & 10^{-11} \\ 2,8 & 10^{-10} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Béryllium										
Be-7	53,3 d	M S	0,020 0,020	$\begin{array}{c c} 2,5 & 10^{-10} \\ 2,8 & 10^{-10} \end{array}$	0,005 0,005	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,3 10 ⁻¹¹ 9,6 10 ⁻¹¹	6,2 10 ⁻¹¹ 6,8 10 ⁻¹¹	5,0 10 ⁻¹¹ 5,5 10 ⁻¹¹
Be-10	1,60 10 ⁶ a	M S	0,020 0,020	4,1 10 ⁻⁸ 9,9 10 ⁻⁸	0,005 0,005	$\begin{array}{c c} 3,4 & 10^{-8} \\ 9,1 & 10^{-8} \end{array}$	2,0 10 ⁻⁸ 6,1 10 ⁻⁸	1,3 10 ⁻⁸ 4,2 10 ⁻⁸	$\begin{array}{c} 1,1 \ 10^{-8} \\ 3,7 \ 10^{-8} \end{array}$	9,6 10 ⁻⁹ 3,5 10 ⁻⁸
Carbone										
C-11	0,340 h	F M S	1,000 0,200 0,020	$ \begin{array}{c cccc} 1,0 & 10^{-10} \\ 1,5 & 10^{-10} \\ 1,6 & 10^{-10} \end{array} $	1,000 0,100 0,010	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,3 10 ⁻¹¹ 2,1 10 ⁻¹¹ 2,2 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
C-14	5,73 10 ³ a	F M S	1,000 0,200 0,020	6,1 10 ⁻¹⁰ 8,3 10 ⁻⁹ 1,9 10 ⁻⁸	1,000 0,100 0,010	6,7 10 ⁻¹⁰ 6,6 10 ⁻⁹ 1,7 10 ⁻⁸	3,6 10 ⁻¹⁰ 4,0 10 ⁻⁹ 1,1 10 ⁻⁸	2,9 10 ⁻¹⁰ 2,8 10 ⁻⁹ 7,4 10 ⁻⁹	1,9 10 ⁻¹⁰ 2,5 10 ⁻⁹ 6,4 10 ⁻⁹	2,0 10 ⁻¹⁰ 2,0 10 ⁻⁹ 5,8 10 ⁻⁹
Fluor										
F-18	1,83 h	F M S	1,000 1,000 1,000	$\begin{array}{c cccc} 2,6 & 10^{-10} \\ 4,1 & 10^{-10} \\ 4,2 & 10^{-10} \end{array}$	1,000 1,000 1,000	$\begin{array}{ c c c c }\hline 1,9 & 10^{-10} \\ 2,9 & 10^{-10} \\ 3,1 & 10^{-10} \\ \end{array}$	$\begin{array}{c} 9,1 \ 10^{-11} \\ 1,5 \ 10^{-10} \\ 1,5 \ 10^{-10} \end{array}$	5,6 10 ⁻¹¹ 9,7 10 ⁻¹¹ 1,0 10 ⁻¹⁰	3,4 10 ⁻¹¹ 6,9 10 ⁻¹¹ 7,3 10 ⁻¹¹	2,8 10 ⁻¹¹ 5,6 10 ⁻¹¹ 5,9 10 ⁻¹¹
Sodium										
Na-22	2,60 a	F	1,000	9,7 10-9	1,000	7,3 10-9	3,8 10-9	2,4 10 ⁻⁹	1,5 10-9	1,3 10-9
Na-24	15,0 h	F	1,000	$2,3 \ 10^{-9}$	1,000	1,8 10 ⁻⁹	9,3 10 ⁻¹⁰	5,7 10 ⁻¹⁰	3,4 10 ⁻¹⁰	2,7 10 ⁻¹⁰
Magnésium										
Mg-28	20,9 h	F M	1,000 1,000	5,3 10 ⁻⁹ 7,3 10 ⁻⁹	0,500 0,500	4,7 10 ⁻⁹ 7,2 10 ⁻⁹	$\begin{array}{c c} 2,2 & 10^{-9} \\ 3,5 & 10^{-9} \end{array}$	1,3 10 ⁻⁹ 2,3 10 ⁻⁹	7,3 10 ⁻¹⁰ 1,5 10 ⁻⁹	$6,0 \ 10^{-10}$ $1,2 \ 10^{-9}$
Aluminium										
Al-26	$7,16\ 10^5 a$	F M	0,020 0,020	$\begin{array}{c c} 8,1 & 10^{-8} \\ 8,8 & 10^{-8} \end{array}$	0,010 0,010	$\begin{array}{c c} 6,2 & 10^{-8} \\ 7,4 & 10^{-8} \end{array}$	$\begin{array}{c c} 3,2 & 10^{-8} \\ 4,4 & 10^{-8} \end{array}$	$\begin{array}{c c} 2,0 & 10^{-8} \\ 2,9 & 10^{-8} \end{array}$	$\begin{array}{c c} 1,3 & 10^{-8} \\ 2,2 & 10^{-8} \end{array}$	$1,1 10^{-8}$ $2,0 10^{-8}$
Silicium										
Si-31	2,62 h	F M S	0,020 0,020 0,020	$ \begin{array}{c c} 3,6 & 10^{-10} \\ 6,9 & 10^{-10} \\ 7,2 & 10^{-10} \end{array} $	0,010 0,010 0,010	$ \begin{vmatrix} 2,3 & 10^{-10} \\ 4,4 & 10^{-10} \\ 4,7 & 10^{-10} \end{vmatrix} $	$ \begin{array}{cccc} 9,5 & 10^{-11} \\ 2,0 & 10^{-10} \\ 2,2 & 10^{-10} \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,2 10 ⁻¹¹ 8,9 10 ⁻¹¹ 9,5 10 ⁻¹¹	2,7 10 ⁻¹¹ 7,4 10 ⁻¹¹ 7,9 10 ⁻¹¹
Si-32	4,50 10 ² a	F M S	0,020 0,020 0,020	3,0 10 ⁻⁸ 7,1 10 ⁻⁸ 2,8 10 ⁻⁷	0,010 0,010 0,010	2,3 10 ⁻⁸ 6,0 10 ⁻⁸ 2,7 10 ⁻⁷	1,1 10 ⁻⁸ 3,6 10 ⁻⁸ 1,9 10 ⁻⁷	6,4 10 ⁻⁹ 2,4 10 ⁻⁸ 1,3 10 ⁻⁷	3,8 10 ⁻⁹ 1,9 10 ⁻⁸ 1,1 10 ⁻⁷	3,2 10 ⁻⁹ 1,7 10 ⁻⁸ 1,1 10 ⁻⁷
Phosphore										
P-32	14,3 d	F M	1,000 1,000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,800 0,800	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,2 10 ⁻⁹ 8,0 10 ⁻⁹	1,8 10 ⁻⁹ 5,3 10 ⁻⁹	9,8 10 ⁻¹⁰ 4,0 10 ⁻⁹	7,7 10 ⁻¹⁰ 3,4 10 ⁻⁹
P-33	25,4 d	F M	1,000 1,000	1,2 10 ⁻⁹ 6,1 10 ⁻⁹	0,800 0,800	7,8 10 ⁻¹⁰ 4,6 10 ⁻⁹	$\begin{array}{c c} 3,0 & 10^{-10} \\ 2,8 & 10^{-9} \end{array}$	$\begin{array}{c c} 2,0 & 10^{-10} \\ 2,1 & 10^{-9} \end{array}$	1,1 10 ⁻¹⁰ 1,9 10 ⁻⁹	9,2 10 ⁻¹¹ 1,5 10 ⁻⁹

F: clairance pulmonaire rapide.
M: clairance pulmonaire moyenne.
S: clairance pulmonaire lente.

			Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	Période physique	Туре		h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
			-11	II(g)	- 11	11(8)	11(g)	(6/	11(g/	11(g)
Soufre			1 000	1 5 5 40-10	0.000	1 2 0 40-10	1 0 40-10	L 4 4 40-10	1 60 40-11	l 54 40-11
S-35 (inorganique)	87,4 d	F M S	1,000 0,200 0,020	5,5 10 ⁻¹⁰ 5,9 10 ⁻⁹ 7,7 10 ⁻⁹	0,800 0,100 0,010	3,9 10 ⁻¹⁰ 4,5 10 ⁻⁹ 6,0 10 ⁻⁹	$\begin{array}{c c} 1,8 & 10^{-10} \\ 2,8 & 10^{-9} \\ 3,6 & 10^{-9} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} 6,0 & 10^{-11} \\ 1,8 & 10^{-9} \\ 2,3 & 10^{-9} \end{vmatrix} $	5,1 10 ⁻¹¹ 1,4 10 ⁻⁹ 1,9 10 ⁻⁹
Chlore										
Cl-36	3,01 10 ⁵ a	F M	1,000 1,000	3,9 10 ⁻⁹ 3,1 10 ⁻⁸	1,000 1,000	2,6 10 ⁻⁹ 2,6 10 ⁻⁸	1,1 10 ⁻⁹ 1,5 10 ⁻⁸	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c }\hline 3,9 & 10^{-10} \\ 8,8 & 10^{-9} \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Cl-38	0,620 h	F M	1,000 1,000	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,000 1,000	1,9 10 ⁻¹⁰ 3,0 10 ⁻¹⁰	8,4 10 ⁻¹¹ 1,4 10 ⁻¹⁰	5,1 10 ⁻¹¹ 8,5 10 ⁻¹¹	3,0 10 ⁻¹¹ 5,4 10 ⁻¹¹	2,5 10 ⁻¹¹ 4,5 10 ⁻¹¹
Cl-39	0,927 h	F M	1,000 1,000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,000 1,000	1,8 10 ⁻¹⁰ 2,8 10 ⁻¹⁰	8,4 10 ⁻¹¹ 1,3 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3,1 \ 10^{-11}$ $5,6 \ 10^{-11}$	2,5 10 ⁻¹¹ 4,6 10 ⁻¹¹
Potassium										
K-40	1,28 10° a	F	1,000	2,4 10-8	1,000	1,7 10-8	7,5 10-9	4,5 10-9	2,5 10-9	2,1 10-9
K-42	12,4 h	F	1,000	1,6 10-9	1,000	1,0 10-9	4,4 10-10	2,6 10 ⁻¹⁰	1,5 10 ⁻¹⁰	1,2 10-10
K-43	22,6 h	F	1,000	1,3 10-9	1,000	9,7 10-10	4, 7 10 ⁻¹⁰	2,9 10 ⁻¹⁰	1,7 10 ⁻¹⁰	1,4 10-10
K-44	0,369 h	F	1,000	2,2 10 ⁻¹⁰	1,000	1,4 10-10	6,5 10-11	4,0 10 ⁻¹¹	2,4 10 ⁻¹¹	2,0 10-11
K-45	0,333 h	F	1,000	1,5 10 ⁻¹⁰	1,000	1,0 10-10	4,8 10 ⁻¹¹	3,0 10 ⁻¹¹	1,8 10-11	1,5 10-11
Calcium a)										
Ca-41	1,40 10 ⁵ a	F M S	0,600 0,200 0,020	$\begin{array}{ c c c c c } 6,7 & 10^{-10} \\ 4,2 & 10^{-10} \\ 6,7 & 10^{-10} \end{array}$	0,300 0,100 0,010	3,8 10 ⁻¹⁰ 2,6 10 ⁻¹⁰ 6,0 10 ⁻¹⁰	$\begin{array}{ c c c c c c } 2,6 & 10^{-10} \\ 1,7 & 10^{-10} \\ 3,8 & 10^{-10} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c }\hline 1,7 & 10^{-10} \\ 9,5 & 10^{-11} \\ 1,8 & 10^{-10} \\ \hline \end{array}$
Ca-45	163 d	F M S	0,600 0,200 0,020	5,7 10 ⁻⁹ 1,2 10 ⁻⁸ 1,5 10 ⁻⁸	0,300 0,100 0,010	3,0 10 ⁻⁹ 8,8 10 ⁻⁹ 1,2 10 ⁻⁸	1,4 10 ⁻⁹ 5,3 10 ⁻⁹ 7,2 10 ⁻⁹	1,0 10 ⁻⁹ 3,9 10 ⁻⁹ 5,1 10 ⁻⁹	7,6 10 ⁻¹⁰ 3,5 10 ⁻⁹ 4,6 10 ⁻⁹	$\begin{array}{ c c c c c } \hline 4,6 & 10^{-10} \\ 2,7 & 10^{-9} \\ 3,7 & 10^{-9} \\ \hline \end{array}$
Ca-47	4,53 d	F M S	0,600 0,200 0,020	4,9 10 ⁻⁹ 1,0 10 ⁻⁸ 1,2 10 ⁻⁸	0,300 0,100 0,010	3,6 10 ⁻⁹ 7,7 10 ⁻⁹ 8,5 10 ⁻⁹	1,7 10 ⁻⁹ 4,2 10 ⁻⁹ 4,6 10 ⁻⁹	1,1 10 ⁻⁹ 2,9 10 ⁻⁹ 3,3 10 ⁻⁹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,5 10 ⁻¹⁰ 1,9 10 ⁻⁹ 2,1 10 ⁻⁹
Scandium										
Şc-43	3,89 h	S	0,001	9,3 10-10	1,0 10-4	6,7 10-10	3,3 10-10	2,2 10 ⁻¹⁰	1,4 10-10	1,1 10-10
Sc-44	3,93 h	S	0,001	1,6 10-9	1,0 10-4	1,2 10-9	5,6 10 ⁻¹⁰	3,6 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,8 10-10
Sc-44m	2,44 d	S	0,001	1,1 10-8	1,0 10-4	8,4 10-9	4,2 10-9	2,8 10-9	1,7 10-9	1,4 10-9
Sc-46	83,8 d	S	0,001	2,8 10 ⁻⁸	1,0 10-4	2,3 10-8	1,4 10-8	9,8 10-9	8,4 10-9	6,8 10 ⁻⁹
Sc-47	3,35 d	S	0,001	4,0 10-9	1,0 10-4	2,8 10-9	1,5 10-9	1,1 10-9	9,2 10 ⁻¹⁰	7,3 10 ⁻¹⁰
Sc-48	1,82 d	S	0,001	7,8 10-9	1,0 10 ⁻⁴	5,9 10-9	3,1 10-9	2,0 10-9	1,4 10-9	1,1 10-9
Sc-49	0,956 h	S	0,001	3,9 10-10	1,0 10-4	2,4 10 ⁻¹⁰	1,1 10-10	7,1 10-11	4,7 10-11	4,0 10-11
Titanium										
Tì-44	47,3 a	F M S	0,020 0,020 0,020	$\begin{array}{c c} 3,1 & 10^{-7} \\ 1,7 & 10^{-7} \\ 3,2 & 10^{-7} \end{array}$	0,010 0,010 0,010	2,6 10 ⁻⁷ 1,5 10 ⁻⁷ 3,1 10 ⁻⁷	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,6 10 ⁻⁸ 5,9 10 ⁻⁸ 1,5 10 ⁻⁷	6,6 10 ⁻⁸ 4,6 10 ⁻⁸ 1,3 10 ⁻⁷	$\begin{array}{ c c c c c } 6,1 & 10^{-8} \\ 4,2 & 10^{-8} \\ 1,2 & 10^{-7} \end{array}$
Ti-45	3,08 h	F M S	0,020 0,020 0,020	4,4 10 ⁻¹⁰ 7,4 10 ⁻¹⁰ 7,7 10 ⁻¹⁰	0,010 0,010 0,010	3,2 10 ⁻¹⁰ 5,2 10 ⁻¹⁰ 5,5 10 ⁻¹⁰	$\begin{array}{ c c c c }\hline 1,5 & 10^{-10} \\ 2,5 & 10^{-10} \\ 2,7 & 10^{-10} \\ \hline \end{array}$	9,1 10 ⁻¹¹ 1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4,2 10 ⁻¹¹ 8,8 10 ⁻¹¹ 9,3 10 ⁻¹¹
Vanadium										
V-47	0,543 h	F M	0,020 0,020	$\begin{array}{ c c c c } \hline 1,8 & 10^{-10} \\ 2,8 & 10^{-10} \\ \hline \end{array}$	0,010 0,010	1,2 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	5,6 10 ⁻¹¹ 8,6 10 ⁻¹¹	$\begin{array}{c c} 3,5 & 10^{-11} \\ 5,5 & 10^{-11} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,7 10 ⁻¹¹ 2,9 10 ⁻¹¹
V-48	16,2 d	F M	0,020 0,020	8,4 10 ⁻⁹ 1,4 10 ⁻⁸	0,010 0,010	6,4 10 ⁻⁹ 1,1 10 ⁻⁸	3,3 10 ⁻⁹ 6,3 10 ⁻⁹	2,1 10 ⁻⁹ 4,3 10 ⁻⁹	1,3 10 ⁻⁹ 2,9 10 ⁻⁹	1,1 10 ⁻⁹ 2,4 10 ⁻⁹
V-49	330 d	F M	0,020 0,020	2,0 10 ⁻¹⁰ 2,8 10 ⁻¹⁰	0,010 0,010	1,6 10 ⁻¹⁰ 2,1 10 ⁻¹⁰	7,7 10 ⁻¹¹ 1,1 10 ⁻¹⁰	4,3 10 ⁻¹¹ 6,3 10 ⁻¹¹	2,5 10 ⁻¹¹ 4,0 10 ⁻¹¹	2,1 10 ⁻¹¹ 3,4 10 ⁻¹¹

a) La valeur de f_1 pour les individus de 1 à 15 ans et le type F est 0,4.

NT 1211	Période	т.	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Type	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Chrome										
Cr-48	23,0 h	F M S	0,200 0,200 0,200	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,100 0,100 0,100	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c } 9,9 & 10^{-11} \\ 2,0 & 10^{-10} \\ 2,2 & 10^{-10} \end{array}$
Cr-49	0,702 h	F M S	0,200 0,200 0,200	1,9 10 ⁻¹⁰ 3,0 10 ⁻¹⁰ 3,1 10 ⁻¹⁰	0,100 0,100 0,100	$ \begin{array}{c cccc} 1,3 & 10^{-10} \\ 2,0 & 10^{-10} \\ 2,1 & 10^{-10} \end{array} $	6,0 10 ⁻¹¹ 9,5 10 ⁻¹¹ 9,9 10 ⁻¹¹	3,7 10 ⁻¹¹ 6,1 10 ⁻¹¹ 6,4 10 ⁻¹¹	2,2 10 ⁻¹¹ 4,0 10 ⁻¹¹ 4,2 10 ⁻¹¹	1,9 10 ⁻¹¹ 3,3 10 ⁻¹¹ 3,5 10 ⁻¹¹
Cr-51	27,7 d	F M S	0,200 0,200 0,200	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,100 0,100 0,100	1,3 10 ⁻¹⁰ 1,9 10 ⁻¹⁰ 2,1 10 ⁻¹⁰	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4,0 10 ⁻¹¹ 6,4 10 ⁻¹¹ 6,6 10 ⁻¹¹	2,4 10 ⁻¹¹ 3,9 10 ⁻¹¹ 4,5 10 ⁻¹¹	$\begin{array}{ c c c c c c }\hline 2,0 & 10^{-11} \\ 3,2 & 10^{-11} \\ 3,7 & 10^{-11} \\ \hline \end{array}$
Manganèse										
Mn-51	0,770 h	F M	0,200 0,200	$\begin{array}{ c c c c c c } 2,5 & 10^{-10} \\ 4,0 & 10^{-10} \end{array}$	0,100 0,100	$\begin{array}{ c c c c } 1,7 & 10^{-10} \\ 2,7 & 10^{-10} \end{array}$	7,5 10 ⁻¹¹ 1,2 10 ⁻¹⁰	4,6 10 ⁻¹¹ 7,8 10 ⁻¹¹	2,7 10 ⁻¹¹ 5,0 10 ⁻¹¹	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Mn-52	5,59 d	F M	0,200 0,200	7,0 10 ⁻⁹ 8,6 10 ⁻⁹	0,100 0,100	5,5 10 ⁻⁹ 6,8 10 ⁻⁹	2,9 10 ⁻⁹ 3,7 10 ⁻⁹	1,8 10 ⁻⁹ 2,4 10 ⁻⁹	1,1 10 ⁻⁹ 1,7 10 ⁻⁹	9,4 10 ⁻¹⁰ 1,4 10 ⁻⁹
Mn-52m	0,352 h	F M	0,200 0,200	1,9 10 ⁻¹⁰ 2,8 10 ⁻¹⁰	0,100 0,100	1,3 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	6,1 10 ⁻¹¹ 8,7 10 ⁻¹¹	3,8 10 ⁻¹¹ 5,5 10 ⁻¹¹	2,2 10 ⁻¹¹ 3,4 10 ⁻¹¹	1,9 10 ⁻¹¹ 2,9 10 ⁻¹¹
Mn-53	3,70 10 ⁶ a	F M	0,200 0,200	3,2 10 ⁻¹⁰ 4,6 10 ⁻¹⁰	0,100 0,100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	6,0 10 ⁻¹¹ 1,0 10 ⁻¹⁰	3,4 10 ⁻¹¹ 6,4 10 ⁻¹¹	2,9 10 ⁻¹¹ 5,4 10 ⁻¹¹
Mn-54	312 d	F M	0,200 0,200	5,2 10 ⁻⁹ 7,5 10 ⁻⁹	0,100 0,100	4,1 10 ⁻⁹ 6,2 10 ⁻⁹	2,2 10 ⁻⁹ 3,8 10 ⁻⁹	1,5 10 ⁻⁹ 2,4 10 ⁻⁹	9,9 10 ⁻¹⁰ 1,9 10 ⁻⁹	8,5 10 ⁻¹⁰ 1,5 10 ⁻⁹
Mn-56	2,58 h	F M	0,200 0,200	6,9 10 ⁻¹⁰ 1,1 10 ⁻⁹	0,100 0,100	4,9 10 ⁻¹⁰ 7,8 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4 10 ⁻¹⁰ 2,4 10 ⁻¹⁰	7,8 10 ⁻¹¹ 1,5 10 ⁻¹⁰	6,4 10 ⁻¹¹ 1,2 10 ⁻¹⁰
Fer a)										
Fe-52	8,28 h	F M S	0,600 0,200 0,020	5,2 10 ⁻⁹ 5,8 10 ⁻⁹ 6,0 10 ⁻⁹	0,100 0,100 0,010	3,6 10 ⁻⁹ 4,1 10 ⁻⁹ 4,2 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,9 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,3 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Fe-55	2,70 a	F M S	0,600 0,200 0,020	4,2 10 ⁻⁹ 1,9 10 ⁻⁹ 1,0 10 ⁻⁹	0,100 0,100 0,010	3,2 10 ⁻⁹ 1,4 10 ⁻⁹ 8,5 10 ⁻¹⁰	2,2 10 ⁻⁹ 9,9 10 ⁻¹⁰ 5,0 10 ⁻¹⁰	1,4 10 ⁻⁹ 6,2 10 ⁻¹⁰ 2,9 10 ⁻¹⁰	$\begin{array}{c} 9,4 \ 10^{-10} \\ 4,4 \ 10^{-10} \\ 2,0 \ 10^{-10} \end{array}$	$\begin{array}{c} 7,7 \ 10^{-10} \\ 3,8 \ 10^{-10} \\ 1,8 \ 10^{-10} \end{array}$
Fe-59	44,5 d	F M S	0,600 0,200 0,020	2,1 10 ⁻⁸ 1,8 10 ⁻⁸ 1,7 10 ⁻⁸	0,100 0,100 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,1 10 ⁻⁹ 7,9 10 ⁻⁹ 8,1 10 ⁻⁹	4,2 10 ⁻⁹ 5,5 10 ⁻⁹ 5,8 10 ⁻⁹	2,6 10 ⁻⁹ 4,6 10 ⁻⁹ 5,1 10 ⁻⁹	2,2 10 ⁻⁹ 3,7 10 ⁻⁹ 4,0 10 ⁻⁹
Fe-60	1,00 10 ⁵ a	F M S	0,600 0,200 0,020	4,4 10 ⁻⁷ 2,0 10 ⁻⁷ 9,3 10 ⁻⁸	0,100 0,100 0,010	3,9 10 ⁻⁷ 1,7 10 ⁻⁷ 8,8 10 ⁻⁸	3,5 10 ⁻⁷ 1,6 10 ⁻⁷ 6,7 10 ⁻⁸	3,2 10 ⁻⁷ 1,4 10 ⁻⁷ 5,2 10 ⁻⁸	2,9 10 ⁻⁷ 1,4 10 ⁻⁷ 4,9 10 ⁻⁸	2,8 10 ⁻⁷ 1,4 10 ⁻⁷ 4,9 10 ⁻⁸
Cobalt ^b)		•		,				'	'	
Co-55	17,5 h	F M S	0,600 0,200 0,020	2,2 10 ⁻⁹ 4,1 10 ⁻⁹ 4,6 10 ⁻⁹	0,100 0,100 0,010	1,8 10 ⁻⁹ 3,1 10 ⁻⁹ 3,3 10 ⁻⁹	9,0 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,6 10 ⁻⁹	5,5 10 ⁻¹⁰ 9,8 10 ⁻¹⁰ 1,1 10 ⁻⁹	3,1 10 ⁻¹⁰ 6,1 10 ⁻¹⁰ 6,6 10 ⁻¹⁰	2,7 10 ⁻¹⁰ 5,0 10 ⁻¹⁰ 5,3 10 ⁻¹⁰
Co-56	78,7 d	F M S	0,600 0,200 0,020	1,4 10 ⁻⁸ 2,5 10 ⁻⁸ 2,9 10 ⁻⁸	0,100 0,100 0,010	1,0 10 ⁻⁸ 2,1 10 ⁻⁸ 2,5 10 ⁻⁸	5,5 10 ⁻⁹ 1,1 10 ⁻⁸ 1,5 10 ⁻⁸	3,5 10 ⁻⁹ 7,4 10 ⁻⁹ 1,0 10 ⁻⁸	2,2 10 ⁻⁹ 5,8 10 ⁻⁹ 8,0 10 ⁻⁹	1,8 10 ⁻⁹ 4,8 10 ⁻⁹ 6,7 10 ⁻⁹
Co-57	271 d	F M S	0,600 0,200 0,020	1,5 10 ⁻⁹ 2,8 10 ⁻⁹ 4,4 10 ⁻⁹	0,100 0,100 0,010	1,1 10 ⁻⁹ 2,2 10 ⁻⁹ 3,7 10 ⁻⁹	5,6 10 ⁻¹⁰ 1,3 10 ⁻⁹ 2,3 10 ⁻⁹	3,7 10 ⁻¹⁰ 8,5 10 ⁻¹⁰ 1,5 10 ⁻⁹	2,3 10 ⁻¹⁰ 6,7 10 ⁻¹⁰ 1,2 10 ⁻⁹	1,9 10 ⁻¹⁰ 5,5 10 ⁻¹⁰ 1,0 10 ⁻⁹
Co-58	70,8 d	F M S	0,600 0,200 0,020	4,0 10 ⁻⁹ 7,3 10 ⁻⁹ 9,0 10 ⁻⁹	0,100 0,100 0,010	3,0 10 ⁻⁹ 6,5 10 ⁻⁹ 7,5 10 ⁻⁹	1,6 10 ⁻⁹ 3,5 10 ⁻⁹ 4,5 10 ⁻⁹	1,0 10 ⁻⁹ 2,4 10 ⁻⁹ 3,1 10 ⁻⁹	6,4 10 ⁻¹⁰ 2,0 10 ⁻⁹ 2,6 10 ⁻⁹	5,3 10 ⁻¹⁰ 1,6 10 ⁻⁹ 2,1 10 ⁻⁹
Co-58m	9,15 h	F M S	0,600 0,200 0,020	$ \begin{vmatrix} 4,8 & 10^{-11} \\ 1,1 & 10^{-10} \\ 1,3 & 10^{-10} \end{vmatrix} $	0,100 0,100 0,010	3,6 10 ⁻¹¹ 7,6 10 ⁻¹¹ 9,0 10 ⁻¹¹	1,7 10 ⁻¹¹ 3,8 10 ⁻¹¹ 4,5 10 ⁻¹¹	1,1 10 ⁻¹¹ 2,4 10 ⁻¹¹ 3,0 10 ⁻¹¹	5,9 10 ⁻¹² 1,6 10 ⁻¹¹ 2,0 10 ⁻¹¹	5,2 10 ⁻¹² 1,3 10 ⁻¹¹ 1,7 10 ⁻¹¹

a) La valeur de f_1 pour les individus de 1 à 15 ans et le type F est 0,2. b) La valeur de f_1 pour les individus de 1 à 15 ans et le type F est 0,3.

	Période		Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide 	physique	Type	fı	h(g)	f_1	h(g)	h(g)	h(g)	h(g)	h(g)
Co-60	5,27 a	F M S	0,600 0,200 0,020	3,0 10 ⁻⁸ 4,2 10 ⁻⁸ 9,2 10 ⁻⁸	0,100 0,100 0,010	2,3 10 ⁻⁸ 3,4 10 ⁻⁸ 8,6 10 ⁻⁸	1,4 10 ⁻⁸ 2,1 10 ⁻⁸ 5,9 10 ⁻⁸	8,9 10 ⁻⁹ 1,5 10 ⁻⁸ 4,0 10 ⁻⁸	6,1 10 ⁻⁹ 1,2 10 ⁻⁸ 3,4 10 ⁻⁸	5,2 10 ⁻⁹ 1,0 10 ⁻⁸ 3,1 10 ⁻⁸
Co-60m	0,174 h	F M S	0,600 0,200 0,020	$\begin{array}{c} 4,4 \ 10^{-12} \\ 7,1 \ 10^{-12} \\ 7,6 \ 10^{-12} \end{array}$	0,100 0,100 0,010	2,8 10 ⁻¹² 4,7 10 ⁻¹² 5,1 10 ⁻¹²	$ \begin{array}{c ccccc} 1,5 & 10^{-12} \\ 2,7 & 10^{-12} \\ 2,9 & 10^{-12} \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} 8,3 & 10^{-13} \\ 1,5 & 10^{-12} \\ 1,7 & 10^{-12} \end{vmatrix} $	6,9 10 ⁻¹³ 1,2 10 ⁻¹² 1,4 10 ⁻¹²
Co-61	1,65 h	F M S	0,600 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,100 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,8 10 ⁻¹¹ 8,2 10 ⁻¹¹ 8,8 10 ⁻¹¹	2,2 10 ⁻¹¹ 5,7 10 ⁻¹¹ 6,1 10 ⁻¹¹	$\begin{vmatrix} 1.9 & 10^{-11} \\ 4.7 & 10^{-11} \\ 5.1 & 10^{-11} \end{vmatrix}$
Co-62m	0,232 h	F M S	0,600 0,200 0,020	1,4 10 ⁻¹⁰ 1,9 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	0,100 0,100 0,010	9,5 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	4,5 10 ⁻¹¹ 6,1 10 ⁻¹¹ 6,3 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c }\hline 1,7 & 10^{-11} \\ 2,4 & 10^{-11} \\ 2,5 & 10^{-11} \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Nickel										
Ni-56	6,10 d	F M S	0,100 0,100 0,020	3,3 10 ⁻⁹ 4,9 10 ⁻⁹ 5,5 10 ⁻⁹	0,050 0,050 0,010	2,8 10 ⁻⁹ 4,1 10 ⁻⁹ 4,6 10 ⁻⁹	1,5 10 ⁻⁹ 2,3 10 ⁻⁹ 2,7 10 ⁻⁹	9,3 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,8 10 ⁻⁹	5,8 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,3 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ni-57	1,50 d	F M S	0,100 0,100 0,020	2,2 10 ⁻⁹ 3,6 10 ⁻⁹ 3,9 10 ⁻⁹	0,050 0,050 0,010	1,8 10 ⁻⁹ 2,8 10 ⁻⁹ 3,0 10 ⁻⁹	8,9 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,5 10 ⁻⁹	5,5 10 ⁻¹⁰ 9,5 10 ⁻¹⁰ 1,0 10 ⁻⁹	3,1 10 ⁻¹⁰ 6,2 10 ⁻¹⁰ 6,6 10 ⁻¹⁰	2,5 10 ⁻¹⁰ 5,0 10 ⁻¹⁰ 5,3 10 ⁻¹⁰
Ni-59	7,50 10 ⁴ a	F M S	0,100 0,100 0,020	9,6 10 ⁻¹⁰ 7,9 10 ⁻¹⁰ 1,7 10 ⁻⁹	0,050 0,050 0,010	8,1 10 ⁻¹⁰ 6,2 10 ⁻¹⁰ 1,5 10 ⁻⁹	4,5 10 ⁻¹⁰ 3,4 10 ⁻¹⁰ 9,5 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,9 10 ⁻¹⁰ 1,4 10 ⁻¹⁰ 4,6 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ni-63	96,0 a	F M S	0,100 0,100 0,020	2,3 10 ⁻⁹ 2,5 10 ⁻⁹ 4,8 10 ⁻⁹	0,050 0,050 0,010	2,0 10 ⁻⁹ 1,9 10 ⁻⁹ 4,3 10 ⁻⁹	1,1 10 ⁻⁹ 1,1 10 ⁻⁹ 2,7 10 ⁻⁹	6,7 10 ⁻¹⁰ 7,0 10 ⁻¹⁰ 1,7 10 ⁻⁹	4,6 10 ⁻¹⁰ 5,3 10 ⁻¹⁰ 1,3 10 ⁻⁹	4,4 10 ⁻¹⁰ 4,8 10 ⁻¹⁰ 1,3 10 ⁻⁹
Ni-65	2,52 h	F M S	0,100 0,100 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,050 0,050 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4 10 ⁻¹⁰ 2,4 10 ⁻¹⁰ 2,6 10 ⁻¹⁰	8,5 10 ⁻¹¹ 1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	4,9 10 ⁻¹¹ 1,0 10 ⁻¹⁰ 1,1 10 ⁻¹⁰	4,1 10 ⁻¹¹ 8,5 10 ⁻¹¹ 9,0 10 ⁻¹¹
Ni-66	2,27 d	F M S	0,100 0,100 0,020	5,7 10 ⁻⁹ 1,3 10 ⁻⁸ 1,5 10 ⁻⁸	0,050 0,050 0,010	3,8 10 ⁻⁹ 9,4 10 ⁻⁹ 1,0 10 ⁻⁸	1,6 10 ⁻⁹ 4,5 10 ⁻⁹ 5,0 10 ⁻⁹	1,0 10 ⁻⁹ 2,9 10 ⁻⁹ 3,2 10 ⁻⁹	5,1 10 ⁻¹⁰ 2,0 10 ⁻⁹ 2,2 10 ⁻⁹	4,2 10 ⁻¹⁰ 1,6 10 ⁻⁹ 1,8 10 ⁻⁹
Cuivre	•									
Cu-60	0,387 h	F M S	1,000 1,000 1,000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,500 0,500 0,500	$\begin{array}{ c c c c } & 1,6 & 10^{-10} \\ & 2,2 & 10^{-10} \\ & 2,2 & 10^{-10} \end{array}$	$\begin{array}{ c c c c c c }\hline 7,5 & 10^{-11} \\ 1,0 & 10^{-10} \\ 1,1 & 10^{-10} \\ \hline \end{array}$	4,6 10 ⁻¹¹ 6,5 10 ⁻¹¹ 6,7 10 ⁻¹¹	$\begin{array}{ c c c c c c } 2,8 & 10^{-11} \\ 4,0 & 10^{-11} \\ 4,2 & 10^{-11} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cu-61	3,41 h	F M S	1,000 1,000 1,000	3,1 10 ⁻¹⁰ 4,9 10 ⁻¹⁰ 5,1 10 ⁻¹⁰	0,500 0,500 0,500	2,7 10 ⁻¹⁰ 4,4 10 ⁻¹⁰ 4,5 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,5 10 ⁻¹¹ 9,1 10 ⁻¹¹ 9,6 10 ⁻¹¹	3,7 10 ⁻¹¹ 7,4 10 ⁻¹¹ 7,8 10 ⁻¹¹
Cu-64	12,7 h	F M S	1,000 1,000 1,000	2,8 10 ⁻¹⁰ 5,5 10 ⁻¹⁰ 5,8 10 ⁻¹⁰	0,500 0,500 0,500	2,7 10 ⁻¹⁰ 5,4 10 ⁻¹⁰ 5,7 10 ⁻¹⁰	$ \begin{array}{c cccc} 1,2 & 10^{-10} \\ 2,7 & 10^{-10} \\ 2,9 & 10^{-10} \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,2 10 ⁻¹¹ 1,4 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cu-67	2,58 d	F M S	1,000 1,000 1,000	9,5 10 ⁻¹⁰ 2,3 10 ⁻⁹ 2,5 10 ⁻⁹	0,500 0,500 0,500	8,0 10 ⁻¹⁰ 2,0 10 ⁻⁹ 2,1 10 ⁻⁹	3,5 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,2 10 ⁻⁹	2,2 10 ⁻¹⁰ 8,1 10 ⁻¹⁰ 8,9 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 6,9 10 ⁻¹⁰ 7,7 10 ⁻¹⁰	$ \begin{array}{c cccc} 1,0 & 10^{-10} \\ 5,5 & 10^{-10} \\ 6,1 & 10^{-10} \end{array} $
Zinc										
Zn-62	9,26 h	F M S	1,000 0,200 0,020	1,7 10 ⁻⁹ 4,5 10 ⁻⁹ 5,1 10 ⁻⁹	0,500 0,100 0,010	1,7 10 ⁻⁹ 3,5 10 ⁻⁹ 3,4 10 ⁻⁹	7,7 10 ⁻¹⁰ 1,6 10 ⁻⁹ 1,8 10 ⁻⁹	4,6 10 ⁻¹⁰ 1,0 10 ⁻⁹ 1,1 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Zn-63	0,635 h	F M S	1,000 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,500 0,100 0,010	1,4 10 ⁻¹⁰ 2,3 10 ⁻¹⁰ 2,4 10 ⁻¹⁰	6,5 10 ⁻¹¹ 1,0 10 ⁻¹⁰ 1,1 10 ⁻¹⁰	4,0 10 ⁻¹¹ 6,6 10 ⁻¹¹ 6,9 10 ⁻¹¹	2,4 10 ⁻¹¹ 4,2 10 ⁻¹¹ 4,4 10 ⁻¹¹	2,0 10 ⁻¹¹ 3,5 10 ⁻¹¹ 3,7 10 ⁻¹¹
Zn-65	244 d	F M S	1,000 0,200 0,020	1,5 10 ⁻⁸ 8,5 10 ⁻⁹ 7,6 10 ⁻⁹	0,500 0,100 0,010	1,0 10 ⁻⁸ 6,5 10 ⁻⁹ 6,7 10 ⁻⁹	5,7 10 ⁻⁹ 3,7 10 ⁻⁹ 4,4 10 ⁻⁹	3,8 10 ⁻⁹ 2,4 10 ⁻⁹ 2,9 10 ⁻⁹	2,5 10 ⁻⁹ 1,9 10 ⁻⁹ 2,4 10 ⁻⁹	2,2 10 ⁻⁹ 1,6 10 ⁻⁹ 2,0 10 ⁻⁹
Zn-69	0,950 h	F M S	1,000 0,200 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,500 0,100 0,010	7,4 10 ⁻¹¹ 1,4 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	3,2 10 ⁻¹¹ 6,5 10 ⁻¹¹ 6,9 10 ⁻¹¹	2,1 10 ⁻¹¹ 4,4 10 ⁻¹¹ 4,7 10 ⁻¹¹	1,2 10 ⁻¹¹ 3,1 10 ⁻¹¹ 3,4 10 ⁻¹¹	1,1 10 ⁻¹¹ 2,6 10 ⁻¹¹ 2,8 10 ⁻¹¹

NT .12:1	Période	T	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Type	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Zn-69m	13,8 h	F M S	1,000 0,200 0,020	6,6 10 ⁻¹⁰ 2,1 10 ⁻⁹ 2,2 10 ⁻⁹	0,500 0,100 0,010	6,7 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,7 10 ⁻⁹	3,0 10 ⁻¹⁰ 7,5 10 ⁻¹⁰ 8,2 10 ⁻¹⁰	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,9 10 ⁻¹¹ 3,0 10 ⁻¹⁰ 3,3 10 ⁻¹⁰	8,2 10 ⁻¹¹ 2,4 10 ⁻¹⁰ 2,7 10 ⁻¹⁰
Zn-71m	3,92 h	F M S	1,000 0,200 0,020	6,2 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,4 10 ⁻⁹	0,500 0,100 0,010	5,5 10 ⁻¹⁰ 9,4 10 ⁻¹⁰ 1,0 10 ⁻⁹	2,6 10 ⁻¹⁰ 4,6 10 ⁻¹⁰ 4,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,1 10 ⁻¹¹ 1,9 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	7,4 10 ⁻¹¹ 1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰
Zn-72	1,94 d	F M S	1,000 0,200 0,020	4,3 10 ⁻⁹ 8,8 10 ⁻⁹ 9,7 10 ⁻⁹	0,500 0,100 0,010	3,5 10 ⁻⁹ 6,5 10 ⁻⁹ 7,0 10 ⁻⁹	1,7 10 ⁻⁹ 3,4 10 ⁻⁹ 3,6 10 ⁻⁹	1,0 10 ⁻⁹ 2,3 10 ⁻⁹ 2,4 10 ⁻⁹	5,9 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,6 10 ⁻⁹	4,9 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,3 10 ⁻⁹
Gallium										
Ga-65	0,253 h	F M	0,010 0,010	$\begin{array}{ c c c c } & 1,1 & 10^{-10} \\ & 1,6 & 10^{-10} \end{array}$	0,001 0,001	$\begin{array}{ c c c c c c }\hline 7,3 & 10^{-11} \\ 1,1 & 10^{-10} \\ \hline \end{array}$	$\begin{array}{c c} 3,4 & 10^{-11} \\ 4,8 & 10^{-11} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 1,3 & 10^{-11} \\ 2,0 & 10^{-11} \end{array}$	1,1 10 ⁻¹¹ . 1,7 10 ⁻¹¹
Ga-66	9,40 h	F M	0,010 0,010	2,8 10 ⁻⁹ 4,5 10 ⁻⁹	0,001 0,001	2,0 10 ⁻⁹ 3,1 10 ⁻⁹	9,2 10 ⁻¹⁰ 1,5 10 ⁻⁹	$\begin{array}{c} 5.7 \ 10^{-10} \\ 9.2 \ 10^{-10} \end{array}$	3,0 10 ⁻¹⁰ 5,3 10 ⁻¹⁰	2,5 10 ⁻¹⁰ 4,4 10 ⁻¹⁰
Ga-67	3,26 d	F M	0,010 0,010	6,4 10 ⁻¹⁰ 1,4 10 ⁻⁹	0,001 0,001	4,6 10 ⁻¹⁰ 1,0 10 ⁻⁹	2,2 10 ⁻¹⁰ 5,0 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,7 10 ⁻¹¹ 3,0 10 ⁻¹⁰	6,4 10 ⁻¹¹ 2,4 10 ⁻¹⁰
Ga-68	1,13 h	F M	0,010 0,010	2,9 10 ⁻¹⁰ 4,6 10 ⁻¹⁰	0,001 0,001	1,9 10 ⁻¹⁰ 3,1 10 ⁻¹⁰	8,8 10 ⁻¹¹ 1,4 10 ⁻¹⁰	5,4 10 ⁻¹¹ 9,2 10 ⁻¹¹	3,1 10 ⁻¹¹ 5,9 10 ⁻¹¹	2,6 10 ⁻¹¹ 4,9 10 ⁻¹¹
Ga-70	0,353 h	F M	0,010 0,010	9,5 10 ⁻¹¹ 1,5 10 ⁻¹⁰	0,001 0,001	6,0 10 ⁻¹¹ 9,6 10 ⁻¹¹	2,6 10 ⁻¹¹ 4,3 10 ⁻¹¹	1,6 10 ⁻¹¹ 2,8 10 ⁻¹¹	1,0 10 ⁻¹¹ 1,8 10 ⁻¹¹	8,8 10 ⁻¹² 1,6 10 ⁻¹¹
Ga-72	14,1 h	F M	0,010 0,010	2,9 10 ⁻⁹ 4,5 10 ⁻⁹	0,001 0,001	2,2 10 ⁻⁹ 3,3 10 ⁻⁹	1,0 10 ⁻⁹ 1,6 10 ⁻⁹	6,4 10 ⁻¹⁰ 1,0 10 ⁻⁹	$3,6 10^{-10}$ $6,5 10^{-10}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ga-73	4,91 h	F M	0,010 0,010	$\begin{array}{c c} 6,7 & 10^{-10} \\ 1,2 & 10^{-9} \end{array}$	0,001 0,001	4,5 10 ⁻¹⁰ 8,4 10 ⁻¹⁰	2,0 10 ⁻¹⁰ 4,0 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,4 10 ⁻¹¹ 1,7 10 ⁻¹⁰	5,4 10 ⁻¹¹ 1,4 10 ⁻¹⁰
Germanium										
Ge-66	2,27 h	F M	1,000 1,000	4,5 10 ⁻¹⁰ 6,4 10 ⁻¹⁰	1,000 1,000	$\begin{array}{ c c c c c c }\hline 3,5 & 10^{-10} \\ 4,8 & 10^{-10} \\ \hline \end{array}$	$\begin{array}{ c c c c } 1,8 & 10^{-10} \\ 2,5 & 10^{-10} \end{array}$	1,1 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	$\begin{array}{ c c c c c c } 6,7 & 10^{-11} \\ 1,1 & 10^{-10} \end{array}$	5,4 10 ⁻¹¹ 9,1 10 ⁻¹¹
Ge-67	0,312 h	F M	1,000 1,000	1,7 10 ⁻¹⁰ 2,5 10 ⁻¹⁰	1,000 1,000	1,1 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	4,9 10 ⁻¹¹ 7,3 10 ⁻¹¹	3,1 10 ⁻¹¹ 4,6 10 ⁻¹¹	1,8 10 ⁻¹¹ 2,9 10 ⁻¹¹	1,5 10 ⁻¹¹ 2,5 10 ⁻¹¹
Ge-68	288 d	F M	1,000 1,000	5,4 10 ⁻⁹ 6,0 10 ⁻⁸	1,000 1,000	3,8 10 ⁻⁹ 5,0 10 ⁻⁸	1,8 10 ⁻⁹ 3,0 10 ⁻⁸	1,1 10 ⁻⁹ 2,0 10 ⁻⁸	6,3 10 ⁻¹⁰ 1,6 10 ⁻⁸	5,2 10 ⁻¹⁰ 1,4 10 ⁻⁸
Ge-69	1,63 d	F M	1,000 1,000	1,2 10 ⁻⁹ 1,8 10 ⁻⁹	1,000 1,000	9,0 10 ⁻¹⁰ 1,4 10 ⁻⁹	4,6 10 ⁻¹⁰ 7,4 10 ⁻¹⁰	2,8 10 ⁻¹⁰ 4,9 10 ⁻¹⁰	1,7 10 ⁻¹⁰ 3,6 10 ⁻¹⁰	1,3 10 ⁻¹⁰ 2,9 10 ⁻¹⁰
Ge-71	11,8 d	F M	1,000 1,000	6,0 10 ⁻¹¹ 1,2 10 ⁻¹⁰	1,000 1,000	4,3 10 ⁻¹¹ 8,6 10 ⁻¹¹	2,0 10 ⁻¹¹ 4,1 10 ⁻¹¹	1,1 10 ⁻¹¹ 2,4 10 ⁻¹¹	6,1 10 ⁻¹² 1,3 10 ⁻¹¹	4,8 10 ⁻¹² 1,1 10 ⁻¹¹
Ge-75	1,38 h	F M	1,000 1,000	1,6 10 ⁻¹⁰ 2,9 10 ⁻¹⁰	1,000 1,000	1,0 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	4,3 10 ⁻¹¹ 8,9 10 ⁻¹¹	2,8 10 ⁻¹¹ 6,1 10 ⁻¹¹	1,7 10 ⁻¹¹ 4,4 10 ⁻¹¹	1,5 10 ⁻¹¹ 3,6 10 ⁻¹¹
Ge-77	11,3 h	F M	1,000 1,000	1,3 10 ⁻⁹ 2,3 10 ⁻⁹	1,000 1,000	9,5 10 ⁻¹⁰ 1,7 10 ⁻⁹	4,7 10 ⁻¹⁰ 8,8 10 ⁻¹⁰	2,9 10 ⁻¹⁰ 6,0 10 ⁻¹⁰	1,7 10 ⁻¹⁰ 4,5 10 ⁻¹⁰	1,4 10 ⁻¹⁰ 3,7 10 ⁻¹⁰
Ge-78	1,45 h	F M	1,000 1,000	4,3 10 ⁻¹⁰ 7,3 10 ⁻¹⁰	1,000 1,000	2,9 10 ⁻¹⁰ 5,0 10 ⁻¹⁰	$\begin{array}{c c} 1,4 & 10^{-10} \\ 2,5 & 10^{-10} \end{array}$	$\begin{array}{c c} 8,9 & 10^{-11} \\ 1,6 & 10^{-10} \end{array}$	5,5 10 ⁻¹¹ 1,2 10 ⁻¹⁰	4,5 10 ⁻¹¹ 9,5 10 ⁻¹¹
Arsenic										
As-69	0,253 h	M	1,000	$\begin{bmatrix} 2,1 & 10^{-10} \\ 5,7 & 10^{-10} \end{bmatrix}$	0,500	1,4 10 ⁻¹⁰	6,3 10 ⁻¹¹	4,0 10-11	2,5 10 ⁻¹¹	2,1 10 ⁻¹¹
As-70	0,876 h	M	1,000	5,7 10 ⁻¹⁰	0,500	4,3 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,3 10 ⁻¹⁰	8,3 10 ⁻¹¹	6,7 10 ⁻¹¹
As-71	2,70 d	M M	1,000	2,2 10 ⁻⁹ 5,9 10 ⁻⁹	0,500 0,500	1,9 10 ⁻⁹ 5,7 10 ⁻⁹	1,0 10 ⁻⁹ 2,7 10 ⁻⁹	6,8 10 ⁻¹⁰ 1,7 10 ⁻⁹	5,0 10 ⁻¹⁰ 1,1 10 ⁻⁹	4,0 10 ⁻¹⁰ 9,0 10 ⁻¹⁰
As-72 As-73	1,08 d 80,3 d	M M	1,000 1,000	5,4 10-9	0,500	4,0 10-9	2,7 10 2,3 10-9	1,7 10	1,1 10 1,2 10 ⁻⁹	1,0 10 ⁻⁹
As-73 As-74	17,8 d	M	1,000	1,1 10-8	0,500	8,4 10 ⁻⁹	4,7 10 ⁻⁹	3,3 10 ⁻⁹	2,6 10 ⁻⁹	2,1 10 ⁻⁹
As-76	1,10 d	M	1,000	5,1 10-9	0,500	4,6 10 ⁻⁹	2,2 10 ⁻⁹	1,4 10 ⁻⁹	8,8 10 ⁻¹⁰	7,4 10 ⁻¹⁰
As-77	1,62 d	М	1,000	2,2 10-9	0,500	1,7 10 ⁻⁹	8,9 10 ⁻¹⁰	6,2 10 ⁻¹⁰	5,0 10 ⁻¹⁰	3,9 10 ⁻¹⁰
As-78	1,51 h	M	1,000	8,0 10-10	0,500	5,8 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,7 10-10	1,1 10 ⁻¹⁰	8,9 10 ⁻¹¹

Minald: J.	Période	T	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Туре	fı	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Sélénium					· · · · · · · · · · · · · · · · · · ·					
Se-70	0,683 h	F M S	1,000 0,200 0,020	$\begin{array}{ c c c c c c }\hline 3,9 & 10^{-10} \\ 6,5 & 10^{-10} \\ 6,8 & 10^{-10} \\ \hline \end{array}$	0,800 0,100 0,010	$\begin{array}{ c c c c c }\hline 3,0 & 10^{-10} \\ 4,7 & 10^{-10} \\ 4,8 & 10^{-10} \\\hline \end{array}$	$\begin{array}{c c} 1,5 & 10^{-10} \\ 2,3 & 10^{-10} \\ 2,3 & 10^{-10} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,1 10 ⁻¹¹ 8,9 10 ⁻¹¹ 9,4 10 ⁻¹¹	$\begin{array}{ c c c c c c } \hline 4,2 & 10^{-11} \\ 7,3 & 10^{-11} \\ 7,6 & 10^{-11} \\ \hline \end{array}$
Se-73	7,15 h	F M S	1,000 0,200 0,020	7,7 10 ⁻¹⁰ 1,6 10 ⁻⁹ 1,8 10 ⁻⁹	0,800 0,100 0,010	6,5 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,3 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,0 10 ⁻¹⁰ 2,4 10 ⁻¹⁰ 2,6 10 ⁻¹⁰	$\begin{vmatrix} 8,0 & 10^{-11} \\ 1,9 & 10^{-10} \\ 2,1 & 10^{-10} \end{vmatrix}$
Se-73m	0,650 h	F M S	1,000 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,800 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 3,5 & 10^{-11} \\ 6,1 & 10^{-11} \\ 6,5 & 10^{-11} \end{vmatrix}$	2,3 10 ⁻¹¹ 3,9 10 ⁻¹¹ 4,1 10 ⁻¹¹	1,1 10 ⁻¹¹ 2,5 10 ⁻¹¹ 2,6 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Se-75	120 d	F M S	1,000 0,200 0,020	7,8 10 ⁻⁹ 5,4 10 ⁻⁹ 5,6 10 ⁻⁹	0,800 0,100 0,010	6,0 10 ⁻⁹ 4,5 10 ⁻⁹ 4,7 10 ⁻⁹	3,4 10 ⁻⁹ 2,5 10 ⁻⁹ 2,9 10 ⁻⁹	2,5 10 ⁻⁹ 1,7 10 ⁻⁹ 2,0 10 ⁻⁹	1,2 10 ⁻⁹ 1,3 10 ⁻⁹ 1,6 10 ⁻⁹	1,0 10 ⁻⁹ 1,1 10 ⁻⁹ 1,3 10 ⁻⁹
Se-79	6,50 10 ⁴ a	F M S	1,000 0,200 0,020	1,6 10 ⁻⁸ 1,4 10 ⁻⁸ 2,3 10 ⁻⁸	0,800 0,100 0,010	$ \begin{array}{ c c c c c } \hline 1,3 & 10^{-8} \\ 1,1 & 10^{-8} \\ 2,0 & 10^{-8} \end{array} $	7,7 10 ⁻⁹ 6,9 10 ⁻⁹ 1,3 10 ⁻⁸	5,6 10 ⁻⁹ 4,9 10 ⁻⁹ 8,7 10 ⁻⁹	1,5 10 ⁻⁹ 3,3 10 ⁻⁹ 7,6 10 ⁻⁹	1,1 10 ⁻⁹ 2,6 10 ⁻⁹ 6,8 10 ⁻⁹
Se-81	0,308 h	F M S	1,000 0,200 0,020	8,6 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	0,800 0,100 0,010	5,4 10 ⁻¹¹ 8,5 10 ⁻¹¹ 8,9 10 ⁻¹¹	2,3 10 ⁻¹¹ 3,8 10 ⁻¹¹ 3,9 10 ⁻¹¹	1,5 10 ⁻¹¹ 2,5 10 ⁻¹¹ 2,6 10 ⁻¹¹	9,2 10 ⁻¹² 1,6 10 ⁻¹¹ 1,7 10 ⁻¹¹	8,0 10 ⁻¹² 1,4 10 ⁻¹¹ 1,5 10 ⁻¹¹
Se-81m	0,954 h	F M S	1,000 0,200 0,020	1,8 10 ⁻¹⁰ 3,8 10 ⁻¹⁰ 4,1 10 ⁻¹⁰	0,800 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,4 10 ⁻¹¹ 1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	3,4 10 ⁻¹¹ 8,0 10 ⁻¹¹ 8,5 10 ⁻¹¹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Se-83	0,375 h	F M S	1,000 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,800 0,100 0,010	1,2 10 ⁻¹⁰ 1,9 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	5,8 10 ⁻¹¹ 9,2 10 ⁻¹¹ 9,6 10 ⁻¹¹	3,6 10 ⁻¹¹ 5,9 10 ⁻¹¹ 6,2 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Brome	1		,	1 7	,	t	1 /	1 7	1 /	1 /
Br-74	0,422 h	F M	1,000 1,000	$\begin{array}{ c c c c c c } 2,5 & 10^{-10} \\ 3,6 & 10^{-10} \end{array}$	1,000 1,000	$\begin{array}{ c c c c } 1,8 & 10^{-10} \\ 2,5 & 10^{-10} \end{array}$	8,6 10 ⁻¹¹ 1,2 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,2 10 ⁻¹¹ 4,6 10 ⁻¹¹	2,6 10 ⁻¹¹ 3,8 10 ⁻¹¹
Br-74m	0,691 h	F M	1,000 1,000	4,0 10 ⁻¹⁰ 5,9 10 ⁻¹⁰	1,000 1,000	2,8 10 ⁻¹⁰ 4,1 10 ⁻¹⁰	1,3 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	8,1 10 ⁻¹¹ 1,2 10 ⁻¹⁰	4,8 10 ⁻¹¹ 7,5 10 ⁻¹¹	3,9 10 ⁻¹¹ 6,2 10 ⁻¹¹
Br-75	1,63 h	F M	1,000 1,000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,000 1,000	2,1 10 ⁻¹⁰ 3,1 10 ⁻¹⁰	9,7 10 ⁻¹¹ 1,5 10 ⁻¹⁰	5,9 10 ⁻¹¹ 9,7 10 ⁻¹¹	3,5 10 ⁻¹¹ 6,5 10 ⁻¹¹	2,9 10 ⁻¹¹ 5,3 10 ⁻¹¹
Br-76	16,2 h	F M	1,000	2,2 10 ⁻⁹ 3,0 10 ⁻⁹	1,000	1,7 10 ⁻⁹ 2,3 10 ⁻⁹	8,4 10 ⁻¹⁰ 1,2 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2,4 10 ⁻¹⁰ 4,1 10 ⁻¹⁰
Br-77	2,33 d	F	1,000	5,3 10-10	1,000 1,000	4,4 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,3 10-10	7,7 10-11	6,2 10-11
Br-80	0,290 h	M F	1,000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,000 1,000	5,1 10 ⁻¹⁰ 4,4 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,6 10 ⁻¹⁰ 1,2 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,4 10 ⁻¹¹ 5,9 10 ⁻¹²
Br-80m	4,42 h	M F	1,000	4,3 10 ⁻¹⁰ 6,8 10 ⁻¹⁰	1,000 1,000	6,5 10 ⁻¹¹ 2,8 10 ⁻¹⁰ 4,5 10 ⁻¹⁰	$\begin{array}{ c c c c c c } 2,8 & 10^{-11} \\ 1,2 & 10^{-10} \\ 2,1 & 10^{-10} \end{array}$	7,2 10 ⁻¹¹	1,1 10 ⁻¹¹ 4,0 10 ⁻¹¹ 9,3 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Br-82	1,47 d	M F M	1,000 1,000 1,000	2,7 10 ⁻⁹ 3,8 10 ⁻⁹	1,000 1,000	2,2 10 ⁻⁹ 3,0 10 ⁻⁹	1,2 10 ⁻⁹ 1,7 10 ⁻⁹	$\begin{array}{ c c c c c }\hline 1,4 & 10^{-10} \\ 7,0 & 10^{-10} \\ 1,1 & 10^{-9} \\ \hline \end{array}$	4,2 10 ⁻¹⁰ 7,9 10 ⁻¹⁰	3,5 10 ⁻¹⁰ 6,3 10 ⁻¹⁰
Br-83	2,39 h	F M	1,000	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,000 1,000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,7 10 ⁻¹¹ 1,1 10 ⁻¹⁰	3,0 10 ⁻¹¹ 7,7 10 ⁻¹¹	1,8 10 ⁻¹¹ 5,9 10 ⁻¹¹	1,6 10 ⁻¹¹ 4,8 10 ⁻¹¹
Br-84	0,530 h	F M	1,000 1,000 1,000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,000 1,000 1,000	1,6 10 ⁻¹⁰ 2,4 10 ⁻¹⁰	7,1 10 ⁻¹¹ 1,1 10 ⁻¹⁰	4,4 10 ⁻¹¹ 6,9 10 ⁻¹¹	2,6 10 ⁻¹¹ 4,4 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Rubidium	1	1 141	1,000	3,7 10	1,000	1 2,1 10	1,1 10	0,5 10	7,1 10	7 3,7 10
Rb-79	0,382 h	F	1,000	1,6 10-10	1,000	1,1 10-10	5,0 10-11	3,2 10-11	1,9 10-11	1,6 10-1
Rb-81	4,58 h	F	1,000	3,2 10 ⁻¹⁰	1,000	2,5 10-10	1,2 10 ⁻¹⁰	7,1 10 ⁻¹¹	4,2 10 ⁻¹¹	3,4 10 ⁻¹
Rb-81m	0,533 h	F	1,000	6,2 10 ⁻¹¹	1,000	4,6 10-11	2,2 10 ⁻¹¹	1,4 10-11	8,5 10 ⁻¹²	7,0 10-1
Rb-82m	6,20 h	F	1,000	8,6 10 ⁻¹⁰	1,000	7,3 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,1 10-10
Rb-83	86,2 d	F	1,000	4,9 10-9	1,000	3,8 10-9	2,0 10-9	1,3 10-9	7,9 10 ⁻¹⁰	6,9 10-1
Rb-84	32,8 d	F	1,000	8,6 10-9	1,000	6,4 10-9	3,1 10-9	2,0 10-9	1,2 10-9	1,0 10-9
Rb-86	18,7 d	F	1,000	1,2 10 ⁻⁸	1,000	7,7 10 ⁻⁹	3,4 10-9	2,0 10-9	1,1 10-9	9,3 10-1
Rb-87	4,70 10 ¹⁰ a	F	1,000	6,0 10 ⁻⁹	1,000	4,1 10 ⁻⁹	1,8 10-9	1,1 10-9	6,0 10 ⁻¹⁰	5,0 10-1
Rb-88	0,297 h	F	1,000	1,9 10 ⁻¹⁰	1,000	1,2 10 ⁻¹⁰	5,2 10 ⁻¹¹	3,2 10 ⁻¹¹	1,9 10-11	1,6 10 ⁻¹ 1,4 10 ⁻¹
Rb-89	0,253 h	F	1,000	1,4 10 ⁻¹⁰	1,000	9,3 10-11	4,3 10-11	2,7 10-11	1,6 10-11	

. . .

Nucléide	Période	Tu	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucleide	physique	Туре	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Strontium a)										
Sr-80	1,67 h	F M S	0,600 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,300 0,100 0,010	$\begin{array}{ c c c c c }\hline 5,4 & 10^{-10} \\ 9,0 & 10^{-10} \\ 9,4 & 10^{-10} \\ \hline \end{array}$	$\begin{array}{ c c c c c } 2,4 & 10^{-10} \\ 4,1 & 10^{-10} \\ 4,3 & 10^{-10} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,9 10 ⁻¹¹ 1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sr-81	0,425 h	F M S	0,600 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,300 0,100 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,7 10 ⁻¹¹ 1,0 10 ⁻¹⁰ 1,1 10 ⁻¹⁰	4,1 10 ⁻¹¹ 6,6 10 ⁻¹¹ 6,9 10 ⁻¹¹	2,4 10 ⁻¹¹ 4,2 10 ⁻¹¹ 4,4 10 ⁻¹¹	2,1 10 ⁻¹¹ 3,5 10 ⁻¹¹ 3,7 10 ⁻¹¹
Sr-82	25,0 d	F M S	0,600 0,200 0,020	2,8 10 ⁻⁸ 5,5 10 ⁻⁸ 6,1 10 ⁻⁸	0,300 0,100 0,010	1,5 10 ⁻⁸ 4,0 10 ⁻⁸ 4,6 10 ⁻⁸	6,6 10 ⁻⁹ 2,1 10 ⁻⁸ 2,5 10 ⁻⁸	4,6 10 ⁻⁹ 1,4 10 ⁻⁸ 1,7 10 ⁻⁸	3,2 10 ⁻⁹ 1,0 10 ⁻⁸ 1,2 10 ⁻⁸	2,1 10 ⁻⁹ 8,9 10 ⁻⁹ 1,1 10 ⁻⁸
Sr-83	1,35 d	F M S	0,600 0,200 0,020	1,4 10 ⁻⁹ 2,5 10 ⁻⁹ 2,8 10 ⁻⁹	0,300 0,100 0,010	1,1 10 ⁻⁹ 1,9 10 ⁻⁹ 2,0 10 ⁻⁹	5,5 10 ⁻¹⁰ 9,5 10 ⁻¹⁰ 1,0 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sr-85	64,8 d	F M S	0,600 0,200 0,020	4,4 10 ⁻⁹ 4,3 10 ⁻⁹ 4,4 10 ⁻⁹	0,300 0,100 0,010	2,3 10 ⁻⁹ 3,1 10 ⁻⁹ 3,7 10 ⁻⁹	1,1 10 ⁻⁹ 1,8 10 ⁻⁹ 2,2 10 ⁻⁹	9,6 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,3 10 ⁻⁹	8,3 10 ⁻¹⁰ 8,8 10 ⁻¹⁰ 1,0 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sr-85m	1,16 h	F M S	0,600 0,200 0,020	2,4 10 ⁻¹¹ 3,1 10 ⁻¹¹ 3,2 10 ⁻¹¹	0,300 0,100 0,010	1,9 10 ⁻¹¹ 2,5 10 ⁻¹¹ 2,6 10 ⁻¹¹	9,6 10 ⁻¹² 1,3 10 ⁻¹¹ 1,3 10 ⁻¹¹	6,0 10 ⁻¹² 8,0 10 ⁻¹² 8,3 10 ⁻¹²	$3,7 10^{-12}$ $5,1 10^{-12}$ $5,4 10^{-12}$	2,9 10 ⁻¹² 4,1 10 ⁻¹² 4,3 10 ⁻¹²
Sr-87m	2,80 h	F M S	0,600 0,200 0,020	9,7 10 ⁻¹¹ 1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	0,300 0,100 0,010	7,8 10 ⁻¹¹ 1,2 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	3,8 10 ⁻¹¹ 5,9 10 ⁻¹¹ 6,2 10 ⁻¹¹	2,3 10 ⁻¹¹ 3,8 10 ⁻¹¹ 4,0 10 ⁻¹¹	1,3 10 ⁻¹¹ 2,5 10 ⁻¹¹ 2,6 10 ⁻¹¹	$ \begin{array}{c cccc} 1,1 & 10^{-11} \\ 2,0 & 10^{-11} \\ 2,1 & 10^{-11} \end{array} $
Sr-89	50,5 d	F M S	0,600 0,200 0,020	1,5 10 ⁻⁸ 3,3 10 ⁻⁸ 3,9 10 ⁻⁸	0,300 0,100 0,010	7,3 10 ⁻⁹ 2,4 10 ⁻⁸ 3,0 10 ⁻⁸	3,2 10 ⁻⁹ 1,3 10 ⁻⁸ 1,7 10 ⁻⁸	2,3 10 ⁻⁹ 9,1 10 ⁻⁹ 1,2 10 ⁻⁸	1,7 10 ⁻⁹ 7,3 10 ⁻⁹ 9,3 10 ⁻⁹	1,0 10 ⁻⁹ 6,1 10 ⁻⁹ 7,9 10 ⁻⁹
Sr-90	29,1 a	F M S	0,600 0,200 0,020	1,3 10 ⁻⁷ 1,5 10 ⁻⁷ 4,2 10 ⁻⁷	0,300 0,100 0,010	5,2 10 ⁻⁸ 1,1 10 ⁻⁷ 4,0 10 ⁻⁷	3,1 10 ⁻⁸ 6,5 10 ⁻⁸ 2,7 10 ⁻⁷	4,1 10 ⁻⁸ 5,1 10 ⁻⁸ 1,8 10 ⁻⁷	5,3 10 ⁻⁸ 5,0 10 ⁻⁸ 1,6 10 ⁻⁷	2,4 10 ⁻⁸ 3,6 10 ⁻⁸ 1,6 10 ⁻⁷
Sr-91	9,50 h	F M S	0,600 0,200 0,020	1,4 10 ⁻⁹ 3,1 10 ⁻⁹ 3,5 10 ⁻⁹	0,300 0,100 0,010	1,1 10 ⁻⁹ 2,2 10 ⁻⁹ 2,5 10 ⁻⁹	5,2 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,2 10 ⁻⁹	3,1 10 ⁻¹⁰ 6,9 10 ⁻¹⁰ 7,7 10 ⁻¹⁰	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1,6 \ 10^{-10} \\ 3,7 \ 10^{-10} \\ 4,1 \ 10^{-10} \end{array} $
Sr-92	2,71 h	F M S	0,600 0,200 0,020	9,0 10 ⁻¹⁰ 1,9 10 ⁻⁹ 2,2 10 ⁻⁹	0,300 0,100 0,010	7,1 10 ⁻¹⁰ 1,4 10 ⁻⁹ 1,5 10 ⁻⁹	3,3 10 ⁻¹⁰ 6,5 10 ⁻¹⁰ 7,0 10 ⁻¹⁰	2,0 10 ⁻¹⁰ 4,1 10 ⁻¹⁰ 4,5 10 ⁻¹⁰	$ \begin{array}{c} 1,0 \ 10^{-10} \\ 2,5 \ 10^{-10} \\ 2,7 \ 10^{-10} \end{array} $	$\begin{array}{c} 9,8 \ 10^{-11} \\ 2,1 \ 10^{-10} \\ 2,3 \ 10^{-10} \end{array}$
Yttrium	,			,	'	'	,		'	'
Y-86	14,7 h	MS	0,001 0,001	$\begin{vmatrix} 3,7 & 10^{-9} \\ 3,8 & 10^{-9} \end{vmatrix}$	$1,0 \ 10^{-4}$ $1,0 \ 10^{-4}$	2,9 10 ⁻⁹ 3,0 10 ⁻⁹	1,5 10 ⁻⁹ 1,5 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Y-86m	0,800 h	M S	0,001 0,001	2,2 10 ⁻¹⁰ 2,3 10 ⁻¹⁰	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	1,7 10 ⁻¹⁰ 1,8 10 ⁻¹⁰	8,7 10 ⁻¹¹ 9,0 10 ⁻¹¹	5,6 10 ⁻¹¹ 5,7 10 ⁻¹¹	3,4 10 ⁻¹¹ 3,5 10 ⁻¹¹	2,7 10 ⁻¹¹ 2,8 10 ⁻¹¹
Y-87	3,35 d	M S	0,001 0,001	2,7 10 ⁻⁹ 2,8 10 ⁻⁹	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	2,1 10 ⁻⁹ 2,2 10 ⁻⁹	1,1 10 ⁻⁹ 1,1 10 ⁻⁹	7,0 10 ⁻¹⁰ 7,3 10 ⁻¹⁰	4,7 10 ⁻¹⁰ 5,0 10 ⁻¹⁰	$3,7 10^{-10}$ $3,9 10^{-10}$
Y-88	107 d	M S	0,001 0,001	1,9 10 ⁻⁸ 2,0 10 ⁻⁸	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	1,6 10 ⁻⁸ 1,7 10 ⁻⁸	1,0 10 ⁻⁸ 9,8 10 ⁻⁹	6,7 10 ⁻⁹ 6,6 10 ⁻⁹	4,9 10 ⁻⁹ 5,4 10 ⁻⁹	4,1 10 ⁻⁹ 4,4 10 ⁻⁹
Y-90	2,67 d	M S	0,001 0,001	1,3 10 ⁻⁸ 1,3 10 ⁻⁸	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	8,4 10 ⁻⁹ 8,8 10 ⁻⁹	4,0 10 ⁻⁹ 4,2 10 ⁻⁹	2,6 10 ⁻⁹ 2,7 10 ⁻⁹	1,7 10 ⁻⁹ 1,8 10 ⁻⁹	1,4 10 ⁻⁹ 1,5 10 ⁻⁹
Y-90m	3,19 h	M S	0,001 0,001	7,2 10 ⁻¹⁰ 7,5 10 ⁻¹⁰	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	5,7 10 ⁻¹⁰ 6,0 10 ⁻¹⁰	$\begin{array}{c} 2.8 \ 10^{-10} \\ 2.9 \ 10^{-10} \end{array}$	1,8 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	$1,1 \ 10^{-10} \\ 1,2 \ 10^{-10}$	9,5 10 ⁻¹¹ 1,0 10 ⁻¹⁰
Y-91	58,5 d	M S	0,001 0,001	3,9 10 ⁻⁸ 4,3 10 ⁻⁸	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	$\begin{array}{c c} 3,0 & 10^{-8} \\ 3,4 & 10^{-8} \end{array}$	1,6 10 ⁻⁸ 1,9 10 ⁻⁸	$1,1 \ 10^{-8}$ $1,3 \ 10^{-8}$	8,4 10 ⁻⁹ 1,0 10 ⁻⁸	7,1 10 ⁻⁹ 8,9 10 ⁻⁹
Y-91m	0,828 h	M S	0,001 0,001	7,0 10 ⁻¹¹ 7,4 10 ⁻¹¹	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	5,5 10 ⁻¹¹ 5,9 10 ⁻¹¹	2,9 10 ⁻¹¹ 3,1 10 ⁻¹¹	1,8 10 ⁻¹¹ 2,0 10 ⁻¹¹	1,2 10 ⁻¹¹ 1,4 10 ⁻¹¹	1,0 10 ⁻¹¹ 1,1 10 ⁻¹¹
Y-92	3,54 h	M S	0,001 0,001	1,8 10 ⁻⁹ 1,9 10 ⁻⁹	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	1,2 10 ⁻⁹ 1,2 10 ⁻⁹	5,3 10 ⁻¹⁰ 5,5 10 ⁻¹⁰	$3,3 10^{-10}$ $3,5 10^{-10}$	$2,0 \ 10^{-10}$ $2,1 \ 10^{-10}$	1,7 10 ⁻¹⁰ 1,8 10 ⁻¹⁰
Y-93	10,1 h	M S	0,001 0,001	4,4 10 ⁻⁹ 4,6 10 ⁻⁹	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	2,9 10 ⁻⁹ 3,0 10 ⁻⁹	1,3 10 ⁻⁹ 1,4 10 ⁻⁹	8,1 10 ⁻¹⁰ 8,5 10 ⁻¹⁰	4,7 10 ⁻¹⁰ 5,0 10 ⁻¹⁰	$4,0 \ 10^{-10}$ $4,2 \ 10^{-10}$
Y-94	0,318 h	M S	0,001 0,001	2,8 10 ⁻¹⁰ 2,9 10 ⁻¹⁰	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	1,8 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	8,1 10 ⁻¹¹ 8,4 10 ⁻¹¹	5,0 10 ⁻¹¹ 5,2 10 ⁻¹¹	$3,1 10^{-11}$ $3,3 10^{-11}$	$\begin{array}{c} 2,7 \ 10^{-11} \\ 2,8 \ 10^{-11} \end{array}$
Y-95	0,178 h	M S	0,001 0,001	1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	9,8 10 ⁻¹¹ 1,0 10 ⁻¹⁰	4,4 10 ⁻¹¹ 4,5 10 ⁻¹¹	$2,8 10^{-11}$ $2,9 10^{-11}$	1,8 10 ⁻¹¹ 1,8 10 ⁻¹¹	1,5 10 ⁻¹¹ 1,6 10 ⁻¹¹

a) La valeur de f_1 pour les individus de 1 à 15 ans et le type F est 0,4.

NI121 1	Période	T	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Туре	f_1	h(g)	f_1	h(g)	h(g)	h(g)	h(g)	h(g)
Zirconium									-	
Zr-86	16,5 h	F M	0,020 0,020	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,002 0,002	1,9 10 ⁻⁹ 2,6 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,9 10 ⁻¹⁰ 8,4 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Zr-88	83,4 d	S F M	0,020 0,020 0,020	3,5 10 ⁻⁹ 6,9 10 ⁻⁹ 8,5 10 ⁻⁹	0,002 0,002 0,002	2,7 10 ⁻⁹ 8,3 10 ⁻⁹ 7,8 10 ⁻⁹	1,4 10 ⁻⁹ 5,6 10 ⁻⁹ 5,1 10 ⁻⁹	8,7 10 ⁻¹⁰ 4,7 10 ⁻⁹ 3,6 10 ⁻⁹	5,4 10 ⁻¹⁰ 3,6 10 ⁻⁹ 3,0 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Zr-89	3,27 d	S F	0,020 0,020	1,3 10 ⁻⁸ 2,6 10 ⁻⁹ 3,7 10 ⁻⁹	0,002 0,002 0,002	1,2 10 ⁻⁸ 2,0 10 ⁻⁹ 2,8 10 ⁻⁹	7,7 10 ⁻⁹ 9,9 10 ⁻¹⁰ 1,5 10 ⁻⁹	5,2 10 ⁻⁹ 6,1 10 ⁻¹⁰ 9,6 10 ⁻¹⁰	4,3 10 ⁻⁹ 3,6 10 ⁻¹⁰ 6,5 10 ⁻¹⁰	3,6 10 ⁻⁹ 2,9 10 ⁻¹⁰ 5,2 10 ⁻¹⁰
Zr-93	1,53 10 ⁶ a	M S F	0,020 0,020 0,020	3,9 10 ⁻⁹ 3,5 10 ⁻⁹	0,002 0,002 0,002	2,9 10 ⁻⁹ 4,8 10 ⁻⁹	1,5 10 ⁻⁹ 5,3 10 ⁻⁹	1,0 10 ⁻⁹ 9,7 10 ⁻⁹	6,8 10 ⁻¹⁰ 1,8 10 ⁻⁸	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	(4.0.1	M S	0,020 0,020	3,3 10 ⁻⁹ 7,0 10 ⁻⁹	0,002 0,002	3,1 10 ⁻⁹ 6,4 10 ⁻⁹	2,8 10 ⁻⁹ 4,5 10 ⁻⁹	4,1 10 ⁻⁹ 3,3 10 ⁻⁹ 4,2 10 ⁻⁹	7,5 10 ⁻⁹ 3,3 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Zr-95	64,0 d	F M S	0,020 0,020 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,002 0,002 0,002	1,1 10 ⁻⁸ 1,6 10 ⁻⁸ 1,9 10 ⁻⁸	6,4 10 ⁻⁹ 9,7 10 ⁻⁹ 1,2 10 ⁻⁸	6,8 10 ⁻⁹ 8,3 10 ⁻⁹	2,8 10 ⁻⁹ 5,9 10 ⁻⁹ 7,3 10 ⁻⁹	2,5 10 ⁻⁹ 4,8 10 ⁻⁹ 5,9 10 ⁻⁹
Zr-97	16,9 h	F M S	0,020 0,020 0,020	5,0 10 ⁻⁹ 7,8 10 ⁻⁹ 8,2 10 ⁻⁹	0,002 0,002 0,002	3,4 10 ⁻⁹ 5,3 10 ⁻⁹ 5,6 10 ⁻⁹	1,5 10 ⁻⁹ 2,8 10 ⁻⁹ 2,9 10 ⁻⁹	9,1 10 ⁻¹⁰ 1,8 10 ⁻⁹ 1,9 10 ⁻⁹	4,8 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,2 10 ⁻⁹	3,9 10 ⁻¹⁰ 9,2 10 ⁻¹⁰ 8,9 10 ⁻¹⁰
Niobium	1	3	0,020	0,2 10	0,002	7 3,0 10	2,5 10	1,5 10	1,2 10	0,5 10
Nb-88	0,238 h	F M S	0,020 0,020	$\begin{array}{c c} 1,8 & 10^{-10} \\ 2,5 & 10^{-10} \\ 2,6 & 10^{-10} \end{array}$	0,010 0,010	$\begin{array}{ c c c c c }\hline 1,3 & 10^{-10} \\ 1,8 & 10^{-10} \\ 1,8 & 10^{-10} \\\hline \end{array}$	$ \begin{vmatrix} 6,3 & 10^{-11} \\ 8,5 & 10^{-11} \\ 8,7 & 10^{-11} \end{vmatrix} $	3,9 10 ⁻¹¹ 5,3 10 ⁻¹¹ 5,5 10 ⁻¹¹	2,4 10 ⁻¹¹ 3,3 10 ⁻¹¹ 3,5 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Nb-89	2,03 h	F M	0,020 0,020 0,020	7,0 10 ⁻¹⁰ 1,1 10 ⁻⁹	0,010 0,010 0,010	4,8 10 ⁻¹⁰ 7,6 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,4 10 ⁻¹¹ 1,4 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Nb-89	1,10 h	S F M	0,020 0,020 0,020	1,2 10 ⁻⁹ 4,0 10 ⁻¹⁰ 6,2 10 ⁻¹⁰	0,010 0,010 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,3 10 ⁻¹⁰ 8,3 10 ⁻¹¹ 1,3 10 ⁻¹⁰	1,5 10 ⁻¹⁰ 4,8 10 ⁻¹¹ 8,2 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Nb-90	14,6 h	S F M	0,020 0,020 0,020	6,4 10 ⁻¹⁰ 3,5 10 ⁻⁹ 5,1 10 ⁻⁹	0,010 0,010 0,010	4,4 10 ⁻¹⁰ 2,7 10 ⁻⁹ 3,9 10 ⁻⁹	2,1 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,9 10 ⁻⁹	1,4 10 ⁻¹⁰ 8,2 10 ⁻¹⁰ 1,3 10 ⁻⁹	8,6 10 ⁻¹¹ 4,7 10 ⁻¹⁰ 7,8 10 ⁻¹⁰	$ \begin{array}{c ccccc} 7,1 & 10^{-11} \\ 3,8 & 10^{-10} \\ 6,3 & 10^{-10} \end{array} $
Nb-93m	13,6 a	S F M	0,020 0,020 0,020	5,3 10 ⁻⁹ 1,8 10 ⁻⁹ 3,1 10 ⁻⁹	0,010 0,010 0,010	4,0 10 ⁻⁹ 1,4 10 ⁻⁹ 2,4 10 ⁻⁹	2,0 10 ⁻⁹ 7,0 10 ⁻¹⁰ 1,3 10 ⁻⁹	1,3 10 ⁻⁹ 4,4 10 ⁻¹⁰ 8,2 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Nb-94	2,03 10 ⁴ a	S F	0,020 0,020	7,4 10 ⁻⁹ 3,1 10 ⁻⁸ 4,3 10 ⁻⁸	0,010 0,010	6,5 10 ⁻⁹ 2,7 10 ⁻⁸ 3,7 10 ⁻⁸	4,0 10 ⁻⁹ 1,5 10 ⁻⁸	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,9 10 ⁻⁹ 6,7 10 ⁻⁹	1,8 10 ⁻⁹ 5,8 10 ⁻⁹
Nb-95	35,1 d	M S F	0,020 0,020 0,020	1,2 10 ⁻⁷ 4,1 10 ⁻⁹	0,010 0,010 0,010	1,2 10 ⁻⁷ 3,1 10 ⁻⁹	2,3 10 ⁻⁸ 8,3 10 ⁻⁸ 1,6 10 ⁻⁹	1,6 10 ⁻⁸ 5,8 10 ⁻⁸ 1,2 10 ⁻⁹	1,3 10 ⁻⁸ 5,2 10 ⁻⁸ 7,5 10 ⁻¹⁰	1,1 10 ⁻⁸ 4,9 10 ⁻⁸ 5,7 10 ⁻¹⁰
Nb-95m	3,61 d	M S F	0,020 0,020 0,020	6,8 10 ⁻⁹ 7,7 10 ⁻⁹ 2,3 10 ⁻⁹	0,010 0,010 0,010	5,2 10 ⁻⁹ 5,9 10 ⁻⁹ 1,6 10 ⁻⁹	3,1 10 ⁻⁹ 3,6 10 ⁻⁹ 7,0 10 ⁻¹⁰	2,2 10 ⁻⁹ 2,5 10 ⁻⁹ 4,2 10 ⁻¹⁰	1,9 10 ⁻⁹ 2,2 10 ⁻⁹ 2,4 10 ⁻¹⁰	1,5 10 ⁻⁹ 1,8 10 ⁻⁹ 2,0 10 ⁻¹⁰
		M S	0,020 0,020	4,3 10 ⁻⁹ 4,6 10 ⁻⁹	0,010 0,010	3,1 10 ⁻⁹ 3,4 10 ⁻⁹	1,7 10 ⁻⁹ 1,9 10 ⁻⁹	1,2 10 ⁻⁹ 1,3 10 ⁻⁹	1,0 10 ⁻⁹ 1,1 10 ⁻⁹	7,9 10 ⁻¹⁰ 8,8 10 ⁻¹⁰
Nb-96	23,3 h	F M S	0,020 0,020 0,020	3,1 10 ⁻⁹ 4,7 10 ⁻⁹ 4,9 10 ⁻⁹	0,010 0,010 0,010	2,4 10 ⁻⁹ 3,6 10 ⁻⁹ 3,7 10 ⁻⁹	1,2 10 ⁻⁹ 1,8 10 ⁻⁹ 1,9 10 ⁻⁹	$\begin{array}{c} 7,3 \ 10^{-10} \\ 1,2 \ 10^{-9} \\ 1,2 \ 10^{-9} \end{array}$	4,2 10 ⁻¹⁰ 7,8 10 ⁻¹⁰ 8,3 10 ⁻¹⁰	3,4 10 ⁻¹⁰ 6,3 10 ⁻¹⁰ 6,6 10 ⁻¹⁰
Nb-97	1,20 h	F M S	0,020 0,020 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010 0,010 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} 6,8 & 10^{-11} \\ 1,2 & 10^{-10} \\ 1,2 & 10^{-10} \end{vmatrix} $	4,2 10 ⁻¹¹ 7,7 10 ⁻¹¹ 8,1 10 ⁻¹¹	2,5 10 ⁻¹¹ 5,2 10 ⁻¹¹ 5,5 10 ⁻¹¹	2,1 10 ⁻¹¹ 4,3 10 ⁻¹¹ 4,5 10 ⁻¹¹
Nb-98	0,858 h	F M	0,020 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c } & 1,1 & 10^{-10} \\ & 1,7 & 10^{-10} \end{array}$	6,9 10 ⁻¹¹ 1,1 10 ⁻¹⁰	4,1 10 ⁻¹¹ 6,8 10 ⁻¹¹	3,3 10 ⁻¹¹ 5,6 10 ⁻¹¹
Molybdène		S	0,020	5,3 10 ⁻¹⁰	0,010	$3,7 \ 10^{-10}$	1,8 10 ⁻¹⁰	1,1 10 ⁻¹⁰	7,1 10 ⁻¹¹	5,8 10 ⁻¹¹
Mo-90	5,67 h	F M	1,000 0,200	1,2 10 ⁻⁹ 2,6 10 ⁻⁹	0,800 0,100	1,1 10 ⁻⁹ 2,0 10 ⁻⁹	5,3 10 ⁻¹⁰ 9,9 10 ⁻¹⁰	3,2 10 ⁻¹⁰ 6,5 10 ⁻¹⁰	1,9 10 ⁻¹⁰ 4,2 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mo-93	3,50 10 ³ a	S F M	0,020 1,000 0,200	2,8 10 ⁻⁹ 3,1 10 ⁻⁹ 2,2 10 ⁻⁹	0,010 0,800 0,100	2,1 10 ⁻⁹ 2,6 10 ⁻⁹ 1,8 10 ⁻⁹	1,1 10 ⁻⁹ 1,7 10 ⁻⁹ 1,1 10 ⁻⁹	6,9 10 ⁻¹⁰ 1,3 10 ⁻⁹ 7,9 10 ⁻¹⁰	4,5 10 ⁻¹⁰ 1,1 10 ⁻⁹ 6,6 10 ⁻¹⁰	3,6 10 ⁻¹⁰ 1,0 10 ⁻⁹ 5,9 10 ⁻¹⁰
Mo-93m	6,85 h	S F M S	0,020 1,000 0,200 0,020	6,0 10 ⁻⁹ 7,3 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,3 10 ⁻⁹	0,010 0,800 0,100 0,010	5,8 10 ⁻⁹ 6,4 10 ⁻¹⁰ 9,7 10 ⁻¹⁰ 1,0 10 ⁻⁹	$ \begin{vmatrix} 4,0 & 10^{-9} \\ 3,3 & 10^{-10} \\ 5,0 & 10^{-10} \\ 5,2 & 10^{-10} \end{vmatrix} $	$ \begin{array}{c} 2,8 \ 10^{-9} \\ 2,0 \ 10^{-10} \\ 3,2 \ 10^{-10} \\ 3,4 \ 10^{-10} \end{array} $	$ \begin{array}{c ccccc} 2,4 & 10^{-9} \\ 1,2 & 10^{-10} \\ 2,0 & 10^{-10} \\ 2,1 & 10^{-10} \end{array} $	2,3 10 ⁻⁹ 9,6 10 ⁻¹¹ 1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰

3.T 121.1	Période	_	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Туре	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Mo-99	2,75 d	F M S	1,000 0,200 0,020	2,3 10 ⁻⁹ 6,0 10 ⁻⁹ 6,9 10 ⁻⁹	0,800 0,100 0,010	1,7 10 ⁻⁹ 4,4 10 ⁻⁹ 4,8 10 ⁻⁹	7,7 10 ⁻¹⁰ 2,2 10 ⁻⁹ 2,4 10 ⁻⁹	4,7 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,7 10 ⁻⁹	2,6 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,2 10 ⁻⁹	2,2 10 ⁻¹⁰ 8,9 10 ⁻¹⁰ 9,9 10 ⁻¹⁰
Mo-101	0,244 h	F M S	1,000 0,200 0,020	$ \begin{array}{ c c c c c } \hline 1,4 & 10^{-10} \\ 2,2 & 10^{-10} \\ 2,3 & 10^{-10} \end{array} $	0,800 0,100 0,010	9,7 10 ⁻¹¹ 1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	4,4 10 ⁻¹¹ 7,0 10 ⁻¹¹ 7,2 10 ⁻¹¹	2,8 10 ⁻¹¹ 4,5 10 ⁻¹¹ 4,7 10 ⁻¹¹	1,7 10 ⁻¹¹ 3,0 10 ⁻¹¹ 3,1 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Technétium										
Tc-93	2,75 h	F M S	1,000 0,200 0,020	$\begin{array}{ c c c c c } 2,4 & 10^{-10} \\ 2,7 & 10^{-10} \\ 2,8 & 10^{-10} \end{array}$	0,800 0,100 0,010	$\begin{array}{ c c c c c } 2,1 & 10^{-10} \\ 2,3 & 10^{-10} \\ 2,3 & 10^{-10} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,5 10 ⁻¹¹ 7,5 10 ⁻¹¹ 7,6 10 ⁻¹¹	4,0 10 ⁻¹¹ 4,4 10 ⁻¹¹ 4,5 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tc-93m	0,725 h	F M S	1,000 0,200 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,800 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,9 10 ⁻¹¹ 5,4 10 ⁻¹¹ 5,4 10 ⁻¹¹	2,9 10 ⁻¹¹ 3,4 10 ⁻¹¹ 3,4 10 ⁻¹¹	1,8 10 ⁻¹¹ 2,1 10 ⁻¹¹ 2,1 10 ⁻¹¹	1,4 10 ⁻¹¹ 1,7 10 ⁻¹¹ 1,7 10 ⁻¹¹
Tc-94	4,88 h	F M S	1,000 0,200 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,800 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,9 10 ⁻¹⁰ 4,2 10 ⁻¹⁰ 4,3 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tc-94m	0,867 h	F M S	1,000 0,200 0,020	$\begin{vmatrix} 4,8 & 10^{-10} \\ 4,4 & 10^{-10} \\ 4,3 & 10^{-10} \end{vmatrix}$	0,800 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,6 10 ⁻¹⁰ 1,4 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	8,6 10 ⁻¹¹ 8,8 10 ⁻¹¹ 8,8 10 ⁻¹¹	5,2 10 ⁻¹¹ 5,5 10 ⁻¹¹ 5,6 10 ⁻¹¹	4,1 10 ⁻¹¹ 4,5 10 ⁻¹¹ 4,6 10 ⁻¹¹
Tc-95	20,0 h	F M S	1,000 0,200 0,020	7,5 10 ⁻¹⁰ 8,3 10 ⁻¹⁰ 8,5 10 ⁻¹⁰	0,800 0,100 0,010	6,3 10 ⁻¹⁰ 6,9 10 ⁻¹⁰ 7,0 10 ⁻¹⁰	3,3 10 ⁻¹⁰ 3,6 10 ⁻¹⁰ 3,6 10 ⁻¹⁰	2,0 10 ⁻¹⁰ 2,2 10 ⁻¹⁰ 2,3 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,6 10 ⁻¹¹ 1,0 10 ⁻¹⁰ 1,1 10 ⁻¹⁰
Tc-95m	61,0 d	F M S	1,000 0,200 0,020	2,4 10 ⁻⁹ 4,9 10 ⁻⁹ 6,0 10 ⁻⁹	0,800 0,100 0,010	1,8 10 ⁻⁹ 4,0 10 ⁻⁹ 5,0 10 ⁻⁹	9,3 10 ⁻¹⁰ 2,3 10 ⁻⁹ 2,7 10 ⁻⁹	5,7 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,8 10 ⁻⁹	3,6 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,5 10 ⁻⁹	2,9 10 ⁻¹⁰ 8,8 10 ⁻¹⁰ 1,2 10 ⁻⁹
Тс-96	4,28 d	F M S	1,000 0,200 0,020	4,2 10 ⁻⁹ 4,7 10 ⁻⁹ 4,8 10 ⁻⁹	0,800 0,100 0,010	3,4 10 ⁻⁹ 3,9 10 ⁻⁹ 3,9 10 ⁻⁹	1,8 10 ⁻⁹ 2,1 10 ⁻⁹ 2,1 10 ⁻⁹	1,1 10 ⁻⁹ 1,3 10 ⁻⁹ 1,4 10 ⁻⁹	7,0 10 ⁻¹⁰ 8,6 10 ⁻¹⁰ 8,9 10 ⁻¹⁰	5,7 10 ⁻¹⁰ 6,8 10 ⁻¹⁰ 7,0 10 ⁻¹⁰
Tc-96m	0,858 h	F M S	1,000 0,200 0,020	5,3 10 ⁻¹¹ 5,6 10 ⁻¹¹ 5,7 10 ⁻¹¹	0,800 0,100 0,010	4,1 10 ⁻¹¹ 4,4 10 ⁻¹¹ 4,4 10 ⁻¹¹	2,1 10 ⁻¹¹ 2,3 10 ⁻¹¹ 2,3 10 ⁻¹¹	1,3 10 ⁻¹¹ 1,4 10 ⁻¹¹ 1,5 10 ⁻¹¹	7,7 10 ⁻¹² 9,3 10 ⁻¹² 9,5 10 ⁻¹²	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tc-97	2,60 10 ⁶ a	F M S	1,000 0,200 0,020	5,2 10 ⁻¹⁰ 1,2 10 ⁻⁹ 5,0 10 ⁻⁹	0,800 0,100 0,010	3,7 10 ⁻¹⁰ 1,0 10 ⁻⁹ 4,8 10 ⁻⁹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,4 10 ⁻¹¹ 3,6 10 ⁻¹⁰ 2,2 10 ⁻⁹	5,6 10 ⁻¹¹ 2,8 10 ⁻¹⁰ 1,9 10 ⁻⁹	4,3 10 ⁻¹¹ 2,2 10 ⁻¹⁰ 1,8 10 ⁻⁹
Tc-97m	87,0 d	F M S	1,000 0,200 0,020	3,4 10 ⁻⁹ 1,3 10 ⁻⁸ 1,6 10 ⁻⁸	0,800 0,100 0,010	2,3 10 ⁻⁹ 1,0 10 ⁻⁸ 1,3 10 ⁻⁸	9,8 10 ⁻¹⁰ 6,1 10 ⁻⁹ 7,8 10 ⁻⁹	5,6 10 ⁻¹⁰ 4,4 10 ⁻⁹ 5,7 10 ⁻⁹	3,0 10 ⁻¹⁰ 4,1 10 ⁻⁹ 5,2 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tc-98	4,20 10 ⁶ a	F M S	1,000 0,200 0,020	1,0 10 ⁻⁸ 3,5 10 ⁻⁸ 1,1 10 ⁻⁷	0,800 0,100 0,010	6,8 10 ⁻⁹ 2,9 10 ⁻⁸ 1,1 10 ⁻⁷	3,2 10 ⁻⁹ 1,7 10 ⁻⁸ 7,6 10 ⁻⁸	1,9 10 ⁻⁹ 1,2 10 ⁻⁸ 5,4 10 ⁻⁸	1,2 10 ⁻⁹ 1,0 10 ⁻⁸ 4,8 10 ⁻⁸	9,7 10 ⁻¹⁰ 8,3 10 ⁻⁹ 4,5 10 ⁻⁸
Tc-99	2,13 10 ⁵ a	F M S	1,000 0,200 0,020	4,0 10 ⁻⁹ 1,7 10 ⁻⁸ 4,1 10 ⁻⁸	0,800 0,100 0,010	2,5 10 ⁻⁹ 1,3 10 ⁻⁸ 3,7 10 ⁻⁸	1,0 10 ⁻⁹ 8,0 10 ⁻⁹ 2,4 10 ⁻⁸	5,9 10 ⁻¹⁰ 5,7 10 ⁻⁹ 1,7 10 ⁻⁸	3,6 10 ⁻¹⁰ 5,0 10 ⁻⁹ 1,5 10 ⁻⁸	2,9 10 ⁻¹⁰ 4,0 10 ⁻⁹ 1,3 10 ⁻⁸
Tc-99m	6,02 h	F M S	1,000 0,200 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,800 0,100 0,010	8,7 10 ⁻¹¹ 9,9 10 ⁻¹¹ 1,0 10 ⁻¹⁰	4,1 10 ⁻¹¹ 5,1 10 ⁻¹¹ 5,2 10 ⁻¹¹	2,4 10 ⁻¹¹ 3,4 10 ⁻¹¹ 3,5 10 ⁻¹¹	1,5 10 ⁻¹¹ 2,4 10 ⁻¹¹ 2,5 10 ⁻¹¹	1,2 10 ⁻¹¹ 1,9 10 ⁻¹¹ 2,0 10 ⁻¹¹
Tc-101	0,237 h	F M S	1,000 0,200 0,020	$\begin{vmatrix} 8,5 & 10^{-11} \\ 1,1 & 10^{-10} \\ 1,1 & 10^{-10} \end{vmatrix}$	0,800 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,5 10 ⁻¹¹ 3,2 10 ⁻¹¹ 3,3 10 ⁻¹¹	1,6 10 ⁻¹¹ 2,1 10 ⁻¹¹ 2,2 10 ⁻¹¹	9,7 10 ⁻¹² 1,4 10 ⁻¹¹ 1,4 10 ⁻¹¹	8,2 10 ⁻¹² 1,2 10 ⁻¹¹ 1,2 10 ⁻¹¹
Tc-104	0,303 h	F M S	1,000 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,800 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,0 10 ⁻¹¹ 8,6 10 ⁻¹¹ 8,7 10 ⁻¹¹	4,6 10 ⁻¹¹ 5,4 10 ⁻¹¹ 5,4 10 ⁻¹¹	2,8 10 ⁻¹¹ 3,3 10 ⁻¹¹ 3,4 10 ⁻¹¹	2,3 10 ⁻¹¹ 2,8 10 ⁻¹¹ 2,9 10 ⁻¹¹
Ruthénium										
Ru-94	0,863 h	F M S	0,100 0,100 0,020	$\begin{array}{ c c c c c }\hline 2,5 & 10^{-10} \\ 3,8 & 10^{-10} \\ 4,0 & 10^{-10} \\ \end{array}$	0,050 0,050 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,0 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	5,4 10 ⁻¹¹ 8,4 10 ⁻¹¹ 8,7 10 ⁻¹¹	3,1 10 ⁻¹¹ 5,2 10 ⁻¹¹ 5,4 10 ⁻¹¹	$\begin{array}{ c c c c c } 2,5 & 10^{-11} \\ 4,2 & 10^{-11} \\ 4,4 & 10^{-11} \end{array}$
Ru-97	2,90 d	F M S	0,100 0,100 0,020	5,5 10 ⁻¹⁰ 7,7 10 ⁻¹⁰ 8,1 10 ⁻¹⁰	0,050 0,050 0,010	4,4 10 ⁻¹⁰ 6,1 10 ⁻¹⁰ 6,3 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,7 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	6,2 10 ⁻¹¹ 1,0 10 ⁻¹⁰ 1,1 10 ⁻¹⁰

NL 101	Période	т.,	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Туре	f_1	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Ru-103	39,3 d	F M S	0,100 0,100 0,020	4,2 10 ⁻⁹ 1,1 10 ⁻⁸ 1,3 10 ⁻⁸	0,050 0,050 0,010	3,0 10 ⁻⁹ 8,4 10 ⁻⁹ 1,0 10 ⁻⁸	1,5 10 ⁻⁹ 5,0 10 ⁻⁹ 6,0 10 ⁻⁹	9,3 10 ⁻¹⁰ 3,5 10 ⁻⁹ 4,2 10 ⁻⁹	5,6 10 ⁻¹⁰ 3,0 10 ⁻⁹ 3,7 10 ⁻⁹	4,8 10 ⁻¹⁰ 2,4 10 ⁻⁹ 3,0 10 ⁻⁹
Ru-105	4,44 h	F M S	0,100 0,100 0,020	7,1 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,4 10 ⁻⁹	0,050 0,050 0,010	5,1 10 ⁻¹⁰ 9,2 10 ⁻¹⁰ 9,8 10 ⁻¹⁰	2,3 10 ⁻¹⁰ 4,5 10 ⁻¹⁰ 4,8 10 ⁻¹⁰	$ \begin{array}{c} 1,4 \ 10^{-10} \\ 3,0 \ 10^{-10} \\ 3,2 \ 10^{-10} \end{array} $	7,9 10 ⁻¹¹ 2,0 10 ⁻¹⁰ 2,2 10 ⁻¹⁰	6,5 10 ⁻¹¹ 1,7 10 ⁻¹⁰ 1,8 10 ⁻¹⁰
Ru-106	1,01 a	F M S	0,100 0,100 0,020	$\begin{array}{ c c c c c c }\hline 7,2 & 10^{-8} \\ 1,4 & 10^{-7} \\ 2,6 & 10^{-7} \\ \end{array}$	0,050 0,050 0,010	5,4 10 ⁻⁸ 1,1 10 ⁻⁷ 2,3 10 ⁻⁷	2,6 10 ⁻⁸ 6,4 10 ⁻⁸ 1,4 10 ⁻⁷	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,2 10 ⁻⁹ 3,1 10 ⁻⁸ 7,1 10 ⁻⁸	7,9 10 ⁻⁹ 2,8 10 ⁻⁸ 6,6 10 ⁻⁸
Rhodium	•									
Rh-99	16,0 d	F M S	0,100 0,100 0,100	2,6 10 ⁻⁹ 4,5 10 ⁻⁹ 4,9 10 ⁻⁹	0,050 0,050 0,050	2,0 10 ⁻⁹ 3,5 10 ⁻⁹ 3,8 10 ⁻⁹	9,9 10 ⁻¹⁰ 2,0 10 ⁻⁹ 2,2 10 ⁻⁹	$ \begin{vmatrix} 6,2 & 10^{-10} \\ 1,3 & 10^{-9} \\ 1,3 & 10^{-9} \end{vmatrix} $	3,8 10 ⁻¹⁰ 9,6 10 ⁻¹⁰ 1,1 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Rh-99m	4,70 h	F M S	0,100 0,100 0,100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,050 0,050 0,050	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,5 10 ⁻¹¹ 4,9 10 ⁻¹¹ 5,1 10 ⁻¹¹	2,8 10 ⁻¹¹ 3,9 10 ⁻¹¹ 4,0 10 ⁻¹¹
Rh-100	20,8 h	F M S	0,100 0,100 0,100	2,1 10 ⁻⁹ 2,7 10 ⁻⁹ 2,8 10 ⁻⁹	0,050 0,050 0,050	1,8 10 ⁻⁹ 2,2 10 ⁻⁹ 2,2 10 ⁻⁹	9,1 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,2 10 ⁻⁹	5,6 10 ⁻¹⁰ 7,1 10 ⁻¹⁰ 7,3 10 ⁻¹⁰	$\begin{array}{c} 3,3 \ 10^{-10} \\ 4,3 \ 10^{-10} \\ 4,4 \ 10^{-10} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Rh-101	3,20 a	F M S	0,100 0,100 0,100	7,4 10 ⁻⁹ 9,8 10 ⁻⁹ 1,9 10 ⁻⁸	0,050 0,050 0,050	6,1 10 ⁻⁹ 8,0 10 ⁻⁹ 1,7 10 ⁻⁸	3,5 10 ⁻⁹ 4,9 10 ⁻⁹ 1,1 10 ⁻⁸	2,3 10 ⁻⁹ 3,4 10 ⁻⁹ 7,4 10 ⁻⁹	1,5 10 ⁻⁹ 2,8 10 ⁻⁹ 6,2 10 ⁻⁹	1,4 10 ⁻⁹ 2,3 10 ⁻⁹ 5,4 10 ⁻⁹
Rh-101m	4,34 d	F M S	0,100 0,100 0,100	8,4 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,3 10 ⁻⁹	0,050 0,050 0,050	6,6 10 ⁻¹⁰ 9,8 10 ⁻¹⁰ 1,0 10 ⁻⁹	3,3 10 ⁻¹⁰ 5,2 10 ⁻¹⁰ 5,5 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Rh-102	2,90 a	F M S	0,100 0,100 0,100	3,3 10 ⁻⁸ 3,0 10 ⁻⁸ 5,4 10 ⁻⁸	0,050 0,050 0,050	2,8 10 ⁻⁸ 2,5 10 ⁻⁸ 5,0 10 ⁻⁸	1,7 10 ⁻⁸ 1,5 10 ⁻⁸ 3,5 10 ⁻⁸	1,1 10 ⁻⁸ 1,0 10 ⁻⁸ 2,4 10 ⁻⁸	7,9 10 ⁻⁹ 7,9 10 ⁻⁹ 2,0 10 ⁻⁸	7,3 10 ⁻⁹ 6,9 10 ⁻⁹ 1,7 10 ⁻⁸
Rh-102m	207 d	F M S	0,100 0,100 0,100	1,2 10 ⁻⁸ 2,0 10 ⁻⁸ 3,0 10 ⁻⁸	0,050 0,050 0,050	8,7 10 ⁻⁹ 1,6 10 ⁻⁸ 2,5 10 ⁻⁸	4,4 10 ⁻⁹ 9,0 10 ⁻⁹ 1,5 10 ⁻⁸	2,7 10 ⁻⁹ 6,0 10 ⁻⁹ 1,0 10 ⁻⁸	1,7 10 ⁻⁹ 4,7 10 ⁻⁹ 8,2 10 ⁻⁹	1,5 10 ⁻⁹ 4,0 10 ⁻⁹ 7,1 10 ⁻⁹
Rh-103m	0,935 h	F M S	0,100 0,100 0,100	8,6 10 ⁻¹² 1,9 10 ⁻¹¹ 2,0 10 ⁻¹¹	0,050 0,050 0,050	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,6 10 ⁻¹² 4,0 10 ⁻¹² 4,3 10 ⁻¹²	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Rh-105	1,47 d	F M S	0,100 0,100 0,100	1,0 10 ⁻⁹ 2,2 10 ⁻⁹ 2,4 10 ⁻⁹	0,050 0,050 0,050	6,9 10 ⁻¹⁰ 1,6 10 ⁻⁹ 1,7 10 ⁻⁹	$\begin{array}{ c c c c c c }\hline 3,0 & 10^{-10} \\ 7,4 & 10^{-10} \\ 8,0 & 10^{-10} \\ \hline \end{array}$	1,8 10 ⁻¹⁰ 5,2 10 ⁻¹⁰ 5,6 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Rh-106m	2,20 h	F M S	0,100 0,100 0,100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,050 0,050 0,050	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c }\hline 1,4 & 10^{-10} \\ 2,0 & 10^{-10} \\ 2,1 & 10^{-10} \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Rh-107	0,362 h	F M S	0,100 0,100 0,100	8,9 10 ⁻¹¹ 1,4 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	0,050 0,050 0,050	5,9 10 ⁻¹¹ 9,3 10 ⁻¹¹ 9,7 10 ⁻¹¹	2,6 10 ⁻¹¹ 4,2 10 ⁻¹¹ 4,4 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,0 10 ⁻¹¹ 1,9 10 ⁻¹¹ 1,9 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Palladium										
Pd-100	3,63 d	F M S	0,050 0,050 0,050	3,9 10 ⁻⁹ 5,2 10 ⁻⁹ 5,3 10 ⁻⁹	0,005 0,005 0,005	3,0 10 ⁻⁹ 4,0 10 ⁻⁹ 4,1 10 ⁻⁹	$\begin{array}{c c} 1,5 & 10^{-9} \\ 2,2 & 10^{-9} \\ 2,2 & 10^{-9} \end{array}$	9,7 10 ⁻¹⁰ 1,4 10 ⁻⁹ 1,5 10 ⁻⁹	5,8 10 ⁻¹⁰ 9,9 10 ⁻¹⁰ 1,0 10 ⁻⁹	4,7 10 ⁻¹⁰ 8,0 10 ⁻¹⁰ 8,5 10 ⁻¹⁰
Pd-101	8,27 h	F M S	0,050 0,050 0,050	3,6 10 ⁻¹⁰ 4,8 10 ⁻¹⁰ 5,0 10 ⁻¹⁰	0,005 0,005 0,005	2,9 10 ⁻¹⁰ 3,8 10 ⁻¹⁰ 3,9 10 ⁻¹⁰	$\begin{array}{ c c c c c }\hline 1,4 & 10^{-10} \\ 1,9 & 10^{-10} \\ 2,0 & 10^{-10} \\ \hline \end{array}$	8,6 10 ⁻¹¹ 1,2 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	4,9 10 ⁻¹¹ 7,5 10 ⁻¹¹ 7,8 10 ⁻¹¹	3,9 10 ⁻¹¹ 5,9 10 ⁻¹¹ 6,2 10 ⁻¹¹
Pd-103	17,0 d	F M S	0,050 0,050 0,050	9,7 10 ⁻¹⁰ 2,3 10 ⁻⁹ 2,5 10 ⁻⁹	0,005 0,005 0,005	6,5 10 ⁻¹⁰ 1,6 10 ⁻⁹ 1,8 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,9 10 ⁻¹⁰ 5,9 10 ⁻¹⁰ 6,8 10 ⁻¹⁰	1,1 10 ⁻¹⁰ 4,5 10 ⁻¹⁰ 5,3 10 ⁻¹⁰	8,9 10 ⁻¹¹ 3,8 10 ⁻¹⁰ 4,5 10 ⁻¹⁰
Pd-107	6,50 10 ⁶ a	F M S	0,050 0,050 0,050	2,6 10 ⁻¹⁰ 6,5 10 ⁻¹⁰ 2,2 10 ⁻⁹	0,005 0,005 0,005	1,8 10 ⁻¹⁰ 5,0 10 ⁻¹⁰ 2,0 10 ⁻⁹	8,2 10 ⁻¹¹ 2,6 10 ⁻¹⁰ 1,3 10 ⁻⁹	5,2 10 ⁻¹¹ 1,5 10 ⁻¹⁰ 7,8 10 ⁻¹⁰	$\begin{array}{ c c c c c }\hline 3,1 & 10^{-11} \\ 1,0 & 10^{-10} \\ 6,2 & 10^{-10} \\\hline \end{array}$	2,5 10 ⁻¹¹ 8,5 10 ⁻¹¹ 5,9 10 ⁻¹⁰
Pd-109	13,4 h	F M S	0,050 0,050 0,050	1,5 10 ⁻⁹ 2,6 10 ⁻⁹ 2,7 10 ⁻⁹	0,005 0,005 0,005	9,9 10 ⁻¹⁰ 1,8 10 ⁻⁹ 1,9 10 ⁻⁹	4,2 10 ⁻¹⁰ 8,8 10 ⁻¹⁰ 9,3 10 ⁻¹⁰	$ \begin{vmatrix} 2,6 & 10^{-10} \\ 5,9 & 10^{-10} \\ 6,3 & 10^{-10} \end{vmatrix} $	$\begin{vmatrix} 1,4 & 10^{-10} \\ 4,3 & 10^{-10} \\ 4,6 & 10^{-10} \end{vmatrix}$	$\begin{vmatrix} 1,2 & 10^{-10} \\ 3,4 & 10^{-10} \\ 3,7 & 10^{-10} \end{vmatrix}$

Musláida	Période	T'v-a	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Type	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Argent										
Ag-102	0,215 h	F M	0,100 0,100	$\begin{array}{ c c c c c c } & 1,2 & 10^{-10} \\ & 1,6 & 10^{-10} \\ & 1,6 & 10^{-10} \\ \end{array}$	0,050 0,050	$\begin{array}{ c c c c c c } 8,6 & 10^{-11} \\ 1,1 & 10^{-10} \\ 1,2 & 10^{-10} \end{array}$	4,2 10 ⁻¹¹ 5,5 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c } \hline 1,5 & 10^{-11} \\ 2,1 & 10^{-11} \\ 2,2 & 10^{-11} \\ \hline \end{array}$	1,3 10 ⁻¹¹ 1,7 10 ⁻¹¹
Ag-103	1,09 h	S F M S	0,020 0,100 0,100 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010 0,050 0,050 0,010	1,0 10 ⁻¹⁰ 1,6 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	5,6 10 ⁻¹¹ 4,9 10 ⁻¹¹ 7,6 10 ⁻¹¹ 7,9 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,2 10 ⁻¹¹ 1,8 10 ⁻¹¹ 3,2 10 ⁻¹¹ 3,3 10 ⁻¹¹	1,8 10 ⁻¹¹ 1,4 10 ⁻¹¹ 2,6 10 ⁻¹¹ 2,7 10 ⁻¹¹
Ag-104	1,15 h	F M S	0,100 0,100 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,050 0,050 0,050 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,9 10 ⁻¹¹ 7,4 10 ⁻¹¹ 7,6 10 ⁻¹¹	3,5 10 ⁻¹¹ 4,5 10 ⁻¹¹ 4,6 10 ⁻¹¹	2,8 10 ⁻¹¹ 3,6 10 ⁻¹¹ 3,7 10 ⁻¹¹
Ag-104m	0,558 h	F M S	0,100 0,100 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,050 0,050 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,5 10 ⁻¹¹ 7,7 10 ⁻¹¹ 8,0 10 ⁻¹¹	3,4 10 ⁻¹¹ 4,8 10 ⁻¹¹ 5,0 10 ⁻¹¹	2,0 10 ⁻¹¹ 3,0 10 ⁻¹¹ 3,1 10 ⁻¹¹	1,6 10 ⁻¹¹ 2,5 10 ⁻¹¹ 2,6 10 ⁻¹¹
Ag-105	41,0 d	F M S	0,100 0,100 0,020	3,9 10 ⁻⁹ 4,5 10 ⁻⁹ 4,5 10 ⁻⁹	0,050 0,050 0,010	3,4 10 ⁻⁹ 3,5 10 ⁻⁹ 3,6 10 ⁻⁹	1,7 10 ⁻⁹ 2,0 10 ⁻⁹ 2,1 10 ⁻⁹	1,0 10 ⁻⁹ 1,3 10 ⁻⁹ 1,3 10 ⁻⁹	6,4 10 ⁻¹⁰ 9,0 10 ⁻¹⁰ 1,0 10 ⁻⁹	5,4 10 ⁻¹⁰ 7,3 10 ⁻¹⁰ 8,1 10 ⁻¹⁰
Ag-106	0,399 h	F M S	0,100 0,100 0,020	9,4 10 ⁻¹¹ 1,4 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	0,050 0,050 0,010	6,4 10 ⁻¹¹ 9,5 10 ⁻¹¹ 9,9 10 ⁻¹¹	2,9 10 ⁻¹¹ 4,4 10 ⁻¹¹ 4,5 10 ⁻¹¹	1,8 10 ⁻¹¹ 2,8 10 ⁻¹¹ 2,9 10 ⁻¹¹	$ \begin{array}{c ccccc} 1,1 & 10^{-11} \\ 1,8 & 10^{-11} \\ 1,9 & 10^{-11} \end{array} $	9,1 10 ⁻¹² 1,5 10 ⁻¹¹ 1,6 10 ⁻¹¹
Ag-106m	8,41 d	F M S	0,100 0,100 0,020	7,7 10 ⁻⁹ 7,2 10 ⁻⁹ 7,0 10 ⁻⁹	0,050 0,050 0,010	6,1 10 ⁻⁹ 5,8 10 ⁻⁹ 5,7 10 ⁻⁹	3,2 10 ⁻⁹ 3,2 10 ⁻⁹ 3,2 10 ⁻⁹	2,1 10 ⁻⁹ 2,1 10 ⁻⁹ 2,1 10 ⁻⁹	1,3 10 ⁻⁹ 1,4 10 ⁻⁹ 1,4 10 ⁻⁹	1,1 10 ⁻⁹ 1,1 10 ⁻⁹ 1,1 10 ⁻⁹
Ag-108m	1,27 10 ² a	F M S	0,100 0,100 0,020	3,5 10 ⁻⁸ 3,3 10 ⁻⁸ 8,9 10 ⁻⁸	0,050 0,050 0,010	2,8 10 ⁻⁸ 2,7 10 ⁻⁸ 8,7 10 ⁻⁸	1,6 10 ⁻⁸ 1,7 10 ⁻⁸ 6,2 10 ⁻⁸	$ \begin{array}{c cccc} 1,0 & 10^{-8} \\ 1,1 & 10^{-8} \\ 4,4 & 10^{-8} \end{array} $	6,9 10 ⁻⁹ 8,6 10 ⁻⁹ 3,9 10 ⁻⁸	6,1 10 ⁻⁹ 7,4 10 ⁻⁹ 3,7 10 ⁻⁸
Ag-110m	250 d	F M S	0,100 0,100 0,020	3,5 10 ⁻⁸ 3,5 10 ⁻⁸ 4,6 10 ⁻⁸	0,050 0,050 0,010	2,8 10 ⁻⁸ 2,8 10 ⁻⁸ 4,1 10 ⁻⁸	1,5 10 ⁻⁸ 1,7 10 ⁻⁸ 2,6 10 ⁻⁸	9,7 10 ⁻⁹ 1,2 10 ⁻⁸ 1,8 10 ⁻⁸	6,3 10 ⁻⁹ 9,2 10 ⁻⁹ 1,5 10 ⁻⁸	5,5 10 ⁻⁹ 7,6 10 ⁻⁹ 1,2 10 ⁻⁸
Ag-111	7,45 d	F M S	0,100 0,100 0,020	4,8 10 ⁻⁹ 9,2 10 ⁻⁹ 9,9 10 ⁻⁹	0,050 0,050 0,010	3,2 10 ⁻⁹ 6,6 10 ⁻⁹ 7,1 10 ⁻⁹	1,4 10 ⁻⁹ 3,5 10 ⁻⁹ 3,8 10 ⁻⁹	8,8 10 ⁻¹⁰ 2,4 10 ⁻⁹ 2,7 10 ⁻⁹	4,8 10 ⁻¹⁰ 1,9 10 ⁻⁹ 2,1 10 ⁻⁹	4,0 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,7 10 ⁻⁹
Ag-112	3,12 h	F M S	0,100 0,100 0,020	9,8 10 ⁻¹⁰ 1,7 10 ⁻⁹ 1,8 10 ⁻⁹	0,050 0,050 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,8 10 ⁻¹⁰ 5,1 10 ⁻¹⁰ 5,4 10 ⁻¹⁰	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,1 10 ⁻¹¹ 2,0 10 ⁻¹⁰ 2,1 10 ⁻¹⁰	7,6 10 ⁻¹¹ 1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰
Ag-115	0,333 h	F M S	0,100 0,100 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,050 0,050 0,010	1,0 10 ⁻¹⁰ 1,7 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	4,6 10 ⁻¹¹ 7,6 10 ⁻¹¹ 8,0 10 ⁻¹¹	2,9 10 ⁻¹¹ 4,9 10 ⁻¹¹ 5,2 10 ⁻¹¹	$ \begin{array}{c cccc} 1,7 & 10^{-11} \\ 3,2 & 10^{-11} \\ 3,4 & 10^{-11} \end{array} $	1,5 10 ⁻¹¹ 2,7 10 ⁻¹¹ 2,9 10 ⁻¹¹
Cadmium	'						,			
Cd-104	0,961 h	F M S	0,100 0,100 0,100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,050 0,050 0,050	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,2 10 ⁻¹¹ 6,9 10 ⁻¹¹ 7,0 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cd-107	6,49 h	F M S	0,100 0,100 0,100	2,3 10 ⁻¹⁰ 5,2 10 ⁻¹⁰ 5,5 10 ⁻¹⁰	0,050 0,050 0,050	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,6 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	2,5 10 ⁻¹¹ 8,8 10 ⁻¹¹ 9,7 10 ⁻¹¹	2,1 10 ⁻¹¹ 8,3 10 ⁻¹¹ 7,7 10 ⁻¹¹
Cd-109	1,27 a	F M S	0,100 0,100 0,100	4,5 10 ⁻⁸ 3,0 10 ⁻⁸ 2,7 10 ⁻⁸	0,050 0,050 0,050	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,1 10 ⁻⁸ 1,4 10 ⁻⁸ 1,3 10 ⁻⁸	1,4 10 ⁻⁸ 9,5 10 ⁻⁹ 8,9 10 ⁻⁹	9,3 10 ⁻⁹ 7,8 10 ⁻⁹ 7,6 10 ⁻⁹	8,1 10 ⁻⁹ 6,6 10 ⁻⁹ 6,2 10 ⁻⁹
Cd-113	9,30 10 ¹⁵ a	F M S	0,100 0,100 0,100	2,6 10 ⁻⁷ 1,2 10 ⁻⁷ 7,8 10 ⁻⁸	0,050 0,050 0,050	2,4 10 ⁻⁷ 1,0 10 ⁻⁷ 5,8 10 ⁻⁸	1,7 10 ⁻⁷ 7,6 10 ⁻⁸ 4,1 10 ⁻⁸	1,4 10 ⁻⁷ 6,1 10 ⁻⁸ 3,0 10 ⁻⁸	1,2 10 ⁻⁷ 5,7 10 ⁻⁸ 2,7 10 ⁻⁸	1,2 10 ⁻⁷ 5,5 10 ⁻⁸ 2,6 10 ⁻⁸
Cd-113m	13,6 a	F M S	0,100 0,100 0,100	3,0 10 ⁻⁷ 1,4 10 ⁻⁷ 1,1 10 ⁻⁷	0,050 0,050 0,050	2,7 10 ⁻⁷ 1,2 10 ⁻⁷ 8,4 10 ⁻⁸	1,8 10 ⁻⁷ 8,1 10 ⁻⁸ 5,5 10 ⁻⁸	1,3 10 ⁻⁷ 6,0 10 ⁻⁸ 3,9 10 ⁻⁸	1,1 10 ⁻⁷ 5,3 10 ⁻⁸ 3,3 10 ⁻⁸	1,1 10 ⁻⁷ 5,2 10 ⁻⁸ 3,1 10 ⁻⁸
Cd-115	2,23 d	F M S	0,100 0,100 0,100	4,0 10 ⁻⁹ 6,7 10 ⁻⁹ 7,2 10 ⁻⁹	0,050 0,050 0,050	2,6 10 ⁻⁹ 4,8 10 ⁻⁹ 5,1 10 ⁻⁹	1,2 10 ⁻⁹ 2,4 10 ⁻⁹ 2,6 10 ⁻⁹	7,5 10 ⁻¹⁰ 1,7 10 ⁻⁹ 1,8 10 ⁻⁹	4,3 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,3 10 ⁻⁹	3,5 10 ⁻¹⁰ 9,8 10 ⁻¹⁰ 1,1 10 ⁻⁹
Cd-115m	44,6 d	F M S	0,100 0,100 0,100	4,6 10 ⁻⁸ 4,0 10 ⁻⁸ 3,9 10 ⁻⁸	0,050 0,050 0,050	3,2 10 ⁻⁸ 2,5 10 ⁻⁸ 3,0 10 ⁻⁸	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,0 10 ⁻⁸ 9,4 10 ⁻⁹ 1,1 10 ⁻⁸	6,4 10 ⁻⁹ 7,3 10 ⁻⁹ 8,9 10 ⁻⁹	5,3 10 ⁻⁹ 6,2 10 ⁻⁹ 7,7 10 ⁻⁹
Cd-117	2,49 h	F M S	0,100 0,100 0,100	7,4 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,4 10 ⁻⁹	0,050 0,050 0,050	5,2 10 ⁻¹⁰ 9,3 10 ⁻¹⁰ 9,8 10 ⁻¹⁰	2,4 10 ⁻¹⁰ 4,5 10 ⁻¹⁰ 4,8 10 ⁻¹⁰	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,7 10 ⁻¹¹ 1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰

	Période		Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Type	f ₁	h(g)	f_1	h(g)	h(g)	h(g)	h(g)	h(g)
Cd-117m	3,36 h	F M S	0,100 0,100 0,100	8,9 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,5 10 ⁻⁹	0,050 0,050 0,050	6,7 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,1 10 ⁻⁹	3,3 10 ⁻¹⁰ 5,5 10 ⁻¹⁰ 5,7 10 ⁻¹⁰	2,0 10 ⁻¹⁰ 3,6 10 ⁻¹⁰ 3,8 10 ⁻¹⁰	1,1 10 ⁻¹⁰ 2,4 10 ⁻¹⁰ 2,6 10 ⁻¹⁰	9,4 10 ⁻¹¹ 2,0 10 ⁻¹⁰ 2,1 10 ⁻¹⁰
Indium										
In-109	4,20 h	F M	0,040 0,040	$\begin{array}{c c} 2,6 & 10^{-10} \\ 3,3 & 10^{-10} \end{array}$	0,020 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
In-110	4,90 h	F M	0,040 0,040	8,2 10 ⁻¹⁰ 9,9 10 ⁻¹⁰	0,020 0,020	7,1 10 ⁻¹⁰ 8,3 10 ⁻¹⁰	3,7 10 ⁻¹⁰ 4,4 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,3 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
In-110	1,15 h	F M	0,040 0,040	3,0 10 ⁻¹⁰ 4,5 10 ⁻¹⁰	0,020 0,020	2,1 10 ⁻¹⁰ 3,1 10 ⁻¹⁰	9,9 10 ⁻¹¹ 1,5 10 ⁻¹⁰	6,0 10 ⁻¹¹ 9,2 10 ⁻¹¹	3,5 10 ⁻¹¹ 5,8 10 ⁻¹¹	2,8 10 ⁻¹¹ 4,7 10 ⁻¹¹
In-111	2,83 d	F M	0,040 0,040	1,2 10 ⁻⁹ 1,5 10 ⁻⁹	0,020 0,020	8,6 10 ⁻¹⁰ 1,2 10 ⁻⁹	4,2 10 ⁻¹⁰ 6,2 10 ⁻¹⁰	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5 10 ⁻¹⁰ 2,9 10 ⁻¹⁰	1,3 10 ⁻¹⁰ 2,3 10 ⁻¹⁰
In-112	0,240 h	F M	0,040 0,040	4,4 10 ⁻¹¹ 6,5 10 ⁻¹¹	0,020 0,020	3,0 10 ⁻¹¹ 4,4 10 ⁻¹¹	1,3 10 ⁻¹¹ 2,0 10 ⁻¹¹	8,7 10 ⁻¹² 1,3 10 ⁻¹¹	5,4 10 ⁻¹² 8,7 10 ⁻¹²	4,7 10 ⁻¹² 7,4 10 ⁻¹²
In-113m	1,66 h	F M	0,040 0,040	1,0 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	0,020	7,0 10 ⁻¹¹ 1,1 10 ⁻¹⁰	3,2 10 ⁻¹¹ 5,5 10 ⁻¹¹	2,0 10 ⁻¹¹ 3,6 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,7 10 ⁻¹² 2,0 10 ⁻¹¹
In-114m	49,5 d	F M	0,040 0,040	1,2 10 ⁻⁷ 4,8 10 ⁻⁸	0,020 0,020	7,7 10 ⁻⁸ 3,3 10 ⁻⁸	3,4 10 ⁻⁸ 1,6 10 ⁻⁸	1,9 10 ⁻⁸ 1,0 10 ⁻⁸	1,1 10 ⁻⁸ 7,8 10 ⁻⁹	9,3 10 ⁻⁹ 6,1 10 ⁻⁹
In-115	5,10 10 ¹⁵ a	F M	0,040 0,040	8,3 10 ⁻⁷ 3,0 10 ⁻⁷	0,020 0,020	7,8 10 ⁻⁷ 2,8 10 ⁻⁷	5,5 10 ⁻⁷ 2,1 10 ⁻⁷	5,0 10 ⁻⁷ 1,9 10 ⁻⁷	4,2 10 ⁻⁷ 1,7 10 ⁻⁷	3,9 10 ⁻⁷ 1,6 10 ⁻⁷
In-115m	4,49 h	F M	0,040 0,040	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,020 0,020	1,9 10 ⁻¹⁰ 3,3 10 ⁻¹⁰	8,4 10 ⁻¹¹ 1,6 10 ⁻¹⁰	5,1 10 ⁻¹¹ 1,0 10 ⁻¹⁰	2,8 10 ⁻¹¹ 7,2 10 ⁻¹¹	2,4 10 ⁻¹¹ 5,9 10 ⁻¹¹
In-116m	0,902 h	F M	0,040 0,040	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,020 0,020	1,9 10 ⁻¹⁰ 2,7 10 ⁻¹⁰	9,2 10 ⁻¹¹ 1,3 10 ⁻¹⁰	5,7 10 ⁻¹¹ 8,5 10 ⁻¹¹	3,4 10 ⁻¹¹ 5,6 10 ⁻¹¹	2,8 10 ⁻¹¹ 4,5 10 ⁻¹¹
In-117	0,730 h	F M	0,040 0,040	$\begin{array}{c c} 1,4 & 10^{-10} \\ 2,3 & 10^{-10} \end{array}$	0,020 0,020	9,7 10 ⁻¹¹ 1,6 10 ⁻¹⁰	4,5 10 ⁻¹¹ 7,5 10 ⁻¹¹	2,8 10 ⁻¹¹ 5,0 10 ⁻¹¹	1,7 10 ⁻¹¹ 3,5 10 ⁻¹¹	1,5 10 ⁻¹¹ 2,9 10 ⁻¹¹
In-117m	1,94 h	F M	0,040 0,040	3,4 10 ⁻¹⁰ 6,0 10 ⁻¹⁰	0,020 0,020	2,3 10 ⁻¹⁰ 4,0 10 ⁻¹⁰	1,0 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,5 10 ⁻¹¹ 8,7 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
In-119m	0,300 h	F M	0,040 0,040	$\begin{array}{ c c c c c } 1,2 & 10^{-10} \\ 1,8 & 10^{-10} \end{array}$	0,020 0,020	7,3 10 ⁻¹¹ 1,1 10 ⁻¹⁰	3,1 10 ⁻¹¹ 4,9 10 ⁻¹¹	$\begin{array}{c} 2,0 \ 10^{-11} \\ 3,2 \ 10^{-11} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,0 10 ⁻¹¹ 1,7 10 ⁻¹¹
Étain										
Sn-110	4,00 h	F M	0,040 0,040	1,0 10 ⁻⁹ 1,5 10 ⁻⁹	0,020 0,020	7,6 10 ⁻¹⁰ 1,1 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c } & 1,2 & 10^{-10} \\ & 1,9 & 10^{-10} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sn-111	0,588 h	F M	0,040 0,040	7,7 10 ⁻¹¹ 1,1 10 ⁻¹⁰	0,020 0,020	5,4 10 ⁻¹¹ 8,0 10 ⁻¹¹	2,6 10 ⁻¹¹ 3,8 10 ⁻¹¹	1,6 10 ⁻¹¹ 2,5 10 ⁻¹¹	9,4 10 ⁻¹² 1,6 10 ⁻¹¹	7,8 10 ⁻¹² 1,3 10 ⁻¹¹
Sn-113	115 d	F M	0,040 0,040	5,1 10 ⁻⁹ 1,3 10 ⁻⁸	0,020 0,020	3,7 10 ⁻⁹ 1,0 10 ⁻⁸	1,8 10 ⁻⁹ 5,8 10 ⁻⁹	1,1 10 ⁻⁹ 4,0 10 ⁻⁹	6,4 10 ⁻¹⁰ 3,2 10 ⁻⁹	5,4 10 ⁻¹⁰ 2,7 10 ⁻⁹
Sn-117m	13,6 d	F M	0,040 0,040	3,3 10 ⁻⁹ 1,0 10 ⁻⁸	0,020 0,020	2,2 10 ⁻⁹ 7,7 10 ⁻⁹	1,0 10 ⁻⁹ 4,6 10 ⁻⁹	6,1 10 ⁻¹⁰ 3,4 10 ⁻⁹	3,4 10 ⁻¹⁰ 3,1 10 ⁻⁹	2,8 10 ⁻¹⁰ 2,4 10 ⁻⁹
Sn-119m	293 d	F M	0,040 0,040	3,0 10 ⁻⁹ 1,0 10 ⁻⁸	0,020 0,020	2,2 10 ⁻⁹ 7,9 10 ⁻⁹	1,0 10 ⁻⁹ 4,7 10 ⁻⁹	6,0 10 ⁻¹⁰ 3,1 10 ⁻⁹	3,4 10 ⁻¹⁰ 2,6 10 ⁻⁹	2,8 10 ⁻¹⁰ 2,2 10 ⁻⁹
Sn-121	1,13 d	F M	0,040 0,040	7,7 10 ⁻¹⁰ 1,5 10 ⁻⁹	0,020 0,020	5,0 10 ⁻¹⁰ 1,1 10 ⁻⁹	2,2 10 ⁻¹⁰ 5,1 10 ⁻¹⁰	1,3 10 ⁻¹⁰ 3,6 10 ⁻¹⁰	7,0 10 ⁻¹¹ 2,9 10 ⁻¹⁰	$\begin{array}{c} 6,0 \ 10^{-11} \\ 2,3 \ 10^{-10} \end{array}$
Sn-121m	55,0 a	F M	0,040 0,040	6,9 10 ⁻⁹ 1,9 10 ⁻⁸	0,020 0,020	5,4 10 ⁻⁹ 1,5 10 ⁻⁸	2,8 10 ⁻⁹ 9,2 10 ⁻⁹	1,6 10 ⁻⁹ 6,4 10 ⁻⁹	9,4 10 ⁻¹⁰ 5,5 10 ⁻⁹	8,0 10 ⁻¹⁰ 4,5 10 ⁻⁹
Sn-123	129 d	F M	0,040 0,040	1,4 10 ⁻⁸ 4,0 10 ⁻⁸	0,020 0,020	9,9 10 ⁻⁹ 3,1 10 ⁻⁸	4,5 10 ⁻⁹ 1,8 10 ⁻⁸	2,6 10 ⁻⁹ 1,2 10 ⁻⁸	1,4 10 ⁻⁹ 9,5 10 ⁻⁹	1,2 10 ⁻⁹ 8,1 10 ⁻⁹
Sn-123m	0,668 h	F M	0,040 0,040	$\begin{array}{c c} 1,4 & 10^{-10} \\ 2,3 & 10^{-10} \end{array}$	0,020 0,020	8,9 10 ⁻¹¹ 1,5 10 ⁻¹⁰	3,9 10 ⁻¹¹ 7,0 10 ⁻¹¹	2,5 10 ⁻¹¹ 4,6 10 ⁻¹¹	1,5 10 ⁻¹¹ 3,2 10 ⁻¹¹	1,3 10 ⁻¹¹ 2,7 10 ⁻¹¹
Sn-125	9,64 d	F M	0,040 0,040	1,2 10 ⁻⁸ 2,1 10 ⁻⁸	0,020 0,020	8,0 10 ⁻⁹ 1,5 10 ⁻⁸	3,5 10 ⁻⁹ 7,6 10 ⁻⁹	2,0 10 ⁻⁹ 5,0 10 ⁻⁹	1,1 10 ⁻⁹ 3,6 10 ⁻⁹	8,9 10 ⁻¹⁰ 3,1 10 ⁻⁹
Sn-126	1,00 10 ⁵ a	F M	0,040 0,040	7,3 10 ⁻⁸ 1,2 10 ⁻⁷	0,020 0,020	5,9 10 ⁻⁸ 1,0 10 ⁻⁷	3,2 10 ⁻⁸ 6,2 10 ⁻⁸	$2,0 \ 10^{-8}$ $4,1 \ 10^{-8}$	1,3 10 ⁻⁸ 3,3 10 ⁻⁸	1,1 10 ⁻⁸ 2,8 10 ⁻⁸
Sn-127	2,10 h	F M	0,040 0,040	6,6 10 ⁻¹⁰ 1,0 10 ⁻⁹	0,020 0,020	4,7 10 ⁻¹⁰ 7,4 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,9 10 ⁻¹¹ 1,6 10 ⁻¹⁰	6,5 10 ⁻¹¹ 1,3 10 ⁻¹⁰
Sn-128	0,985 h	F M	0,040 0,040	$\begin{array}{ c c c c c c }\hline 5,1 & 10^{-10} \\ 8,0 & 10^{-10} \\ \hline \end{array}$	0,020 0,020	3,6 10 ⁻¹⁰ 5,5 10 ⁻¹⁰	1,7 10 ⁻¹⁰ 2,7 10 ⁻¹⁰	1,0 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	6,1 10 ⁻¹¹ 1,1 10 ⁻¹⁰	5,0 10 ⁻¹¹ 9,2 10 ⁻¹¹

Nuglá: Ja	Période	T	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Type	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Antimoine										
Sb-115	0,530 h	F M S	0,200 0,020 0,020	$\begin{array}{ c c c c c c } 8,1 & 10^{-11} \\ 1,2 & 10^{-10} \\ 1,2 & 10^{-10} \end{array}$	0,100 0,010 0,010	5,9 10 ⁻¹¹ 8,3 10 ⁻¹¹ 8,6 10 ⁻¹¹	2,8 10 ⁻¹¹ 4,0 10 ⁻¹¹ 4,1 10 ⁻¹¹	$\begin{array}{c c} 1,7 & 10^{-11} \\ 2,5 & 10^{-11} \\ 2,6 & 10^{-11} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,5 10 ⁻¹² 1,3 10 ⁻¹¹ 1,4 10 ⁻¹¹
Sb-116	0,263 h	F M S	0,200 0,020 0,020	8,4 10 ⁻¹¹ 1,1 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	0,100 0,010 0,010	6,2 10 ⁻¹¹ 8,2 10 ⁻¹¹ 8,5 10 ⁻¹¹	3,0 10 ⁻¹¹ 4,0 10 ⁻¹¹ 4,1 10 ⁻¹¹	1,9 10 ⁻¹¹ 2,5 10 ⁻¹¹ 2,6 10 ⁻¹¹	1,1 10 ⁻¹¹ 1,5 10 ⁻¹¹ 1,6 10 ⁻¹¹	9,1 10 ⁻¹² 1,3 10 ⁻¹¹ 1,3 10 ⁻¹¹
Sb-116m	1,00 h	F M S	0,200 0,020 0,020	2,6 10 ⁻¹⁰ 3,6 10 ⁻¹⁰ 3,7 10 ⁻¹⁰	0,100 0,010 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1 10 ⁻¹⁰ 1,5 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	6,6 10 ⁻¹¹ 9,1 10 ⁻¹¹ 9,4 10 ⁻¹¹	4,0 10 ⁻¹¹ 5,9 10 ⁻¹¹ 6,1 10 ⁻¹¹	3,2 10 ⁻¹¹ 4,7 10 ⁻¹¹ 4,9 10 ⁻¹¹
Sb-117	2,80 h	F M S	0,200 0,020 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,100 0,010 0,010	6,0 10 ⁻¹¹ 9,1 10 ⁻¹¹ 9,5 10 ⁻¹¹	2,9 10 ⁻¹¹ 4,6 10 ⁻¹¹ 4,8 10 ⁻¹¹	$ \begin{array}{c} 1,8 \ 10^{-11} \\ 3,0 \ 10^{-11} \\ 3,1 \ 10^{-11} \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,5 10 ⁻¹² 1,6 10 ⁻¹¹ 1,7 10 ⁻¹¹
Sb-118m	5,00 h	F M S	0,200 0,020 0,020	7,3 10 ⁻¹⁰ 9,3 10 ⁻¹⁰ 9,5 10 ⁻¹⁰	0,100 0,010 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2,0 \ 10^{-10} \\ 2,5 \ 10^{-10} \\ 2,5 \ 10^{-10} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,3 10 ⁻¹¹ 1,2 10 ⁻¹⁰ 1,2 10 ⁻¹⁰
Sb-119	1,59 d	F M S	0,200 0,020 0,020	2,7 10 ⁻¹⁰ 4,0 10 ⁻¹⁰ 4,1 10 ⁻¹⁰	0,100 0,010 0,010	2,0 10 ⁻¹⁰ 2,8 10 ⁻¹⁰ 2,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,5 10 ⁻¹¹ 7,9 10 ⁻¹¹ 8,2 10 ⁻¹¹	2,9 10 ⁻¹¹ 4,4 10 ⁻¹¹ 4,5 10 ⁻¹¹	2,3 10 ⁻¹¹ 3,5 10 ⁻¹¹ 3,6 10 ⁻¹¹
Sb-120	5,76 d	F M S	0,200 0,020 0,020	4,1 10 ⁻⁹ 6,3 10 ⁻⁹ 6,6 10 ⁻⁹	0,100 0,010 0,010	3,3 10 ⁻⁹ 5,0 10 ⁻⁹ 5,3 10 ⁻⁹	1,8 10 ⁻⁹ 2,8 10 ⁻⁹ 2,9 10 ⁻⁹	1,1 10 ⁻⁹ 1,8 10 ⁻⁹ 1,9 10 ⁻⁹	6,7 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,4 10 ⁻⁹	5,5 10 ⁻¹⁰ 1,0 10 ⁻⁹ 1,1 10 ⁻⁹
Sb-120	0,265 h	F M S	0,200 0,020 0,020	4,6 10 ⁻¹¹ 6,6 10 ⁻¹¹ 6,8 10 ⁻¹¹	0,100 0,010 0,010	3,1 10 ⁻¹¹ 4,4 10 ⁻¹¹ 4,6 10 ⁻¹¹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,9 10 ⁻¹² 1,3 10 ⁻¹¹ 1,4 10 ⁻¹¹	5,4 10 ⁻¹² 8,3 10 ⁻¹² 8,7 10 ⁻¹²	4,6 10 ⁻¹² 7,0 10 ⁻¹² 7,3 10 ⁻¹²
Sb-122	2,70 d	F M S	0,200 0,020 0,020	4,2 10 ⁻⁹ 8,3 10 ⁻⁹ 8,8 10 ⁻⁹	0,100 0,010 0,010	2,8 10 ⁻⁹ 5,7 10 ⁻⁹ 6,1 10 ⁻⁹	1,4 10 ⁻⁹ 2,8 10 ⁻⁹ 3,0 19 ⁻⁹	8,4 10 ⁻¹⁰ 1,8 10 ⁻⁹ 2,0 10 ⁻⁹	4,4 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,4 10 ⁻⁹	3,6 10 ⁻¹⁰ 1,0 10 ⁻⁹ 1,1 10 ⁻⁹
Sb-124	60,2 d	F M S	0,200 0,020 0,020	1,2 10 ⁻⁸ 3,1 10 ⁻⁸ 3,9 10 ⁻⁸	0,100 0,010 0,010	8,8 10 ⁻⁹ 2,4 10 ⁻⁸ 3,1 10 ⁻⁸	4,3 10 ⁻⁹ 1,4 10 ⁻⁸ 1,8 10 ⁻⁸	2,6 10 ⁻⁹ 9,6 10 ⁻⁹ 1,3 10 ⁻⁸	1,6 10 ⁻⁹ 7,7 10 ⁻⁹ 1,0 10 ⁻⁸	1,3 10 ⁻⁹ 6,4 10 ⁻⁹ 8,6 10 ⁻⁹
Sb-124m	0,337 h	F M S	0,200 0,020 0,020	2,7 10 ⁻¹¹ 4,3 10 ⁻¹¹ 4,6 10 ⁻¹¹	0,100 0,010 0,010	1,9 10 ⁻¹¹ 3,1 10 ⁻¹¹ 3,3 10 ⁻¹¹	9,0 10 ⁻¹² 1,5 10 ⁻¹¹ 1,6 10 ⁻¹¹	5,6 10 ⁻¹² 9,6 10 ⁻¹² 1,0 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,8 10 ⁻¹² 5,4 10 ⁻¹² 5,9 10 ⁻¹²
Sb-125	2,77 a	F M S	0,200 0,020 0,020	8,7 10 ⁻⁹ 2,0 18 ⁻⁸ 4,2 10 ⁻⁸	0,100 0,010 0,010	6,8 10 ⁻⁹ 1,6 10 ⁻⁸ 3,8 10 ⁻⁸	$\begin{array}{ c c c c c c }\hline 3,7 & 10^{-9} \\ 1,0 & 10^{-8} \\ 2,4 & 10^{-8} \\ \hline \end{array}$	2,3 10 ⁻⁹ 6,8 10 ⁻⁹ 1,6 10 ⁻⁸	1,5 10 ⁻⁹ 5,8 10 ⁻⁹ 1,4 10 ⁻⁸	1,4 10 ⁻⁹ 4,8 10 ⁻⁹ 1,2 10 ⁻⁸
Sb-126	12,4 d	F M S	0,200 0,020 0,020	8,8 10 ⁻⁹ 1,7 10 ⁻⁸ 1,9 10 ⁻⁸	0,100 0,010 0,010	6,6 10 ⁻⁹ 1,3 10 ⁻⁸ 1,5 10 ⁻⁸	3,3 10 ⁻⁹ 7,4 10 ⁻⁹ 8,2 10 ⁻⁹	2,1 10 ⁻⁹ 5,1 10 ⁻⁹ 5,0 10 ⁻⁹	1,2 10 ⁻⁹ 3,5 10 ⁻⁹ 4,0 10 ⁻⁹	1,0 10 ⁻⁹ 2,8 10 ⁻⁹ 3,2 10 ⁻⁹
Sb-126m	0,317 h	F M S	0,200 0,020 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,100 0,010 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,8 10 ⁻¹¹ 5,5 10 ⁻¹¹ 5,7 10 ⁻¹¹	2,4 10 ⁻¹¹ 3,5 10 ⁻¹¹ 3,7 10 ⁻¹¹	$ \begin{array}{c ccccc} 1,5 & 10^{-11} \\ 2,3 & 10^{-11} \\ 2,4 & 10^{-11} \end{array} $	1,2 10 ⁻¹¹ 1,9 10 ⁻¹¹ 2,0 10 ⁻¹¹
Sb-127	3,85 d	F M S	0,200 0,020 0,020	5,1 10 ⁻⁹ 1,0 10 ⁻⁸ 1,1 10 ⁻⁸	0,100 0,010 0,010	3,5 10 ⁻⁹ 7,3 10 ⁻⁹ 7,9 10 ⁻⁹	1,6 10 ⁻⁹ 3,9 10 ⁻⁹ 4,2 10 ⁻⁹	9,7 10 ⁻¹⁰ 2,7 10 ⁻⁹ 3,0 10 ⁻⁹	5,2 10 ⁻¹⁰ 2,1 10 ⁻⁹ 2,3 10 ⁻⁹	4,3 10 ⁻¹⁰ 1,7 10 ⁻⁹ 1,9 10 ⁻⁹
Sb-128	9,01 h	F M S	0,200 0,020 0,020	2,1 10 ⁻⁹ 3,3 10 ⁻⁹ 3,4 10 ⁻⁹	0,100 0,010 0,010	1,7 10 ⁻⁹ 2,5 10 ⁻⁹ 2,6 10 ⁻⁹	8,3 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,3 10 ⁻⁹	5,1 10 ⁻¹⁰ 7,9 10 ⁻¹⁰ 8,3 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,3 10 ⁻¹⁰ 4,0 10 ⁻¹⁰ 4,2 10 ⁻¹⁰
Sb-128	0,173 h	F M S	0,200 0,020 0,020	9,8 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	0,100 0,010 0,010	6,9 10 ⁻¹¹ 9,2 10 ⁻¹¹ 9,4 10 ⁻¹¹	3,2 10 ⁻¹¹ 4,3 10 ⁻¹¹ 4,4 10 ⁻¹¹	2,0 10 ⁻¹¹ 2,7 10 ⁻¹¹ 2,8 10 ⁻¹¹	1,2 10 ⁻¹¹ 1,7 10 ⁻¹¹ 1,8 10 ⁻¹¹	1,0 10 ⁻¹¹ 1,4 10 ⁻¹¹ 1,5 10 ⁻¹¹
Sb-129	4,32 h	F M S	0,200 0,020 0,020	1,1 10 ⁻⁹ 2,0 10 ⁻⁹ 2,1 10 ⁻⁹	0,100 0,010 0,010	8,2 10 ⁻¹⁰ 1,4 10 ⁻⁹ 1,5 10 ⁻⁹	3,8 10 ⁻¹⁰ 6,8 10 ⁻¹⁰ 7,2 10 ⁻¹⁰	2,3 10 ⁻¹⁰ 4,4 10 ⁻¹⁰ 4,6 10 ⁻¹⁰	1,3 10 ⁻¹⁰ 2,9 10 ⁻¹⁰ 3,0 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sb-130	0,667 h	F M S	0,200 0,020 0,020 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,100 0,010 0,010 0,010	2,2 10 ⁻¹⁰ 3,2 10 ⁻¹⁰ 3,3 10 ⁻¹⁰	1,1 10 ⁻¹⁰ 1,6 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	6,6 10 ⁻¹¹ 9,8 10 ⁻¹¹ 1,0 10 ⁻¹⁰	4,0 10 ⁻¹¹ 6,3 10 ⁻¹¹ 6,5 10 ⁻¹¹	3,3 10 ⁻¹¹ 5,1 10 ⁻¹¹ 5,3 10 ⁻¹¹
Sb-131	0,383 h	F M S	0,200 0,020 0,020	3,5 10 ⁻¹⁰ 3,9 10 ⁻¹⁰ 3,8 10 ⁻¹⁰	0,100 0,010 0,010	2,8 10 ⁻¹⁰ 2,6 10 ⁻¹⁰ 2,6 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,7 10 ⁻¹¹ 8,0 10 ⁻¹¹ 7,9 10 ⁻¹¹	4,6 10 ⁻¹¹ 5,3 10 ⁻¹¹ 5,3 10 ⁻¹¹	3,5 10 ⁻¹¹ 4,4 10 ⁻¹¹ 4,4 10 ⁻¹¹

Nucláida	Période	Tuna	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Туре	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Tellure										
Te-116	2,49 h	F M S	0,600 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,300 0,100 0,010	$\begin{array}{ c c c c c } 4,2 & 10^{-10} \\ 6,4 & 10^{-10} \\ 6,7 & 10^{-10} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,2 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	5,8 10 ⁻¹¹ 1,0 10 ⁻¹⁰ 1,1 10 ⁻¹⁰
Te-121	17,0 d	F M	0,600 0,200	1,7 10 ⁻⁹ 2,3 10 ⁻⁹	0,300 0,100	1,4 10 ⁻⁹ 1,9 10 ⁻⁹	7,2 10 ⁻¹⁰ 1,0 10 ⁻⁹	4,6 10 ⁻¹⁰ 6,8 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Te-121m	154 d	S F M	0,020 0,600 0,200	2,4 10 ⁻⁹ 1,4 10 ⁻⁸ 1,9 10 ⁻⁸	0,010 0,300 0,100	2,0 10 ⁻⁹ 1,0 10 ⁻⁸ 1,5 10 ⁻⁸	1,1 10 ⁻⁹ 5,3 10 ⁻⁹ 8,8 10 ⁻⁹	7,2 10 ⁻¹⁰ 3,3 10 ⁻⁹ 6,1 10 ⁻⁹	5,1 10 ⁻¹⁰ 2,1 10 ⁻⁹ 5,1 10 ⁻⁹	4,1 10 ⁻¹⁰ 1,8 10 ⁻⁹ 4,2 10 ⁻⁹
Te-123	1,00 10 ¹³ a	S F M S	0,020 0,600 0,200 0,020	2,3 10 ⁻⁸ 1,1 10 ⁻⁸ 5,6 10 ⁻⁹ 5,3 10 ⁻⁹	0,010 0,300 0,100 0,010	1,9 10 ⁻⁸ 9,1 10 ⁻⁹ 4,4 10 ⁻⁹ 5,0 10 ⁻⁹	1,2 10 ⁻⁸ 6,2 10 ⁻⁹ 3,0 10 ⁻⁹ 3,5 10 ⁻⁹	8,1 10 ⁻⁹ 4,8 10 ⁻⁹ 2,3 10 ⁻⁹ 2,4 10 ⁻⁹	6,9 10 ⁻⁹ 4,0 10 ⁻⁹ 2,0 10 ⁻⁹ 2,1 10 ⁻⁹	5,7 10 ⁻⁹ 3,9 10 ⁻⁹ 1,9 10 ⁻⁹ 2,0 10 ⁻⁹
Te-123m	120 d	5 F M S	0,600 0,200 0,020	9,8 10 ⁻⁹ 1,8 10 ⁻⁸ 2,0 10 ⁻⁸	0,300 0,100 0,010	6,8 10 ⁻⁹ 1,3 10 ⁻⁸ 1,6 10 ⁻⁸	3,4 10 ⁻⁹ 8,0 10 ⁻⁹ 9,8 10 ⁻⁹	1,9 10 ⁻⁹ 5,7 10 ⁻⁹ 7,1 10 ⁻⁹	1,1 10 ⁻⁹ 5,0 10 ⁻⁹ 6,3 10 ⁻⁹	9,5 10 ⁻¹⁰ 4,0 10 ⁻⁹ 5,1 10 ⁻⁹
Te-125m	58,0 d	F M S	0,600 0,200 0,020	6,2 10 ⁻⁹ 1,5 10 ⁻⁸ 1,7 10 ⁻⁸	0,300 0,100 0,010	4,2 10 ⁻⁹ 1,1 10 ⁻⁸ 1,3 10 ⁻⁸	2,0 10 ⁻⁹ 6,6 10 ⁻⁹ 7,8 10 ⁻⁹	1,1 10 ⁻⁹ 4,8 10 ⁻⁹ 5,8 10 ⁻⁹	6,1 10 ⁻¹⁰ 4,3 10 ⁻⁹ 5,3 10 ⁻⁹	5,1 10 ⁻¹⁰ 3,4 10 ⁻⁹ 4,2 10 ⁻⁹
Te-127	9,35 h	F M S	0,600 0,200 0,020	4,3 10 ⁻¹⁰ 1,0 10 ⁻⁹ 1,2 10 ⁻⁹	0,300 0,100 0,010	$\begin{array}{c} 3,2 \ 10^{-10} \\ 7,3 \ 10^{-10} \\ 7,9 \ 10^{-10} \end{array}$	1,4 10 ⁻¹⁰ 3,6 10 ⁻¹⁰ 3,9 10 ⁻¹⁰	$\begin{vmatrix} 8,5 & 10^{-11} \\ 2,4 & 10^{-10} \\ 2,6 & 10^{-10} \end{vmatrix}$	4,5 10 ⁻¹¹ 1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	3,9 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰
Te-127m	109 d	F M S	0,600 0,200 0,020	2,1 10 ⁻⁸ 3,5 10 ⁻⁸ 4,1 10 ⁻⁸	0,300 0,100 0,010	1,4 10 ⁻⁸ 2,6 10 ⁻⁸ 3,3 10 ⁻⁸	6,5 10 ⁻⁹ 1,5 10 ⁻⁸ 2,0 10 ⁻⁸	3,5 10 ⁻⁹ 1,1 10 ⁻⁸ 1,4 10 ⁻⁸	2,0 10 ⁻⁹ 9,2 10 ⁻⁹ 1,2 10 ⁻⁸	1,5 10 ⁻⁹ 7,4 10 ⁻⁹ 9,8 10 ⁻⁹
Te-129	1,16 h	F M S	0,600 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,300 0,100 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,1 10 ⁻¹¹ 9,9 10 ⁻¹¹ 1,0 10 ⁻¹⁰	3,2 10 ⁻¹¹ 6,5 10 ⁻¹¹ 6,9 10 ⁻¹¹	1,9 10 ⁻¹¹ 4,4 10 ⁻¹¹ 4,7 10 ⁻¹¹	1,6 10 ⁻¹¹ 3,7 10 ⁻¹¹ 3,9 10 ⁻¹¹
Te-129m	33,6 d	F M S	0,600 0,200 0,020	2,0 10 ⁻⁸ 3,5 10 ⁻⁸ 3,8 10 ⁻⁸	0,300 0,100 0,010	1,3 10 ⁻⁸ 2,6 10 ⁻⁸ 2,9 10 ⁻⁸	5,8 10 ⁻⁹ 1,4 10 ⁻⁸ 1,7 10 ⁻⁸	3,1 10 ⁻⁹ 9,8 10 ⁻⁹ 1,2 10 ⁻⁸	1,7 10 ⁻⁹ 8,0 10 ⁻⁹ 9,6 10 ⁻⁹	1,3 10 ⁻⁹ 6,6 10 ⁻⁹ 7,9 10 ⁻⁹
Te-131	0,417 h	F M S	0,600 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,300 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,9 10 ⁻¹¹ 8,1 10 ⁻¹¹ 7,4 10 ⁻¹¹	5,3 10 ⁻¹¹ 5,2 10 ⁻¹¹ 4,9 10 ⁻¹¹	3,3 10 ⁻¹¹ 3,5 10 ⁻¹¹ 3,3 10 ⁻¹¹	2,3 10 ⁻¹¹ 2,8 10 ⁻¹¹ 2,8 10 ⁻¹¹
Te-131m	1,25 d	F M S	0,600 0,200 0,020	8,7 10 ⁻⁹ 7,9 10 ⁻⁹ 7,0 10 ⁻⁹	0,300 0,100 0,010	7,6 10 ⁻⁹ 5,8 10 ⁻⁹ 5,1 10 ⁻⁹	3,9 10 ⁻⁹ 3,0 10 ⁻⁹ 2,6 10 ⁻⁹	2,0 10 ⁻⁹ 1,9 10 ⁻⁹ 1,8 10 ⁻⁹	1,2 10 ⁻⁹ 1,2 10 ⁻⁹ 1,1 10 ⁻⁹	8,6 10 ⁻¹⁰ 9,4 10 ⁻¹⁰ 9,1 10 ⁻¹⁰
Te-132	3,26 d	F M S	0,600 0,200 0,020	2,2 10 ⁻⁸ 1,6 10 ⁻⁸ 1,5 10 ⁻⁸	0,300 0,100 0,010	1,8 10 ⁻⁸ 1,3 10 ⁻⁸ 1,1 10 ⁻⁸	8,5 10 ⁻⁹ 6,4 10 ⁻⁹ 5,8 10 ⁻⁹	4,2 10 ⁻⁹ 4,0 10 ⁻⁹ 3,8 10 ⁻⁹	2,6 10 ⁻⁹ 2,6 10 ⁻⁹ 2,5 10 ⁻⁹	1,8 10 ⁻⁹ 2,0 10 ⁻⁹ 2,0 10 ⁻⁹
Te-133	0,207 h	F M S	0,600 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,300 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,6 10 ⁻¹¹ 6,1 10 ⁻¹¹ 5,4 10 ⁻¹¹	4,6 10 ⁻¹¹ 3,8 10 ⁻¹¹ 3,5 10 ⁻¹¹	2,8 10 ⁻¹¹ 2,4 10 ⁻¹¹ 2,2 10 ⁻¹¹	1,9 10 ⁻¹¹ 2,0 10 ⁻¹¹ 1,9 10 ⁻¹¹
Te-133m	0,923 h	F M S	0,600 0,200 0,020	$ \begin{array}{c cccc} 1,0 & 10^{-9} \\ 8,5 & 10^{-10} \\ 7,4 & 10^{-10} \end{array} $	0,300 0,100 0,010	8,9 10 ⁻¹⁰ 5,8 10 ⁻¹⁰ 5,1 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c }\hline 1,2 & 10^{-10} \\ 1,1 & 10^{-10} \\ 1,0 & 10^{-10} \\ \hline \end{array}$	8,1 10 ⁻¹¹ 8,7 10 ⁻¹¹ 8,4 10 ⁻¹¹
Te-134	0,696 h	F M S	0,600 0,200 0,020	4,7 10 ⁻¹⁰ 5,5 10 ⁻¹⁰ 5,6 10 ⁻¹⁰	0,300 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4,7 10 ⁻¹¹ 6,6 10 ⁻¹¹ 6,8 10 ⁻¹¹
Iode		. ~	1 -,	1 - 7 0	1 .,	1 /	1 7 20	1 -,	1 -,0	1 -,- 10
I-120	1,35 h	F M S	1,000 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,000 0,100 0,010	$\begin{array}{c c} 1,0 & 10^{-9} \\ 7,3 & 10^{-10} \\ 6,9 & 10^{-10} \end{array}$	$\begin{array}{ c c c c c } 4,8 & 10^{-10} \\ 3,4 & 10^{-10} \\ 3,2 & 10^{-10} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c } \hline 1,4 & 10^{-10} \\ 1,3 & 10^{-10} \\ 1,2 & 10^{-10} \\ \hline \end{array}$	$\begin{array}{ c c c c c } & 1,0 & 10^{-10} \\ & 1,0 & 10^{-10} \\ & 1,0 & 10^{-10} \end{array}$
I-120m	0,883 h	F M S	1,000 0,200 0,020	8,6 10 ⁻¹⁰ 8,2 10 ⁻¹⁰ 8,2 10 ⁻¹⁰	1,000 0,100 0,010	6,9 10 ⁻¹⁰ 5,9 10 ⁻¹⁰ 5,8 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,8 10 ⁻¹⁰ 1,8 10 ⁻¹⁰ 1,8 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,2 10 ⁻¹¹ 8,7 10 ⁻¹¹ 8,8 10 ⁻¹¹
I-121	2,12 h	F M S	1,000 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,000 0,100 0,010	$\begin{array}{ c c c c c c }\hline 2,1 & 10^{-10} \\ 1,5 & 10^{-10} \\ 1,4 & 10^{-10} \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,0 10 ⁻¹¹ 4,9 10 ⁻¹¹ 4,5 10 ⁻¹¹	3,8 10 ⁻¹¹ 3,2 10 ⁻¹¹ 3,0 10 ⁻¹¹	2,7 10 ⁻¹¹ 2,5 10 ⁻¹¹ 2,4 10 ⁻¹¹
I-123	13,2 h	F M S	1,000 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,000 0,100 0,010	7,9 10 ⁻¹⁰ 3,9 10 ⁻¹⁰ 3,2 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c }\hline 1,8 & 10^{-10} \\ 1,2 & 10^{-10} \\ 1,1 & 10^{-10} \\ \hline \end{array}$	1,1 10 ⁻¹⁰ 8,2 10 ⁻¹¹ 7,6 10 ⁻¹¹	7,4 10 ⁻¹¹ 6,4 10 ⁻¹¹ 6,0 10 ⁻¹¹

Nucléide	Période	Typa	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucleide	physique	Туре	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
I-124	4,18 d	F M S	1,000 0,200 0,020	4,7 10 ⁻⁸ 1,4 10 ⁻⁸ 6,2 10 ⁻⁹	1,000 0,100 0,010	4,5 10 ⁻⁸ 9,3 10 ⁻⁹ 4,4 10 ⁻⁹	2,2 10 ⁻⁸ 4,6 10 ⁻⁹ 2,2 10 ⁻⁹	1,1 10 ⁻⁸ 2,5 10 ⁻⁹ 1,4 10 ⁻⁹	6,7 10 ⁻⁹ 1,6 10 ⁻⁹ 9,4 10 ⁻¹⁰	4,4 10 ⁻⁹ 1,2 10 ⁻⁹ 7,7 10 ⁻¹⁰
I-125	60,1 d	F M S	1,000 0,200 0,020	2,0 10 ⁻⁸ 6,9 10 ⁻⁹ 2,4 10 ⁻⁹	1,000 0,100 0,010	2,3 10 ⁻⁸ 5,6 10 ⁻⁹ 1,8 10 ⁻⁹	1,5 10 ⁻⁸ 3,6 10 ⁻⁹ 1,0 10 ⁻⁹	1,1 10 ⁻⁸ 2,6 10 ⁻⁹ 6,7 10 ⁻¹⁰	7,2 10 ⁻⁹ 1,8 10 ⁻⁹ 4,8 10 ⁻¹⁰	5,1 10 ⁻⁹ 1,4 10 ⁻⁹ 3,8 10 ⁻¹⁰
I-126	13,0 d	F M S	1,000 0,200 0,020	8,1 10 ⁻⁸ 2,4 10 ⁻⁸ 8,3 10 ⁻⁹	1,000 0,100 0,010	8,3 10 ⁻⁸ 1,7 10 ⁻⁸ 5,9 10 ⁻⁹	4,5 10 ⁻⁸ 9,5 10 ⁻⁹ 3,3 10 ⁻⁹	2,4 10 ⁻⁸ 5,5 10 ⁻⁹ 2,2 10 ⁻⁹	1,5 10 ⁻⁸ 3,8 10 ⁻⁹ 1,8 10 ⁻⁹	9,8 10 ⁻⁹ 2,7 10 ⁻⁹ 1,4 10 ⁻⁹
I-128	0,416 h	F M S	1,000 0,200 0,020	1,5 10 ⁻¹⁰ 1,9 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	1,000 0,100 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,7 10 ⁻¹¹ 5,3 10 ⁻¹¹ 5,4 10 ⁻¹¹	2,7 10 ⁻¹¹ 3,4 10 ⁻¹¹ 3,5 10 ⁻¹¹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
I-129	1,57 10 ⁷ a	F M S	1,000 0,200 0,020	7,2 10 ⁻⁸ 3,6 10 ⁻⁸ 2,9 10 ⁻⁸	1,000 0,100 0,010	8,6 10 ⁻⁸ 3,3 10 ⁻⁸ 2,6 10 ⁻⁸	6,1 10 ⁻⁸ 2,4 10 ⁻⁸ 1,8 10 ⁻⁸	6,7 10 ⁻⁸ 2,4 10 ⁻⁸ 1,3 10 ⁻⁸	4,6 10 ⁻⁸ 1,9 10 ⁻⁸ 1,1 10 ⁻⁸	3,6 10 ⁻⁸ 1,5 10 ⁻⁸ 9,8 10 ⁻⁹
I-130	12,4 h	F M S	1,000 0,200 0,020	8,2 10 ⁻⁹ 4,3 10 ⁻⁹ 3,3 10 ⁻⁹	1,000 0,100 0,010	7,4 10 ⁻⁹ 3,1 10 ⁻⁹ 2,4 10 ⁻⁹	3,5 10 ⁻⁹ 1,5 10 ⁻⁹ 1,2 10 ⁻⁹	1,6 10 ⁻⁹ 9,2 10 ⁻¹⁰ 7,9 10 ⁻¹⁰	$ \begin{array}{c cccc} 1,0 & 10^{-9} \\ 5,8 & 10^{-10} \\ 5,1 & 10^{-10} \end{array} $	$\begin{array}{c} 6,7 \ 10^{-10} \\ 4,5 \ 10^{-10} \\ 4,1 \ 10^{-10} \end{array}$
I-131	8,04 d	F M S	1,000 0,200 0,020	7,2 10 ⁻⁸ 2,2 10 ⁻⁸ 8,8 10 ⁻⁹	1,000 0,100 0,010	7,2 10 ⁻⁸ 1,5 10 ⁻⁸ 6,2 10 ⁻⁹	3,7 10 ⁻⁸ 8,2 10 ⁻⁹ 3,5 10 ⁻⁹	1,9 10 ⁻⁸ 4,7 10 ⁻⁹ 2,4 10 ⁻⁹	1,1 10 ⁻⁸ 3,4 10 ⁻⁹ 2,0 10 ⁻⁹	7,4 10 ⁻⁹ 2,4 10 ⁻⁹ 1,6 10 ⁻⁹
I-132	2,30 h	F M S	1,000 0,200 0,020	1,1 10 ⁻⁹ 9,9 10 ⁻¹⁰ 9,3 10 ⁻¹⁰	1,000 0,100 0,010	9,6 10 ⁻¹⁰ 7,3 10 ⁻¹⁰ 6,8 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 9,4 \ 10^{-11} \\ 1,1 \ 10^{-10} \\ 1,1 \ 10^{-10} \end{array}$
I-132m	1,39 h	F M S	1,000 0,200 0,020	9,6 10 ⁻¹⁰ 7,2 10 ⁻¹⁰ 6,6 10 ⁻¹⁰	1,000 0,100 0,010	8,4 10 ⁻¹⁰ 5,3 10 ⁻¹⁰ 4,8 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,9 10 ⁻¹⁰ 1,6 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	$\begin{array}{c} 1,2 \ 10^{-10} \\ 1,1 \ 10^{-10} \\ 1,1 \ 10^{-10} \end{array}$	7,9 10 ⁻¹¹ 8,7 10 ⁻¹¹ 8,5 10 ⁻¹¹
I-133	20,8 h	F M S	1,000 0,200 0,020	1,9 10 ⁻⁸ 6,6 10 ⁻⁹ 3,8 10 ⁻⁹	1,000 0,100 0,010	1,8 10 ⁻⁸ 4,4 10 ⁻⁹ 2,9 10 ⁻⁹	8,3 10 ⁻⁹ 2,1 10 ⁻⁹ 1,4 10 ⁻⁹	3,8 10 ⁻⁹ 1,2 10 ⁻⁹ 9,0 10 ⁻¹⁰	2,2 10 ⁻⁹ 7,4 10 ⁻¹⁰ 5,3 10 ⁻¹⁰	1,5 10 ⁻⁹ 5,5 10 ⁻¹⁰ 4,3 10 ⁻¹⁰
I-134	0,876 h	F M S	1,000 0,200 0,020	4,6 10 ⁻¹⁰ 4,8 10 ⁻¹⁰ 4,8 10 ⁻¹⁰	1,000 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 9,7 \ 10^{-11} \\ 1,0 \ 10^{-10} \\ 1,1 \ 10^{-10} \end{array}$	5,9 10 ⁻¹¹ 6,7 10 ⁻¹¹ 6,8 10 ⁻¹¹	4,5 10 ⁻¹¹ 5,4 10 ⁻¹¹ 5,5 10 ⁻¹¹
I-135	6,61 h	F M S	1,000 0,200 0,020	4,1 10 ⁻⁹ 2,2 10 ⁻⁹ 1,8 10 ⁻⁹	1,000 0,100 0,010	3,7 10 ⁻⁹ 1,6 10 ⁻⁹ 1,3 10 ⁻⁹	1,7 10 ⁻⁹ 7,8 10 ⁻¹⁰ 6,5 10 ⁻¹⁰	7,9 10 ⁻¹⁰ 4,7 10 ⁻¹⁰ 4,2 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Césium	1	1	•	'	'	•	'	•		
Cs-125	0,750 h	F M S	1,000 0,200 0,020	$\begin{array}{ c c c c }\hline 1,2 & 10^{-10} \\ 2,0 & 10^{-10} \\ 2,1 & 10^{-10} \\ \hline \end{array}$	1,000 0,100 0,010	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cs-127	6,25 h	F M S	1,000 0,200 0,020	1,6 10 ⁻¹⁰ 2,8 10 ⁻¹⁰ 3,0 10 ⁻¹⁰	1,000 0,100 0,010	$\begin{array}{ c c c c c }\hline 1,3 & 10^{-10} \\ 2,2 & 10^{-10} \\ 2,3 & 10^{-10} \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,2 10 ⁻¹¹ 7,3 10 ⁻¹¹ 7,6 10 ⁻¹¹	2,5 10 ⁻¹¹ 4,6 10 ⁻¹¹ 4,8 10 ⁻¹¹	2,0 10 ⁻¹¹ 3,6 10 ⁻¹¹ 3,8 10 ⁻¹¹
Cs-129	1,34 d	F M S	1,000 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,000 0,100 0,010	2,8 10 ⁻¹⁰ 4,6 10 ⁻¹⁰ 4,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,7 10 ⁻¹¹ 1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	5,2 10 ⁻¹¹ 9,1 10 ⁻¹¹ 9,7 10 ⁻¹¹	4,2 10 ⁻¹¹ 7,3 10 ⁻¹¹ 7,7 10 ⁻¹¹
Cs-130	0,498 h	F M S	1,000 0,200 0,020	8,3 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	1,000 0,100 0,010	5,6 10 ⁻¹¹ 8,7 10 ⁻¹¹ 9,0 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,6 10 ⁻¹¹ 2,5 10 ⁻¹¹ 2,6 10 ⁻¹¹	9,4 10 ⁻¹² 1,6 10 ⁻¹¹ 1,7 10 ⁻¹¹	7,8 10 ⁻¹² 1,4 10 ⁻¹¹ 1,4 10 ⁻¹¹
Cs-131	9,69 d	F M S	1,000 0,200 0,020	2,4 10 ⁻¹⁰ 3,5 10 ⁻¹⁰ 3,8 10 ⁻¹⁰	1,000 0,100 0,010	1,7 10 ⁻¹⁰ 2,6 10 ⁻¹⁰ 2,8 10 ⁻¹⁰	8,4 10 ⁻¹¹ 1,4 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	5,3 10 ⁻¹¹ 8,5 10 ⁻¹¹ 9,1 10 ⁻¹¹	3,2 10 ⁻¹¹ 5,5 10 ⁻¹¹ 5,9 10 ⁻¹¹	2,7 10 ⁻¹¹ 4,4 10 ⁻¹¹ 4,7 10 ⁻¹¹
Cs-132	6,48 d	F M S	1,000 0,200 0,020	1,5 10 ⁻⁹ 1,9 10 ⁻⁹ 2,0 10 ⁻⁹	1,000 0,100 0,010	1,2 10 ⁻⁹ 1,5 10 ⁻⁹ 1,6 10 ⁻⁹	6,4 10 ⁻¹⁰ 8,4 10 ⁻¹⁰ 8,7 10 ⁻¹⁰	4,1 10 ⁻¹⁰ 5,4 10 ⁻¹⁰ 5,6 10 ⁻¹⁰	2,7 10 ⁻¹⁰ 3,7 10 ⁻¹⁰ 3,8 10 ⁻¹⁰	2,3 10 ⁻¹⁰ 2,9 10 ⁻¹⁰ 3,0 10 ⁻¹⁰
Cs-134	2,06 a	F M S	1,000 0,200 0,020	1,1 10 ⁻⁸ 3,2 10 ⁻⁸ 7,0 10 ⁻⁸	1,000 0,100 0,010	7,3 10 ⁻⁹ 2,6 10 ⁻⁸ 6,3 10 ⁻⁸	5,2 10 ⁻⁹ 1,6 10 ⁻⁸ 4,1 10 ⁻⁸	5,3 10 ⁻⁹ 1,2 10 ⁻⁸ 2,8 10 ⁻⁸	6,3 10 ⁻⁹ 1,1 10 ⁻⁸ 2,3 10 ⁻⁸	6,6 10 ⁻⁹ 9,1 10 ⁻⁹ 2,0 10 ⁻⁸
Cs-134m	2,90 h	F M S	1,000 0,200 0,020	1,3 10 ⁻¹⁰ 3,3 10 ⁻¹⁰ 3,6 10 ⁻¹⁰	1,000 0,100 0,010	8,6 10 ⁻¹¹ 2,3 10 ⁻¹⁰ 2,5 10 ⁻¹⁰	3,8 10 ⁻¹¹ 1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	2,5 10 ⁻¹¹ 8,3 10 ⁻¹¹ 9,2 10 ⁻¹¹	1,6 10 ⁻¹¹ 6,6 10 ⁻¹¹ 7,4 10 ⁻¹¹	1,4 10 ⁻¹¹ 5,4 10 ⁻¹¹ 6,0 10 ⁻¹¹

Nucléide	Période	Tues	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucleide	physique	Type	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Cs-135	2,30 10 ⁶ a	F M S	1,000 0,200 0,020	1,7 10 ⁻⁹ 1,2 10 ⁻⁸ 2,7 10 ⁻⁸	1,000 0,100 0,010	9,9 10 ⁻¹⁰ 9,3 10 ⁻⁹ 2,4 10 ⁻⁸	6,2 10 ⁻¹⁰ 5,7 10 ⁻⁹ 1,6 10 ⁻⁸	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,8 10 ⁻¹⁰ 3,8 10 ⁻⁹ 9,5 10 ⁻⁹	6,9 10 ⁻¹⁰ 3,1 10 ⁻⁹ 8,6 10 ⁻⁹
Cs-135m	0,883 h	F M S	1,000 0,200 0,020	9,2 10 ⁻¹¹ 1,2 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	1,000 0,100 0,010	7,8 10 ⁻¹¹ 9,9 10 ⁻¹¹ 1,0 10 ⁻¹⁰	4,1 10 ⁻¹¹ 5,2 10 ⁻¹¹ 5,3 10 ⁻¹¹	2,4 10 ⁻¹¹ 3,2 10 ⁻¹¹ 3,3 10 ⁻¹¹	1,5 10 ⁻¹¹ 1,9 10 ⁻¹¹ 2,0 10 ⁻¹¹	1,2 10 ⁻¹ 1,5 10 ⁻¹ 1,6 10 ⁻¹
Cs-136	13,1 d	F M S	1,000 0,200 0,020	7,3 10 ⁻⁹ 1,3 10 ⁻⁸ 1,5 10 ⁻⁸	1,000 0,100 0,010	5,2 10 ⁻⁹ 1,0 10 ⁻⁸ 1,1 10 ⁻⁸	2,9 10 ⁻⁹ 6,0 10 ⁻⁹ 5,7 10 ⁻⁹	2,0 10 ⁻⁹ 3,7 10 ⁻⁹ 4,1 10 ⁻⁹	1,4 10 ⁻⁹ 3,1 10 ⁻⁹ 3,5 10 ⁻⁹	1,2 10 ⁻⁹ 2,5 10 ⁻⁹ 2,8 10 ⁻⁹
Cs-137	30,0 a	F M S	1,000 0,200 0,020	8,8 10 ⁻⁹ 3,6 10 ⁻⁸ 1,1 10 ⁻⁷	1,000 0,100 0,010	5,4 10 ⁻⁹ 2,9 10 ⁻⁸ 1,0 10 ⁻⁷	3,6 10 ⁻⁹ 1,8 10 ⁻⁸ 7,0 10 ⁻⁸	3,7 10 ⁻⁹ 1,3 10 ⁻⁸ 4,8 10 ⁻⁸	4,4 10 ⁻⁹ 1,1 10 ⁻⁸ 4,2 10 ⁻⁸	4,6 10 ⁻⁹ 9,7 10 ⁻⁹ 3,9 10 ⁻⁸
Cs-138	0,536 h	F M S	1,000 0,200 0,020	2,6 10 ⁻¹⁰ 4,0 10 ⁻¹⁰ 4,2 10 ⁻¹⁰	1,000 0,100 0,010	$\begin{array}{ c c c c } \hline 1,8 & 10^{-10} \\ 2,7 & 10^{-10} \\ 2,8 & 10^{-10} \\ \hline \end{array}$	8,1 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	5,0 10 ⁻¹¹ 7,8 10 ⁻¹¹ 8,2 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,4 10 ⁻¹ 4,1 10 ⁻¹ 4,3 10 ⁻¹
Baryum a)										
Ba-126	1,61 h	F M S	0,600 0,200 0,020	$\begin{array}{ c c c c c c } 6,7 & 10^{-10} \\ 1,0 & 10^{-9} \\ 1,1 & 10^{-9} \end{array}$	0,200 0,100 0,010	7,0 10 ⁻¹⁰ 7,0 10 ⁻¹⁰ 7,2 10 ⁻¹⁰	$\begin{array}{ c c c c c c }\hline 2,4 & 10^{-10} \\ 3,2 & 10^{-10} \\ 3,3 & 10^{-10} \\ \hline \end{array}$	$\begin{array}{ c c c c c } \hline 1,4 & 10^{-10} \\ 2,0 & 10^{-10} \\ 2,1 & 10^{-10} \\ \hline \end{array}$	6,9 10 ⁻¹¹ 1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Ba-128	2,43 d	F M S	0,600 0,200 0,020	5,9 10 ⁻⁹ 1,1 10 ⁻⁸ 1,2 10 ⁻⁸	0,200 0,100 0,010	5,4 10 ⁻⁹ 7,8 10 ⁻⁹ 8,3 10 ⁻⁹	2,5 10 ⁻⁹ 3,7 10 ⁻⁹ 4,0 10 ⁻⁹	1,4 10 ⁻⁹ 2,4 10 ⁻⁹ 2,6 10 ⁻⁹	7,4 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,6 10 ⁻⁹	7,6 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,4 10 ⁻⁹
Ba-131	11,8 d	F M S	0,600 0,200 0,020	2,1 10 ⁻⁹ 3,7 10 ⁻⁹ 4,0 10 ⁻⁹	0,200 0,100 0,010	1,4 10 ⁻⁹ 3,1 10 ⁻⁹ 3,0 10 ⁻⁹	7,1 10 ⁻¹⁰ 1,6 10 ⁻⁹ 1,8 10 ⁻⁹	4,7 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,3 10 ⁻⁹	3,1 10 ⁻¹⁰ 9,7 10 ⁻¹⁰ 1,1 10 ⁻⁹	2,2 10 ⁻¹⁰ 7,6 10 ⁻¹⁰ 8,7 10 ⁻¹⁰
Ba-131m	0,243 h	F M S	0,600 0,200 0,020	2,7 10 ⁻¹¹ 4,8 10 ⁻¹¹ 5,0 10 ⁻¹¹	0,200 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,0 10 ⁻¹¹ 1,7 10 ⁻¹¹ 1,8 10 ⁻¹¹	6,7 10 ⁻¹² 1,2 10 ⁻¹¹ 1,2 10 ⁻¹¹	4,7 10 ⁻¹² 9,0 10 ⁻¹² 9,5 10 ⁻¹²	$\begin{vmatrix} 4,0 & 10^{-12} \\ 7,4 & 10^{-12} \\ 7,8 & 10^{-12} \end{vmatrix}$
Ba-133	10,7 a	F M S	0,600 0,200 0,020	1,1 10 ⁻⁸ 1,5 10 ⁻⁸ 3,2 10 ⁻⁸	0,200 0,100 0,010	4,5 10 ⁻⁹ 1,0 10 ⁻⁸ 2,9 10 ⁻⁸	2,6 10 ⁻⁹ 6,4 10 ⁻⁹ 2,0 10 ⁻⁸	3,7 10 ⁻⁹ 5,1 10 ⁻⁹ 1,3 10 ⁻⁸	6,0 10 ⁻⁹ 5,5 10 ⁻⁹ 1,1 10 ⁻⁸	1,5 10 ⁻⁹ 3,1 10 ⁻⁹ 1,0 10 ⁻⁸
Ba-133m	1,62 d	F M S	0,600 0,200 0,020	1,4 10 ⁻⁹ 3,0 10 ⁻⁹ 3,1 10 ⁻⁹	0,200 0,100 0,010	1,1 10 ⁻⁹ 2,2 10 ⁻⁹ 2,4 10 ⁻⁹	4,9 10 ⁻¹⁰ 1,0 10 ⁻⁹ 1,1 10 ⁻⁹	3,1 10 ⁻¹⁰ 6,9 10 ⁻¹⁰ 7,6 10 ⁻¹⁰	1,5 10 ⁻¹⁰ 5,2 10 ⁻¹⁰ 5,8 10 ⁻¹⁰	1,8 10 ⁻¹⁰ 4,2 10 ⁻¹⁰ 4,6 10 ⁻¹⁰
Ba-135m	1,20 d	F M S	0,600 0,200 0,020	1,1 10 ⁻⁹ 2,4 10 ⁻⁹ 2,7 10 ⁻⁹	0,200 0,100 0,010	1,0 10 ⁻⁹ 1,8 10 ⁻⁹ 1,9 10 ⁻⁹	4,6 10 ⁻¹⁰ 8,9 10 ⁻¹⁰ 8,6 10 ⁻¹⁰	2,5 10 ⁻¹⁰ 5,4 10 ⁻¹⁰ 5,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ba-139	1,38 h	F M S	0,600 0,200 0,020	3,3 10 ⁻¹⁰ 5,4 10 ⁻¹⁰ 5,7 10 ⁻¹⁰	0,200 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,1 10 ⁻¹¹ 6,6 10 ⁻¹¹ 7,0 10 ⁻¹¹	3,4 10 ⁻¹¹ 5,6 10 ⁻¹¹ 5,9 10 ⁻¹¹
Ba-140	12,7 d	F M S	0,600 0,200 0,020	1,4 10 ⁻⁸ 2,7 10 ⁻⁸ 2,9 10 ⁻⁸	0,200 0,100 0,010	7,8 10 ⁻⁹ 2,0 10 ⁻⁸ 2,2 10 ⁻⁸	3,6 10 ⁻⁹ 1,1 10 ⁻⁸ 1,2 10 ⁻⁸	2,4 10 ⁻⁹ 7,6 10 ⁻⁹ 8,6 10 ⁻⁹	1,6 10 ⁻⁹ 6,2 10 ⁻⁹ 7,1 10 ⁻⁹	1,0 10 ⁻⁹ 5,1 10 ⁻⁹ 5,8 10 ⁻⁹
Ba-141	0,305 h	F M S	0,600 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,200 0,100 0,010	$\begin{array}{ c c c c c }\hline 1,4 & 10^{-10} \\ 2,0 & 10^{-10} \\ 2,1 & 10^{-10} \\ \hline \end{array}$	6,4 10 ⁻¹¹ 9,3 10 ⁻¹¹ 9,7 10 ⁻¹¹	3,8 10 ⁻¹¹ 5,9 10 ⁻¹¹ 6,2 10 ⁻¹¹	$\begin{array}{c} 2,1 \ 10^{-11} \\ 3,8 \ 10^{-11} \\ 4,0 \ 10^{-11} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ba-142	0,177 h	F M S	0,600 0,200 0,020	1,3 10 ⁻¹⁰ 1,8 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	0,200 0,100 0,010	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4,5 10 ⁻¹¹ 6,1 10 ⁻¹¹ 6,2 10 ⁻¹¹	2,7 10 ⁻¹¹ 3,9 10 ⁻¹¹ 4,0 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c }\hline 1,5 & 10^{-11} \\ 2,1 & 10^{-11} \\ 2,2 & 10^{-11} \\ \end{array}$
Lanthane										
La-131	0,983 h	F M	0,005 0,005	1,2 10 ⁻¹⁰ 1,8 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,7 10 ⁻¹¹ 1,3 10 ⁻¹⁰	$\begin{array}{ c c c c c c } 4,2 & 10^{-11} \\ 6,4 & 10^{-11} \end{array}$	2,6 10 ⁻¹¹ 4,1 10 ⁻¹¹	1,5 10 ⁻¹¹ 2,8 10 ⁻¹¹	1,3 10 ⁻¹¹ 2,3 10 ⁻¹¹
La-132	4,80 h	F M	0,005 0,005	1,0 10 ⁻⁹ 1,5 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,7 10 ⁻¹⁰ 1,1 10 ⁻⁹	$\begin{array}{c c} 3,7 & 10^{-10} \\ 5,4 & 10^{-10} \end{array}$	2,2 10 ⁻¹⁰ 3,4 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,0 10 ⁻¹⁰ 1,6 10 ⁻¹⁰
La-135	19,5 h	F M	0,005 0,005	1,0 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,7 10 ⁻¹¹ 1,0 10 ⁻¹⁰	3,8 10 ⁻¹¹ 4,9 10 ⁻¹¹	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,3 10 ⁻¹¹ 1,7 10 ⁻¹¹	1,0 10 ⁻¹¹ 1,4 10 ⁻¹¹

a) La valeur de f_1 pour les individus de 1 à 15 ans et le type F est 0,3.

Nucléide	Période	Typo	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
	physique	Туре	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
La-137	6,00 10 ⁴ a	F M	0,005 0,005	2,5 10 ⁻⁸ 8,6 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,3 10 ⁻⁸ 8,1 10 ⁻⁹	1,5 10 ⁻⁸ 5,6 10 ⁻⁹	1,1 10 ⁻⁸ 4,0 10 ⁻⁹	8,9 10 ⁻⁹ 3,6 10 ⁻⁹	8,7 10 ⁻⁹ 3,6 10 ⁻⁹
La-138	1,35 10 ¹¹ a	F M	0,005 0,005	3,7 10 ⁻⁷ 1,3 10 ⁻⁷	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,5 10 ⁻⁷ 1,2 10 ⁻⁷	2,4 10 ⁻⁷ 9,1 10 ⁻⁸	1,8 10 ⁻⁷ 6,8 10 ⁻⁸	1,6 10 ⁻⁷ 6,4 10 ⁻⁸	1,5 10 ⁻⁷ 6,4 10 ⁻⁸
La-140	1,68 d	F M	0,005 0,005	5,8 10 ⁻⁹ 8,8 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,2 10 ⁻⁹ 6,3 10 ⁻⁹	2,0 10 ⁻⁹ 3,1 10 ⁻⁹	1,2 10 ⁻⁹ 2,0 10 ⁻⁹	6,9 10 ⁻¹⁰ 1,3 10 ⁻⁹	5,7 10 ⁻¹⁰ 1,1 10 ⁻⁹
La-141	3,93 h	F M	0,005 0,005	8,6 10 ⁻¹⁰ 1,4 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,5 10 ⁻¹⁰ 9,3 10 ⁻¹⁰	2,3 10 ⁻¹⁰ 4,3 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,5 10 ⁻¹¹ 1,8 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
La-142	1,54 h	F M	0,005 0,005	5,3 10 ⁻¹⁰ 8,1 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,8 10 ⁻¹⁰ 5,7 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	6,3 10 ⁻¹¹ 1,1 10 ⁻¹⁰	5,2 10 ⁻¹¹ 8,9 10 ⁻¹¹
La-143	0,237 h	F M	0,005 0,005	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,6 10 ⁻¹¹ 1,3 10 ⁻¹⁰	3,7 10 ⁻¹¹ 6,0 10 ⁻¹¹	2,3 10 ⁻¹¹ 3,9 10 ⁻¹¹	1,4 10 ⁻¹¹ 2,5 10 ⁻¹¹	1,2 10 ⁻¹¹ 2,1 10 ⁻¹¹
Cérium										
Ce-134	3,00 d	F M S	0,005 0,005 0,005	7,6 10 ⁻⁹ 1,1 10 ⁻⁸ 1,2 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,3 10 ⁻⁹ 7,6 10 ⁻⁹ 8,0 10 ⁻⁹	2,3 10 ⁻⁹ 3,7 10 ⁻⁹ 3,8 10 ⁻⁹	1,4 10 ⁻⁹ 2,4 10 ⁻⁹ 2,5 10 ⁻⁹	7,7 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,6 10 ⁻⁹	5,7 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,3 10 ⁻⁹
Ce-135	17,6 h	F M S	0,005 0,005	2,3 10 ⁻⁹ 3,6 10 ⁻⁹ 3,7 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,7 10 ⁻⁹ 2,7 10 ⁻⁹ 2,8 10 ⁻⁹	8,5 10 ⁻¹⁰ 1,4 10 ⁻⁹ 1,4 10 ⁻⁹	5,3 10 ⁻¹⁰ 8,9 10 ⁻¹⁰ 9,4 10 ⁻¹⁰	3,0 10 ⁻¹⁰ 5,9 10 ⁻¹⁰ 6,3 10 ⁻¹⁰	2,4 10 ⁻¹⁰ 4,8 10 ⁻¹⁰ 5,0 10 ⁻¹⁰
Ce-137	9,00 h	F M S	0,005 0,005 0,005 0,005	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,6 10 ⁻¹¹ 7,6 10 ⁻¹¹ 7,8 10 ⁻¹¹	2,7 10 ⁻¹¹ 3,6 10 ⁻¹¹ 3,7 10 ⁻¹¹	1,6 10 ⁻¹¹ 2,2 10 ⁻¹¹ 2,3 10 ⁻¹¹	8,7 10 ⁻¹² 1,2 10 ⁻¹¹ 1,3 10 ⁻¹¹	7,0 10 ⁻¹² 9,8 10 ⁻¹² 1,0 10 ⁻¹¹
Ce-137m	1,43 d	F M S	0,005 0,005 0,005 0,005	1,6 10 ⁻⁹ 3,1 10 ⁻⁹ 3,3 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,1 10 ⁻⁹ 2,2 10 ⁻⁹ 2,3 10 ⁻⁹	4,6 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,0 10 ⁻⁹	$\begin{bmatrix} 2,3 & 10 \\ 2,8 & 10^{-10} \\ 6,7 & 10^{-10} \\ 7,3 & 10^{-10} \end{bmatrix}$	1,5 10 ⁻¹⁰ 5,1 10 ⁻¹⁰ 5,6 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ce-139	138 d	F M S	0,005 0,005 0,005	1,1 10 ⁻⁸ 7,5 10 ⁻⁹ 7,8 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,5 10 ⁻⁹ 6,1 10 ⁻⁹ 6,3 10 ⁻⁹	4,5 10 ⁻⁹ 3,6 10 ⁻⁹ 3,9 10 ⁻⁹	2,8 10 ⁻⁹ 2,5 10 ⁻⁹ 2,7 10 ⁻⁹	1,8 10 ⁻⁹ 2,1 10 ⁻⁹ 2,4 10 ⁻⁹	1,5 10 ⁻⁹ 1,7 10 ⁻⁹ 1,9 10 ⁻⁹
Ce-141	32,5 d	F M S	0,005 0,005 0,005	1,1 10 ⁻⁸ 1,4 10 ⁻⁸ 1,6 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,3 10 ⁻⁹ 1,1 10 ⁻⁸ 1,2 10 ⁻⁸	3,5 10 ⁻⁹ 6,3 10 ⁻⁹ 7,1 10 ⁻⁹	2,0 10 ⁻⁹ 4,6 10 ⁻⁹ 5,3 10 ⁻⁹	1,2 10 ⁻⁹ 4,1 10 ⁻⁹ 4,8 10 ⁻⁹	9,3 10 ⁻¹⁰ 3,2 10 ⁻⁹ 3,8 10 ⁻⁹
Ce-143	1,38 d	F M S	0,005 0,005 0,005	3,6 10 ⁻⁹ 5,6 10 ⁻⁹ 5,9 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,3 10 ⁻⁹ 3,9 10 ⁻⁹ 4,1 10 ⁻⁹	1,0 10 ⁻⁹ 1,9 10 ⁻⁹ 2,1 10 ⁻⁹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,3 10 ⁻¹⁰ 9,3 10 ⁻¹⁰ 1,0 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ce-144	284 d	F M S	0,005 0,005 0,005	3,6 10 ⁻⁷ 1,9 10 ⁻⁷ 2,1 10 ⁻⁷	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,7 10 ⁻⁷ 1,6 10 ⁻⁷ 1,8 10 ⁻⁷	1,4 10 ⁻⁷ 8,8 10 ⁻⁸ 1,1 10 ⁻⁷	7,8 10 ⁻⁸ 5,5 10 ⁻⁸ 7,3 10 ⁻⁸	4,8 10 ⁻⁸ 4,1 10 ⁻⁸ 5,8 10 ⁻⁸	4,0 10 ⁻⁸ 3,6 10 ⁻⁸ 5,3 10 ⁻⁸
Praséodyme	1		,	1 7	,	1 7	,	1	,	1
Pr-136	0,218 h	M S	0,005 0,005	$\begin{array}{ c c c c c } & 1,3 & 10^{-10} \\ & 1,3 & 10^{-10} \end{array}$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,8 10 ⁻¹¹ 9,0 10 ⁻¹¹	4,2 10 ⁻¹¹ 4,3 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,6 10 ⁻¹¹ 1,7 10 ⁻¹¹	1,3 10 ⁻¹¹ 1,4 10 ⁻¹¹
Pr-137	1,28 h	M S	0,005 0,005	1,8 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,3 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	6,1 10 ⁻¹¹ 6,4 10 ⁻¹¹	3,9 10 ⁻¹¹ 4,0 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,0 10 ⁻¹¹ 2,1 10 ⁻¹¹
Pr-138m	2,10 h	M S	0,005 0,005	5,9 10 ⁻¹⁰ 6,0 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,5 10 ⁻¹⁰ 4,7 10 ⁻¹⁰	2,3 10 ⁻¹⁰ 2,4 10 ⁻¹⁰	1,4 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	9,0 10 ⁻¹¹ 9,3 10 ⁻¹¹	7,2 10 ⁻¹¹ 7,4 10 ⁻¹¹
Pr-139	4,51 h	M S	0,005 0,005	1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,5 10 ⁻¹¹ 5,7 10 ⁻¹¹	3,5 10 ⁻¹¹ 3,7 10 ⁻¹¹	2,3 10 ⁻¹¹ 2,4 10 ⁻¹¹	1,8 10 ⁻¹¹ 2,0 10 ⁻¹¹
Pr-142	19,1 h	M S	0,005 0,005	5,3 10 ⁻⁹ 5,5 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,5 10 ⁻⁹ 3,7 10 ⁻⁹	1,6 10 ⁻⁹ 1,7 10 ⁻⁹	1,0 10 ⁻⁹ 1,1 10 ⁻⁹	6,2 10 ⁻¹⁰ 6,6 10 ⁻¹⁰	5,2 10 ⁻¹⁰ 5,5 10 ⁻¹⁰
Pr-142m	0,243h	M S	0,005 0,005	6,7 10 ⁻¹¹ 7,0 10 ⁻¹¹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,5 10 ⁻¹¹ 4,7 10 ⁻¹¹	2,0 10 ⁻¹¹ 2,2 10 ⁻¹¹	1,3 10 ⁻¹¹ 1,4 10 ⁻¹¹	7,9 10 ⁻¹² 8,4 10 ⁻¹²	6,6 10 ⁻¹² 7,0 10 ⁻¹²
Pr-143	13,6 d	M S	0,005	1,2 10 ⁻⁸ 1,3 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,4 10 ⁻⁹ 9,2 10 ⁻⁹	4,6 10 ⁻⁹ 5,1 10 ⁻⁹	3,2 10 ⁻⁹ 3,6 10 ⁻⁹	2,7 10 ⁻⁹ 3,0 10 ⁻⁹	2,2 10 ⁻⁹ 2,4 10 ⁻⁹
Pr-144	0,288 h	M S	0,005 0,005	1,9 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,2 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	5,0 10 ⁻¹¹ 5,2 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,1 10 ⁻¹¹ 2,1 10 ⁻¹¹	1,8 10 ⁻¹¹ 1,8 10 ⁻¹¹
Pr-145	5,98 h	M S	0,005	1,6 10 ⁻⁹ 1,6 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,0 10 ⁻⁹ 1,1 10 ⁻⁹	4,7 10 ⁻¹⁰ 4,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,9 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰
Pr-147	0,227 h	M S	0,005 0,005	1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{ c c c c c } & 1,0 & 10^{-10} \\ & 1,1 & 10^{-10} \end{array}$	4,8 10 ⁻¹¹ 5,0 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,8 10 ⁻¹¹ 1,8 10 ⁻¹¹

Nucléide	Période	Туре	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucleide	physique	Type	f_1	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Néodyme										
Nd-136	0,844 h	M S	0,005 0,005	4,6 10 ⁻¹⁰ 4,8 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,6 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,3 10 ⁻¹¹ 6,6 10 ⁻¹¹	5,1 10 ⁻¹¹ 5,4 10 ⁻¹¹
Nd-138	5,04 h	M S	0,005 0,005	2,3 10 ⁻⁹ 2,4 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,7 10 ⁻⁹ 1,8 10 ⁻⁹	7,7 10 ⁻¹⁰ 8,0 10 ⁻¹⁰	4,8 10 ⁻¹⁰ 5,0 10 ⁻¹⁰	2,8 10 ⁻¹⁰ 3,0 10 ⁻¹⁰	2,3 10 ⁻¹⁰ 2,5 10 ⁻¹⁰
Nd-139	0,495 h	M S	0,005 0,005	9,0 10 ⁻¹¹ 9,4 10 ⁻¹¹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	6,2 10 ⁻¹¹ 6,4 10 ⁻¹¹	3,0 10 ⁻¹¹ 3,1 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2 10 ⁻¹¹ 1,3 10 ⁻¹¹	9,9 10 ⁻¹² 1,0 10 ⁻¹¹
Nd-139m	5,50 h	M S	0,005 0,005	1,1 10 ⁻⁹ 1,2 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,8 10 ⁻¹⁰ 9,1 10 ⁻¹⁰	4,5 10 ⁻¹⁰ 4,6 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,8 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	1,5 10 ⁻¹⁰ 1,5 10 ⁻¹⁰
Nd-141	2,49 h	M S	0,005 0,005	4,1 10 ⁻¹¹ 4,3 10 ⁻¹¹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,1 10 ⁻¹¹ 3,2 10 ⁻¹¹	1,5 10 ⁻¹¹ 1,6 10 ⁻¹¹	9,6 10 ⁻¹² 1,0 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,8 10 ⁻¹² 5,0 10 ⁻¹²
Nd-147	11,0 d	M S	0,005 0,005	1,1 10 ⁻⁸ 1,2 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,0 10 ⁻⁹ 8,6 10 ⁻⁹	4,5 10 ⁻⁹ 4,9 10 ⁻⁹	3,2 10 ⁻⁹ 3,5 10 ⁻⁹	2,6 10 ⁻⁹ 3,0 10 ⁻⁹	2,1 10 ⁻⁹ 2,4 10 ⁻⁹
Nd-149	1,73 h	M S	0,005 0,005	6,8 10 ⁻¹⁰ 7,1 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,6 10 ⁻¹⁰ 4,8 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	1,0 10 ⁻¹⁰ 1,1 10 ⁻¹⁰	8,4 10 ⁻¹¹ 8,9 10 ⁻¹¹
Nd-151	0,207 h	M S	0,005 0,005	1,5 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	9,9 10 ⁻¹¹ 1,0 10 ⁻¹⁰	4,6 10 ⁻¹¹ 4,8 10 ⁻¹¹	3,0 10 ⁻¹¹ 3,1 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,7 10 ⁻¹¹ 1,7 10 ⁻¹¹
Prométhium										
Pm-141	0,348 h	M S	0,005 0,005	$\begin{array}{ c c c c c } & 1,4 & 10^{-10} \\ & 1,5 & 10^{-10} \end{array}$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	9,4 10 ⁻¹¹ 9,7 10 ⁻¹¹	4,3 10 ⁻¹¹ 4,4 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,7 10 ⁻¹¹ 1,8 10 ⁻¹¹	1,4 10 ⁻¹¹ 1,5 10 ⁻¹¹
Pm-143	265 d	M S	0,005 0,005	6,2 10 ⁻⁹ 5,5 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,4 10 ⁻⁹ 4,8 10 ⁻⁹	3,3 10 ⁻⁹ 3,1 10 ⁻⁹	2,2 10 ⁻⁹ 2,1 10 ⁻⁹	1,7 10 ⁻⁹ 1,7 10 ⁻⁹	1,5 10 ⁻⁹ 1,4 10 ⁻⁹
Pm-144	363 d	M S	0,005 0,005	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,8 10 ⁻⁸ 2,4 10 ⁻⁸	1,8 10 ⁻⁸ 1,6 10 ⁻⁸	1,2 10 ⁻⁸ 1,1 10 ⁻⁸	9,3 10 ⁻⁹ 8,9 10 ⁻⁹	8,2 10 ⁻⁹ 7,5 10 ⁻⁹
Pm-145	17,7 a	M S	0,005 0,005	1,1 10 ⁻⁸ 7,1 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	9,8 10 ⁻⁹ 6,5 10 ⁻⁹	6,4 10 ⁻⁹ 4,3 10 ⁻⁹	4,3 10 ⁻⁹ 2,9 10 ⁻⁹	3,7 10 ⁻⁹ 2,4 10 ⁻⁹	3,6 10 ⁻⁹ 2,3 10 ⁻⁹
Pm-146	5,53 a	M S	0,005 0,005	6,4 10 ⁻⁸ 5,3 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,9 10 ⁻⁸ 4,9 10 ⁻⁸	3,9 10 ⁻⁸ 3,3 10 ⁻⁸	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c } 2,1 & 10^{-8} \\ 1,7 & 10^{-8} \end{array}$
Pm-147	2,62 a	M S	0,005 0,005	2,1 10 ⁻⁸ 1,9 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,8 10 ⁻⁸ 1,6 10 ⁻⁸	1,1 10 ⁻⁸ 1,0 10 ⁻⁸	7,0 10 ⁻⁹ 6,8 10 ⁻⁹	5,7 10 ⁻⁹ 5,8 10 ⁻⁹	5,0 10 ⁻⁹ 4,9 10 ⁻⁹
Pm-148	5,37 d	M S	0,005 0,005	1,5 10 ⁻⁸ 1,5 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,0 10 ⁻⁸ 1,1 10 ⁻⁸	5,2 10 ⁻⁹ 5,5 10 ⁻⁹	3,4 10 ⁻⁹ 3,7 10 ⁻⁹	2,4 10 ⁻⁹ 2,6 10 ⁻⁹	2,0 10 ⁻⁹ 2,2 10 ⁻⁹
Pm-148m	41,3 d	M S	0,005 0,005	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,9 10 ⁻⁸ 2,0 10 ⁻⁸	$\begin{array}{ c c c c }\hline 1,1 & 10^{-8} \\ 1,2 & 10^{-8} \\ \end{array}$	7,7 10 ⁻⁹ 8,3 10 ⁻⁹	6,3 10 ⁻⁹ 7,1 10 ⁻⁹	5,1 10 ⁻⁹ 5,7 10 ⁻⁹
Pm-149	2,21 d	M S	0,005 0,005	5,0 10 ⁻⁹ 5,3 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,5 10 ⁻⁹ 3,6 10 ⁻⁹	1,7 10 ⁻⁹ 1,8 10 ⁻⁹	1,1 10 ⁻⁹ 1,2 10 ⁻⁹	8,3 10 ⁻¹⁰ 9,0 10 ⁻¹⁰	6,7 10 ⁻¹⁰ 7,3 10 ⁻¹⁰
Pm-150	2,68 h	M S	0,005 0,005	1,2 10 ⁻⁹ 1,2 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,9 10 ⁻¹⁰ 8,2 10 ⁻¹⁰	3,8 10 ⁻¹⁰ 3,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰
Pm-151	1,18 d	M S	0,005 0,005	3,3 10 ⁻⁹ 3,4 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,5 10 ⁻⁹ 2,6 10 ⁻⁹	1,2 10 ⁻⁹ 1,3 10 ⁻⁹	8,3 10 ⁻¹⁰ 7,9 10 ⁻¹⁰	5,3 10 ⁻¹⁰ 5,7 10 ⁻¹⁰	4,3 10 ⁻¹⁰ 4,6 10 ⁻¹⁰
Samarium	'		'	•	'	•		'	'	,
Sm-141	0,170 h	M	0,005	1,5 10-10	5,0 10-4	1,0 10-10	4,7 10-11	2,9 10-11	1,8 10-11	1,5 10-11
Sm-141m	0,377 h	М	0,005	3,0 10 ⁻¹⁰	5,0 10-4	2,1 10 ⁻¹⁰	9,7 10-11	6,1 10 ⁻¹¹	3,9 10 ⁻¹¹	3,2 10 ⁻¹¹
Sm-142	1,21 h	M	0,005	7,5 10 ⁻¹⁰	5,0 10 ⁻⁴	4,8 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,4 10 ⁻¹⁰	8,5 10 ⁻¹¹	7,1 10 ⁻¹¹
Sm-145	340 d	M	0,005	8,1 10-9	5,0 10-4	6,8 10-9	4,0 10-9	2,5 10-9	1,9 10-9	1,6 10-9
Sm-146	1,03 10 ⁸ a	M	0,005	2,7 10 ⁻⁵	5,0 10-4	2,6 10-5	1,7 10-5	1,2 10-5	1,1 10-5	1,1 10-5
Sm-147	1,06 10 ¹¹ a	М	0,005	2,5 10 ⁻⁵	5,0 10-4	2,3 10 ⁻⁵	1,6 10-5	1,1 10-5	9,6 10-6	9,6 10-6
Sm-151	90,0 a	M	0,005	1,1 10 ⁻⁸	5,0 10-4	1,0 10-8	6,7 10-9	4,5 10 ⁻⁹	4,0 10-9	4,0 10-9
Sm-153	1,95 d	М	0,005	4,2 10 ⁻⁹	5,0 10-4	2,9 10-9	1,5 10-9	1,0 10-9	7,9 10 ⁻¹⁰	6,3 10 ⁻¹⁰
Sm-155	0,368 h	М	0,005	1,5 10 ⁻¹⁰	5,0 10 ⁻⁴	9,9 10 ⁻¹¹	4,4 10 ⁻¹¹	2,9 10 ⁻¹¹	2,0 10 ⁻¹¹	1,7 10 ⁻¹¹
Sm-156	9,40 h	M	0,005	1,6 10-9	5,0 10-4	1,1 10-9	5,8 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,7 10 ⁻¹⁰	2,2 10 ⁻¹⁰
Europium										
Eu-145	5,94 d	M	0,005	3,6 10-9	5,0 10-4	2,9 10-9	1,6 10-9	1,0 10-9	6,8 10 ⁻¹⁰	5,5 10-10
Eu-146	4,61 d	М	0,005	5,5 10-9	5,0 10-4	4,4 10-9	2,4 10-9	1,5 10-9	1,0 10-9	8,0 10-10

NY 12:1	Période	т	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Туре	f ₁	h(g)	f_1	h(g)	h(g)	h(g)	h(g)	h(g)
Eu-147	24,0 d	М	0,005	4,9 10-9	5,0 10-4	3,7 10-9	2,2 10-9	1,6 10-9	1,3 10-9	1,1 10-9
Eu-148	54,5 d	M	0,005	1,4 10-8	5,0 10-4	1,2 10-8	6,8 10-9	4,6 10-9	3,2 10-9	2,6 10-9
Eu-149	93,1 d	M	0,005	1,6 10-9	5,0 10-4	1,3 10-9	7,3 10 ⁻¹⁰	4,7 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,9 10 ⁻¹⁰
Eu-150	34,2 a	M	0,005	1,1 10-7	5,0 10-4	1,1 10-7	7,8 10-8	5,7 10-8	5,3 10-8	5,3 10-8
Eu-150	12,6 h	M	0,005	1,6 10-9	5,0 10-4	1,1 10-9	5,2 10 ⁻¹⁰	3,4 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,9 10-10
Eu-152	13,3 a	M	0,005	1,1 10-7	5,0 10-4	1,0 10-7	7,0 10-8	4,9 10-8	4,3 10-8	4,2 10 ⁻⁸
Eu-152m	9,32 h	M	0,005	1,9 10-9	5,0 10-4	1,3 10-9	6,6 10 ⁻¹⁰	4,2 10 ⁻¹⁰	2,4 10 ⁻¹⁰	2,2 10 ⁻¹⁰
Eu-154	8,80 a	M	0,005	1,6 10-7	5,0 10-4	1,5 10-7	9,7 10-8	6,5 10-8	5,6 10-8	5,3 10-8
Eu-155	4,96 a	M	0,005	2,6 10-8	5,0 10-4	2,3 10-8	1,4 10-8	9,2 10-9	7,6 10 ⁻⁹	6,9 10 ⁻⁹
Eu-156	15,2 d	M	0,005	1,9 10-8	5,0 10-4	1,4 10-8	7,7 10-9	5,3 10-9	4,2 10-9	3,4 10 ⁻⁹
Eu-157	15,1 h	M	0,005	2,5 10-9	5,0 10-4	1,9 10-9	8,9 10-10	5,9 10-10	3,5 10 ⁻¹⁰	2,8 10 ⁻¹⁰
Eu-158	0,765 h	M	0,005	4,3 10 ⁻¹⁰	5,0 10 ⁻⁴	2,9 10 ⁻¹⁰	1,3 10 ⁻¹⁰	8,5 10-11	5,6 10-11	4,7 10 ⁻¹¹
Gadolinium										
Gd-145	0,382 h	F M	0,005 0,005	$\begin{array}{ c c c c c } & 1,3 & 10^{-10} \\ & 1,8 & 10^{-10} \end{array}$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4,7 10 ⁻¹¹ 6,2 10 ⁻¹¹	2,9 10 ⁻¹¹ 3,9 10 ⁻¹¹	$\begin{array}{ c c c c c }\hline 1,7 & 10^{-11}\\ 2,4 & 10^{-11}\\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Gd-146	48,3 d	F M	0,005 0,005	2,9 10 ⁻⁸ 2,8 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2 10 ⁻⁸ 1,3 10 ⁻⁸	7,8 10 ⁻⁹ 9,3 10 ⁻⁹	5,1 10 ⁻⁹ 7,9 10 ⁻⁹	4,4 10 ⁻⁹ 6,4 10 ⁻⁹
Gd-147	1,59 d	F M	0,005 0,005	2,1 10 ⁻⁹ 2,8 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,7 10 ⁻⁹ 2,2 10 ⁻⁹	8,4 10 ⁻¹⁰ 1,1 10 ⁻⁹	5,3 10 ⁻¹⁰ 7,5 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,6 10 ⁻¹⁰ 4,0 10 ⁻¹⁰
Gd-148	93,0 a	F M	0,005 0,005	8,3 10 ⁻⁵ 3,2 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,6 10 ⁻⁵ 2,9 10 ⁻⁵	4,7 10 ⁻⁵ 1,9 10 ⁻⁵	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,6 10 ⁻⁵ 1,2 10 ⁻⁵	2,6 10 ⁻⁵ 1,1 10 ⁻⁵
Gd-149	9,40 d	F M	0,005 0,005	2,6 10 ⁻⁹ 3,6 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,0 10 ⁻⁹ 3,0 10 ⁻⁹	8,0 10 ⁻¹⁰ 1,5 10 ⁻⁹	5,1 10 ⁻¹⁰ 1,1 10 ⁻⁹	3,1 10 ⁻¹⁰ 9,2 10 ⁻¹⁰	2,6 10 ⁻¹⁰ 7,3 10 ⁻¹⁰
Gd-151	120 d	F M	0,005 0,005	6,3 10 ⁻⁹ 4,5 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,9 10 ⁻⁹ 3,5 10 ⁻⁹	2,5 10 ⁻⁹ 2,0 10 ⁻⁹	1,5 10 ⁻⁹ 1,3 10 ⁻⁹	9,2 10 ⁻¹⁰ 1,0 10 ⁻⁹	7,8 10 ⁻¹⁰ 8,6 10 ⁻¹⁰
Gd-152	1,08 10 ¹⁴ a	F M	0,005 0,005	5,9 10 ⁻⁵ 2,1 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,4 10 ⁻⁵ 1,9 10 ⁻⁵	3,4 10 ⁻⁵ 1,3 10 ⁻⁵	2,4 10 ⁻⁵ 8,9 10 ⁻⁶	1,9 10 ⁻⁵ 7,9 10 ⁻⁶	1,9 10 ⁻⁵ 8,0 10 ⁻⁶
Gd-153	242 d	F M	0,005 0,005	1,5 10 ⁻⁸ 9,9 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,2 10 ⁻⁸ 7,9 10 ⁻⁹	6,5 10 ⁻⁹ 4,8 10 ⁻⁹	3,9 10 ⁻⁹ 3,1 10 ⁻⁹	2,4 10 ⁻⁹ 2,5 10 ⁻⁹	2,1 10 ⁻⁹ 2,1 10 ⁻⁹
Gd-159	18,6 h	F M	0,005 0,005	1,2 10 ⁻⁹ 2,2 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,9 10 ⁻¹⁰ 1,5 10 ⁻⁹	3,8 10 ⁻¹⁰ 7,3 10 ⁻¹⁰	2,3 10 ⁻¹⁰ 4,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Terbium										
Tb-147	1,65 h	M	0,005	6,7 10-10	5,0 10-4	4,8 10-10	2,3 10 ⁻¹⁰	1,5 10-10	9,3 10-11	7,6 10-11
Tb-149	4,15 h	M	0,005	2,1 10-8	5,0 10 ⁻⁴	1,5 10-8	9,6 10-9	6,6 10 ⁻⁹	5,8 10 ⁻⁹	4,9 10-9
Tb-150	3,27 h	М	0,005	1,0 10-9	5,0 10-4	7,4 10 ⁻¹⁰	3,5 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,3 10 ⁻¹⁰	1,1 10-10
Tb-151	17,6 h	M	0,005	1,6 10-9	5,0 10-4	1,2 10-9	6,3 10 ⁻¹⁰	4,2 10 ⁻¹⁰	2,8 10 ⁻¹⁰	2,3 10 ⁻¹⁰
Tb-153	2,34 d	M	0,005	1,4 10-9	5,0 10-4	1,0 10-9	5,4 10 ⁻¹⁰	3,6 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,9 10 ⁻¹⁰
Tb-154	21,4 h	M	0,005	2,7 10-9	5,0 10-4	2,1 10-9	1,1 10-9	7,1 10 ⁻¹⁰	4,5 10 ⁻¹⁰	3,6 10 ⁻¹⁰
Tb-155	5,32 d	M	0,005	1,4 10-9	5,0 10 ⁻⁴	1,0 10-9	5,6 10 ⁻¹⁰	3,4 10 ⁻¹⁰	2,7 10 ⁻¹⁰	2,2 10 ⁻¹⁰
Tb-156	5,34 d	M	0,005	7,0 10-9	5,0 10-4	5,4 10-9	3,0 10-9	2,0 10 ⁻⁹	1,5 10-9	1,2 10 ⁻⁹
Tb-156m	1,02 d	M	0,005	1,1 10-9	5,0 10-4	9,4 10 ⁻¹⁰	4,7 10 ⁻¹⁰	$3,3 \ 10^{-10}$	$2,7 \ 10^{-10}$	2,1 10 ⁻¹⁰
Tb-156m	5,00 h	M	0,005	6,2 10 ⁻¹⁰ 3,2 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,5 10 ⁻¹⁰ 3,0 10 ⁻⁹	2,4 10 ⁻¹⁰ 2,0 10 ⁻⁹	1,7 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,2 10 ⁻⁹	9,6 10 ⁻¹¹ 1,2 10 ⁻⁹
Tb-157 Tb-158	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M M	0,005 0,005	1,1 10 ⁻⁷	5,0 10	1,0 10-7	7,0 10 ⁻⁸	1,4 10 ⁻⁹ 5,1 10 ⁻⁸	4,7 10 ⁻⁸	4,6 10-8
Tb-138	72,3 d	M	0,003	3,2 10 ⁻⁸	5,0 10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,5 10 ⁻⁸	1,0 10-8	8,6 10-9	7,0 10 ⁻⁹
Tb-161	6,91 d	M	0,005	6,6 10-9	5,0 10 ⁻⁴	4,7 10-9	2,6 10 ⁻⁹	1,9 10-9	1,6 10 ⁻⁹	1,3 10-9
10 101	1 0,714	171	0,000	1 0,0 10	1 0,0 10	1 1,7 10		1 1,5 10	1 1,0 10	1,5 10

Musláida	Période	Tuna	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Type	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Dysprosium										
Dy-155	10,0 h	M	0,005	5,6 10-10	5,0 10-4	4,4 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,5 10 ⁻¹⁰	9,6 10-11	7,7 10-11
Dy-157	8,10 h	M	0,005	2,4 10 ⁻¹⁰	5,0 10-4	1,9 10 ⁻¹⁰	9,9 10-11	6,2 10 ⁻¹¹	3,8 10 ⁻¹¹	3,0 10 ⁻¹¹
Dy-159	144 d	M	0,005	2,1 10-9	5,0 10-4	1,7 10-9	9,6 10-10	6,0 10-10	4,4 10 ⁻¹⁰	3,7 10 ⁻¹⁰
Dy-165	2,33 h	M	0,005	5,2 10 ⁻¹⁰	5,0 10-4	3,4 10 ⁻¹⁰	1,6 10-10	1,1 10 ⁻¹⁰	7,2 10 ⁻¹¹	6,0 10 ⁻¹¹
Dy-166	3,40 d	M	0,005	1,2 10-8	5,0 10-4	8,3 10 ⁻⁹	4,4 10 ⁻⁹	3,0 10-9	2,3 10-9	1,9 10 ⁻⁹
Holmium			•		•			•		
Ho-155	0,800 h	M	0,005	1,7 10-10	5,0 10-4	1,2 10-10	5,8 10-11	3,7 10-11	2,4 10-11	2,0 10-11
Ho-157	0,210 h	М	0,005	3,4 10 ⁻¹¹	5,0 10-4	2,5 10-11	1,3 10-11	8,0 10 ⁻¹²	5,1 10 ⁻¹²	4,2 10 ⁻¹²
Ho-159	0,550 h	М	0,005	4,6 10-11	5,0 10-4	3,3 10-11	1,7 10-11	1,1 10-11	7,5 10 ⁻¹²	6,1 10 ⁻¹²
Ho-161	2,50 h	M	0,005	5,7 10-11	5,0 10-4	4,0 10-11	2,0 10-11	1,2 10-11	7,5 10 ⁻¹²	6,0 10 ⁻¹²
Ho-162	0,250 h	M	0,005	2,1 10 ⁻¹¹	5,0 10-4	1,5 10-11	7,2 10 ⁻¹²	4,8 10 ⁻¹²	3,4 10 ⁻¹²	2,8 10 ⁻¹²
Ho-162m	1,13 h	M	0,005	1,5 10-10	5,0 10-4	1,1 10 ⁻¹⁰	5,8 10 ⁻¹¹	3,8 10 ⁻¹¹	2,6 10-11	2,1 10-11
Ho-164	0,483 h	M	0,005	6,8 10 ⁻¹¹	5,0 10-4	4,5 10-11	2,1 10 ⁻¹¹	1,4 10-11	9,9 10 ⁻¹²	8,4 10 ⁻¹²
Ho-164m	0,625 h	M	0,005	9,1 10-11	5,0 10-4	5,9 10-11	3,0 10-11	2,0 10-11	1,3 10-11	1,2 10-11
Ho-166	1,12 d	M	0,005	6,0 10-9	5,0 10-4	4,0 10-9	1,9 10-9	1,2 10-9	7,9 10 ⁻¹⁰	6,5 10 ⁻¹⁰
Ho-166m	$1,20 \ 10^3 \ a$	M	0,005	2,6 10 ⁻⁷	5,0 10-4	2,5 10 ⁻⁷	1,8 10-7	1,3 10 ⁻⁷	1,2 10 ⁻⁷	1,2 10 ⁻⁷
Ho-167	3,10 h	M	0,005	5,2 10 ⁻¹⁰	5,0 10-4	3,6 10 ⁻¹⁰	1,8 10 ⁻¹⁰	1,2 10 ⁻¹⁰	8,7 10 ⁻¹¹	7,1 10 ⁻¹¹
Erbium										
Er-161	3,24 h	M	0,005	3,8 10-10	5,0 10 ⁻⁴	2,9 10 ⁻¹⁰	1,5 10 ⁻¹⁰	9,5 10-11	6,0 10 ⁻¹¹	4,8 10-11
Er-165	10,4 h	M	0,005	7,2 10 ⁻¹¹	5,0 10 ⁻⁴	5,3 10-11	2,6 10 ⁻¹¹	1,6 10-11	9,6 10-12	7,9 10 ⁻¹²
Er-169	9,30 d	M	0,005	4,7 10 ⁻⁹	5,0 10-4	3,5 10 ⁻⁹	2,0 10-9	1,5 10 ⁻⁹	1,3 10-9	1,0 10-9
Er-171	7,52 h	M	0,005	1,8 10 ⁻⁹	5,0 10-4	1,2 10-9	5,9 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,7 10 ⁻¹⁰	2,2 10 ⁻¹⁰
Er-172	2,05 d	M	0,005	6,6 10-9	5,0 10-4	4,7 10-9	2,5 10-9	1,7 10-9	1,4 10-9	1,1 10-9
Thulium										
Tm-162	0,362 h	M	0,005	1,3 10-10	5,0 10-4	9,6 10-11	4,7 10-11	3,0 10-11	1,9 10-11	1,6 10-11
Tm-166	7,70 h	M	0,005	1,3 10-9	5,0 10-4	9,9 10 ⁻¹⁰	5,2 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,7 10-10
Tm-167	9,24 d	M	0,005	5,6 10-9	5,0 10-4	4,1 10-9	2,3 10 ⁻⁹	1,7 10 ⁻⁹	1,4 10-9	1,1 10-9
Tm-170	129 d	M	0,005	3,6 10-8	5,0 10 ⁻⁴	2,8 10 ⁻⁸	1,6 10-8	1,1 10 ⁻⁸	8,5 10-9	7,0 10-9
Tm-171	1,92 a	M	0,005	6,8 10 ⁻⁹	5,0 10 ⁻⁴	5,7 10-9	3,4 10-9	2,0 10-9	1,6 10-9	1,4 10 ⁻⁹
Tm-172	2,65 d	M	0,005	8,4 10 ⁻⁹	5,0 10 ⁻⁴	5,8 10-9	2,9 10 ⁻⁹	1,9 10 ⁻⁹	1,4 10 ⁻⁹	1,1 10-9
Tm-173	8,24 h	M	0,005	1,5 10-9	5,0 10-4	1,0 10-9	5,0 10 ⁻¹⁰	3,3 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,8 10 ⁻¹⁰
Tm-175	0,253 h	M	0,005	1,6 10 ⁻¹⁰	5,0 10 ⁻⁴	1,1 10-10	5,0 10 ⁻¹¹	3,3 10 ⁻¹¹	2,2 10-11	1,8 10-11
Ytterbium										
Yb-162	0,315 h	M S	0,005 0,005	$\begin{array}{ c c c c c }\hline 1,1 & 10^{-10} \\ 1,2 & 10^{-10} \\ \hline \end{array}$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,9 10 ⁻¹¹ 8,2 10 ⁻¹¹	3,9 10 ⁻¹¹ 4,0 10 ⁻¹¹	$2,5 ext{ } 10^{-11}$ $2,6 ext{ } 10^{-11}$	$\begin{array}{ c c c c c } & 1,6 & 10^{-11} \\ & 1,7 & 10^{-11} \end{array}$	1,3 10 ⁻¹¹ 1,4 10 ⁻¹¹
Yb-166	2,36 d	M S	0,005 0,005	4,7 10 ⁻⁹ 4,9 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,5 10 ⁻⁹ 3,7 10 ⁻⁹	1,9 10 ⁻⁹ 2,0 10 ⁻⁹	1,3 10 ⁻⁹ 1,3 10 ⁻⁹	9,0 10 ⁻¹⁰ 9,6 10 ⁻¹⁰	7,2 10 ⁻¹⁰ 7,7 10 ⁻¹⁰
Yb-167	0,292 h	M S	0,005 0,005	4,4 10 ⁻¹¹ 4,6 10 ⁻¹¹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,1 10 ⁻¹¹ 3,2 10 ⁻¹¹	1,6 10 ⁻¹¹ 1,7 10 ⁻¹¹	1,1 10 ⁻¹¹ 1,1 10 ⁻¹¹	7,9 10 ⁻¹² 8,4 10 ⁻¹²	6,5 10 ⁻¹² 6,9 10 ⁻¹²
Yb-169	32,0 d	M S	0,005 0,005	1,2 10 ⁻⁸ 1,3 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,7 10 ⁻⁹ 9,8 10 ⁻⁹	5,1 10 ⁻⁹ 5,9 10 ⁻⁹	3,7 10 ⁻⁹ 4,2 10 ⁻⁹	3,2 10 ⁻⁹ 3,7 10 ⁻⁹	2,5 10 ⁻⁹ 3,0 10 ⁻⁹
Yb-175	4,19 d	M S	0,005 0,005	3,5 10 ⁻⁹ 3,7 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,5 10 ⁻⁹ 2,7 10 ⁻⁹	1,4 10 ⁻⁹ 1,5 10 ⁻⁹	9,8 10 ⁻¹⁰ 1,1 10 ⁻⁹	8,3 10 ⁻¹⁰ 9,2 10 ⁻¹⁰	6,5 10 ⁻¹⁰ 7,3 10 ⁻¹⁰
Yb-177	1,90 h	M S	0,005 0,005	5,0 10 ⁻¹⁰ 5,3 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,3 10 ⁻¹⁰ 3,5 10 ⁻¹⁰	1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	1,1 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	7,8 10 ⁻¹¹ 8,4 10 ⁻¹¹	6,4 10 ⁻¹¹ 6,9 10 ⁻¹¹
Yb-178	1,23 h	M S	0,005 0,005	5,9 10 ⁻¹⁰ 6,2 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,9 10 ⁻¹⁰ 4,1 10 ⁻¹⁰	1,8 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	8,5 10 ⁻¹¹ 9,1 10 ⁻¹¹	7,0 10 ⁻¹¹ 7,5 10 ⁻¹¹

NJ121-1	Période	T	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Туре	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Lutétium										
Lu-169	1,42 d	M S	0,005 0,005	$\begin{vmatrix} 2,3 & 10^{-9} \\ 2,4 & 10^{-9} \end{vmatrix}$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,8 10 ⁻⁹ 1,9 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,4 10 ⁻¹⁰ 4,8 10 ⁻¹⁰	3,5 10 ⁻¹⁰ 3,8 10 ⁻¹⁰
Lu-170	2,00 d	M S	0,005 0,005	4,3 10 ⁻⁹ 4,5 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,4 10 ⁻⁹ 3,5 10 ⁻⁹	1,8 10 ⁻⁹ 1,8 10 ⁻⁹	1,2 10 ⁻⁹ 1,2 10 ⁻⁹	7,8 10 ⁻¹⁰ 8,2 10 ⁻¹⁰	6,3 10 ⁻¹⁰ 6,6 10 ⁻¹⁰
Lu-171	8,22 d	M S	0,005 0,005	5,0 10 ⁻⁹ 4,7 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,7 10 ⁻⁹ 3,9 10 ⁻⁹	2,1 10 ⁻⁹ 2,0 10 ⁻⁹	1,2 10 ⁻⁹ 1,4 10 ⁻⁹	9,8 10 ⁻¹⁰ 1,1 10 ⁻⁹	8,0 10 ⁻¹⁰ 8,8 10 ⁻¹⁰
Lu-172	6,70 d	M S	0,005 0,005	8,7 10 ⁻⁹ 9,3 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	6,7 10 ⁻⁹ 7,1 10 ⁻⁹	3,8 10 ⁻⁹ 4,0 10 ⁻⁹	2,6 10 ⁻⁹ 2,8 10 ⁻⁹	1,8 10 ⁻⁹ 2,0 10 ⁻⁹	1,4 10 ⁻⁹ 1,6 10 ⁻⁹
Lu-173	1,37 a	M S	0,005 0,005	1,0 10 ⁻⁸ 1,0 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,5 10 ⁻⁹ 8,7 10 ⁻⁹	5,1 10 ⁻⁹ 5,4 10 ⁻⁹	3,2 10 ⁻⁹ 3,6 10 ⁻⁹	2,5 10 ⁻⁹ 2,9 10 ⁻⁹	2,2 10 ⁻⁹ 2,4 10 ⁻⁹
Lu-174	3,31.a	M S	0,005 0,005	1,7 10 ⁻⁸ 1,6 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,5 10 ⁻⁸ 1,4 10 ⁻⁸	9,1 10 ⁻⁹ 8,9 10 ⁻⁹	5,8 10 ⁻⁹ 5,9 10 ⁻⁹	4,7 10 ⁻⁹ 4,9 10 ⁻⁹	4,2 10 ⁻⁹ 4,2 10 ⁻⁹
Lu-174m	142 d	M S	0,005 0,005	1,9 10 ⁻⁸ 2,0 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,4 10 ⁻⁸ 1,5 10 ⁻⁸	8,6 10 ⁻⁹ 9,2 10 ⁻⁹	5,4 10 ⁻⁹ 6,1 10 ⁻⁹	4,3 10 ⁻⁹ 5,0 10 ⁻⁹	3,7 10 ⁻⁹ 4,2 10 ⁻⁹
Lu-176	3,60 10 ¹⁰ a	M S	0,005 0,005	1,8 10 ⁻⁷ 1,5 10 ⁻⁷	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,7 10 ⁻⁷ 1,4 10 ⁻⁷	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,8 10 ⁻⁸ 6,5 10 ⁻⁸	7,1 10 ⁻⁸ 5,9 10 ⁻⁸	7,0 10 ⁻⁸ 5,6 10 ⁻⁸
Lu-176m	3,68 h	M S	0,005 0,005	8,9 10 ⁻¹⁰ 9,3 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,9 10 ⁻¹⁰ 6,2 10 ⁻¹⁰	2,8 10 ⁻¹⁰ 3,0 10 ⁻¹⁰	1,9 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Lu-177	6,71 d	M S	0,005 0,005	5,3 10 ⁻⁹ 5,7 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,8 10 ⁻⁹ 4,1 10 ⁻⁹	2,2 10 ⁻⁹ 2,4 10 ⁻⁹	1,6 10 ⁻⁹ 1,7 10 ⁻⁹	1,4 10 ⁻⁹ 1,5 10 ⁻⁹	1,1 10 ⁻⁹ 1,2 10 ⁻⁹
Lu-177m	161 d	M S	0,005 0,005	5,8 10 ⁻⁸ 6,5 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,6 10 ⁻⁸ 5,3 10 ⁻⁸	2,8 10 ⁻⁸ 3,2 10 ⁻⁸	1,9 10 ⁻⁸ 2,3 10 ⁻⁸	1,6 10 ⁻⁸ 2,0 10 ⁻⁸	1,3 10 ⁻⁸ 1,6 10 ⁻⁸
Lu-178	0,473 h	M S	0,005 0,005	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,5 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	6,6 10 ⁻¹¹ 6,9 10 ⁻¹¹	4,3 10 ⁻¹¹ 4,5 10 ⁻¹¹	2,9 10 ⁻¹¹ 3,0 10 ⁻¹¹	2,4 10 ⁻¹¹ 2,6 10 ⁻¹¹
Lu-178m	0,378 h	M S	0,005 0,005	$\begin{array}{ c c c c c c }\hline 2,6 & 10^{-10} \\ 2,7 & 10^{-10} \\ \hline \end{array}$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,8 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	8,3 10 ⁻¹¹ 8,7 10 ⁻¹¹	5,6 10 ⁻¹¹ 5,8 10 ⁻¹¹	3,8 10 ⁻¹¹ 4,0 10 ⁻¹¹	3,2 10 ⁻¹¹ 3,3 10 ⁻¹¹
Lu-179	4,59 h	M S	0,005 0,005	9,9 10 ⁻¹⁰ 1,0 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	6,5 10 ⁻¹⁰ 6,8 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,0 10 ⁻¹⁰ 2,1 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Hafnium		3	0,003	1,0 10	3,0 10	0,0 10	1 0,22 10	2,1 10	1,5 10	1,2 10
Hf-170	16,0 h	F M	0,020 0,020	1,4 10 ⁻⁹ 2,2 10 ⁻⁹	0,002 0,002	1,1 10 ⁻⁹ 1,7 10 ⁻⁹	$5,4 \ 10^{-10}$ $8,7 \ 10^{-10}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Hf-172	1,87 a	F M	0,020 0,020 0,020	1,5 10 ⁻⁷ 8,1 10 ⁻⁸	0,002 0,002 0,002	1,3 10 ⁻⁷ 6,9 10 ⁻⁸	7,8 10 ⁻⁸ 4,3 10 ⁻⁸	4,9 10 ⁻⁸ 2,8 10 ⁻⁸	3,5 10 ⁻⁸ 2,3 10 ⁻⁸	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Hf-173	24,0 h	F M	0,020 0,020 0,020	6,6 10 ⁻¹⁰ 1,1 10 ⁻⁹	0,002 0,002 0,002	5,0 10 ⁻¹⁰ 8,2 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5 10 ⁻¹⁰ 2,9 10 ⁻¹⁰	8,9 10 ⁻¹¹ 2,0 10 ⁻¹⁰	7,4 10 ⁻¹¹ 1,6 10 ⁻¹⁰
Hf-175	70,0 d	F	0,020 0,020 0,020	5,4 10 ⁻⁹ 5,8 10 ⁻⁹	0,002 0,002 0,002	4,0 10 ⁻⁹ 4,5 10 ⁻⁹	2,1 10 ⁻⁹ 2,6 10 ⁻⁹	1,3 10 ⁻⁹ 1,8 10 ⁻⁹	8,5 10 ⁻¹⁰ 1,4 10 ⁻⁹	7,2 10 ⁻¹⁰ 1,2 10 ⁻⁹
Hf-177m	0,856 h	M F	0,020	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,002	2,8 10 ⁻¹⁰ 4,7 10 ⁻¹⁰	1,3 10 ⁻¹⁰ 2,3 10 ⁻¹⁰	8,5 10 ⁻¹¹ 1,5 10 ⁻¹⁰	5,2 10 ⁻¹¹ 1,1 10 ⁻¹⁰	4,4 10 ⁻¹¹ 9,0 10 ⁻¹¹
Hf-178m	31,0 a	M F	0,020	6,2 10 ⁻⁷	0,002	5,8 10-7	4,0 10 ⁻⁷	3,1 10 ⁻⁷	2,7 10 ⁻⁷	2,6 10 ⁻⁷
Hf-179m	25,1 d	M F	0,020	2,6 10 ⁻⁷ 9,7 10 ⁻⁹	0,002 0,002	2,4 10 ⁻⁷ 6,8 10 ⁻⁹	1,7 10 ⁻⁷ 3,4 10 ⁻⁹	1,3 10 ⁻⁷ 2,1 10 ⁻⁹	$1,2 \ 10^{-7}$ $1,2 \ 10^{-9}$	1,2 10 ⁻⁷ 1,1 10 ⁻⁹
Hf-180m	5,50 h	M F	0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,002 0,002	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7,6 10 ⁻⁹ 2,0 10 ⁻¹⁰	5,5 10 ⁻⁹ 1,3 10 ⁻¹⁰	$4.8 10^{-9}$ $7.2 10^{-11}$	3,8 10 ⁻⁹ 5,9 10 ⁻¹¹
Hf-181	42,4 d	M F	0,020	9,1 10 ⁻¹⁰ 1,3 10 ⁻⁸	0,002 0,002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,6 10 ⁻¹⁰ 4,8 10 ⁻⁹	2,4 10 ⁻¹⁰ 2,8 10 ⁻⁹	$1,7 \ 10^{-10}$ $1,7 \ 10^{-9}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Hf-182	9,00 10 ⁶ a	M F	0,020	2,2 10 ⁻⁸ 6,5 10 ⁻⁷	0,002 0,002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,9 10 ⁻⁹ 4,4 10 ⁻⁷	7,1 10 ⁻⁹ 3,6 10 ⁻⁷	6,3 10 ⁻⁹ 3,1 10 ⁻⁷	5,0 10 ⁻⁹ 3,1 10 ⁻⁷
Hf-182m	1,02 h	M F	0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,7 10 ⁻⁷ 6,6 10 ⁻¹¹	1,3 10 ⁻⁷ 4,2 10 ⁻¹¹	1,3 10 ⁻⁷ 2,6 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Hf-183	1,07 h	M F	0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,002 0,002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1,2 ext{ } 10^{-10}$ $7,9 ext{ } 10^{-11}$	7,8 10 ⁻¹¹ 4,9 10 ⁻¹¹	5,6 10 ⁻¹¹ 2,8 10 ⁻¹¹	4,6 10 ⁻¹¹ 2,4 10 ⁻¹¹
Hf-184	4,12 h	M F	0,020 0,020 0,020	1,4 10 ⁻¹⁰ 1,4 10 ⁻⁹ 2,6 10 ⁻⁹	0,002 0,002 0,002	3,0 10 ⁻¹⁰ 9,6 10 ⁻¹⁰ 1,8 10 ⁻⁹	1,5 10 ⁻¹⁰ 4,3 10 ⁻¹⁰ 8,9 10 ⁻¹⁰	9,8 10 ⁻¹¹ 2,7 10 ⁻¹⁰ 5,9 10 ⁻¹⁰	7,0 10 ⁻¹¹ 1,4 10 ⁻¹⁰ 4,0 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

37 101	Période	T	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Type	f_1	h(g)	f_1	h(g)	h(g)	h(g)	h(g)	h(g)
Tantale										
Ta-172	0,613 h	M S	0,010 0,010	$\begin{array}{ c c c c c c } 2,8 & 10^{-10} \\ 2,9 & 10^{-10} \end{array}$	0,001 0,001	$\begin{array}{ c c c c } \hline 1,9 & 10^{-10} \\ 2,0 & 10^{-10} \\ \hline \end{array}$	9,3 10 ⁻¹¹ 9,8 10 ⁻¹¹	6,0 10 ⁻¹¹ 6,3 10 ⁻¹¹	4,0 10 ⁻¹¹ 4,2 10 ⁻¹¹	3,3 10 ⁻¹¹ 3,5 10 ⁻¹¹
Ta-173	3,65 h	M S	0,010 0,010	8,8 10 ⁻¹⁰ 9,2 10 ⁻¹⁰	0,001 0,001	6,2 10 ⁻¹⁰ 6,5 10 ⁻¹⁰	$3,0 \ 10^{-10}$ $3,2 \ 10^{-10}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	1,1 10 ⁻¹⁰ 1,1 10 ⁻¹⁰
Ta-174	1,20 h	M S	0,010 0,010	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,001 0,001	2,2 10 ⁻¹⁰ 2,3 10 ⁻¹⁰	1,1 10 ⁻¹⁰ 1,1 10 ⁻¹⁰	7,1 10 ⁻¹¹ 7,5 10 ⁻¹¹	5,0 10 ⁻¹¹ 5,3 10 ⁻¹¹	4,1 10 ⁻¹¹ 4,3 10 ⁻¹¹
Ta-175	10,5 h	M S	0,010 0,010	$\begin{array}{c c} 9,1 & 10^{-10} \\ 9,5 & 10^{-10} \end{array}$	0,001 0,001	7,0 10 ⁻¹⁰ 7,3 10 ⁻¹⁰	$\begin{array}{c c} 3,7 & 10^{-10} \\ 3,8 & 10^{-10} \end{array}$	2,4 10 ⁻¹⁰ 2,5 10 ⁻¹⁰	1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰
Ta-176	8,08 h	M S	0,010 0,010	1,4 10 ⁻⁹ 1,4 10 ⁻⁹	0,001 0,001	1,1 10 ⁻⁹ 1,1 10 ⁻⁹	5,7 10 ⁻¹⁰ 5,9 10 ⁻¹⁰	$3,7 10^{-10}$ $3,8 10^{-10}$	2,4 10 ⁻¹⁰ 2,5 10 ⁻¹⁰	1,9 10 ⁻¹⁰ 2,0 10 ⁻¹⁰
Ta-177	2,36 d	M S	0,010 0,010	6,5 10 ⁻¹⁰ 6,9 10 ⁻¹⁰	$0,001 \\ 0,001$	4,7 10 ⁻¹⁰ 5,0 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	9,6 10 ⁻¹¹ 1,1 10 ⁻¹⁰
Ta-178	2,20 h	M S	0,010 0,010	4,4 10 ⁻¹⁰ 4,6 10 ⁻¹⁰	0,001 0,001	3,3 10 ⁻¹⁰ 3,4 10 ⁻¹⁰	1,7 10 ⁻¹⁰ 1,8 10 ⁻¹⁰	1,1 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	8,0 10 ⁻¹¹ 8,5 10 ⁻¹¹	6,5 10 ⁻¹¹ 6,8 10 ⁻¹¹
Ta-179	1,82 a	M S	0,010 0,010	1,2 10 ⁻⁹ 2,4 10 ⁻⁹	0,001 0,001	9,6 10 ⁻¹⁰ 2,1 10 ⁻⁹	5,5 10 ⁻¹⁰ 1,3 10 ⁻⁹	3,5 10 ⁻¹⁰ 8,3 10 ⁻¹⁰	2,6 10 ⁻¹⁰ 6,4 10 ⁻¹⁰	2,2 10 ⁻¹⁰ 5,6 10 ⁻¹⁰
Ta-180	1,00 10 ¹³ a	M S	0,010 0,010	2,7 10 ⁻⁸ 7,0 10 ⁻⁸	0,001 0,001	2,2 10 ⁻⁸ 6,5 10 ⁻⁸	1,3 10 ⁻⁸ 4,5 10 ⁻⁸	9,2 10 ⁻⁹ 3,1 10 ⁻⁸	7,9 10 ⁻⁹ 2,8 10 ⁻⁸	6,4 10 ⁻⁹ 2,6 10 ⁻⁸
Ta-180 m	8,10 h	M S	0,010 0,010	$\begin{array}{c c} 3,1 & 10^{-10} \\ 3,3 & 10^{-10} \end{array}$	0,001 0,001	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	7,4 10 ⁻¹¹ 7,9 10 ⁻¹¹	4,8 10 ⁻¹¹ 5,2 10 ⁻¹¹	4,4 10 ⁻¹¹ 4,2 10 ⁻¹¹
Ta-182	115 d	M S	0,010 0,010	$\begin{array}{ c c c c c c }\hline 3,2 & 10^{-8} \\ 4,2 & 10^{-8} \\ \end{array}$	0,001 0,001	2,6 10 ⁻⁸ 3,4 10 ⁻⁸	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,5 10 ⁻⁹ 1,3 10 ⁻⁸	7,6 10 ⁻⁹ 1,0 10 ⁻⁸
Ta-182m	0,264 h	M S	0,010 0,010	1,6 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	0,001 0,001	1,1 10 ⁻¹⁰ 1,1 10 ⁻¹⁰	4,9 10 ⁻¹¹ 5,2 10 ⁻¹¹	3,4 10 ⁻¹¹ 3,6 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Ta-183	5,10 d	M S	0,010 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,001 0,001	7,4 10 ⁻⁹ 8,0 10 ⁻⁹	4,1 10 ⁻⁹ 4,5 10 ⁻⁹	2,9 10 ⁻⁹ 3,2 10 ⁻⁹	2,4 10 ⁻⁹ 2,7 10 ⁻⁹	1,9 10 ⁻⁹ 2,1 10 ⁻⁹
Ta-184	8,70 h	M S	0,010 0,010	3,2 10 ⁻⁹ 3,4 10 ⁻⁹	0,001 0,001	2,3 10 ⁻⁹ 2,4 10 ⁻⁹	1,1 10 ⁻⁹ 1,2 10 ⁻⁹	7,5 10 ⁻¹⁰ 7,9 10 ⁻¹⁰	5,0 10 ⁻¹⁰ 5,4 10 ⁻¹⁰	4,1 10 ⁻¹⁰ 4,3 10 ⁻¹⁰
Ta-185	0,816 h	M S	0,010 0,010	3,8 10 ⁻¹⁰ 4,0 10 ⁻¹⁰	0,001 0,001	2,5 10 ⁻¹⁰ 2,6 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	7,7 10 ⁻¹¹ 8,2 10 ⁻¹¹	5,4 10 ⁻¹¹ 5,7 10 ⁻¹¹	4,5 10 ⁻¹¹ 4,8 10 ⁻¹¹
Ta-186	0,175 h	M S	0,010 0,010	1,6 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	0,001 0,001	1,1 10 ⁻¹⁰ 1,1 10 ⁻¹⁰	4,8 10 ⁻¹¹ 5,0 10 ⁻¹¹	$\begin{array}{c} 3,1 \ 10^{-11} \\ 3,2 \ 10^{-11} \end{array}$	2,0 10 ⁻¹¹ 2,1 10 ⁻¹¹	1,7 10 ⁻¹¹ 1,8 10 ⁻¹¹
Tungstène										
W-176	2,30 h	F	0,600	3,3 10 ⁻¹⁰	0,300	2,7 10 ⁻¹⁰	1,4 10 ⁻¹⁰	8,6 10-11	5,0 10-11	4,1 10-11
W-177	2,25 h	F	0,600	2,0 10 ⁻¹⁰	0,300	1,6 10 ⁻¹⁰	8,2 10-11	5,1 10-11	3,0 10-11	2,4 10-11
W-178	21,7 d	F	0,600	7,2 10 ⁻¹⁰	0,300	5,4 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,6 10 ⁻¹⁰	8,7 10-11	7,2 10 ⁻¹¹
W-179	0,625 h	. F	0,600	9,3 10 ⁻¹²	0,300	6,8 10 ⁻¹²	3,3 10 ⁻¹²	2,0 10 ⁻¹²	1,2 10 ⁻¹²	9,2 10 ⁻¹³
W-181	121 d	F	0,600	2,5 10 ⁻¹⁰	0,300	1,9 10-10	9,2 10 ⁻¹¹	5,7 10-11	3,2 10 ⁻¹¹	2,7 10-11
W-185	75,1 d	F	0,600	1,4 10 ⁻⁹	0,300	1,0 10-9	4,4 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,2 10 ⁻¹⁰
W-187	23,9 h	F	0,600	2,0 10-9	0,300	1,5 10-9	7,0 10 ⁻¹⁰	4,3 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,9 10 ⁻¹⁰
W-188	69,4 d	F	0,600	7,1 10 ⁻⁹	0,300	5,0 10-9	2,2 10-9	1,3 10-9	6,8 10 ⁻¹⁰	5,7 10 ⁻¹⁰
Rhénium										
Re-177	0,233 h	F M	1,000 1,000	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,800 0,800	6,7 10 ⁻¹¹ 7,9 10 ⁻¹¹	3,2 10 ⁻¹¹ 3,9 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c } & 1,2 & 10^{-11} \\ & 1,7 & 10^{-11} \end{array}$	9,7 10 ⁻¹² 1,4 10 ⁻¹¹
Re-178	0,220 h	F M	1,000 1,000	9,9 10 ⁻¹¹ 1,3 10 ⁻¹⁰	0,800 0,800	6,8 10 ⁻¹¹ 8,5 10 ⁻¹¹	3,1 10 ⁻¹¹ 3,9 10 ⁻¹¹	1,9 10 ⁻¹¹ 2,6 10 ⁻¹¹	1,2 10 ⁻¹¹ 1,7 10 ⁻¹¹	1,0 10 ⁻¹¹ 1,4 10 ⁻¹¹
Re-181	20,0 h	F M	1,000 1,000	2,0 10 ⁻⁹ 2,1 10 ⁻⁹	0,800 0,800	1,4 10 ⁻⁹ 1,5 10 ⁻⁹	6,7 10 ⁻¹⁰ 7,4 10 ⁻¹⁰	3,8 10 ⁻¹⁰ 4,6 10 ⁻¹⁰	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,8 10 ⁻¹⁰ 2,5 10 ⁻¹⁰
Re-182	2,67 d	F M	1,000 1,000	6,5 10 ⁻⁹ 8,7 10 ⁻⁹	0,800 0,800	4,7 10 ⁻⁹ 6,3 10 ⁻⁹	2,2 10 ⁻⁹ 3,4 10 ⁻⁹	1,3 10 ⁻⁹ 2,2 10 ⁻⁹	8,0 10 ⁻¹⁰ 1,5 10 ⁻⁹	6,4 10 ⁻¹⁰ 1,2 10 ⁻⁹
Re-182	12,7 h	F M	1,000 1,000	1,3 10 ⁻⁹ 1,4 10 ⁻⁹	0,800 0,800	1,0,10 ⁻⁹ 1,1 10 ⁻⁹	4,9 10 ⁻¹⁰ 5,7 10 ⁻¹⁰	2,8 10 ⁻¹⁰ 3,6 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4 10 ⁻¹⁰ 2,0 10 ⁻¹⁰
Re-184	38,0 d	F M	1,000 1,000	4,1 10 ⁻⁹ 9,1 10 ⁻⁹	0,800 0,800	2,9 10 ⁻⁹ 6,8 10 ⁻⁹	1,4 10 ⁻⁹ 4,0 10 ⁻⁹	8,6 10 ⁻¹⁰ 2,8 10 ⁻⁹	5,4 10 ⁻¹⁰ 2,4 10 ⁻⁹	4,4 10 ⁻¹⁰ 1,9 10 ⁻⁹

Nucléide	Période	Type	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucleide	physique	Туре	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Re-184m	165 d	F M	1,000 1,000	6,6 10 ⁻⁹ 2,9 10 ⁻⁸	0,800 0,800	4,6 10 ⁻⁹ 2,2 10 ⁻⁸	2,0 10 ⁻⁹ 1,3 10 ⁻⁸	1,2 10 ⁻⁹ 9,3 10 ⁻⁹	7,3 10 ⁻¹⁰ 8,1 10 ⁻⁹	5,9 10 ⁻¹⁰ 6,5 10 ⁻⁹
Re-186	3,78 d	F M	1,000 1,000	7,3 10 ⁻⁹ 8,7 10 ⁻⁹	0,800 0,800	4,7 10 ⁻⁹ 5,7 10 ⁻⁹	2,0 10 ⁻⁹ 2,8 10 ⁻⁹	1,1 10 ⁻⁹ 1,8 10 ⁻⁹	6,6 10 ⁻¹⁰ 1,4 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Re-186 m	2,00 10 ⁵ a	F M	1,000 1,000	1,2 10 ⁻⁸ 5,9 10 ⁻⁸	0,800 0,800	7,0 10 ⁻⁹ 4,6 10 ⁻⁸	2,9 10 ⁻⁹ 2,7 10 ⁻⁸	1,7 10 ⁻⁹ 1,8 10 ⁻⁸	1,0 10 ⁻⁹ 1,4 10 ⁻⁸	8,3 10 ⁻¹⁰ 1,2 10 ⁻⁸
Re-187	5,00 10 ¹⁰ a	F M	1,000 1,000	2,6 10 ⁻¹¹ 5,7 10 ⁻¹¹	0,800 0,800	1,6 10 ⁻¹¹ 4,1 10 ⁻¹¹	6,8 10 ⁻¹² 2,0 10 ⁻¹¹	3,8 10 ⁻¹² 1,2 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1,8 \ 10^{-12} \\ 6,3 \ 10^{-12} \end{array}$
Re-188	17,0 h	F M	1,000 1,000	6,5 10 ⁻⁹ 6,0 10 ⁻⁹	0,800 0,800	4,4 10 ⁻⁹ 4,0 10 ⁻⁹	1,9 10 ⁻⁹ 1,8 10 ⁻⁹	1,0 10 ⁻⁹ 1,0 10 ⁻⁹	6,1 10 ⁻¹⁰ 6,8 10 ⁻¹⁰	4,6 10 ⁻¹⁰ 5,4 10 ⁻¹⁰
Re-188m	0,310 h	F M	1,000 1,000	1,4 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	0,800 0,800	9,1 10 ⁻¹¹ 8,6 10 ⁻¹¹	4,0 10 ⁻¹¹ 4,0 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,3 10 ⁻¹¹ 1,6 10 ⁻¹¹	1,0 10 ⁻¹¹ 1,3 10 ⁻¹¹
Re-189	1,01 d	F M	1,000 1,000	3,7 10 ⁻⁹ 3,9 10 ⁻⁹	0,800 0,800	2,5 10 ⁻⁹ 2,6 10 ⁻⁹	1,1 10 ⁻⁹ 1,2 10 ⁻⁹	5,8 10 ⁻¹⁰ 7,6 10 ⁻¹⁰	3,5 10 ⁻¹⁰ 5,5 10 ⁻¹⁰	2,7 10 ⁻¹⁰ 4,3 10 ⁻¹⁰
Osmium										
Os-180	0,366 h	F M S	0,020 0,020 0,020	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,010 0,010 0,010	$\begin{array}{ c c c c c c }\hline 5,3 & 10^{-11} \\ 7,9 & 10^{-11} \\ 8,2 & 10^{-11} \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Os-181	1,75 h	F M S	0,020 0,020 0,020 0,020	3,0 10 ⁻¹⁰ 4,5 10 ⁻¹⁰ 4,7 10 ⁻¹⁰	0,010 0,010 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,1 10 ⁻¹¹ 7,6 10 ⁻¹¹ 8,1 10 ⁻¹¹	3,3 10 ⁻¹¹ 6,2 10 ⁻¹¹ 6,5 10 ⁻¹¹
Os-182	22,0 h	F M S	0,020 0,020 0,020 0,020	1,6 10 ⁻⁹ 2,5 10 ⁻⁹ 2,6 10 ⁻⁹	0,010 0,010 0,010 0,010	1,2 10 ⁻⁹ 1,9 10 ⁻⁹ 2,0 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{vmatrix} 3,1 & 10 \\ 2,1 & 10^{-10} \\ 4,5 & 10^{-10} \\ 4,8 & 10^{-10} \end{vmatrix} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Os-185	94,0 d	F M S	0,020 0,020 0,020	7,2 10 ⁻⁹ 6,6 10 ⁻⁹ 7,0 10 ⁻⁹	0,010 0,010 0,010	5,8 10 ⁻⁹ 5,4 10 ⁻⁹ 5,8 10 ⁻⁹	3,1 10 ⁻⁹ 2,9 10 ⁻⁹ 3,6 10 ⁻⁹	1,9 10 ⁻⁹ 2,0 10 ⁻⁹ 2,4 10 ⁻⁹	1,2 10 ⁻⁹ 1,5 10 ⁻⁹ 1,9 10 ⁻⁹	1,1 10 ⁻⁹ 1,3 10 ⁻⁹ 1,6 10 ⁻⁹
Os-189m	6,00 h	F M S	0,020 0,020 0,020	3,8 10 ⁻¹¹ 6,5 10 ⁻¹¹ 6,8 10 ⁻¹¹	0,010 0,010 0,010	$\begin{array}{ c c c c c c }\hline 2,8 & 10^{-11} \\ 4,1 & 10^{-11} \\ 4,3 & 10^{-11} \\ \hline \end{array}$	1,2 10 ⁻¹¹ 1,8 10 ⁻¹¹ 1,9 10 ⁻¹¹	7,0 10 ⁻¹² 1,1 10 ⁻¹¹ 1,2 10 ⁻¹¹	3,5 10 ⁻¹² 6,0 10 ⁻¹² 6,3 10 ⁻¹²	2,5 10 ⁻¹² 5,0 10 ⁻¹² 5,3 10 ⁻¹²
Os-191	15,4 d	F M S	0,020 0,020 0,020	2,8 10 ⁻⁹ 8,0 10 ⁻⁹ 9,0 10 ⁻⁹	0,010 0,010 0,010	1,9 10 ⁻⁹ 5,8 10 ⁻⁹ 6,5 10 ⁻⁹	8,5 10 ⁻¹⁰ 3,4 10 ⁻⁹ 3,9 10 ⁻⁹	5,3 10 ⁻¹⁰ 2,4 10 ⁻⁹ 2,7 10 ⁻⁹	3,0 10 ⁻¹⁰ 2,0 10 ⁻⁹ 2,3 10 ⁻⁹	$\begin{array}{c} 2,5 \ 10^{-10} \\ 1,7 \ 10^{-9} \\ 1,9 \ 10^{-9} \end{array}$
Os-191m	13,0 h	F M S	0,020 0,020 0,020	3,0 10 ⁻¹⁰ 7,8 10 ⁻¹⁰ 8,5 10 ⁻¹⁰	0,010 0,010 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 8,8 \ 10^{-11} \\ 3,1 \ 10^{-10} \\ 3,4 \ 10^{-10} \end{array}$	5,4 10 ⁻¹¹ 2,1 10 ⁻¹⁰ 2,4 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 2,4 \ 10^{-11} \\ 1,4 \ 10^{-10} \\ 1,6 \ 10^{-10} \end{array} $
Os-193	1,25 d	F M S	0,020 0,020 0,020	1,9 10 ⁻⁹ 3,8 10 ⁻⁹ 4,0 10 ⁻⁹	0,010 0,010 0,010	1,2 10 ⁻⁹ 2,6 10 ⁻⁹ 2,7 10 ⁻⁹	5,2 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,3 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,8 10 ⁻¹⁰ 5,9 10 ⁻¹⁰ 6,4 10 ⁻¹⁰	$ \begin{array}{c} 1,6 \ 10^{-10} \\ 4,8 \ 10^{-10} \\ 5,2 \ 10^{-10} \end{array} $
Os-194	6,00 a	F M S	0,020 0,020 0,020	8,7 10 ⁻⁸ 9,9 10 ⁻⁸ 2.6 10 ⁻⁷	0,010 0,010 0,010	6,8 10 ⁻⁸ 8,3 10 ⁻⁸ 2,4 10 ⁻⁷	3,4 10 ⁻⁸ 4,8 10 ⁻⁸ 1,6 10 ⁻⁷	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,3 10 ⁻⁸ 2,4 10 ⁻⁸ 8,8 10 ⁻⁸	1,1 10 ⁻⁸ 2,1 10 ⁻⁸ 8,5 10 ⁻⁸
Iridium										
Ir-182	0,250 h	F M S	0,020 0,020 0,020	$ \begin{array}{ c c c c c } \hline 1,4 & 10^{-10} \\ 2,1 & 10^{-10} \\ 2,2 & 10^{-10} \end{array} $	0,010 0,010 0,010	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4 10 ⁻¹¹ 2,3 10 ⁻¹¹ 2,4 10 ⁻¹¹
Ir-184	3,02 h	F M S	0,020 0,020 0,020	5,7 10 ⁻¹⁰ 8,6 10 ⁻¹⁰ 8,9 10 ⁻¹⁰	0,010 0,010 0,010	4,4 10 ⁻¹⁰ 6,4 10 ⁻¹⁰ 6,6 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccc} 1,3 & 10^{-10} \\ 2,1 & 10^{-10} \\ 2,2 & 10^{-10} \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,2 10 ⁻¹¹ 1,1 10 ⁻¹⁰ 1,2 10 ⁻¹⁰
Ir-185	14,0 h	F M S	0,020 0,020 0,020 0,020	8,0 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,4 10 ⁻⁹	0,010 0,010 0,010 0,010	6,1 10 ⁻¹⁰ 9,7 10 ⁻¹⁰ 1,0 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1,2 & 10 \\ 8,2 & 10^{-11} \\ 1,8 & 10^{-10} \\ 1,9 & 10^{-10} \end{array}$
Ir-186	15,8 h	F M S	0,020 0,020 0,020 0,020	1,5 10 ⁻⁹ 2,2 10 ⁻⁹ 2,3 10 ⁻⁹	0,010 0,010 0,010 0,010	1,2 10 ⁻⁹ 1,7 10 ⁻⁹ 1,8 10 ⁻⁹	5,9 10 ⁻¹⁰ 8,8 10 ⁻¹⁰ 9,2 10 ⁻¹⁰	$3,6 10^{-10}$ $5,8 10^{-10}$ $6,0 10^{-10}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1,7 & 10^{-10} \\ 3,1 & 10^{-10} \\ 3,2 & 10^{-10} \end{array} $
Ir-186	1,75 h	F M S	0,020 0,020 0,020 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010 0,010 0,010 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,8 10 ⁻¹¹ 7,7 10 ⁻¹¹ 8,1 10 ⁻¹¹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,3 10 ⁻¹¹ 4,2 10 ⁻¹¹ 4,4 10 ⁻¹¹
Ir-187	10,5 h	F M S	0,020 0,020 0,020	3,6 10 ⁻¹⁰ 5,8 10 ⁻¹⁰ 6,0 10 ⁻¹⁰	0,010 0,010 0,010	2,8 10 ⁻¹⁰ 4,3 10 ⁻¹⁰ 4,5 10 ⁻¹⁰	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,2 10 ⁻¹¹ 1,4 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	4,6 10 ⁻¹¹ 9,2 10 ⁻¹¹ 9,7 10 ⁻¹¹	3,7 10 ⁻¹¹ 7,4 10 ⁻¹¹ 7,9 10 ⁻¹¹

NT 101	Période	т	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide 	physique	Туре	f ₁	h(g)	f_1	h(g)	h(g)	h(g)	h(g)	h(g)
Ir-188	1,73 d	F M S	0,020 0,020 0,020	2,0 10 ⁻⁹ 2,7 10 ⁻⁹ 2,8 10 ⁻⁹	0,010 0,010 0,010	1,6 10 ⁻⁹ 2,1 10 ⁻⁹ 2,2 10 ⁻⁹	8,0 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,2 10 ⁻⁹	5,0 10 ⁻¹⁰ 7,5 10 ⁻¹⁰ 7,8 10 ⁻¹⁰	2,9 10 ⁻¹⁰ 5,0 10 ⁻¹⁰ 5,2 10 ⁻¹⁰	2,4 10 ⁻¹⁰ 4,0 10 ⁻¹⁰ 4,2 10 ⁻¹⁰
Ir-189	13,3 d	F M S	0,020 0,020 0,020 0,020	1,2 10 ⁻⁹ 2,7 10 ⁻⁹ 3,0 10 ⁻⁹	0,010 0,010 0,010 0,010	8,2 10 ⁻¹⁰ 1,9 10 ⁻⁹ 2,2 10 ⁻⁹	3,8 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,3 10 ⁻⁹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ir-190	12,1 d	F M S	0,020 0,020 0,020 0,020	6,2 10 ⁻⁹ 1,1 10 ⁻⁸ 1,1 10 ⁻⁸	0,010 0,010 0,010 0,010	4,7 10 ⁻⁹ 8,6 10 ⁻⁹ 9,4 10 ⁻⁹	2,4 10 ⁻⁹ 4,4 10 ⁻⁹ 4,8 10 ⁻⁹	1,5 10 ⁻⁹ 3,1 10 ⁻⁹ 3,5 10 ⁻⁹	9,1 10 ⁻¹⁰ 2,7 10 ⁻⁹ 3,0 10 ⁻⁹	7,7 10 ⁻¹⁰ 2,1 10 ⁻⁹ 2,4 10 ⁻⁹
Ir-190m	3,10 h	F M S	0,020 0,020 0,020 0,020	4,2 10 ⁻¹⁰ 6,0 10 ⁻¹⁰ 6,2 10 ⁻¹⁰	0,010 0,010 0,010	$\begin{array}{c} 3,4 \ 10^{-10} \\ 4,7 \ 10^{-10} \\ 4,8 \ 10^{-10} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,0 10 ⁻¹⁰ 1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	6,0 10 ⁻¹¹ 9,9 10 ⁻¹¹ 1.0 10 ⁻¹⁰	4,9 10 ⁻¹¹ 7,9 10 ⁻¹¹ 8,3 10 ⁻¹¹
Ir-190m	1,20 h	F M S	0,020 0,020 0,020	3,2 10 ⁻¹¹ 5,7 10 ⁻¹¹ 5,5 10 ⁻¹¹	0,010 0,010 0,010	2,4 10 ⁻¹¹ 4,2 10 ⁻¹¹ 4,5 10 ⁻¹¹	1,2 10 ⁻¹¹ 2.0 10 ⁻¹¹ 2,2 10 ⁻¹¹	7,2 10 ⁻¹² 1,4 10 ⁻¹¹ 1,6 10 ⁻¹¹	4,3 10 ⁻¹² 1,2 10 ⁻¹¹ 1,3 10 ⁻¹¹	3,6 10 ⁻¹² 9,3 10 ⁻¹² 1,0 10 ⁻¹¹
Ir-192	74,0 d	F M S	0,020 0,020 0,020	1,5 10 ⁻⁸ 2,3 10 ⁻⁸ 2,8 10 ⁻⁸	0,010 0,010 0,010	1,1 10 ⁻⁸ 1,8 10 ⁻⁸ 2,2 10 ⁻⁸	5,7 10 ⁻⁹ 1,1 10 ⁻⁸ 1,3 10 ⁻⁸	3,3 10 ⁻⁹ 7,6 10 ⁻⁹ 9,5 10 ⁻⁹	2,1 10 ⁻⁹ 6,4 10 ⁻⁹ 8,1 10 ⁻⁹	1,8 10 ⁻⁹ 5,2 10 ⁻⁹ 6,6 10 ⁻⁹
Ir-192m	2,41 10 ² a	F M S	0,020 0,020 0,020 0,020	$\begin{array}{c} 2,7 \ 10^{-8} \\ 2,3 \ 10^{-8} \\ 9,2 \ 10^{-8} \end{array}$	0,010 0,010 0,010	2,3 10 ⁻⁸ 2,1 10 ⁻⁸ 9,1 10 ⁻⁸	1,4 10 ⁻⁸ 1,3 10 ⁻⁸ 6,5 10 ⁻⁸	8,2 10 ⁻⁹ 8,4 10 ⁻⁹ 4,5 10 ⁻⁸	5,4 10 ⁻⁹ 6,6 10 ⁻⁹ 4,0 10 ⁻⁸	4,8 10 ⁻⁹ 5,8 10 ⁻⁹ 3,9 10 ⁻⁸
Ir-193m	11,9 d	F M S	0,020 0,020 0,020	1,2 10 ⁻⁹ 4,8 10 ⁻⁹ 5,4 10 ⁻⁹	0,010 0,010 0,010	8,4 10 ⁻¹⁰ 3,5 10 ⁻⁹ 4,0 10 ⁻⁹	3,7 10 ⁻¹⁰ 2,1 10 ⁻⁹ 2,4 10 ⁻⁹	2,2 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,8 10 ⁻⁹	1,2 10 ⁻¹⁰ 1,4 10 ⁻⁹ 1,6 10 ⁻⁹	1,0 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,3 10 ⁻⁹
Ir-194	19,1 h	F M S	0,020 0,020 0,020	2,9 10 ⁻⁹ 5,3 10 ⁻⁹ 5,5 10 ⁻⁹	0,010 0,010 0,010	1,9 10 ⁻⁹ 3,5 10 ⁻⁹ 3,7 10 ⁻⁹	8,1 10 ⁻¹⁰ 1,6 10 ⁻⁹ 1,7 10 ⁻⁹	4,9 10 ⁻¹⁰ 1,0 10 ⁻⁹ 1,1 10 ⁻⁹	$\begin{bmatrix} 2,5 & 10^{-10} \\ 6,3 & 10^{-10} \\ 6,7 & 10^{-10} \end{bmatrix}$	2,1 10 ⁻¹⁰ 5,2 10 ⁻¹⁰ 5,6 10 ⁻¹⁰
Ir-194m	171 d	F M S	0,020 0,020 0,020	3,4 10 ⁻⁸ 3,9 10 ⁻⁸ 5,0 10 ⁻⁸	0,010 0,010 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccc} 1,4 & 10^{-8} \\ 1,9 & 10^{-8} \\ 2,6 & 10^{-8} \end{array} $	9,5 10 ⁻⁹ 1,3 10 ⁻⁸ 1,8 10 ⁻⁸	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,4 10 ⁻⁹ 9,0 10 ⁻⁹ 1,3 10 ⁻⁸
Ir-195	2,50 h	F M S	0,020 0,020 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010 0,010 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,1 10 ⁻¹¹ 1,7 10 ⁻¹⁰ 1,8 10 ⁻¹⁰	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,4 10 ⁻¹¹ 6,7 10 ⁻¹¹ 7,1 10 ⁻¹¹
Ir-195m	3,80 h	F M S	0,020 0,020 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010 0,010 0,010	4,8 10 ⁻¹⁰ 8,6 10 ⁻¹⁰ 9,0 10 ⁻¹⁰	$\begin{array}{ c c c c c }\hline 2,1 & 10^{-10} \\ 4,2 & 10^{-10} \\ 4,4 & 10^{-10} \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,0 10 ⁻¹¹ 1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰
Platine	•	,			'	,	•		'	
Pt-186	2,00 h	F	0,020	3,0 10-10	0,010	2,4 10-10	1,2 10-10	7,2 10-11	4,1 10-11	3,3 10-11
Pt-188	10,2 d	F	0,020	3,6 10-9	0,010	2,7 10-9	1,3 10-9	8,4 10 ⁻¹⁰	5,0 10 ⁻¹⁰	4,2 10 ⁻¹⁰
Pt-189	10,9 h	F	0,020	3,8 10 ⁻¹⁰	0,010	2,9 10 ⁻¹⁰	1,4 10 ⁻¹⁰	8,4 10 ⁻¹¹	4,7 10-11	3,8 10 ⁻¹¹
Pt-191	2,80 d	F	0,020	1,1 10-9	0,010	7,9 10 ⁻¹⁰	3,7 10 ⁻¹⁰	2,3 10 ⁻¹⁰	1,3 10 ⁻¹⁰	1,1 10 ⁻¹⁰
Pt-193	50,0 a	F	0,020	2,2 10 ⁻¹⁰	0,010	1,6 10 ⁻¹⁰	7,2 10-11	4,3 10-11	2,5 10-11	2,1 10 ⁻¹¹
Pt-193m	4,33 d	F	0,020	1,6 10-9	0,010	1,0 10-9	4,5 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,2 10 ⁻¹⁰
Pt-195m	4,02 d	F	0,020	2,2 10 ⁻⁹	0,010	1,5 10 ⁻⁹	6,4 10 ⁻¹⁰	3,9 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,8 10 ⁻¹⁰
Pt-197	18,3 h	F	0,020	1,1 10-9	0,010	7,3 10 ⁻¹⁰	3,1 10 ⁻¹⁰	1,9 10 ⁻¹⁰	1,0 10-10	8,5 10-11
Pt-197m	1,57 h	F	0,020	2,8 10 ⁻¹⁰	0,010	1,8 10 ⁻¹⁰	7,9 10 ⁻¹¹	4,9 10-11	2,8 10 ⁻¹¹	2,4 10 ⁻¹¹
Pt-199	0,513 h	F	0,020	1,3 10 ⁻¹⁰ 2,6 10 ⁻⁹	0,010 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,6 10 ⁻¹¹ 7,2 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2 10 ⁻¹¹ 2,2 10 ⁻¹⁰
Pt-200	12,5 h	F	0,020	2,6 10	0,010	1,7 10	7,2 10	3,1 10	2,6 10	2,2 10
Or Au-193	17,6 h	F M	0,200	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,100	2,8 10 ⁻¹⁰ 5,6 10 ⁻¹⁰	1,3 10 ⁻¹⁰ 2,8 10 ⁻¹⁰	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4,3 10 ⁻¹¹ 1,4 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Au-194	1,65 d	S F M S	0,200 0,200 0,200 0,200	7,9 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,7 10 ⁻⁹ 1,7 10 ⁻⁹	0,100 0,100 0,100 0,100	5,9 10 ⁻¹⁰ 9,6 10 ⁻¹⁰ 1,4 10 ⁻⁹ 1,4 10 ⁻⁹	$\begin{array}{c} 3,0 \ 10^{-10} \\ 4,9 \ 10^{-10} \\ 7,1 \ 10^{-10} \\ 7,3 \ 10^{-10} \end{array}$	$\begin{array}{c} 2,0 \ 10^{-10} \\ 3,0 \ 10^{-10} \\ 4,6 \ 10^{-10} \\ 4,7 \ 10^{-10} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ąu-195	183 d	F M S	0,200 0,200 0,200 0,200	7,2 10 ⁻¹⁰ 5,2 10 ⁻⁹ 8,1 10 ⁻⁹	0,100 0,100 0,100 0,100	5,3 10 ⁻¹⁰ 4,1 10 ⁻⁹ 6,6 10 ⁻⁹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5 10 ⁻¹⁰ 1,6 10 ⁻⁹ 2,6 10 ⁻⁹	8,1 10 ⁻¹¹ 1,4 10 ⁻⁹ 2,1 10 ⁻⁹	6,6 10 ⁻¹¹ 1,1 10 ⁻⁹ 1,7 10 ⁻⁹

Ni1011	Période	т	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide 	physique	Туре	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Au-198	2,69 d	F M S	0,200 0,200 0,200	2,4 10 ⁻⁹ 5,0 10 ⁻⁹ 5,4 10 ⁻⁹	0,100 0,100 0,100	1,7 10 ⁻⁹ 4,1 10 ⁻⁹ 4,4 10 ⁻⁹	7,6 10 ⁻¹⁰ 1,9 10 ⁻⁹ 2,0 10 ⁻⁹	4,7 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,4 10 ⁻⁹	2,5 10 ⁻¹⁰ 9,7 10 ⁻¹⁰ 1,1 10 ⁻⁹	2,1 10 ⁻¹⁰ 7,8 10 ⁻¹⁰ 8,6 10 ⁻¹⁰
Au-198m	2,30 d	F M S	0,200 0,200 0,200	3,3 10 ⁻⁹ 8,7 10 ⁻⁹ 9,5 10 ⁻⁹	0,100 0,100 0,100	2,4 10 ⁻⁹ 6,5 10 ⁻⁹ 7,1 10 ⁻⁹	1,1 10 ⁻⁹ 3,6 10 ⁻⁹ 4,0 10 ⁻⁹	6,9 10 ⁻¹⁰ 2,6 10 ⁻⁹ 2,9 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Au-199	3,14 d	F M S	0,200 0,200 0,200	1,1 10 ⁻⁹ 3,4 10 ⁻⁹ 3,8 10 ⁻⁹	0,100 0,100 0,100	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,5 10 ⁻¹⁰ 1,4 10 ⁻⁹ 1,6 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1 10 ⁻¹⁰ 9,0 10 ⁻¹⁰ 1,0 10 ⁻⁹	9,8 10 ⁻¹¹ 7,1 10 ⁻¹⁰ 7,9 10 ⁻¹⁰
Au-200	0,807 h	F M S	0,200 0,200 0,200	1,9 10 ⁻¹⁰ 3,2 10 ⁻¹⁰ 3,4 10 ⁻¹⁰	0,100 0,100 0,100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,2 10 ⁻¹¹ 9,3 10 ⁻¹¹ 9,8 10 ⁻¹¹	3,2 10 ⁻¹¹ 6,0 10 ⁻¹¹ 6,3 10 ⁻¹¹	1,9 10 ⁻¹¹ 4,0 10 ⁻¹¹ 4,2 10 ⁻¹¹	1,6 10 ⁻¹¹ 3,3 10 ⁻¹¹ 3,5 10 ⁻¹¹
Au-200m	18,7 h	F M S	0,200 0,200 0,200	2,7 10 ⁻⁹ 4,8 10 ⁻⁹ 5,1 10 ⁻⁹	0,100 0,100 0,100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,0 10 ⁻⁹ 1,9 10 ⁻⁹ 2,0 10 ⁻⁹	6,4 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,3 10 ⁻⁹	3,6 10 ⁻¹⁰ 8,4 10 ⁻¹⁰ 8,9 10 ⁻¹⁰	2,9 10 ⁻¹⁰ 6,8 10 ⁻¹⁰ 7,2 10 ⁻¹⁰
Au-201	0,440 h	F M S	0,200 0,200 0,200	9,0 10 ⁻¹¹ 1,5 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	0,100 0,100 0,100	5,7 10 ⁻¹¹ 9,6 10 ⁻¹¹ 1,0 10 ⁻¹⁰	2,5 10 ⁻¹¹ 4,3 10 ⁻¹¹ 4,5 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Mercure										
Hg-193 (organique)	3,50 h	F	0,800	2,2 10 ⁻¹⁰	0,400	1,8 10 ⁻¹⁰	8,2 10-11	5,0 10-11	2,9 10 ⁻¹¹	2,4 10 ⁻¹¹
Hg-193 (inorganique)	3,50 h	F M	0,040 0,040	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,020 0,020	2,0 10 ⁻¹⁰ 3,8 10 ⁻¹⁰	8,9 10 ⁻¹¹ 1,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3,1 \ 10^{-11} \\ 9,2 \ 10^{-11} \end{array}$	2,6 10 ⁻¹¹ 7,5 10 ⁻¹¹
Hg-193m (organique)	11,1 h	F	0,800	8,4 10 ⁻¹⁰	0,400	7,6 10 ⁻¹⁰	3,7 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,3 10 ⁻¹⁰	1,0 10-10
Hg-193m (inorganique)	11,1 h	F M	0,040 0,040	1,1 10 ⁻⁹ 1,9 10 ⁻⁹	0,020 0,020	8,5 10 ⁻¹⁰ 1,4 10 ⁻⁹	4,1 10 ⁻¹⁰ 7,2 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4 10 ⁻¹⁰ 3,2 10 ⁻¹⁰	1,1 10 ⁻¹⁰ 2,6 10 ⁻¹⁰
Hg-194 (organique)	2,60 10 ² a	F	0,800	4,9 10-8	0,400	3,7 10 ⁻⁸	2,4 10 ⁻⁸	1,9 10-8	1,5 10-8	1,4 10-8
Hg-194 (inorganique)	$2,60 \ 10^2 \ a$	F M	0,040 0,040	3,2 10 ⁻⁸ 2,1 10 ⁻⁸	0,020 0,020	2,9 10 ⁻⁸ 1,9 10 ⁻⁸	2,0 10 ⁻⁸ 1,3 10 ⁻⁸	1,6 10 ⁻⁸ 1,0 10 ⁻⁸	1,4 10 ⁻⁸ 8,9 10 ⁻⁹	1,3 10 ⁻⁸ 8,3 10 ⁻⁹
Hg-195 (organique)	9,90 h	F	0,800	2,0 10 ⁻¹⁰	0,400	1,8 10 ⁻¹⁰	8,5 10-11	5,1 10 ⁻¹¹	2,8 10 ⁻¹¹	2,3 10-11
Hg-195 (inorganique)	9,90 h	F M	0,040 0,040	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,020 0,020	2,0 10 ⁻¹⁰ 3,9 10 ⁻¹⁰	9,5 10 ⁻¹¹ 2,0 10 ⁻¹⁰	5,7 10 ⁻¹¹ 1,3 10 ⁻¹⁰	3,1 10 ⁻¹¹ 9,0 10 ⁻¹¹	2,5 10 ⁻¹¹ 7,3 10 ⁻¹¹
Hg-195m (organique)	1,73 d	F	0,800	1,1 10-9	0,400	9,7 10 ⁻¹⁰	4,4 10 ⁻¹⁰	2,7 10 ⁻¹⁰	1,4 10 ⁻¹⁰	1,2 10 ⁻¹⁰
Hg-195m (inorganique)	1,73 d	F M	0,040 0,040	1,6 10 ⁻⁹ 3,7 10 ⁻⁹	0,020 0,020	1,1 10 ⁻⁹ 2,6 10 ⁻⁹	5,1 10 ⁻¹⁰ 1,4 10 ⁻⁹	$\begin{array}{c} 3,1 \ 10^{-10} \\ 8,5 \ 10^{-10} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4 10 ⁻¹⁰ 5,3 10 ⁻¹⁰
Hg-197 (organique)	2,67 d	F	0,800	4,7 10 ⁻¹⁰	0,400	4,0 10 ⁻¹⁰	1,8 10 ⁻¹⁰	1,1 10 ⁻¹⁰	5,8 10-11	4,7 10-11
Hg-197 (inorganique)	2,67 d	F M	0,040 0,040	6,8 10 ⁻¹⁰ 1,7 10 ⁻⁹	0,020 0,020	4,7 10 ⁻¹⁰ 1,2 10 ⁻⁹	$\begin{array}{c} 2,1 \ 10^{-10} \\ 6,6 \ 10^{-10} \end{array}$	1,3 10 ⁻¹⁰ 4,6 10 ⁻¹⁰	$6,8 \ 10^{-11} \\ 3,8 \ 10^{-10}$	5,6 10 ⁻¹¹ 3,0 10 ⁻¹⁰
Hg-197m (organique)	23,8 h	F	0,800	9,3 10 ⁻¹⁰	0,400	7,8 10 ⁻¹⁰	3,4 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,1 10 ⁻¹⁰	9,6 10-11
Hg-197m (inorganique)	23,8 h	F M	0,040 0,040	1,4 10 ⁻⁹ 3,5 10 ⁻⁹	0,020 0,020	9,3 10 ⁻¹⁰ 2,5 10 ⁻⁹	4,0 10 ⁻¹⁰ 1,1 10 ⁻⁹	$2,5 \ 10^{-10}$ $8,2 \ 10^{-10}$	1,3 10 ⁻¹⁰ 6,7 10 ⁻¹⁰	1,1 10 ⁻¹⁰ 5,3 10 ⁻¹⁰
Hg-199m (organique)	0,710 h	F	0,800	1,4 10 ⁻¹⁰	0,400	9,6 10-11	4,2 10-11	2,7 10 ⁻¹¹	1,7 10-11	1,5 10-11
Hg-199m (inorganique)	0,710 h	F M	0,040 0,040	1,4 10 ⁻¹⁰ 2,5 10 ⁻¹⁰	0,020 0,020	9,6 10 ⁻¹¹ 1,7 10 ⁻¹⁰	4,2 10 ⁻¹¹ 7,9 10 ⁻¹¹	2,7 10 ⁻¹¹ 5,4 10 ⁻¹¹	1,7 10 ⁻¹¹ 3,8 10 ⁻¹¹	1,5 10 ⁻¹¹ 3,2 10 ⁻¹¹
Hg-203 (organique)	46,6 d	F	0,800	5,7 10-9	0,400	3,7 10-9	1,7 10-9	1,1 10-9	6,6 10 ⁻¹⁰	5,6 10-10
Hg-203 (inorganique)	46,6 d	F M	0,040 0,040	4,2 10 ⁻⁹ 1,0 10 ⁻⁸	0,020 0,020	2,9 10 ⁻⁹ 7,9 10 ⁻⁹	1,4 10 ⁻⁹ 4,7 10 ⁻⁹	9,0 10 ⁻¹⁰ 3,4 10 ⁻⁹	5,5 10 ⁻¹⁰ 3,0 10 ⁻⁹	4,6 10 ⁻¹⁰ 2,4 10 ⁻⁹

Nucléide	Période	Type	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucleide	physique	1 ype	f_1	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Γhallium	•									
ГІ-194	0,550 h	F	1,000	3,6 10-11	1,000	3,0 10-11	$1,5 \ 10^{-11}$	9,2 10-12	$5,5 \ 10^{-12}$	4,4 10
Tl-194m	0,546 h	F	1,000	1,7 10-10	1,000	1,2 10 ⁻¹⁰	6,1 10-11	3,8 10-11	2,3 10 ⁻¹¹	1,9 10 ⁻
Tl-195	1,16 h	F	1,000	1,3 10 ⁻¹⁰	1,000	1,0 10 ⁻¹⁰	5,3 10 ⁻¹¹	3,2 10 ⁻¹¹	1,9 10-11	1,5 10 ⁻
Γ l -197	2,84 h	F	1,000	1,3 10 ⁻¹⁰	1,000	9,7 10-11	4,7 10-11	2,9 10-11	1,7 10-11	1,4 10 ⁻
1-198	5,30 h	F	1,000	4,7 10-10	1,000	4,0 10 ⁻¹⁰	2,1 10 ⁻¹⁰	1,3 10 ⁻¹⁰	7,5 10-11	6,0 10
Tl-198m	1,87 h	F	1,000	3,2 10 ⁻¹⁰	1,000	2,5 10 ⁻¹⁰	1,2 10 ⁻¹⁰	7,5 10 ⁻¹¹	4,5 10-11	3,7 10
T-199	7,42 h	F	1,000	1,7 10-10	1,000	1,3 10 ⁻¹⁰	6,4 10 ⁻¹¹	3,9 10-11	2,3 10 ⁻¹¹	1,9 10
71-200	1,09 d	F	1,000	1,0 10-9	1,000	8,7 10-10	4,6 10 ⁻¹⁰	2,8 10 ⁻¹⁰	1,6 10 ⁻¹⁰	1,3 10
T-201	3,04 d	F	1,000	4,5 10 ⁻¹⁰	1,000	3,3 10 ⁻¹⁰	1,5 10-10	9,4 10-11	5,4 10 ⁻¹¹	4,4 10
71-202	12,2 d	F	1,000	1,5 10-9	1,000	1,2 10-9	5,9 10 ⁻¹⁰	3,8 10 ⁻¹⁰	$2,3 \ 10^{-10}$	1,9 10
71-204	3,78 a	F	1,000	5,0 10-9	1,000	3,3 10-9	1,5 10-9	8,8 10 ⁻¹⁰	4, 7 10 ⁻¹⁰	3,9 10
rlomb a)									'	
Pb-195m	0,263 h	F M	0,600 0,200	$\begin{array}{ c c c c }\hline 1,3 & 10^{-10} \\ 2,0 & 10^{-10} \\ 2,1 & 10^{-10} \\ \end{array}$	0,200 0,100	$\begin{array}{ c c c c c } & 1,0 & 10^{-10} \\ & 1,5 & 10^{-10} \\ & 1,5 & 10^{-10} \end{array}$	4,9 10 ⁻¹¹ 7,1 10 ⁻¹¹ 7,4 10 ⁻¹¹	$\begin{array}{c c} 3,1 & 10^{-11} \\ 4,6 & 10^{-11} \\ 4,8 & 10^{-11} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,6 10 2,5 10 2,7 10
Pb-198	2,40 h	S F M S	0,020 0,600 0,200 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010 0,200 0,100 0,010	2,9 10 ⁻¹⁰ 4,0 10 ⁻¹⁰ 4,2 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,9 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	5,2 10 ⁻¹¹ 8,3 10 ⁻¹¹ 8,7 10 ⁻¹¹	4,3 10 6,6 10 7,0 10
Pb-199	1,50 h	F M S	0,600 0,200 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,200 0,100 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,2 10 ⁻¹¹ 1,1 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	4,9 10 ⁻¹¹ 7,1 10 ⁻¹¹ 7,4 10 ⁻¹¹	2,9 10 ⁻¹¹ 4,5 10 ⁻¹¹ 4,7 10 ⁻¹¹	2,3 10 3,6 10 3,7 10
Pb-200	21,5 h	F M S	0,600 0,200 0,020	1,1 10 ⁻⁹ 2,2 10 ⁻⁹ 2,4 10 ⁻⁹	0,200 0,100 0,010	9,3 10 ⁻¹⁰ 1,7 10 ⁻⁹ 1,8 10 ⁻⁹	4,6 10 ⁻¹⁰ 8,6 10 ⁻¹⁰ 9,2 10 ⁻¹⁰	2,8 10 ⁻¹⁰ 5,7 10 ⁻¹⁰ 6,2 10 ⁻¹⁰	1,6 10 ⁻¹⁰ 4,1 10 ⁻¹⁰ 4,4 10 ⁻¹⁰	1,4 10 3,3 10 3,5 10
Pb-201	9,40 h	F M S	0,600 0,200 0,020	4,8 10 ⁻¹⁰ 8,0 10 ⁻¹⁰ 8,8 10 ⁻¹⁰	0,200 0,100 0,010	4,1 10 ⁻¹⁰ 6,4 10 ⁻¹⁰ 6,7 10 ⁻¹⁰	2,0 10 ⁻¹⁰ 3,3 10 ⁻¹⁰ 3,5 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 2,1 10 ⁻¹⁰ 2,2 10 ⁻¹⁰	7,1 10 ⁻¹¹ 1,4 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	6,0 10 1,1 10 1,2 10
Pb-202	3,00 10 ⁵ a	F M S	0,600 0,200 0,020	1,9 10 ⁻⁸ 1,2 10 ⁻⁸ 2,8 10 ⁻⁸	0,200 0,100 0,010	1,3 10 ⁻⁸ 8,9 10 ⁻⁹ 2,8 10 ⁻⁸	8,9 10 ⁻⁹ 6,2 10 ⁻⁹ 2,0 10 ⁻⁸	1,3 10 ⁻⁸ 6,7 10 ⁻⁹ 1,4 10 ⁻⁸	1,8 10 ⁻⁸ 8,7 10 ⁻⁹ 1,3 10 ⁻⁸	1,1 10 6,3 10 1,2 10
Pb-202m	3,62 h	F M S	0,600 0,200 0,020	4,7 10 ⁻¹⁰ 6,9 10 ⁻¹⁰ 7,3 10 ⁻¹⁰	0,200 0,100 0,010	4,0 10 ⁻¹⁰ 5,6 10 ⁻¹⁰ 5,8 10 ⁻¹⁰	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,3 10 ⁻¹⁰ 1,9 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	7,5 10 ⁻¹¹ 1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	6,2 10 9,5 10 1,0 10
Pb-203	2,17 d	F M S	0,600 0,200 0,020	7,2 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,5 10 ⁻⁹	0,200 0,100 0,010	5,8 10 ⁻¹⁰ 1,0 10 ⁻⁹ 1,1 10 ⁻⁹	$\begin{bmatrix} 2.8 & 10^{-10} \\ 5.4 & 10^{-10} \\ 5.8 & 10^{-10} \end{bmatrix}$	$\begin{array}{ c c c c c }\hline 1,7 & 10^{-10} \\ 3,6 & 10^{-10} \\ 3,8 & 10^{-10} \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,5 10 2,0 10 2,2 10
Pb-205	1,43 10 ⁷ a	F M S	0,600 0,200 0,020	1,1 10 ⁻⁹ 1,1 10 ⁻⁹ 2,9 10 ⁻⁹	0,200 0,100 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c }\hline 4,0 & 10^{-10} \\ 4,3 & 10^{-10} \\ 1,7 & 10^{-9} \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,3 10 ⁻¹⁰ 2,9 10 ⁻¹⁰ 9,2 10 ⁻¹⁰	3,3 10 2,5 10 8,5 10
Pb-209	3,25 h	F M S	0,600 0,200 0,020	1,8 10 ⁻¹⁰ 4,0 10 ⁻¹⁰ 4,4 10 ⁻¹⁰	0,200 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,4 10 ⁻¹¹ 9,2 10 ⁻¹¹ 9,9 10 ⁻¹¹	1,9 10 ⁻¹¹ 6,9 10 ⁻¹¹ 7,5 10 ⁻¹¹	1,7 10 5,6 10 6,1 10
Pb-210	22,3 a	F M S	0,600 0,200 0,020	4,7 10 ⁻⁶ 5,0 10 ⁻⁶ 1,8 10 ⁻⁵	0,200 0,100 0,010	2,9 10 ⁻⁶ 3,7 10 ⁻⁶ 1,8 10 ⁻⁵	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4 10 ⁻⁶ 1,5 10 ⁻⁶ 7,2 10 ⁻⁶	1,3 10 ⁻⁶ 1,3 10 ⁻⁶ 5,9 10 ⁻⁶	9,0 10 1,1 10 5,6 10
Pb-211	0,601 h	F M S	0,600 0,200 0,020	2,5 10 ⁻⁸ 6,2 10 ⁻⁸ 6,6 10 ⁻⁸	0,200 0,100 0,010	1,7 10 ⁻⁸ 4,5 10 ⁻⁸ 4,8 10 ⁻⁸	8,7 10 ⁻⁹ 2,5 10 ⁻⁸ 2,7 10 ⁻⁸	6.1 10 ⁻⁹ 1,9 10 ⁻⁸ 2,0 10 ⁻⁸	4,6 10 ⁻⁹ 1,4 10 ⁻⁸ 1,5 10 ⁻⁸	3,9 10 1,1 10 1,2 10
Pb-212	10,6 h	F M S	0,600 0,200 0,020	1,9 10 ⁻⁷ 6,2 10 ⁻⁷ 6,7 10 ⁻⁷	0,200 0,100 0,010	1,2 10 ⁻⁷ 4,6 10 ⁻⁷ 5,0 10 ⁻⁷	5,4 10 ⁻⁸ 3,0 10 ⁻⁷ 3,3 10 ⁻⁷	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c }\hline 2,0 & 10^{-8} \\ 2,2 & 10^{-7} \\ 2,4 & 10^{-7} \\\hline \end{array}$	1,8 10 1,7 10 1,9 10
Pb-214	0,447 h	F M S	0,600 0,200 0,020	2,2 10 ⁻⁸ 6,4 10 ⁻⁸ 6,9 10 ⁻⁸	0,200 0,100 0,010	1,5 10 ⁻⁸ 4,6 10 ⁻⁸ 5,0 10 ⁻⁸	6,9 10 ⁻⁹ 2,6 10 ⁻⁸ 2,8 10 ⁻⁸	4,8 10 ⁻⁹ 1,9 10 ⁻⁸ 2,1 10 ⁻⁸	3,3 10 ⁻⁹ 1,4 10 ⁻⁸ 1,5 10 ⁻⁸	2,8 10 1,4 10 1,5 10

a) La valeur de f_1 pour les individus de 1 à 15 ans et le type F est 0,4.

Nucléide	Période	Type	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucleide	physique	Туре	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Bismuth										
Bi-200	0,606 h	F M	0,100	$\begin{array}{ c c c c c } & 1,9 & 10^{-10} \\ & 2,5 & 10^{-10} \end{array}$	0,050	$\begin{array}{ c c c c c } 1,5 & 10^{-10} \\ 1,9 & 10^{-10} \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4,5 10 ⁻¹¹ 6,3 10 ⁻¹¹	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2,2 10-11
Bi-201	1,80 h	F M	0,100 0,100 0,100	4,0 10 ⁻¹⁰ 5,5 10 ⁻¹⁰	0,050 0,050 0,050	$\begin{array}{ c c c c c }\hline 1,9 & 10 \\ 3,1 & 10^{-10} \\ 4,1 & 10^{-10} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,3 10 ⁻¹¹ 1,3 10 ⁻¹⁰	5,4 10 ⁻¹¹ 8,3 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bi-202	1,67 h	F M	0,100 0,100	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,050 0,050	2,8 10 ⁻¹⁰ 3,4 10 ⁻¹⁰	1,5 10 ⁻¹⁰ 1,8 10 ⁻¹⁰	9,0 10 ⁻¹¹ 1,1 10 ⁻¹⁰	5,3 10 ⁻¹¹ 6,9 10 ⁻¹¹	4,3 10 ⁻¹¹ 5,5 10 ⁻¹¹
Bi-203	11,8 h	F	0,100	1,5 10 ⁻⁹ 2,0 10 ⁻⁹	0,050	1,2 10 ⁻⁹ 1,6 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,0 10 ⁻¹⁰ 5,3 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,9 10 ⁻¹⁰ 2,6 10 ⁻¹⁰
Bi-205	15,3 d	M F	0,100 0,100	3,0 10-9	0,050 0,050	2,4 10-9	1,3 10-9	8,0 10-10	4, 7 10 ⁻¹⁰	3,8 10-10
Bi-206	6,24 d	M F	0,100 0,100	5,5 10 ⁻⁹ 6,1 10 ⁻⁹	0,050	4,4 10 ⁻⁹ 4,8 10 ⁻⁹	2,5 10 ⁻⁹ 2,5 10 ⁻⁹	1,6 10 ⁻⁹ 1,6 10 ⁻⁹	1,2 10 ⁻⁹ 9,1 10 ⁻¹⁰	9,3 10 ⁻¹⁰ 7,4 10 ⁻¹⁰
Bi-207	38,0 a	M F	0,100 0,100	1,0 10 ⁻⁸ 4,3 10 ⁻⁹	0,050 0,050	8,0 10 ⁻⁹ 3,3 10 ⁻⁹	4,4 10 ⁻⁹ 1,7 10 ⁻⁹	2,9 10 ⁻⁹ 1,0 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,7 10 ⁻⁹ 4,9 10 ⁻¹⁰
3i-210	5,01 d	M F	0,100 0,100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,050	2,0 10 ⁻⁸ 6,9 10 ⁻⁹	1,2 10 ⁻⁸ 3,2 10 ⁻⁹	8,2 10 ⁻⁹ 2,1 10 ⁻⁹	6,5 10 ⁻⁹ 1,3 10 ⁻⁹	5,6 10 ⁻⁹ 1,1 10 ⁻⁹
Bi-210m	3,00 10 ⁶ a	M F	0,100 0,100	3,9 10 ⁻⁷ 4,1 10 ⁻⁷	0,050 0,050	3,0 10 ⁻⁷ 2,6 10 ⁻⁷	1,9 10 ⁻⁷ 1,3 10 ⁻⁷	1,3 10 ⁻⁷ 8,3 10 ⁻⁸	1,1 10 ⁻⁷ 5,6 10 ⁻⁸	9,3 10 ⁻⁸ 4,6 10 ⁻⁸
Bi-212	1,01 h	M F M	0,100 0,100 0,100	$\begin{vmatrix} 1.5 & 10^{-5} \\ 6.5 & 10^{-8} \\ 1.6 & 10^{-7} \end{vmatrix}$	0,050 0,050 0,050	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,0 10 ⁻⁶ 2,1 10 ⁻⁸ 6,0 10 ⁻⁸	4,8 10 ⁻⁶ 1,5 10 ⁻⁸ 4,4 10 ⁻⁸	4,1 10 ⁻⁶ 1,0 10 ⁻⁸ 3,8 10 ⁻⁸	$3,4 10^{-6}$ $9,1 10^{-9}$ $3,1 10^{-8}$
Bi-213	0,761 h	F M	0,100 0,100 0,100	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,050 0,050	5,3 10 ⁻⁸ 1,2 10 ⁻⁷	2,5 10 ⁻⁸ 6,0 10 ⁻⁸	1,7 10 ⁻⁸ 4,4 10 ⁻⁸	1,2 10 ⁻⁸ 3,6 10 ⁻⁸	1,0 10 ⁻⁸ 3,0 10 ⁻⁸
Bi-214	0,332 h	F M	0,100 0,100 0,100	5,0 10 ⁻⁸ 8,7 10 ⁻⁸	0,050 0,050	3,5 10 ⁻⁸ 6,1 10 ⁻⁸	1,6 10 ⁻⁸ 3,1 10 ⁻⁸	$\begin{array}{cccc} 1,1 & 10^{-8} \\ 2,2 & 10^{-8} \end{array}$	8,2 10 ⁻⁹ 1,7 10 ⁻⁸	7,1 10 ⁻⁹ 1,4 10 ⁻⁸
Polonium	1		•,	1	.,	1 -,	, -,	-,	1 - 1,	, -,
Po-203	0,612 h	F M S	0,200 0,200 0,020	$\begin{array}{ c c c c } \hline 1,9 & 10^{-10} \\ 2,7 & 10^{-10} \\ 2,8 & 10^{-10} \\ \hline \end{array}$	0,100 0,100 0,010	$\begin{array}{ c c c c }\hline 1,5 & 10^{-10} \\ 2,1 & 10^{-10} \\ 2,2 & 10^{-10} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,7 10 ⁻¹¹ 6,7 10 ⁻¹¹ 7,0 10 ⁻¹¹	2,8 10 ⁻¹¹ 4,3 10 ⁻¹¹ 4,5 10 ⁻¹¹	$\begin{array}{c} 2,3 \ 10^{-11} \\ 3,5 \ 10^{-11} \\ 3,6 \ 10^{-11} \end{array}$
Po-205	1,80 h	F M S	0,200 0,200 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,100 0,100 0,010	$\begin{bmatrix} 2,1 & 10^{-10} \\ 3,1 & 10^{-10} \\ 3,2 & 10^{-10} \end{bmatrix}$	$ \begin{array}{c} 1,1 \ 10^{-10} \\ 1,7 \ 10^{-10} \\ 1,8 \ 10^{-10} \end{array} $	$6,6 ext{ } 10^{-11}$ $1,1 ext{ } 10^{-10}$ $1,2 ext{ } 10^{-10}$	4,1 10 ⁻¹¹ 8,1 10 ⁻¹¹ 8,5 10 ⁻¹¹	$3,3 ext{ } 10^{-11}$ $6,5 ext{ } 10^{-11}$ $6,9 ext{ } 10^{-11}$
Po-207	5,83 h	F M S	0,200 0,200 0,020	4,8 10 ⁻¹⁰ 6,2 10 ⁻¹⁰ 6,6 10 ⁻¹⁰	0,100 0,100 0,010	4,0 10 ⁻¹⁰ 5,1 10 ⁻¹⁰ 5,3 10 ⁻¹⁰	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3 10 ⁻¹⁰ 1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	7,3 10 ⁻¹¹ 9,9 10 ⁻¹¹ 1,0 10 ⁻¹⁰	5,8 10 ⁻¹ 7,8 10 ⁻¹ 8,2 10 ⁻¹
Po-210	138 d	F M S	0,200 0,200 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,100 0,100 0,010	4,8 10 ⁻⁶ 1,1 10 ⁻⁵ 1,4 10 ⁻⁵	2,2 10 ⁻⁶ 6,7 10 ⁻⁶ 8,6 10 ⁻⁶	1,3 10 ⁻⁶ 4,6 10 ⁻⁶ 5,9 10 ⁻⁶	7,7 10 ⁻⁷ 4,0 10 ⁻⁶ 5,1 10 ⁻⁶	6,1 10 ⁻⁷ 3,3 10 ⁻⁶ 4,3 10 ⁻⁶
Astate	1 1	9	0,020	1,0 10	0,010	1,,,10	0,0 10	3,7 10	3,1 10	1,5 10
At-207	1,80 h	F M	1,000 1,000	$\begin{vmatrix} 2,4 & 10^{-9} \\ 9,2 & 10^{-9} \end{vmatrix}$	1,000 1,000	$\begin{array}{ c c c c c } & 1,7 & 10^{-9} \\ & 6,7 & 10^{-9} \end{array}$	8,9 10 ⁻¹⁰ 4,3 10 ⁻⁹	5,9 10 ⁻¹⁰ 3,1 10 ⁻⁹	$4,0 \ 10^{-10}$ $2,9 \ 10^{-9}$	3,3 10 ⁻¹⁰ 2,3 10 ⁻⁹
At-211	7,21 h	F M	1,000 1,000	$ \begin{array}{ c c c c c } \hline 1,4 & 10^{-7} \\ 5,2 & 10^{-7} \end{array} $	1,000 1,000	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4,3 10 ⁻⁸ 1,9 10 ⁻⁷	2,8 10 ⁻⁸ 1,4 10 ⁻⁷	$1,7 \ 10^{-8}$ $1,3 \ 10^{-7}$	1,6 10 ⁻⁸ 1,1 10 ⁻⁷
Francium	1		1,000	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,000	, 5,, 15	1,2 10	1,10	1,5 10	1,1 10
Fr-222	0,240 h	F	1,000	9,1 10-8	1,000	6,3 10-8	3,0 10-8	2,1 10 ⁻⁸	1,6 10 ⁻⁸	1,4 10-8
Fr-223	0,363 h	F	1,000	1,1 10-8	1,000	7,3 10 ⁻⁹	3,2 10-9	1,9 10-9	1,0 10-9	8,9 10-10
Radium a)										
Ra-223	11,4 d	F M S	0,600 0,200 0,020	$\begin{array}{ c c c c }\hline 3,0 & 10^{-6} \\ 2,8 & 10^{-5} \\ 3,2 & 10^{-5} \\ \end{array}$	0,200 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} 4,9 & 10^{-7} \\ 1,3 & 10^{-5} \\ 1,5 & 10^{-5} \end{array}$	4,0 10 ⁻⁷ 9,9 10 ⁻⁶ 1,1 10 ⁻⁵	3,3 10 ⁻⁷ 9,4 10 ⁻⁶ 1,1 10 ⁻⁵	1,2 10 ⁻⁷ 7,4 10 ⁻⁶ 8,7 10 ⁻⁶
Ra-224	3,66 d	F M S	0,600 0,200 0,020	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,200 0,100 0,010	6,0 10 ⁻⁷ 8,2 10 ⁻⁶ 9,2 10 ⁻⁶	2,9 10 ⁻⁷ 5,3 10 ⁻⁶ 5,9 10 ⁻⁶	2,2 10 ⁻⁷ 3,9 10 ⁻⁶ 4,4 10 ⁻⁶	1,7 10 ⁻⁷ 3,7 10 ⁻⁶ 4,2 10 ⁻⁶	7,5 10 ⁻⁸ 3,0 10 ⁻⁶ 3,4 10 ⁻⁶
Ra-225	14,8 d	F M S	0,600 0,200 0,020	4,0 10 ⁻⁶ 2,4 10 ⁻⁵ 2,8 10 ⁻⁵	0,200 0,100 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,6 10 ⁻⁷ 1,1 10 ⁻⁵ 1,4 10 ⁻⁵	4,6 10 ⁻⁷ 8,4 10 ⁻⁶ 1,0 10 ⁻⁵	3,8 10 ⁻⁷ 7,9 10 ⁻⁶ 9,8 10 ⁻⁶	1,3 10 ⁻⁷ 6,3 10 ⁻⁶ 7,7 10 ⁻⁶

^{a)} La valeur de f₁ pour les individus de 1 à 15 ans et le type F est 0,3.

Nucléide	Période	Type	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
nucleide	physique	Туре	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Ra-226	1,60 10 ³ a	F M S	0,600 0,200 0,020	2,6 10 ⁻⁶ 1,5 10 ⁻⁵ 3,4 10 ⁻⁵	0,200 0,100 0,010	9,4 10 ⁻⁷ 1,1 10 ⁻⁵ 2,9 10 ⁻⁵	5,5 10 ⁻⁷ 7,0 10 ⁻⁶ 1,9 10 ⁻⁵	7,2 10 ⁻⁷ 4,9 10 ⁻⁶ 1,2 10 ⁻⁵	1,3 10 ⁻⁶ 4,5 10 ⁻⁶ 1,0 10 ⁻⁵	3,6 10 ⁻⁷ 3,5 10 ⁻⁶ 9,5 10 ⁻⁶
Ra-227	0,703 h	F M S	0,600 0,200 0,020	1,5 10 ⁻⁹ 8,0 10 ⁻¹⁰ 1,0 10 ⁻⁹	0,200 0,100 0,010	1,2 10 ⁻⁹ 6,7 10 ⁻¹⁰ 8,5 10 ⁻¹⁰	7,8 10 ⁻¹⁰ 4,4 10 ⁻¹⁰ 4,4 10 ⁻¹⁰	$\begin{array}{c} 6,1 \ 10^{-10} \\ 3,2 \ 10^{-10} \\ 2,9 \ 10^{-10} \end{array}$	5,3 10 ⁻¹⁰ 2,9 10 ⁻¹⁰ 2,4 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ra-228	5,75 a	F M S	0,600 0,200 0,020	1,7 10 ⁻⁵ 1,5 10 ⁻⁵ 4,9 10 ⁻⁵	0,200 0,100 0,010	5,7 10 ⁻⁶ 1,0 10 ⁻⁵ 4,8 10 ⁻⁵	3,1 10 ⁻⁶ 6,3 10 ⁻⁶ 3,2 10 ⁻⁵	3,6 10 ⁻⁶ 4,6 10 ⁻⁶ 2,0 10 ⁻⁵	4,6 10 ⁻⁶ 4,4 10 ⁻⁶ 1,6 10 ⁻⁵	9,0 10 ⁻⁷ 2,6 10 ⁻⁶ 1,6 10 ⁻⁵
Actinium	, ,		•	•	•	•	,	'		1
Ac-224	2,90 h	F M S	0,005 0,005 0,005	1,3 10 ⁻⁷ 4,2 10 ⁻⁷ 4,6 10 ⁻⁷	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,9 10 ⁻⁸ 3,2 10 ⁻⁷ 3,5 10 ⁻⁷	4,7 10 ⁻⁸ 2,0 10 ⁻⁷ 2,2 10 ⁻⁷	3,1 10 ⁻⁸ 1,5 10 ⁻⁷ 1,7 10 ⁻⁷	1,4 10 ⁻⁸ 1,4 10 ⁻⁷ 1,6 10 ⁻⁷	1,1 10 ⁻⁸ 1,1 10 ⁻⁷ 1,3 10 ⁻⁷
Ac-225	10,0 d	F M S	0,005 0,005 0,005	1,1 10 ⁻⁵ 2,8 10 ⁻⁵ 3,1 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,7 10 ⁻⁶ 2,1 10 ⁻⁵ 2,3 10 ⁻⁵	4,0 10 ⁻⁶ 1,3 10 ⁻⁵ 1,5 10 ⁻⁵	2,6 10 ⁻⁶ 1,0 10 ⁻⁵ 1,1 10 ⁻⁵	1,1 10 ⁻⁶ 9,3 10 ⁻⁶ 1,1 10 ⁻⁵	8,8 10 ⁻⁷ 7,4 10 ⁻⁶ 8,5 10 ⁻⁶
Ac-226	1,21 d	F M S	0,005 0,005 0,005	1,5 10 ⁻⁶ 4,3 10 ⁻⁶ 4,7 10 ⁻⁶	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,0 10 ⁻⁷ 2,1 10 ⁻⁶ 2,3 10 ⁻⁶	2,6 10 ⁻⁷ 1,5 10 ⁻⁶ 1,7 10 ⁻⁶	1,2 10 ⁻⁷ 1,5 10 ⁻⁶ 1,6 10 ⁻⁶	9,6 10 ⁻⁸ 1,2 10 ⁻⁶ 1,3 10 ⁻⁶
Ac-227	21,8 a	F M S	0,005 0,005 0,005	1,7 10 ⁻³ 5,7 10 ⁻⁴ 2,2 10 ⁻⁴	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,6 10 ⁻³ 5,5 10 ⁻⁴ 2,0 10 ⁻⁴	1,0 10 ⁻³ 3,9 10 ⁻⁴ 1,3 10 ⁻⁴	7,2 10 ⁻⁴ 2,6 10 ⁻⁴ 8,7 10 ⁻⁵	5,6 10 ⁻⁴ 2,3 10 ⁻⁴ 7,6 10 ⁻⁵	5,5 10 ⁻⁴ 2,2 10 ⁻⁴ 7,2 10 ⁻⁵
Ac-228	6,13 h	F M S	0,005 0,005 0,005	1,8 10 ⁻⁷ 8,4 10 ⁻⁸ 6,4 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,6 10 ⁻⁷ 7,3 10 ⁻⁸ 5,3 10 ⁻⁸	9,7 10 ⁻⁸ 4,7 10 ⁻⁸ 3,3 10 ⁻⁸	5,7 10 ⁻⁸ 2,9 10 ⁻⁸ 2,2 10 ⁻⁸	2,9 10 ⁻⁸ 2,0 10 ⁻⁸ 1,9 10 ⁻⁸	2,5 10 ⁻⁸ 1,7 10 ⁻⁸ 1,6 10 ⁻⁸
Thorium										
Th-226	0,515 h	F M S	0,005 0,005 0,005	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,0 10 ⁻⁷ 2,1 10 ⁻⁷ 2,2 10 ⁻⁷	$\begin{array}{ c c c c c } & 4.8 & 10^{-8} \\ & 1.1 & 10^{-7} \\ & 1.2 & 10^{-7} \end{array}$	3,4 10 ⁻⁸ 8,3 10 ⁻⁸ 8,8 10 ⁻⁸	2,5 10 ⁻⁸ 7,0 10 ⁻⁸ 7,5 10 ⁻⁸	2,2 10 ⁻⁸ 5,8 10 ⁻⁸ 6,1 10 ⁻⁸
Th-227	18,7 d	F M S	0,005 0,005 0,005	8,4 10 ⁻⁶ 3,2 10 ⁻⁵ 3,9 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,2 10 ⁻⁶ 2,5 10 ⁻⁵ 3,0 10 ⁻⁵	2,6 10 ⁻⁶ 1,6 10 ⁻⁵ 1,9 10 ⁻⁵	1,6 10 ⁻⁶ 1,1 10 ⁻⁵ 1,4 10 ⁻⁵	1,0 10 ⁻⁶ 1,1 10 ⁻⁵ 1,3 10 ⁻⁵	6,7 10 ⁻⁷ 8,5 10 ⁻⁶ 1,0 10 ⁻⁵
Th-228	1,91 a	F M S	0,005 0,005 0,005	1,8 10 ⁻⁴ 1,3 10 ⁻⁴ 1,6 10 ⁻⁴	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,5 10 ⁻⁴ 1,1 10 ⁻⁴ 1,3 10 ⁻⁴	8,3 10 ⁻⁵ 6,8 10 ⁻⁵ 8,2 10 ⁻⁵	5,2 10 ⁻⁵ 4,6 10 ⁻⁵ 5,5 10 ⁻⁵	3,6 10 ⁻⁵ 3,9 10 ⁻⁵ 4,7 10 ⁻⁵	2,9 10 ⁻⁵ 3,2 10 ⁻⁵ 4,0 10 ⁻⁵
Th-229	7,34 10 ³ a	F M S	0,005 0,005 0,005	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,1 10 ⁻⁴ 2,1 10 ⁻⁴ 1,9 10 ⁻⁴	3,6 10 ⁻⁴ 1,6 10 ⁻⁴ 1,3 10 ⁻⁴	2,9 10 ⁻⁴ 1,2 10 ⁻⁴ 8,7 10 ⁻⁵	2,4 10 ⁻⁴ 1,1 10 ⁻⁴ 7,6 10 ⁻⁵	2,4 10 ⁻⁴ 1,1 10 ⁻⁴ 7,1 10 ⁻⁵
Th-230	7,70 10 ⁴ a	F M S	0,005 0,005 0,005	2,1 10 ⁻⁴ 7,7 10 ⁻⁵ 4,0 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4 10 ⁻⁴ 5,5 10 ⁻⁵ 2,4 10 ⁻⁵	1,1 10 ⁻⁴ 4,3 10 ⁻⁵ 1,6 10 ⁻⁵	9,9 10 ⁻⁵ 4,2 10 ⁻⁵ 1,5 10 ⁻⁵	1,0 10 ⁻⁴ 4,3 10 ⁻⁵ 1,4 10 ⁻⁵
Th-231	1,06 d	F M S	0,005 0,005 0,005	1,1 10 ⁻⁹ 2,2 10 ⁻⁹ 2,4 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,2 10 ⁻¹⁰ 1,6 10 ⁻⁹ 1,7 10 ⁻⁹	2,6 10 ⁻¹⁰ 8,0 10 ⁻¹⁰ 7,6 10 ⁻¹⁰	1,6 10 ⁻¹⁰ 4,8 10 ⁻¹⁰ 5,2 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,8 10 ⁻¹¹ 3,1 10 ⁻¹⁰ 3,3 10 ⁻¹⁰
Th-232	1,40 10 ¹⁰ a	F M S	0,005 0,005 0,005	2,3 10 ⁻⁴ 8,3 10 ⁻⁵ 5,4 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,2 10 ⁻⁴ 8,1 10 ⁻⁵ 5,0 10 ⁻⁵	1,6 10 ⁻⁴ 6,3 10 ⁻⁵ 3,7 10 ⁻⁵	1,3 10 ⁻⁴ 5,0 10 ⁻⁵ 2,6 10 ⁻⁵	1,2 10 ⁻⁴ 4,7 10 ⁻⁵ 2,5 10 ⁻⁵	1,1 10 ⁻⁴ 4,5 10 ⁻⁵ 2,5 10 ⁻⁵
Th-234	24,1 d	F M S	0,005 0,005 0,005	4,0 10 ⁻⁸ 3,9 10 ⁻⁸ 4,1 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,5 10 ⁻⁸ 2,9 10 ⁻⁸ 3,1 10 ⁻⁸	$\begin{array}{ c c c c c }\hline 1,1 & 10^{-8} \\ 1,5 & 10^{-8} \\ 1,7 & 10^{-8} \\\hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,5 10 ⁻⁹ 7,9 10 ⁻⁹ 9,1 10 ⁻⁹	2,5 10 ⁻⁹ 6,6 10 ⁻⁹ 7,7 10 ⁻⁹
Protactinium	l									
Pa-227	0,638 h	M S	0,005	3,6 10 ⁻⁷ 3,8 10 ⁻⁷	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,6 10 ⁻⁷ 2,8 10 ⁻⁷	1,4 10 ⁻⁷ 1,5 10 ⁻⁷	1,0 10 ⁻⁷ 1,1 10 ⁻⁷	9,0 10 ⁻⁸ 8,1 10 ⁻⁸	7,4 10 ⁻⁸ 8,0 10 ⁻⁸
Pa-228	22,0 h	M S	0,005	2,6 10 ⁻⁷ 2,9 10 ⁻⁷	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,1 10 ⁻⁷ 2,4 10 ⁻⁷	1,3 10 ⁻⁷ 1,5 10 ⁻⁷	8,8 10 ⁻⁸ 1,0 10 ⁻⁷	7,7 10 ⁻⁸ 9,1 10 ⁻⁸	6,4 10 ⁻⁸ 7,5 10 ⁻⁸
Pa-230	17,4 d	M S	0,005	2,4 10 ⁻⁶ 2,9 10 ⁻⁶	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,8 10 ⁻⁶ 2,2 10 ⁻⁶	1,1 10 ⁻⁶ 1,4 10 ⁻⁶	8,3 10 ⁻⁷ 1,0 10 ⁻⁶	7,6 10 ⁻⁷ 9,6 10 ⁻⁷	6,1 10 ⁻⁷ 7,6 10 ⁻⁷
Pa-231	3,27 10 ⁴ a	M S	0,005 0,005	2,2 10 ⁻⁴ 7,4 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,3 10 ⁻⁴ 6,9 10 ⁻⁵	1,9 10 ⁻⁴ 5,2 10 ⁻⁵	1,5 10 ⁻⁴ 3,9 10 ⁻⁵	1,5 10 ⁻⁴ 3,6 10 ⁻⁵	1,4 10 ⁻⁴ 3,4 10 ⁻⁵

Nucléide	Période	Tuna	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucleide	physique	Туре	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Pa-232	1,31 d	M S	0,005 0,005	1,9 10 ⁻⁸ 1,0 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{ c c c c } & 1.8 & 10^{-8} \\ & 8.7 & 10^{-9} \end{array}$	1,4 10 ⁻⁸ 5,9 10 ⁻⁹	$\begin{array}{ c c c } 1,1 & 10^{-8} \\ 4,1 & 10^{-9} \end{array}$	1,0 10 ⁻⁸ 3,7 10 ⁻⁹	1,0 10 ⁻⁸ 3,5 10 ⁻⁹
Pa-233	27,0 d	M S	0,005 0,005	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,1 10 ⁻⁸ 1,3 10 ⁻⁸	6,5 10 ⁻⁹ 7,5 10 ⁻⁹	4,7 10 ⁻⁹ 5,5 10 ⁻⁹	4,1 10 ⁻⁹ 4,9 10 ⁻⁹	3,3 10 ⁻⁹ 3,9 10 ⁻⁹
Pa-234	6,70 h	M S	0,005 0,005	2,8 10 ⁻⁹ 2,9 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,0 10 ⁻⁹ 2,1 10 ⁻⁹	1,0 10 ⁻⁹ 1,1 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,7 10 ⁻¹⁰ 5,0 10 ⁻¹⁰	3,8 10 ⁻¹⁰ 4,0 10 ⁻¹⁰
Uranium										
U-230	20,8 d	F M S	0,040 0,040 0,020	$\begin{array}{ c c c c }\hline 3,2 & 10^{-6} \\ 4,9 & 10^{-5} \\ 5,8 & 10^{-5} \\\hline \end{array}$	0,020 0,020 0,002	$\begin{vmatrix} 1.5 \cdot 10^{-6} \\ 3.7 \cdot 10^{-5} \\ 4.4 \cdot 10^{-5} \end{vmatrix}$	$\begin{array}{ c c c c c }\hline 7,2 & 10^{-7} \\ 2,4 & 10^{-5} \\ 2,8 & 10^{-5} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c } 4,1 & 10^{-7} \\ 1,7 & 10^{-5} \\ 2,0 & 10^{-5} \end{array}$	3,8 10 ⁻⁷ 1,3 10 ⁻⁵ 1,6 10 ⁻⁵
U-231	4,20 d	F M S	0,040 0,040 0,020	8,9 10 ⁻¹⁰ 2,4 10 ⁻⁹ 2,6 10 ⁻⁹	0,020 0,020 0,002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4 10 ⁻¹⁰ 5,5 10 ⁻¹⁰ 6,1 10 ⁻¹⁰	1,0 10 ⁻¹⁰ 4,6 10 ⁻¹⁰ 4,9 10 ⁻¹⁰	6,2 10 ⁻¹¹ 3,8 10 ⁻¹⁰ 4,0 10 ⁻¹⁰
U-232	72,0 a	F M S	0,040 0,040 0,020	1,6 10 ⁻⁵ 3,0 10 ⁻⁵ 1,0 10 ⁻⁴	0,020 0,020 0,002	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,9 10 ⁻⁶ 1,6 10 ⁻⁵ 6,6 10 ⁻⁵	6,8 10 ⁻⁶ 1,1 10 ⁻⁵ 4,3 10 ⁻⁵	7,5 10 ⁻⁶ 1,0 10 ⁻⁵ 3,8 10 ⁻⁵	4,0 10 ⁻⁶ 7,8 10 ⁻⁶ 3,7 10 ⁻⁵
U-233	1,58 10 ⁵ a	F M S	0,040 0,040 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,020 0,020 0,002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,4 10 ⁻⁷ 7,2 10 ⁻⁶ 1,9 10 ⁻⁵	8,4 10 ⁻⁷ 4,9 10 ⁻⁶ 1,2 10 ⁻⁵	8,6 10 ⁻⁷ 4,3 10 ⁻⁶ 1,1 10 ⁻⁵	5,8 10 ⁻⁷ 3,6 10 ⁻⁶ 9,6 10 ⁻⁶
U-234	2,44 10 ⁵ a	F M S	0,040 0,040 0,020	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,020 0,020 0,002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,0 10 ⁻⁷ 7,0 10 ⁻⁶ 1,9 10 ⁻⁵	8,0 10 ⁻⁷ 4,8 10 ⁻⁶ 1,2 10 ⁻⁵	8,2 10 ⁻⁷ 4,2 10 ⁻⁶ 1,0 10 ⁻⁵	5,6 10 ⁻⁷ 3,5 10 ⁻⁶ 9,4 10 ⁻⁶
U-235	7,04 10 ⁸ a	F M S	0,040 0,040 0,020	2,0 10 ⁻⁶ 1,3 10 ⁻⁵ 3,0 10 ⁻⁵	0,020 0,020 0,002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,5 10 ⁻⁷ 6,3 10 ⁻⁶ 1,7 10 ⁻⁵	7,5 10 ⁻⁷ 4,3 10 ⁻⁶ 1,1 10 ⁻⁵	7,7 10 ⁻⁷ 3,7 10 ⁻⁶ 9,2 10 ⁻⁶	5,2 10 ⁻⁷ 3,1 10 ⁻⁶ 8,5 10 ⁻⁶
U-236	2,34 10 ⁷ a	F M S	0,040 0,040 0,020	2,0 10 ⁻⁶ 1,4 10 ⁻⁵ 3,1 10 ⁻⁵	0,020 0,020 0,002	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,5 10 ⁻⁷ 6,5 10 ⁻⁶ 1,8 10 ⁻⁵	7,5 10 ⁻⁷ 4,5 10 ⁻⁶ 1,1 10 ⁻⁵	7,8 10 ⁻⁷ 3,9 10 ⁻⁶ 9,5 10 ⁻⁶	5,3 10 ⁻⁷ 3,2 10 ⁻⁶ 8,7 10 ⁻⁶
U-237	6,75 d	F M S	0,040 0,040 0,020	1,8 10 ⁻⁹ 7,8 10 ⁻⁹ 8,7 10 ⁻⁹	0,020 0,020 0,002	1,5 10 ⁻⁹ 5,7 10 ⁻⁹ 6,4 10 ⁻⁹	6,6 10 ⁻¹⁰ 3,3 10 ⁻⁹ 3,7 10 ⁻⁹	4,2 10 ⁻¹⁰ 2,4 10 ⁻⁹ 2,7 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,8 10 ⁻¹⁰ 1,7 10 ⁻⁹ 1,9 10 ⁻⁹
U-238	4,47 10 ⁹ a	F M S	0,040 0,040 0,020	1,9 10 ⁻⁶ 1,2 10 ⁻⁵ 2,9 10 ⁻⁵	0,020 0,020 0,002	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,2 10 ⁻⁷ 5,9 10 ⁻⁶ 1,6 10 ⁻⁵	7,3 10 ⁻⁷ 4,0 10 ⁻⁶ 1,0 10 ⁻⁵	7,4 10 ⁻⁷ 3,4 10 ⁻⁶ 8,7 10 ⁻⁶	5,0 10 ⁻⁷ 2,9 10 ⁻⁶ 8,0 10 ⁻⁶
U-239	0,392 h	F M S	0,040 0,040 0,020	1,0 10 ⁻¹⁰ 1,8 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	0,020 0,020 0,002	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,9 10 ⁻¹¹ 5,6 10 ⁻¹¹ 5,9 10 ⁻¹¹	1,9 10 ⁻¹¹ 3,8 10 ⁻¹¹ 4,0 10 ⁻¹¹	$ \begin{array}{c cccc} 1,2 & 10^{-11} \\ 2,7 & 10^{-11} \\ 2,9 & 10^{-11} \end{array} $	$ \begin{array}{c cccc} 1,0 & 10^{-11} \\ 2,2 & 10^{-11} \\ 2,4 & 10^{-11} \end{array} $
U-240	14,1 h	F M S	0,040 0,040 0,020	2,4 10 ⁻⁹ 4,6 10 ⁻⁹ 4,9 10 ⁻⁹	0,020 0,020 0,002	1,6 10 ⁻⁹ 3,1 10 ⁻⁹ 3,3 10 ⁻⁹	7,1 10 ⁻¹⁰ 1,7 10 ⁻⁹ 1,6 10 ⁻⁹	4,5 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,1 10 ⁻⁹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,0 10 ⁻¹⁰ 5,3 10 ⁻¹⁰ 5,8 10 ⁻¹⁰
Neptunium										
NP-232	0,245 h	F M S	0,005 0,005 0,005	$\begin{array}{ c c c c c }\hline 2,0 & 10^{-10} \\ 8,9 & 10^{-11} \\ 1,2 & 10^{-10} \\ \hline \end{array}$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{ c c c c }\hline 1,9 & 10^{-10} \\ 8,1 & 10^{-11} \\ 9,7 & 10^{-11} \\ \end{array}$	1,2 10 ⁻¹⁰ 5,5 10 ⁻¹¹ 5,8 10 ⁻¹¹	1,1 10 ⁻¹⁰ 4,5 10 ⁻¹¹ 3,9 10 ⁻¹¹	1,1 10 ⁻¹⁰ 4,7 10 ⁻¹¹ 2,5 10 ⁻¹¹	1,2 10 ⁻¹⁰ 5,0 10 ⁻¹¹ 2,4 10 ⁻¹¹
Np-233	0,603 h	F M S	0,005 0,005 0,005	1,1 10 ⁻¹¹ 1,5 10 ⁻¹¹ 1,5 10 ⁻¹¹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,2 10 ⁻¹² 5,5 10 ⁻¹² 5,7 10 ⁻¹²	$\begin{array}{c} 2,5 \ 10^{-12} \\ 3,3 \ 10^{-12} \\ 3,4 \ 10^{-12} \end{array}$	$ \begin{array}{c cccc} 1,4 & 10^{-12} \\ 2,1 & 10^{-12} \\ 2,1 & 10^{-12} \end{array} $	$ \begin{array}{c cccc} 1,1 & 10^{-12} \\ 1,6 & 10^{-12} \\ 1,7 & 10^{-12} \end{array} $
Np-234	4,40 d	F M S	0,005 0,005 0,005	2,9 10 ⁻⁹ 3,8 10 ⁻⁹ 3,9 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,2 10 ⁻⁹ 3,0 10 ⁻⁹ 3,1 10 ⁻⁹	1,1 10 ⁻⁹ 1,6 10 ⁻⁹ 1,6 10 ⁻⁹	7,2 10 ⁻¹⁰ 1,0 10 ⁻⁹ 1,0 10 ⁻⁹	4,3 10 ⁻¹⁰ 6,5 10 ⁻¹⁰ 6,8 10 ⁻¹⁰	$\begin{array}{c} 3,5 \ 10^{-10} \\ 5,3 \ 10^{-10} \\ 5,5 \ 10^{-10} \end{array}$
Np-235	1,08 a	F M S	0,005 0,005 0,005	4,2 10 ⁻⁹ 2,3 10 ⁻⁹ 2,6 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,5 10 ⁻⁹ 1,9 10 ⁻⁹ 2,2 10 ⁻⁹	1,9 10 ⁻⁹ 1,1 10 ⁻⁹ 1,3 10 ⁻⁹	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Np-236	1,15 10 ⁵ a	F M S	0,005 0,005 0,005	8,9 10 ⁻⁶ 3,0 10 ⁻⁶ 1,6 10 ⁻⁶	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	9,1 10 ⁻⁶ 3,1 10 ⁻⁶ 1,6 10 ⁻⁶	7,2 10 ⁻⁶ 2,7 10 ⁻⁶ 1,3 10 ⁻⁶	7,5 10 ⁻⁶ 2,7 10 ⁻⁶ 1,0 10 ⁻⁶	7,9 10 ⁻⁶ 3,1 10 ⁻⁶ 1,0 10 ⁻⁶	8,0 10 ⁻⁶ 3,2 10 ⁻⁶ 1,0 10 ⁻⁶
Np-236	22,5 h	F M S	0,005 0,005 0,005	2,8 10 ⁻⁸ 1,6 10 ⁻⁸ 1,6 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,6 10 ⁻⁸ 1,4 10 ⁻⁸ 1,3 10 ⁻⁸	1,5 10 ⁻⁸ 8,9 10 ⁻⁹ 8,5 10 ⁻⁹	1,1 10 ⁻⁸ 6,2 10 ⁻⁹ 5,7 10 ⁻⁹	8,9 10 ⁻⁹ 5,6 10 ⁻⁹ 4,8 10 ⁻⁹	9,0 10 ⁻⁹ 5,3 10 ⁻⁹ 4,2 10 ⁻⁹

N T .121.1	Période	Т	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide —————	physique	Туре	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Np-237	2,14 10 ⁶ a	F M S	0,005 0,005 0,005	9,8 10 ⁻⁵ 4,4 10 ⁻⁵ 3,7 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	9,3 10 ⁻⁵ 4,0 10 ⁻⁵ 3,2 10 ⁻⁵	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,0 10 ⁻⁵ 2,2 10 ⁻⁵ 1,4 10 ⁻⁵	4,7 10 ⁻⁵ 2,2 10 ⁻⁵ 1,3 10 ⁻⁵	5,0 10 ⁻⁵ 2,3 10 ⁻⁵ 1,2 10 ⁻⁵
Np-238	2,12 d	F M S	0,005 0,005 0,005	9,0 10 ⁻⁹ 7,3 10 ⁻⁹ 8,1 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,9 10 ⁻⁹ 5,8 10 ⁻⁹ 6,2 10 ⁻⁹	4,8 10 ⁻⁹ 3,4 10 ⁻⁹ 3,2 10 ⁻⁹	3,7 10 ⁻⁹ 2,5 10 ⁻⁹ 2,1 10 ⁻⁹	3,3 10 ⁻⁹ 2,2 10 ⁻⁹ 1,7 10 ⁻⁹	3,5 10 ⁻⁹ 2,1 10 ⁻⁹ 1,5 10 ⁻⁹
Np-239	2,36 d	F M S	0,005 0,005 0,005	2,6 10 ⁻⁹ 5,9 10 ⁻⁹ 5,6 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,4 10 ⁻⁹ 4,2 10 ⁻⁹ 4,0 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,8 10 ⁻¹⁰ 1,4 10 ⁻⁹ 1,6 10 ⁻⁹	2,1 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,3 10 ⁻⁹	1,7 10 ⁻¹⁰ 9,3 10 ⁻¹⁰ 1,0 10 ⁻⁹
Np-240	1,08 h	F M S	0,005 0,005 0,005	3,6 10 ⁻¹⁰ 6,3 10 ⁻¹⁰ 6,5 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,6 10 ⁻¹⁰ 4,4 10 ⁻¹⁰ 4,6 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,7 10 ⁻¹¹ 1,0 10 ⁻¹⁰ 1,1 10 ⁻¹⁰	4,0 10 ⁻¹¹ 8,5 10 ⁻¹¹ 9,0 10 ⁻¹¹
Plutonium		,	•			•	•		,	,
Pu-234	8,80 h	F M S	0,005 0,005 1,0 10 ⁻⁴	3,0 10 ⁻⁸ 7,8 10 ⁻⁸ 8,7 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	2,0 10 ⁻⁸ 5,9 10 ⁻⁸ 6,6 10 ⁻⁸	9,8 10 ⁻⁹ 3,7 10 ⁻⁸ 4,2 10 ⁻⁸	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,6 10 ⁻⁹ 2,6 10 ⁻⁸ 3,0 10 ⁻⁸	$\begin{array}{c c} 3,0 & 10^{-9} \\ 2,1 & 10^{-8} \\ 2,4 & 10^{-8} \end{array}$
Pu-235	0,422 h	F M S	0,005 0,005 1,0 10 ⁻⁴	1,0 10 ⁻¹¹ 1,3 10 ⁻¹¹ 1,3 10 ⁻¹¹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	7,9 10 ⁻¹² 1,0 10 ⁻¹¹ 1,0 10 ⁻¹¹	3,9 10 ⁻¹² 5,0 10 ⁻¹² 5,1 10 ⁻¹²	2,2 10 ⁻¹² 2,9 10 ⁻¹² 3,0 10 ⁻¹²	1,3 10 ⁻¹² 1,9 10 ⁻¹² 1,9 10 ⁻¹²	1,0 10 ⁻¹² 1,4 10 ⁻¹² 1,5 10 ⁻¹²
Pu-236	2,85 a	F M S	0,005 0,005 1,0 10 ⁻⁴	1,0 10 ⁻⁴ 4,8 10 ⁻⁵ 3,6 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	9,5 10 ⁻⁵ 4,3 10 ⁻⁵ 3,1 10 ⁻⁵	6,1 10 ⁻⁵ 2,9 10 ⁻⁵ 2,0 10 ⁻⁵	4,4 10 ⁻⁵ 2,1 10 ⁻⁵ 1,4 10 ⁻⁵	3,7 10 ⁻⁵ 1,9 10 ⁻⁵ 1,2 10 ⁻⁵	4,0 10 ⁻⁵ 2,0 10 ⁻⁵ 1,0 10 ⁻⁵
Pu-237	45,3 d	F M S	0,005 0,005 1,0 10 ⁻⁴	2,2 10 ⁻⁹ 1,9 10 ⁻⁹ 2,0 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	1,6 10 ⁻⁹ 1,4 10 ⁻⁹ 1,5 10 ⁻⁹	7,9 10 ⁻¹⁰ 8,2 10 ⁻¹⁰ 8,8 10 ⁻¹⁰	4,8 10 ⁻¹⁰ 5,4 10 ⁻¹⁰ 5,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,6 10 ⁻¹⁰ 3,5 10 ⁻¹⁰ 3,9 10 ⁻¹⁰
Pu-238	87,7 a	F M S	0,005 0,005 1,0 10 ⁻⁴	2,0 10 ⁻⁴ 7,8 10 ⁻⁵ 4,5 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	1,9 10 ⁻⁴ 7,4 10 ⁻⁵ 4,0 10 ⁻⁵	1,4 10 ⁻⁴ 5,6 10 ⁻⁵ 2,7 10 ⁻⁵	1,1 10 ⁻⁴ 4,4 10 ⁻⁵ 1,9 10 ⁻⁵	1,0 10 ⁻⁴ 4,3 10 ⁻⁵ 1,7 10 ⁻⁵	1,1 10 ⁻⁴ 4,6 10 ⁻⁵ 1,6 10 ⁻⁵
Pu-239	2,41 10 ⁴ a	F M S	0,005 0,005 1,0 10 ⁻⁴	2,1 10 ⁻⁴ 8,0 10 ⁻⁵ 4,3 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	2,0 10 ⁻⁴ 7,7 10 ⁻⁵ 3,9 10 ⁻⁵	1,5 10 ⁻⁴ 6,0 10 ⁻⁵ 2,7 10 ⁻⁵	1,2 10 ⁻⁴ 4,8 10 ⁻⁵ 1,9 10 ⁻⁵	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2 10 ⁻⁴ 5,0 10 ⁻⁵ 1,6 10 ⁻⁵
Pu-240	6,54 10 ³ a	F M S	0,005 0,005 1,0 10 ⁻⁴	2,1 10 ⁻⁴ 8,0 10 ⁻⁵ 4,3 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	$\begin{array}{ c c c c c c }\hline 2,0 & 10^{-4} \\ 7,7 & 10^{-5} \\ 3,9 & 10^{-5} \\\hline \end{array}$	$ \begin{array}{c cccc} 1,5 & 10^{-4} \\ 6,0 & 10^{-5} \\ 2,7 & 10^{-5} \end{array} $	1,2 10 ⁻⁴ 4,8 10 ⁻⁵ 1,9 10 ⁻⁵	$\begin{array}{ c c c c c }\hline 1,1 & 10^{-4} \\ 4,7 & 10^{-5} \\ 1,7 & 10^{-5} \\ \end{array}$	1,2 10 ⁻⁴ 5,0 10 ⁻⁵ 1,6 10 ⁻⁵
Pu-241	14,4 a	F M S	0,005 0,005 1,0 10 ⁻⁴	2,8 10 ⁻⁶ 9,1 10 ⁻⁷ 2,2 10 ⁻⁷	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	2,9 10 ⁻⁶ 9,7 10 ⁻⁷ 2,3 10 ⁻⁷	2,6 10 ⁻⁶ 9,2 10 ⁻⁷ 2,0 10 ⁻⁷	2,4 10 ⁻⁶ 8,3 10 ⁻⁷ 1,7 10 ⁻⁷	2,2 10 ⁻⁶ 8,6 10 ⁻⁷ 1,7 10 ⁻⁷	2,3 10 ⁻⁶ 9,0 10 ⁻⁷ 1,7 10 ⁻⁷
Pu-242	3,76 10 ⁵ a	F M S	0,005 0,005 1,0 10 ⁻⁴	2,0 10 ⁻⁴ 7,6 10 ⁻⁵ 4,0 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	1,9 10 ⁻⁴ 7,3 10 ⁻⁵ 3,6 10 ⁻⁵	1,4 10 ⁻⁴ 5,7 10 ⁻⁵ 2,5 10 ⁻⁵	1,2 10 ⁻⁴ 4,5 10 ⁻⁵ 1,7 10 ⁻⁵	1,1 10 ⁻⁴ 4,5 10 ⁻⁵ 1,6 10 ⁻⁵	1,1 10 ⁻⁴ 4,8 10 ⁻⁵ 1,5 10 ⁻⁵
Pu-243	4,95 h	F M S	0,005 0,005 1,0 10 ⁻⁴	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8,8 10 ⁻¹¹ 1,9 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	5,7 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	3,5 10 ⁻¹¹ 8,7 10 ⁻¹¹ 9,2 10 ⁻¹¹	3,2 10 ⁻¹¹ 8,3 10 ⁻¹¹ 8,6 10 ⁻¹¹
Pu-244	8,26 10 ⁷ a	F M S	0,005 0,005 1,0 10 ⁻⁴	2,0 10 ⁻⁴ 7,4 10 ⁻⁵ 3,9 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	1,9 10 ⁻⁴ 7,2 10 ⁻⁵ 3,5 10 ⁻⁵	1,4 10 ⁻⁴ 5,6 10 ⁻⁵ 2,4 10 ⁻⁵	1,2 10 ⁻⁴ 4,5 10 ⁻⁵ 1,7 10 ⁻⁵	1,1 10 ⁻⁴ 4,4 10 ⁻⁵ 1,5 10 ⁻⁵	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Pu-245	10,5 h	F M S	0,005 0,005 1,0 10 ⁻⁴	1,8 10 ⁻⁹ 3,6 10 ⁻⁹ 3,8 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	1,3 10 ⁻⁹ 2,5 10 ⁻⁹ 2,6 10 ⁻⁹	5,6 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,3 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccc} 1,9 & 10^{-10} \\ 5,0 & 10^{-10} \\ 5,4 & 10^{-10} \end{array} $	1,6 10 ⁻¹⁰ 4,0 10 ⁻¹⁰ 4,3 10 ⁻¹⁰
Pu-246	10,9 d	F M S	0,005 0,005 1,0 10 ⁻⁴	2,0 10 ⁻⁸ 3,5 10 ⁻⁸ 3,8 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 1,0 10 ⁻⁵	$\begin{array}{ c c c c }\hline 1,4 & 10^{-8} \\ 2,6 & 10^{-8} \\ 2,8 & 10^{-8} \\ \end{array}$	7,0 10 ⁻⁹ 1,5 10 ⁻⁸ 1,6 10 ⁻⁸	4,4 10 ⁻⁹ 1,1 10 ⁻⁸ 1,2 10 ⁻⁸	2,8 10 ⁻⁹ 9,1 10 ⁻⁹ 1,0 10 ⁻⁸	2,5 10 ⁻⁹ 7,4 10 ⁻⁹ 8,0 10 ⁻⁹
Américium										
Am-237	1,22 h	F M S	0,005 0,005 0,005	$\begin{array}{ c c c c c c }\hline 9,8 & 10^{-11} \\ 1,7 & 10^{-10} \\ 1,7 & 10^{-10} \\ \hline \end{array}$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{ c c c c c c }\hline 7,3 & 10^{-11} \\ 1,2 & 10^{-10} \\ 1,3 & 10^{-10} \\ \hline \end{array}$	$\begin{array}{ c c c c c c }\hline 3,5 & 10^{-11} \\ 6,2 & 10^{-11} \\ 6,5 & 10^{-11} \\ \hline \end{array}$	$\begin{array}{ c c c c c }\hline 2,2 & 10^{-11} \\ 4,1 & 10^{-11} \\ 4,3 & 10^{-11} \\ \end{array}$	$\begin{array}{ c c c c c }\hline 1,3 & 10^{-11} \\ 3,0 & 10^{-11} \\ 3,2 & 10^{-11} \\ \end{array}$	$\begin{array}{ c c c c } & 1,1 & 10^{-11} \\ & 2,5 & 10^{-11} \\ & 2,6 & 10^{-11} \end{array}$
Am-238	1,63 h	F M S	0,005 0,005 0,005	$\begin{vmatrix} 4,1 & 10^{-10} \\ 3,1 & 10^{-10} \\ 2,7 & 10^{-10} \end{vmatrix}$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c }\hline 2,5 & 10^{-10} \\ 1,3 & 10^{-10} \\ 1,3 & 10^{-10} \\ \end{array}$	2,0 10 ⁻¹⁰ 9,6 10 ⁻¹¹ 8,2 10 ⁻¹¹	1,8 10 ⁻¹⁰ 8,8 10 ⁻¹¹ 6,1 10 ⁻¹¹	1,9 10 ⁻¹⁰ 9,0 10 ⁻¹¹ 5,4 10 ⁻¹¹

Nucléide	Période	Type	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
rancieide	physique	1 ype	f ₁	h(g)	f ₁	h(g)	h(g)	h(g)	h(g)	h(g)
Am-239	11,9 h	F M S	0,005 0,005 0,005	8,1 10 ⁻¹⁰ 1,5 10 ⁻⁹ 1,6 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,8 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,1 10 ⁻⁹	2,6 10 ⁻¹⁰ 5,6 10 ⁻¹⁰ 5,9 10 ⁻¹⁰	1,6 10 ⁻¹⁰ 3,7 10 ⁻¹⁰ 4,0 10 ⁻¹⁰	9,1 10 ⁻¹¹ 2,7 10 ⁻¹⁰ 2,5 10 ⁻¹⁰	$\begin{array}{ c c c c c } \hline 7,6 & 10^{-11} \\ 2,2 & 10^{-10} \\ 2,4 & 10^{-10} \\ \hline \end{array}$
Am-240	2,12 d	F M S	0,005 0,005 0,005	2,0 10 ⁻⁹ 2,9 10 ⁻⁹ 3,0 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,7 10 ⁻⁹ 2,2 10 ⁻⁹ 2,3 10 ⁻⁹	8,8 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,2 10 ⁻⁹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,6 10 ⁻¹⁰ 5,3 10 ⁻¹⁰ 5,3 10 ⁻¹⁰	2,3 10 ⁻¹⁰ 4,3 10 ⁻¹⁰ 4,3 10 ⁻¹⁰
Am-241	4,32 10 ² a	F M S	0,005 0,005 0,005	1,8 10 ⁻⁴ 7,3 10 ⁻⁵ 4,6 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,8 10 ⁻⁴ 6,9 10 ⁻⁵ 4,0 10 ⁻⁵	1,2 10 ⁻⁴ 5,1 10 ⁻⁵ 2,7 10 ⁻⁵	1,0 10 ⁻⁴ 4,0 10 ⁻⁵ 1,9 10 ⁻⁵	9,2 10 ⁻⁵ 4,0 10 ⁻⁵ 1,7 10 ⁻⁵	9,6 10 ⁻⁵ 4,2 10 ⁻⁵ 1,6 10 ⁻⁵
Am-242	16,0 h	F M S	0,005 0,005 0,005	9,2 10 ⁻⁸ 7,6 10 ⁻⁸ 8,0 10 ⁻⁸	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,1 10 ⁻⁸ 5,9 10 ⁻⁸ 6,2 10 ⁻⁸	3,5 10 ⁻⁸ 3,6 10 ⁻⁸ 3,9 10 ⁻⁸	2,1 10 ⁻⁸ 2,4 10 ⁻⁸ 2,7 10 ⁻⁸	1,4 10 ⁻⁸ 2,1 10 ⁻⁸ 2,4 10 ⁻⁸	$ \begin{array}{c cccc} 1,1 & 10^{-8} \\ 1,7 & 10^{-8} \\ 2,0 & 10^{-8} \end{array} $
Am-242m	1,52 10 ² a	F M S	0,005 0,005 0,005	1,6 10 ⁻⁴ 5,2 10 ⁻⁵ 2,5 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,5 10 ⁻⁴ 5,3 10 ⁻⁵ 2,4 10 ⁻⁵	1,1 10 ⁻⁴ 4,1 10 ⁻⁵ 1,7 10 ⁻⁵	9,4 10 ⁻⁵ 3,4 10 ⁻⁵ 1,2 10 ⁻⁵	8,8 10 ⁻⁵ 3,5 10 ⁻⁵ 1,1 10 ⁻⁵	9,2 10 ⁻⁵ 3,7 10 ⁻⁵ 1,1 10 ⁻⁵
Am-243	7,38 10 ³ a	F M S	0,005 0,005 0,005	1,8 10 ⁻⁴ 7,2 10 ⁻⁵ 4,4 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,7 10 ⁻⁴ 6,8 10 ⁻⁵ 3,9 10 ⁻⁵	1,2 10 ⁻⁴ 5,0 10 ⁻⁵ 2,6 10 ⁻⁵	1,0 10 ⁻⁴ 4,0 10 ⁻⁵ 1,8 10 ⁻⁵	9,1 10 ⁻⁵ 4,0 10 ⁻⁵ 1,6 10 ⁻⁵	9,6 10 ⁻⁵ 4,1 10 ⁻⁵ 1,5 10 ⁻⁵
Am-244	10,1 h	F M S	0,005 0,005 0,005	1,0 10 ⁻⁸ 6,0 10 ⁻⁹ 6,1 10 ⁻⁹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	9,2 10 ⁻⁹ 5,0 10 ⁻⁹ 4,8 10 ⁻⁹	5,6 10 ⁻⁹ 3,2 10 ⁻⁹ 2,4 10 ⁻⁹	4,1 10 ⁻⁹ 2,2 10 ⁻⁹ 1,6 10 ⁻⁹	3,5 10 ⁻⁹ 2,0 10 ⁻⁹ 1,4 10 ⁻⁹	3,7 10 ⁻⁹ 2,0 10 ⁻⁹ 1,2 10 ⁻⁹
Am-244m	0,433 h	F M S	0,005 0,005 0,005	4,6 10 ⁻¹⁰ 3,3 10 ⁻¹⁰ 3,0 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,0 10 ⁻¹⁰ 2,1 10 ⁻¹⁰ 2,2 10 ⁻¹⁰	2,4 10 ⁻¹⁰ 1,3 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	1,8 10 ⁻¹⁰ 9,2 10 ⁻¹¹ 8,1 10 ⁻¹¹	1,5 10 ⁻¹⁰ 8,3 10 ⁻¹¹ 5,5 10 ⁻¹¹	1,6 10 ⁻¹⁰ 8,4 10 ⁻¹¹ 5,7 10 ⁻¹¹
Am-245	2,05 h	F M S	0,005 0,005 0,005	2,1 10 ⁻¹⁰ 3,9 10 ⁻¹⁰ 4,1 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,4 10 ⁻¹⁰ 2,6 10 ⁻¹⁰ 2,8 10 ⁻¹⁰	6,2 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	4,0 10 ⁻¹¹ 8,7 10 ⁻¹¹ 9,2 10 ⁻¹¹	2,4 10 ⁻¹¹ 6,4 10 ⁻¹¹ 6,8 10 ⁻¹¹	2,1 10 ⁻¹¹ 5,3 10 ⁻¹¹ 5,6 10 ⁻¹¹
Am-246	0,650 h	F M S	0,005 0,005 0,005	3,0 10 ⁻¹⁰ 5,0 10 ⁻¹⁰ 5,3 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,3 10 ⁻¹¹ 1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,8 10 ⁻¹¹ 7,9 10 ⁻¹¹ 8,3 10 ⁻¹¹	3,3 10 ⁻¹¹ 6,6 10 ⁻¹¹ 6,9 10 ⁻¹¹
Am-246m	0,417 h	F M S	0,005 0,005 0,005	1,3 10 ⁻¹⁰ 1,9 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,9 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	4,2 10 ⁻¹¹ 6,1 10 ⁻¹¹ 6,4 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,6 10 ⁻¹¹ 2,6 10 ⁻¹¹ 2,7 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Curium										
Cm-238	2,40 h	F M S	0,005 0,005 0,005	$\begin{array}{ c c c c c }\hline 7,7 & 10^{-9} \\ 2,1 & 10^{-8} \\ 2,2 & 10^{-8} \\ \end{array}$	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,4 10 ⁻⁹ 1,5 10 ⁻⁸ 1,6 10 ⁻⁸	2,6 10 ⁻⁹ 7,9 10 ⁻⁹ 8,6 10 ⁻⁹	1,8 10 ⁻⁹ 5,9 10 ⁻⁹ 6,4 10 ⁻⁹	9,2 10 ⁻¹⁰ 5,6 10 ⁻⁹ 6,1 10 ⁻⁹	7,8 10 ⁻¹⁰ 4,5 10 ⁻⁹ 4,9 10 ⁻⁹
Cm-240	27,0 d	F M S	0,005 0,005 0,005	8,3 10 ⁻⁶ 1,2 10 ⁻⁵ 1,3 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	6,3 10 ⁻⁶ 9,1 10 ⁻⁶ 9,9 10 ⁻⁶	3,2 10 ⁻⁶ 5,8 10 ⁻⁶ 6,4 10 ⁻⁶	2,0 10 ⁻⁶ 4,2 10 ⁻⁶ 4,6 10 ⁻⁶	1,5 10 ⁻⁶ 3,8 10 ⁻⁶ 4,3 10 ⁻⁶	1,3 10 ⁻⁶ 3,2 10 ⁻⁶ 3,5 10 ⁻⁶
Cm-241	32,8 d	F M S	0,005 0,005 0,005	1,1 10 ⁻⁷ 1,3 10 ⁻⁷ 1,4 10 ⁻⁷	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,9 10 ⁻⁸ 1,0 10 ⁻⁷ 1,1 10 ⁻⁷	4,9 10 ⁻⁸ 6,6 10 ⁻⁸ 6,9 10 ⁻⁸	3,5 10 ⁻⁸ 4,8 10 ⁻⁸ 4,9 10 ⁻⁸	2,8 10 ⁻⁸ 4,4 10 ⁻⁸ 4,5 10 ⁻⁸	$\begin{array}{c} 2,7 \ 10^{-8} \\ 3,7 \ 10^{-8} \\ 3,7 \ 10^{-8} \end{array}$
Cm-242	163 d	F M S	0,005 0,005 0,005	2,7 10 ⁻⁵ 2,2 10 ⁻⁵ 2,4 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,1 10 ⁻⁵ 1,8 10 ⁻⁵ 1,9 10 ⁻⁵	1,0 10 ⁻⁵ 1,1 10 ⁻⁵ 1,2 10 ⁻⁵	6,1 10 ⁻⁶ 7,3 10 ⁻⁶ 8,2 10 ⁻⁶	4,0 10 ⁻⁶ 6,4 10 ⁻⁶ 7,3 10 ⁻⁶	3,3 10 ⁻⁶ 5,2 10 ⁻⁶ 5,9 10 ⁻⁶
Cm-243	28,5 a	F M S	0,005 0,005 0,005	1,6 10 ⁻⁴ 6,7 10 ⁻⁵ 4,6 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,5 10 ⁻⁴ 6,1 10 ⁻⁵ 4,0 10 ⁻⁵	9,5 10 ⁻⁵ 4,2 10 ⁻⁵ 2,6 10 ⁻⁵	7,3 10 ⁻⁵ 3,1 10 ⁻⁵ 1,8 10 ⁻⁵	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Cm-244	18,1 a	F M S	0,005 0,005 0,005	1,5 10 ⁻⁴ 6,2 10 ⁻⁵ 4,4 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,3 10 ⁻⁴ 5,7 10 ⁻⁵ 3,8 10 ⁻⁵	8,3 10 ⁻⁵ 3,7 10 ⁻⁵ 2,5 10 ⁻⁵	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,3 10 ⁻⁵ 2,6 10 ⁻⁵ 1,5 10 ⁻⁵	5,7 10 ⁻⁵ 2,7 10 ⁻⁵ 1,3 10 ⁻⁵
Cm-245	8,50 10 ³ a	F M S	0,005 0,005 0,005	1,9 10 ⁻⁴ 7,3 10 ⁻⁵ 4,5 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,8 10 ⁻⁴ 6,9 10 ⁻⁵ 4,0 10 ⁻⁵	1,2 10 ⁻⁴ 5,1 10 ⁻⁵ 2,7 10 ⁻⁵	1,0 10 ⁻⁴ 4,1 10 ⁻⁵ 1,9 10 ⁻⁵	9,4 10 ⁻⁵ 4,1 10 ⁻⁵ 1,7 10 ⁻⁵	9,9 10 ⁻⁵ 4,2 10 ⁻⁵ 1,6 10 ⁻⁵
Cm-246	4,73 10 ³ a	F M S	0,005 0,005 0,005	1,9 10 ⁻⁴ 7,3 10 ⁻⁵ 4,6 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,8 10 ⁻⁴ 6,9 10 ⁻⁵ 4,0 10 ⁻⁵	1,2 10 ⁻⁴ 5,1 10 ⁻⁵ 2,7 10 ⁻⁵	1,0 10 ⁻⁴ 4,1 10 ⁻⁵ 1,9 10 ⁻⁵	9,4 10 ⁻⁵ 4,1 10 ⁻⁵ 1,7 10 ⁻⁵	9,8 10 ⁻⁵ 4,2 10 ⁻⁵ 1,6 10 ⁻⁵

NI. Jail.	Période	т	Âge	≤ 1 a	Âge	1-2 a	2-7 a	7-12 a	12-17 a	> 17 a
Nucléide	physique	Туре	f ₁	h(g)	f_1	h(g)	h(g)	h(g)	h(g)	h(g)
Cm-247	1,56 10 ⁷ a	F M S	0,005 0,005 0,005	1,7 10 ⁻⁴ 6,7 10 ⁻⁵ 4,1 10 ⁻⁵	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,6 10 ⁻⁴ 6,3 10 ⁻⁵ 3,6 10 ⁻⁵	1,1 10 ⁻⁴ 4,7 10 ⁻⁵ 2,4 10 ⁻⁵	9,4 10 ⁻⁵ 3,7 10 ⁻⁵ 1,7 10 ⁻⁵	8,6 10 ⁻⁵ 3,7 10 ⁻⁵ 1,5 10 ⁻⁵	9,0 10 ⁻⁵ 3,9 10 ⁻⁵ 1,4 10 ⁻⁵
Cm-248	3,39 10 ⁵ a	F M S	0,005 0,005 0,005	6,8 10 ⁻⁴ 2,5 10 ⁻⁴ 1,4 10 ⁻⁴	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	6,5 10 ⁻⁴ 2,4 10 ⁻⁴ 1,2 10 ⁻⁴	4,5 10 ⁻⁴ 1,8 10 ⁻⁴ 8,2 10 ⁻⁵	3,7 10 ⁻⁴ 1,4 10 ⁻⁴ 5,6 10 ⁻⁵	3,4 10 ⁻⁴ 1,4 10 ⁻⁴ 5,0 10 ⁻⁵	3,6 10 ⁻⁴ 1,5 10 ⁻⁴ 4,8 10 ⁻⁵
Cm-249	1,07 h	F M S	0,005 0,005 0,005	1,8 10 ⁻¹⁰ 2,4 10 ⁻¹⁰ 2,4 10 ⁻¹⁰	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	9,8 10 ⁻¹¹ 1,6 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	5,9 10 ⁻¹¹ 8,2 10 ⁻¹¹ 7,8 10 ⁻¹¹	4,6 10 ⁻¹¹ 5,8 10 ⁻¹¹ 5,3 10 ⁻¹¹	4,0 10 ⁻¹¹ 3,7 10 ⁻¹¹ 3,9 10 ⁻¹¹	4,0 10 ⁻¹¹ 3,3 10 ⁻¹¹ 3,3 10 ⁻¹¹
Cm-250	6,90 10 ³ a	F M S	0,005 0,005 0,005	3,9 10 ⁻³ 1,4 10 ⁻³ 7,2 10 ⁻⁴	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,7 10 ⁻³ 1,3 10 ⁻³ 6,5 10 ⁻⁴	2,6 10 ⁻³ 9,9 10 ⁻⁴ 4,4 10 ⁻⁴	2,1 10 ⁻³ 7,9 10 ⁻⁴ 3,0 10 ⁻⁴	2,0 10 ⁻³ 7,9 10 ⁻⁴ 2,7 10 ⁻⁴	2,1 10 ⁻³ 8,4 10 ⁻⁴ 2,6 10 ⁻⁴
Berkélium	'	!	T -							•
Bk-245	4,94 d	M	0,005	8,8 10-9	5,0 10-4	6,6 10-9	4, 0 10 ⁻⁹	2,9 10-9	2,6 10-9	2,1 10-9
Bk-246	1,83 d	M	0,005	2,1 10-9	5,0 10-4	1,7 10-9	9,3 10 ⁻¹⁰	6,0 10 ⁻¹⁰	4,0 10 ⁻¹⁰	3,3 10 ⁻¹⁰
Bk-247	$1,38 10^3 a$	M	0,005	1,5 10-4	5,0 10-4	1,5 10-4	1,1 10-4	7,9 10 ⁻⁵	7,2 10 ⁻⁵	6,9 10-5
Bk-249	320 d	M	0,005	3,3 10 ⁻⁷	5,0 10-4	3,3 10 ⁻⁷	2,4 10 ⁻⁷	1,8 10 ⁻⁷	1,6 10 ⁻⁷	1,6 10 ⁻⁷
Bk-250	3,22 h	М	0,005	3,4 10-9	5,0 10-4	3,1 10-9	2,0 10-9	1,3 10-9	1,1 10-9	1,0 10-9
Californium		ı	1 /	,	,	1 ′	1 ′	1 ′	'	1 '
Cf-244	0,323 h	M	0,005	7,6 10-8	5,0 10-4	5,4 10-8	2,8 10-8	2,0 10-8	1,6 10-8	1,4 10-8
Cf-246	1,49 d	M	0,005	1,7 10-6	5,0 10-4	1,3 10-6	8,3 10 ⁻⁷	6,1 10 ⁻⁷	5,7 10 ⁻⁷	4,5 10 ⁻⁷
Cf-248	334 d	M	0,005	3,8 10-5	5,0 10-4	3,2 10-5	2,1 10 ⁻⁵	1,4 10-5	1,0 10-5	8,8 10 ⁻⁶
Cf-249	$350 \ 10^2 \ a$	M	0,005	1,6 10-4	5,0 10-4	1,5 10-4	1,1 10-4	8,0 10-5	7,2 10-5	7,0 10 ⁻⁵
Cf-250	13,1 a	M	0,005	1,1 10-4	5,0 10-4	9,8 10-5	6,6 10-5	4,2 10-5	3,5 10-5	3,4 10 ⁻⁵
Cf-251	$8,98 \cdot 10^2 \text{ a}$	M	0,005	1,6 10-4	5,0 10-4	1,5 10-4	1,1 10-4	8,1 10-5	7,3 10-5	7,1 10-5
Cf-252	2,64 a	M	0,005	9,7 10-5	5,0 10-4	8,7 10-5	5,6 10-5	3,2 10-5	2,2 10-5	2,0 10-5
Cf-253	17,8 d	M	0,005	5,4 10-6	5,0 10-4	4,2 10-6	2,6 10-6	1,9 10-6	1,7 10-6	1,3 10-6
Cf-254	60,5 d	M	0,005	2,5 10-4	5,0 10-4	1,9 10-4	1,1 10-4	7,0 10-5	4,8 10-5	4,1 10-5
Einsteinium			•			•	•			
Es-250	2,10 h	M	0,005	2,0 10-9	5,0 10-4	1,8 10-9	1,2 10-9	7,8 10-10	6,4 10-10	6,3 10-10
Es-251	1,38 d	M	0,005	7,9 10-9	5,0 10-4	6,0 10-9	3,9 10-9	2,8 10-9	2,6 10-9	2,1 10-9
Es-253	20,5 d	M	0,005	1,1 10-5	5,0 10-4	8,0 10-6	5,1 10-6	3,7 10-6	3,4 10-6	2,7 10-6
Es-254	276 d	M	0,005	3,7 10-5	5,0 10-4	3,1 10-5	2,0 10-5	1,3 10 ⁻⁵	1,0 10-5	8,6 10-6
Es-254m	1,64 d	M	0,005	1,7 10-6	5,0 10-4	1,3 10-6	8,4 10 ⁻⁷	6,3 10 ⁻⁷	5,9 10 ⁻⁷	4,7 10 ⁻⁷
Fermium										
Fm-252	22,7 h	M	0,005	1,2 10-6	5,0 10-4	9,0 10-7	5,8 10 ⁻⁷	4,3 10 ⁻⁷	4, 0 10 ⁻⁷	3,2 10-7
Fm-253	3,00 d	M	0,005	1,5 10-6	5,0 10-4	1,2 10-6	7,3 10 ⁻⁷	5,4 10 ⁻⁷	5,0 10 ⁻⁷	4,0 10-7
Fm-254	3,24 h	M	0,005	3,2 10-7	5,0 10-4	2,3 10 ⁻⁷	1,3 10 ⁻⁷	9,8 10-8	7,6 10-8	6,1 10-8
Fm-255	20,1 h	M	0,005	1,2 10-6	5,0 10-4	7,3 10 ⁻⁷	4,7 10 ⁻⁷	3,5 10 ⁻⁷	3,4 10 ⁻⁷	2,7 10 ⁻⁷
Fm-257	101 d	M	0,005	3,3 10-5	5,0 10-4	2,6 10-5	1,6 10-5	1,1 10-5	8,8 10-6	7,1 10-6
Mendéléviur	n .									
Md-257	5,20 h	M	0,005	1,0 10-7	5,0 10-4	8,2 10-8	5,1 10-8	3,6 10-8	3,1 10-8	2,5 10-8
Md-258	55,0 d	M	0,005	2,4 10 ⁻⁵	5,0 10-4	1,9 10-5	1,2 10-5	8,6 10-6	7,3 10-6	5,9 10-6
		<u> </u>	L	<u> </u>		l		<u></u>	l	1

TABLEAU C 1 Coefficients de dose efficace (Sv Bq⁻¹)

NT 12:1	Période			Inhalation		J.	ngestion
Nucléide	physique	Type	f ₁	h(g) _{1µm}	h(g) _{5μm}	f ₁	h(g)
Hydrogène							
Eau tritiée	12,3 a	Doses	par inhalatior	n: voir tableau C 2		1,000	1,8 10-11
OBT	12,3 a	Doses	par inhalatior	n: voir tableau C 2		1,000	4,2 10 ⁻¹¹
Beryllium							
Be-7	53,3 d	M S	0,005 0,005	4,8 10 ⁻¹¹ 5,2 10 ⁻¹¹	4,3 10 ⁻¹¹ 4,6 10 ⁻¹¹	0,005	2,8 10 ⁻¹¹
Be-10	1,60 10 ⁶ a	M S	0,005 0,005	9,1 10 ⁻⁹ 3,2 10 ⁻⁸	6,7 10 ⁻⁹ 1,9 10 ⁻⁸	0,005	1,1 10-9
Carbone							
C-11	0,340 h	Doses	par inhalatior	n: voir tableau C 2		1,000	2,4 10-11
C-14	$5,73 \ 10^3 \ a$	Doses	par inhalatior	n: voir tableau C 2		1,000	5,8 10 ⁻¹⁰
Fluor							
F-18	1,83 h	F M S	1,000 1,000 1,000	3,0 10 ⁻¹¹ 5,7 10 ⁻¹¹ 6,0 10 ⁻¹¹	5,4 10 ⁻¹¹ 8,9 10 ⁻¹¹ 9,3 10 ⁻¹¹	1,000	4,9 10 ⁻¹¹
Sodium				•	•	•	
Na-22	2,60 a	F	1,000	1,3 10-9	2,0 10 ⁻⁹	1,000	3,2 10-9
Na-24	15,0 h	F	1,000	2,9 10 ⁻¹⁰	5,3 10 ⁻¹⁰	1,000	4,3 10 ⁻¹⁰
Magnésium							
Mg-28	20,9 h	F M	0,500 0,500	6,4 10 ⁻¹⁰ 1,2 10 ⁻⁹	1,1 10 ⁻⁹ 1,7 10 ⁻⁹	0,500	2,2 10 ⁻⁹
Aluminium							
Al-26	7,16 10 ⁵ a	F M	0,010 0,010	$\begin{array}{ c c c c }\hline & 1,1 & 10^{-8} \\ & 1,8 & 10^{-8} \\ \hline \end{array}$	1,4 10 ⁻⁸ 1,2 10 ⁻⁸	0,010	3,5 10 ⁻⁹
Silicium							
Si-31	2,62 h	F M S	0,010 0,010 0,010	2,9 10 ⁻¹¹ 7,5 10 ⁻¹¹ 8,0 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010	1,6 10-10
Si-32	4,50 10 ² a	F M S	0,010 0,010 0,010	3,2 10 ⁻⁹ 1,5 10 ⁻⁸ 1,1 10 ⁻⁷	3,7 10 ⁻⁹ 9,6 10 ⁻⁹ 5,5 10 ⁻⁸	0,010	5,6 10 ⁻¹⁰
Phosphore	•		•	•	•		
P-32	14,3 d	F M	0,800 0,800	8,0 10 ⁻¹⁰ 3,2 10 ⁻⁹	1,1 10 ⁻⁹ 2,9 10 ⁻⁹	0,800	2,4 10-9
?-33	25,4 d	F M	0,800 0,800	9,6 10 ⁻¹¹ 1,4 10 ⁻⁹	1,4 10 ⁻¹⁰ 1,3 10 ⁻⁹	0,800	2,4 10-10
Soufre							•
S-35 (inorganique)	87,4 d	F M	0,800 0,800	5,3 10 ⁻¹¹ 1,3 10 ⁻⁹	8,0 10 ⁻¹⁰ 1,1 10 ⁻⁹	0,800 0,100	1,4 10 ⁻¹⁰ 1,9 10 ⁻¹⁰
S-35 (organique)	87,4 d	Doses	par inhalatior	ı: voir tableau C 2		1,000	7,7 10-10

OBT: Tritium dans un composé organique. F: clairance pulmonaire rapide. M: clairance pulmonaire moyenne. S: clairance pulmonaire lente.

N. 101	Période			Inhalation		In	gestion
Nucléide	physique	Туре	f ₁	h(g) _{1μm}	h(g) _{5μm}	f ₁	h(g)
Chlore							
Cl-36	3,01 10 ⁵ a	F M	1,000 1,000	3,4 10 ⁻¹⁰ 6,9 10 ⁻⁹	4,9 10 ⁻¹⁰ 5,1 10 ⁻⁹	1,000	9,3 10 ⁻¹⁰
Cl-38	0,620 h	F M	1,000 1,000	2,7 10 ⁻¹¹ 4,7 10 ⁻¹¹	4,6 10 ⁻¹¹ 7,3 10 ⁻¹¹	1,000	1,2 10 ⁻¹⁰
Cl-39	0,927 h	F M	1,000 1,000	2,7 10 ⁻¹¹ 4,8 10 ⁻¹¹	4,8 10 ⁻¹¹ 7,6 10 ⁻¹¹	1,000	8,5 10 ⁻¹¹
Potassium							
C-4 0	1,28 10 ⁹ a	F	1,000	2,1 10-9	3,0 10-9	1,000	6,2 10-9
ζ-42	12,4 h	F	1,000	$1,3 \ 10^{-10}$	2,0 10 ⁻¹⁰	1,000	4,3 10 ⁻¹⁰
C-4 3	22,6 h	F	1,000	1,5 10 ⁻¹⁰	2,6 10 ⁻¹⁰	1,000	2,5 10 ⁻¹⁰
C-44	0,369 h	F	1,000	$2,1 \ 10^{-11}$	3,7 10-11	1,000	8,4 10 ⁻¹¹
C-45	0,333 h	F	1,000	1,6 10 ⁻¹¹	2,8 10 ⁻¹¹	1,000	5,4 10 ⁻¹¹
Calcium							
Ca-41	1,40 10 ⁵ a	M	0,300	$1,7 \ 10^{-10}$	1,9 10-10	0,300	2,9 10 ⁻¹⁰
Ca-45	163 d	М	0,300	$2,7 \ 10^{-9}$	2,3 10 ⁻⁹	0,300	7,6 10 ⁻¹⁰
Ca-47	4,53 d	M	0,300	1,8 10 ⁻⁹	2,1 10 ⁻⁹	0,300	1,6 10 ⁻⁹
candium							
c-43	3,89 h	S	1,0 10-4	$1,2 \ 10^{-10}$	1,8 10 ⁻¹⁰	1,0 10-4	1,9 10 ⁻¹⁰
c-44	3,93 h	S	1,0 10-4	1,9 10 ⁻¹⁰	3,0 10 ⁻¹⁰	1,0 10-4	3,5 10 ⁻¹⁰
c-44m	2,44 d	S	1,0 10-4	1,5 10-9	2,0 10-9	1,0 10-4	2,4 10 ⁻⁹
c-46	83,8 d	S	1,0 10-4	6,4 10 ⁻⁹	4,8 10-9	1,0 10 ⁻⁴	1,5 10 ⁻⁹
6c-47	3,35 d	S	1,0 10-4	7,0 10 ⁻¹⁰	7,3 10 ⁻¹⁰	1,0 10-4	5,4 10 ⁻¹⁰
Sc-48	1,82 d	S	1,0 10 ⁻⁴	1,1 10-9	1,6 10-9	1,0 10-4	1,7 10-9
c-49	0,956 h	S	1,0 10 ⁻⁴	$4,1 \ 10^{-11}$	6,1 10 ⁻¹¹	1,0 10-4	8,2 10 ⁻¹¹
Гitane				•			
Гі-44	47,3 a	F M S	0,010 0,010 0,010	6,1 10 ⁻⁸ 4,0 10 ⁻⁸ 1,2 10 ⁻⁷	7,2 10 ⁻⁸ 2,7 10 ⁻⁸ 6,2 10 ⁻⁸	0,010	5,8 10-9
Гі-45	3,08 h	F M S	0,010 0,010 0,010	4,6 10 ⁻¹¹ 9,1 10 ⁻¹¹ 9,6 10 ⁻¹¹	8,3 10 ⁻¹¹ 1,4 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	0,010	1,5 10 ⁻¹⁰
Vanadium							
V-47	0,543 h	F M	0,010 0,010	1,9 10 ⁻¹¹ 3,1 10 ⁻¹¹	3,2 10 ⁻¹¹ 5,0 10 ⁻¹¹	0,010	6,3 10 ⁻¹¹
V-48	16,2 d	F M	0,010 0,010	1,1 10 ⁻⁹ 2,3 10 ⁻⁹	1,7 10 ⁻⁹ 2,7 10 ⁻⁹	0,010	2,0 10-9
V-49	330 d	F M	0,010 0,010	2,1 10 ⁻¹¹ 3,2 10 ⁻¹¹	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,010	1,8 10 ⁻¹¹
Chrome							
Cr-48	23,0 h	F M S	0,100 0,100 0,100	$ \begin{array}{c} 1,0 \ 10^{-10} \\ 2,0 \ 10^{-10} \\ 2,2 \ 10^{-10} \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,100 0,010	2,0 10 ⁻¹⁰ 2,0 10 ⁻¹⁰
Cr-49	0,702 h	F M S	0,100 0,100 0,100 0,100	2,0 10 ⁻¹¹ 3,5 10 ⁻¹¹ 3,7 10 ⁻¹¹	3,5 10 ⁻¹¹ 5,6 10 ⁻¹¹ 5,9 10 ⁻¹¹	0,100 0,010	6,1 10 ⁻¹ 6,1 10 ⁻¹
Cr-51	27,7 d	F M S	0,100 0,100 0,100 0,100	2,1 10 ⁻¹¹ 3,1 10 ⁻¹¹ 3,6 10 ⁻¹¹	3,0 10 ⁻¹¹ 3,4 10 ⁻¹¹ 3,6 10 ⁻¹¹	0,100 0,010	3,8 10 ⁻¹ 3,7 10 ⁻¹

Nucléide	Période			Inhalation		I	ngestion
Nucleide	physique	Туре	f ₁	h(g) _{1µm}	h(g) _{5μm}	f_1	h(g)
Manganèse							
Mn-51	0,770 h	F M	0,100 0,100	2,4 10 ⁻¹¹ 4,3 10 ⁻¹¹	4,2 10 ⁻¹¹ 6,8 10 ⁻¹¹	0,100	9,3 10 ⁻¹¹
Mn-52	5,59 d	F M	0,100 0,100	9,9 10 ⁻¹⁰ 1,4 10 ⁻⁹	1,6 10 ⁻⁹ 1,8 10 ⁻⁹	0,100	1,8 10-9
Mn-52m	0,352 h	F M	0,100 0,100	2,0 10 ⁻¹¹ 3,0 10 ⁻¹¹	3,5 10 ⁻¹¹ 5,0 10 ⁻¹¹	0,100	6,9 10-11
Mn-53	3,70 10 ⁶ a	F M	0,100 0,100	2,9 10 ⁻¹¹ 5,2 10 ⁻¹¹	3,6 10 ⁻¹¹ 3,6 10 ⁻¹¹	0,100	3,0 10 ⁻¹¹
Mn-54	312 d	F M	0,100 0,100	8,7 10 ⁻¹⁰ 1,5 10 ⁻⁹	1,1 10 ⁻⁹ 1,2 10 ⁻⁹	0,100	7,1 10 ⁻¹⁰
Mn-56	2,58 h	F M	0,100 0,100	6,9 10 ⁻¹¹ 1,3 10 ⁻¹⁰	$\begin{array}{c c} 1,2 & 10^{-10} \\ 2,0 & 10^{-10} \end{array}$	0,100	2,5 10 ⁻¹⁰
Fer							
Fe-52	8,28 h	F M	0,100 0,100	4,1 10 ⁻¹⁰ 6,3 10 ⁻¹⁰	6,9 10 ⁻¹⁰ 9,5 10 ⁻¹⁰	0,100	1,4 10-9
Fe-55	2,70 a	F M	0,100 0,100	7,7 10 ⁻¹⁰ 3,7 10 ⁻¹⁰	9,2 10 ⁻¹⁰ 3,3 10 ⁻¹⁰	0,100	3,3 10 ⁻¹⁰
Fe-59	44,5 d	F M	0,100 0,100	2,2 10 ⁻⁹ 3,5 10 ⁻⁹	3,0 10 ⁻⁹ 3,2 10 ⁻⁹	0,100	1,8 10-9
Fe-60	1,00 10 ⁵ a	F M	0,100 0,100	2,8 10 ⁻⁷ 1,3 10 ⁻⁷	$\begin{array}{c c} 3,3 & 10^{-7} \\ 1,2 & 10^{-7} \end{array}$	0,100	1,1 10 ⁻⁷
Cobalt					40		
Co-55	17,5 h	S S	0,100 0,050	5,1 10 ⁻¹⁰ 5,5 10 ⁻¹⁰	7,8 10 ⁻¹⁰ 8,3 10 ⁻¹⁰	0,100 0,050	1,0 10 ⁻⁹ 1,1 10 ⁻⁹
Co-56	78,7 d	M S	0,100 0,050	4,6 10 ⁻⁹ 6,3 10 ⁻⁹	4,0 10 ⁻⁹ 4,9 10 ⁻⁹	0,100 0,050	2,5 10 ⁻⁹ 2,3 10 ⁻⁹
Co-57	271 d	M S	0,100 0,050	5,2 10 ⁻¹⁰ 9,4 10 ⁻¹⁰	3,9 10 ⁻¹⁰ 6,0 10 ⁻¹⁰	0,100 0,050	2,1 10 ⁻¹⁰ 1,9 10 ⁻¹⁰
Co-58	70,8 d	M S	0,100 0,050	1,5 10 ⁻⁹ 2,0 10 ⁻⁹	1,4 10 ⁻⁹ 1,7 10 ⁻⁹	0,100 0,050	7,4 10 ⁻¹⁰ 7,0 10 ⁻¹⁰
Co-58m	9,15 h	M S	0,100 0,050	1,3 10 ⁻¹¹ 1,6 10 ⁻¹¹	1,5 10 ⁻¹¹ 1,7 10 ⁻¹¹	0,100 0,050	2,4 10 ⁻¹¹ 2,4 10 ⁻¹¹
Co-60	5,27 a	M S	0,100 0,050	9,6 10 ⁻⁹ 2,9 10 ⁻⁸	7,1 10 ⁻⁹ 1,7 10 ⁻⁸	0,100 0,050	3,4 10 ⁻⁹ 2,5 10 ⁻⁹
Co-60m	0,174 h	M S	0,100 0,050	1,1 10 ⁻¹² 1,3 10 ⁻¹²	1,2 10 ⁻¹² 1,2 10 ⁻¹²	0,100 0,050	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Co-61	1,65 h	M S	0,100 0,050	4,8 10 ⁻¹¹ 5,1 10 ⁻¹¹	7,1 10 ⁻¹¹ 7,5 10 ⁻¹¹	0,100 0,050	7,4 10 ⁻¹¹ 7,4 10 ⁻¹¹
Co-62m	0,232 h	M S	0,100 0,050	2,1 10 ⁻¹¹ 2,2 10 ⁻¹¹	3,6 10 ⁻¹¹ 3,7 10 ⁻¹¹	0,100 0,050	4,7 10 ⁻¹¹ 4,7 10 ⁻¹¹
Nickel							
Ni-56	6,10 d	F M	0,050 0,050	5,1 10 ⁻¹⁰ 8,6 10 ⁻¹⁰	7,9 10 ⁻¹⁰ 9,6 10 ⁻¹⁰	0,050	8,6 10 ⁻¹⁰
Ni-57	1,50 d	F M	0,050 0,050	2,8 10 ⁻¹⁰ 5,1 10 ⁻¹⁰	5,0 10 ⁻¹⁰ 7,6 10 ⁻¹⁰	0,050	8,7 10-10
Ni-59	7,50 10 ⁴ a	F M	0,050 0,050	1,8 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	2,2 10 ⁻¹⁰ 9,4 10 ⁻¹¹	0,050	6,3 10 ⁻¹¹
Ni-63	96,0 a	F M	0,050 0,050	4,4 10 ⁻¹⁰ 4,4 10 ⁻¹⁰	5,2 10 ⁻¹⁰ 3,1 10 ⁻¹⁰	0,050	1,5 10 ⁻¹⁰
Ni-65	2,52 h	F M	0,050 0,050	4,4 10 ⁻¹¹ 8,7 10 ⁻¹¹	7,5 10 ⁻¹¹ 1,3 10 ⁻¹⁰	0,050	1,8 10 ⁻¹⁰
Ni-66	2,27 d	F M	0,050 0,050	4,5 10 ⁻¹⁰ 1,6 10 ⁻⁹	7,6 10 ⁻¹⁰ 1,9 10 ⁻⁹	0,050	3,0 10-9

Nucléide	Période			Inhalation		l:	ngestion
Nucleide	physique	Туре	f ₁	h(g) _{1µm}	h(g) _{5μm}	f ₁	h(g)
Cuivre							
Cu-60	0,387 h	F M S	0,500 0,500 0,500	2,4 10 ⁻¹¹ 3,5 10 ⁻¹¹ 3,6 10 ⁻¹¹	4,4 10 ⁻¹¹ 6,0 10 ⁻¹¹ 6,2 10 ⁻¹¹	0,500	7,0 10-11
Cu-61	3,41 h	F M S	0,500 0,500 0,500	4,0 10 ⁻¹¹ 7,6 10 ⁻¹¹ 8,0 10 ⁻¹¹	7,3 10 ⁻¹¹ 1,2 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	0,500	1,2 10-10
Cu-64	12,7 h	F M S	0,500 0,500 0,500	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,8 10 ⁻¹¹ 1,5 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	0,500	1,2 10 ⁻¹⁰
Cu-67	2,58 d	F M S	0,500 0,500 0,500	1,1 10 ⁻¹⁰ 5,2 10 ⁻¹⁰ 5,8 10 ⁻¹⁰	1,8 10 ⁻¹⁰ 5,3 10 ⁻¹⁰ 5,8 10 ⁻¹⁰	0,500	3,4 10 ⁻¹⁰
Zinc		·					
Zn-62	9,26 h	S	0,500	4,7 10 ⁻¹⁰	6,6 10 ⁻¹⁰	0,500	9,4 10-10
Zn-63	0,635 h	s	0,500	3,8 10 ⁻¹¹	6,1 10 ⁻¹¹	0,500	7,9 10-11
Zn-65	244 d	S	0,500	2,9 10-9	2,8 10-9	0,500	3,9 10-9
Zn-69	0,950 h	s	0,500	2,8 10-11	4,3 10 ⁻¹¹	0,500	3,1 10-11
Zn-69m	13,8 h	s	0,500	2,6 10 ⁻¹⁰	3,3 10 ⁻¹⁰	0,500	3,3 10-10
Zn-71m	3,92 h	s	0,500	1,6 10-10	2,4 10 ⁻¹⁰	0,500	2,4 10 ⁻¹⁰
Zn-72	1,94 d	s	0,500	1,2 10-9	1,5 10-9	0,500	1,4 10-9
Gallium							
Ga-65	0,253 h	F M	0,001 0,001	1,2 10 ⁻¹¹ 1,8 10 ⁻¹¹	2,0 10 ⁻¹¹ 2,9 10 ⁻¹¹	0,001	3,7 10 ⁻¹¹
Ga-66	9,40 h	F M	0,001 0,001	2,7 10 ⁻¹⁰ 4,6 10 ⁻¹⁰	4,7 10 ⁻¹⁰ 7,1 10 ⁻¹⁰	0,001	1,2 10-9
Ga-67	3,26 d	F M	0,001 0,001	6,8 10 ⁻¹¹ 2,3 10 ⁻¹⁰	1,1 10 ⁻¹⁰ 2,8 10 ⁻¹⁰	0,001	1,9 10 ⁻¹⁰
Ga-68	1,13 h	F M	0,001 0,001	2,8 10 ⁻¹¹ 5,1 10 ⁻¹¹	4,9 10 ⁻¹¹ 8,1 10 ⁻¹¹	0,001	1,0 10-10
Ga-70	0,353 h	F M	0,001 0,001	9,3 10 ⁻¹² 1,6 10 ⁻¹¹	1,6 10 ⁻¹¹ 2,6 10 ⁻¹¹	0,001	3,1 10 ⁻¹¹
Ga-72	14,1 h	F M	0,001 0,001	3,1 10 ⁻¹⁰ 5,5 10 ⁻¹⁰	5,6 10 ⁻¹⁰ 8,4 10 ⁻¹⁰	0,001	1,1 10-9
Ga-73	4,91 h	F M	0,001 0,001	5,8 10 ⁻¹¹ 1,5 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,001	2,6 10 ⁻¹⁰
Germanium							
Ge-66	2,27 h	F M	1,000 1,000	5,7 10 ⁻¹¹ 9,2 10 ⁻¹¹	9,9 10 ⁻¹¹ 1,3 10 ⁻¹⁰	1,000	1,0 10 ⁻¹⁰
Ge-67	0,312 h	F M	1,000 1,000	1,6 10 ⁻¹¹ 2,6 10 ⁻¹¹	2,8 10 ⁻¹¹ 4,2 10 ⁻¹¹	1,000	6,5 10 ⁻¹¹
Ge-68	288 d	F. M	1,000 1,000	5,4 10 ⁻¹⁰ 1,3 10 ⁻⁸	8,3 10 ⁻¹⁰ 7,9 10 ⁻⁹	1,000	1,3 10 ⁻⁹
Ge-69	1,63 d	F M	1,000 1,000	1,4 10 ⁻¹⁰ 2,9 10 ⁻¹⁰ 5,0 10 ⁻¹²	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,000	2,4 10 ⁻¹⁰
Ge-71 Ge-75	11,8 d 1,38 h	F M F	1,000 1,000 1,000	1,0 10 ⁻¹¹ 1,6 10 ⁻¹¹	1,1 10 ⁻¹¹ 2,7 10 ⁻¹¹	1,000	1,2 10 ⁻¹¹ 4,6 10 ⁻¹¹
Ge-73	11,36 h	M F	1,000 1,000 1,000	3,7 10 ⁻¹¹ 1,5 10 ⁻¹⁰	5,4 10 ⁻¹¹ 2,5 10 ⁻¹⁰	1,000	3,3 10 ⁻¹⁰
Ge-78	1,45 h	M F	1,000 1,000	3,6 10 ⁻¹⁰ 4,8 10 ⁻¹¹	4,5 10 ⁻¹⁰ 8,1 10 ⁻¹¹	1,000	1,2 10 ⁻¹⁰

N 1 101	Période			Inhalation		Ingestion	
Nucléide	physique	Type	f ₁	h(g) _{1µm}	h(g) _{5μm}	f ₁	h(g)
Arsenic							
As-69	0,253 h	M	0,500	2,2 10 ⁻¹¹	3,5 10 ⁻¹¹	0,500	5,7 10-11
As-70	0,876 h	M	0,500	7,2 10 ⁻¹¹	1,2 10 ⁻¹⁰	0,500	1,3 10-10
As-71	2,70 d	M	0,500	4,0 10-10	5,0 10 ⁻¹⁰	0,500	4,6 10 ⁻¹⁰
As-72	1,08 d	M	0,500	9,2 10 ⁻¹⁰	1,3 10-9	0,500	1,8 10-9
As-73	80,3 d	M	0,500	9,3 10 ⁻¹⁰	6,5 10 ⁻¹⁰	0,500	2,6 10 ⁻¹⁰
As-74	17,8 d	M	0,500	2,1 10-9	1,8 10-9	0,500	1,3 10-9
As-76	1,10 d	M	0,500	7,4 10 ⁻¹⁰	9,2 10 ⁻¹⁰	0,500	1,6 10-9
As-77	1,62 d	M	0,500	3,8 10 ⁻¹⁰	4,2 10 ⁻¹⁰	0,500	4, 0 10 ⁻¹⁰
As-78	1,51 h	M	0,500	9,2 10-11	1,4 10 ⁻¹⁰	0,500	2,1 10 ⁻¹⁰
Sélénium							
Se-70	0,683 h	F M	0,800 0,800	4,5 10 ⁻¹¹ 7,3 10 ⁻¹¹	8,2 10 ⁻¹¹ 1,2 10 ⁻¹⁰	0,800 0,050	1,2 10 ⁻¹⁰ 1,4 10 ⁻¹⁰
Se-73	7,15 h	F M	0,800 0,800	8,6 10 ⁻¹¹ 1,6 10 ⁻¹⁰	1,5 10 ⁻¹⁰ 2,4 10 ⁻¹⁰	0,800 0,050	2,1 10 ⁻¹⁰ 3,9 10 ⁻¹⁰
Se-73m	0,650 h	F M	0,800 0,800	9,9 10 ⁻¹² 1,8 10 ⁻¹¹	1,7 10 ⁻¹¹ 2,7 10 ⁻¹¹	0,800 0,050	2,8 10 ⁻¹¹ 4,1 10 ⁻¹¹
Se-75	120 d	F M	0,800 0,800	1,0 10 ⁻⁹ 1,4 10 ⁻⁹	1,4 10 ⁻⁹ 1,7 10 ⁻⁹	0,800 0,050	2,6 10 ⁻⁹ 4,1 10 ⁻¹⁰
Se-79	6,50 10 ⁴ a	F M	0,800 0,800	1,2 10 ⁻⁹ 2,9 10 ⁻⁹	1,6 10 ⁻⁹ 3,1 10 ⁻⁹	0,800 0,050	2,9 10 ⁻⁹ 3,9 10 ⁻¹⁰
Se-81	0,308 h	F M	0,800 0,800	8,6 10 ⁻¹² 1,5 10 ⁻¹¹	1,4 10 ⁻¹¹ 2,4 10 ⁻¹¹	0,800 0,050	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Se-81m	0,954 h	F M	0,800 0,800	1,7 10 ⁻¹¹ 4,7 10 ⁻¹¹	3,0 10 ⁻¹¹ 6,8 10 ⁻¹¹	0,800 0,050	5,3 10 ⁻¹¹ 5,9 10 ⁻¹¹
Se-83	0,375 h	F M	0,800 0,800	1,9 10 ⁻¹¹ 3,3 10 ⁻¹¹	3,4 10 ⁻¹¹ 5,3 10 ⁻¹¹	0,800 0,050	4,7 10 ⁻¹¹ 5,1 10 ⁻¹¹
Brome							
3r-74	0,422 h	F M	1,000 1,000	2,8 10 ⁻¹¹ 4,1 10 ⁻¹¹	5,0 10 ⁻¹¹ 6,8 10 ⁻¹¹	1,000	8,4 10 ⁻¹¹
Br-74m	0,691 h	F M	1,000 1,000	4,2 10 ⁻¹¹ 6,5 10 ⁻¹¹	7,5 10 ⁻¹¹ 1,1 10 ⁻¹⁰	1,000	1,4 10 ⁻¹⁰
3r-75	1,63 h	F M	1,000 1,000	3,1 10 ⁻¹¹ 5,5 10 ⁻¹¹	5,6 10 ⁻¹¹ 8,5 10 ⁻¹¹	1,000	7,9 10 ⁻¹¹
3r-76	16,2 h	F M	1,000 1,000	2,6 10 ⁻¹⁰ 4,2 10 ⁻¹⁰	4,5 10 ⁻¹⁰ 5,8 10 ⁻¹⁰	1,000	4,6 10 ⁻¹⁰
3r-77	2,33 d	F M	1,000 1,000	6,7 10 ⁻¹¹ 8,7 10 ⁻¹¹	1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	1,000	9,6 10-11
3r-80	0,290 h	F M	1,000 1,000	6,3 10 ⁻¹² 1,0 10 ⁻¹¹	1,1 10 ⁻¹¹ 1,7 10 ⁻¹¹	1,000	3,1 10-11
3r-80m	4,42 h	F M	1,000 1,000	3,5 10 ⁻¹¹ 7,6 10 ⁻¹¹	5,8 10 ⁻¹¹ 1,0 10 ⁻¹⁰	1,000	1,1 10 ⁻¹⁰
3r-82	1,47 d	F M	1,000 1,000	3,7 10 ⁻¹⁰ 6,4 10 ⁻¹⁰	6,4 10 ⁻¹⁰ 8,8 10 ⁻¹⁰	1,000	5,4 10 ⁻¹⁰
3r-83	2,39 h	F M	1,000 1,000	1,7 10 ⁻¹¹ 4,8 10 ⁻¹¹	2,9 10 ⁻¹¹ 6,7 10 ⁻¹¹	1,000	4,3 10 ⁻¹¹
3r-84	0,530 h	F M	1,000 1,000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,0 10 ⁻¹¹ 6,2 10 ⁻¹¹	1,000	8,8 10 ⁻¹¹

Nucléide	Période			Inhalation		Ingestion		
Nucleide	physique	Type	f1	$h(g)_{1\mu m}$	$h(g)_{5\mu m}$	f ₁	h(g)	
Rubidium								
Rb-79	0,382 h	F	1,000	$1,7 \ 10^{-11}$	3,0 10-11	1,000	5,0 10 ⁻¹¹	
kb-81	4,58 h	F	1,000	3,7 10 ⁻¹¹	6,8 10 ⁻¹¹	1,000	5,4 10 ⁻¹¹	
b-81m	0,533 h	F	1,000	$7,3 \ 10^{-12}$	1,3 10 ⁻¹¹	1,000	$9,7 \ 10^{-12}$	
.b-82m	6,20 h	F	1,000	1,2 10 ⁻¹⁰	2,2 10 ⁻¹⁰	1,000	$1,3 \ 10^{-10}$	
b-83	86,2 d	F	1,000	$7,1 \ 10^{-10}$	1,0 10-9	1,000	1,9 10 ⁻⁹	
b-84	32,8 d	F	1,000	1,1 10 ⁻⁹	1,5 10 ⁻⁹	1,000	2,8 10 ⁻⁹	
b-86	18,6 d	F	1,000	9,6 10 ⁻¹⁰	1,3 10-9	1,000	$2,8 \ 10^{-9}$	
b-87	4,70 10 ¹⁰ a	F	1,000	$5,1 \ 10^{-10}$	7,6 10 ⁻¹⁰	1,000	1,5 10 ⁻⁹	
b-88	0,297 h	F	1,000	1,7 10 ⁻¹¹	2,8 10 ⁻¹¹	1,000	9,0 10-11	
b-89	0,253 h	F	1,000	1,4 10 ⁻¹¹	2,5 10 ⁻¹¹	1,000	4,7 10-11	
rontium								
r-80	1,67 h	F S	0,300 0,010	7,6 10 ⁻¹¹ 1,4 10 ⁻¹⁰	1,3 10 ⁻¹⁰ 2,1 10 ⁻¹⁰	0,300 0,010	$3,4 10^{-10}$ $3,5 10^{-10}$	
r-81	0,425 h	F S	0,300 0,010	2,2 10 ⁻¹¹ 3,8 10 ⁻¹¹	3,9 10 ⁻¹¹ 6,1 10 ⁻¹¹	0,300 0,010	7,7 10 ⁻¹¹ 7,8 10 ⁻¹¹	
r-82	25,0 d	F S	0,300 0,010	2,2 10 ⁻⁹ 1,0 10 ⁻⁸	3,3 10 ⁻⁹ 7,7 10 ⁻⁹	0,300	6,1 10 ⁻⁹ 6,0 10 ⁻⁹	
r-83	1,35 d	F S	0,300 0,010	1,7 10 ⁻¹⁰ 3,4 10 ⁻¹⁰	3,0 10 ⁻¹⁰ 4,9 10 ⁻¹⁰	0,300 0,010	4,9 10 ⁻¹⁰ 5,8 10 ⁻¹⁰	
-85	64,8 d	F	0,300 0,010	3,9 10 ⁻¹⁰ 7,7 10 ⁻¹⁰	5,6 10 ⁻¹⁰ 6,4 10 ⁻¹⁰	0,300 0,010	5,6 10 ⁻¹⁰ 3,3 10 ⁻¹⁰	
-85m	1,16 h	F 'S	0,300 0,010	3,1 10 ⁻¹² 4,5 10 ⁻¹²	5,6 10 ⁻¹² 7,4 10 ⁻¹²	0,300 0,010	$6,1 \ 10^{-12}$ $6,1 \ 10^{-12}$	
87m	2,80 h	F S	0,300 0,010	$1,2 10^{-11} 2,2 10^{-11}$	2,2 10 ⁻¹¹ 3,5 10 ⁻¹¹	0,300 0,010	3,0 10 ⁻¹¹ 3,3 10 ⁻¹¹	
r-89	50,5 d	F S	0,300 0,010	1,0 10 ⁻⁹ 7,5 10 ⁻⁹	1,4 10 ⁻⁹ 5,6 10 ⁻⁹	0,300 0,010	2,6 10 ⁻⁹ 2,3 10 ⁻⁹	
r-90	29,1 a	F S	0,300 0,010	2,4 10 ⁻⁸ 1,5 10 ⁻⁷	3,0 10 ⁻⁸ 7,7 10 ⁻⁸	0,300 0,010	2,8 10 ⁻⁸ 2,7 10 ⁻⁹	
r-91	9,50 h	F S	0,300 0,010	1,7 10 ⁻¹⁰ 4,1 10 ⁻¹⁰	2,9 10 ⁻¹⁰ 5,7 10 ⁻¹⁰	0,300 0,010	6,5 10 ⁻¹⁰ 7,6 10 ⁻¹⁰	
r-92	2,71 h	F S	0,300 0,010	1,1 10 ⁻¹⁰ 2,3 10 ⁻¹⁰	1,8 10 ⁻¹⁰ 3,4 10 ⁻¹⁰	0,300 0,010	4,3 10 ⁻¹⁰ 4,9 10 ⁻¹⁰	
ttrium				- *				
T-86	14,7 h	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	4,8 10 ⁻¹⁰ 4,9 10 ⁻¹⁰	8,0 10 ⁻¹⁰ 8,1 10 ⁻¹⁰	1,0 10 ⁻⁴	9,6 10 ⁻¹⁰	
-86m	0,800 h	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	2,9 10 ⁻¹¹ 3,0 10 ⁻¹¹	4,8 10 ⁻¹¹ 4,9 10 ⁻¹¹	1,0 10-4	5,6 10 ⁻¹¹	
-87	3,35 d	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	3,8 10 ⁻¹⁰ 4,0 10 ⁻¹⁰	5,2 10 ⁻¹⁰ 5,3 10 ⁻¹⁰	1,0 10-4	5,5 10 ⁻¹⁰	
7-88	107 d	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	3,9 10 ⁻⁹ 4,1 10 ⁻⁹	3,3 10 ⁻⁹ 3,0 10 ⁻⁹	1,0 10-4	1,3 10-9	
7-90	2,67 d	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	1,4 10 ⁻⁹ 1,5 10 ⁻⁹	1,6 10 ⁻⁹ 1,7 10 ⁻⁹	1,0 10-4	2,7 10 ⁻⁹	
′-90m	3,19 h	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	9,6 10 ⁻¹¹ 1,0 10 ⁻¹⁰	1,3 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	1,0 10-4	1,7 10 ⁻¹⁰	
Y-91	58,5 d	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	6,7 10 ⁻⁹ 8,4 10 ⁻⁹	5,2 10 ⁻⁹ 6,1 10 ⁻⁹	1,0 10-4	2,4 10 ⁻⁹	
?-91m	0,828 h	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	$1,0 \ 10^{-11}$ $1,1 \ 10^{-11}$	1,4 10 ⁻¹¹ 1,5 10 ⁻¹¹	1,0 10-4	1,1 10-11	

Nucléide	Période			Inhalation		In	gestion
	physique	Туре	f ₁	h(g) _{1μm}	h(g) _{Sµm}	f_1	h(g)
Y-92	3,54 h	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	1,9 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	2,7 10 ⁻¹⁰ 2,8 10 ⁻¹⁰	1,0 10-4	4,9 10 ⁻¹⁰
Y-93	10,1 h	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	4,1 10 ⁻¹⁰ 4,3 10 ⁻¹⁰	5,7 10 ⁻¹⁰ 6,0 10 ⁻¹⁰	1,0 10-4	1,2 10 ⁻⁹
Y-94	0,318 h	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	2,8 10 ⁻¹¹ 2,9 10 ⁻¹¹	4,4 10 ⁻¹¹ 4,6 10 ⁻¹¹	1,0 10-4	8,1 10 ⁻¹¹
Y-95	0,178 h	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	1,6 10 ⁻¹¹ 1,7 10 ⁻¹¹	2,5 10 ⁻¹¹ 2,6 10 ⁻¹¹	1,0 10-4	4,6 10 ⁻¹¹
Zirconium							
Zr-86	16,5 h	F M S	0,002 0,002 0,002	$3.0 10^{-10}$ $4.3 10^{-10}$ $4.5 10^{-10}$	5,2 10 ⁻¹⁰ 6,8 10 ⁻¹⁰ 7,0 10 ⁻¹⁰	0,002	8,6 10 ⁻¹⁰
Zr-88	83,4 d	F M S	0,002 0,002 0,002	3,5 10 ⁻⁹ 2,5 10 ⁻⁹ 3,3 10 ⁻⁹	4,1 10 ⁻⁹ 1,7 10 ⁻⁹ 1,8 10 ⁻⁹	0,002	3,3 10 ⁻¹⁰
Zr-89	3,27 d	F M S	0,002 0,002 0,002	3,1 10 ⁻¹⁰ 5,3 10 ⁻¹⁰ 5,5 10 ⁻¹⁰	5,2 10 ⁻¹⁰ 7,2 10 ⁻¹⁰ 7,5 10 ⁻¹⁰	0,002	7,9 10 ⁻¹⁰
Zr-93	1,53 10 ⁶ a	F M S	0,002 0,002 0,002	2,5 10 ⁻⁸ 9,6 10 ⁻⁹ 3,1 10 ⁻⁹	2,9 10 ⁻⁸ 6,6 10 ⁻⁹ 1,7 10 ⁻⁹	0,002	2,8 10 ⁻¹⁰
Zr-95	64,0 d	F M S	0,002 0,002 0,002	2,5 10 ⁻⁹ 4,5 10 ⁻⁹ 5,5 10 ⁻⁹	3,0 10 ⁻⁹ 3,6 10 ⁻⁹ 4,2 10 ⁻⁹	0,002	8,8 10 ⁻¹⁰
Zr-97	16,9 h	F M S	0,002 0,002 0,002	4,2 10 ⁻¹⁰ 9,4 10 ⁻¹⁰ 1,0 10 ⁻⁹	7,4 10 ⁻¹⁰ 1,3 10 ⁻⁹ 1,4 10 ⁻⁹	0,002	2,1 10-9
Niobium							
Nb-88	0,238 h	M S	0,010 0,010	2,9 10 ⁻¹¹ 3,0 10 ⁻¹¹	4,8 10 ⁻¹¹ 5,0 10 ⁻¹¹	0,010	6,3 10 ⁻¹¹
Nb-89	2,03 h	M S	0,010 0,010	1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	1,8 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	0,010	3,0 10 ⁻¹⁰
Nb-89	1,10 h	M S	0,010 0,010	7,1 10 ⁻¹¹ 7,4 10 ⁻¹¹	1,1 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	0,010	1,4 10 ⁻¹⁰
Nb-90	14,6 h	M S	0,010 0,010	6,6 10 ⁻¹⁰ 6,9 10 ⁻¹⁰	1,0 10 ⁻⁹ 1,1 10 ⁻⁹	0,010	1,2 10 ⁻⁹
Nb-93m	13,6 a	M S	0,010 0,010	4,6 10 ⁻¹⁰ 1,6 10 ⁻⁹	2,9 10 ⁻¹⁰ 8,6 10 ⁻¹⁰	0,010	1,2 10 ⁻¹⁰
Nb-94	2,03 10 ⁴ a	M S	0,010 0,010	$1,0 \ 10^{-8}$ $4,5 \ 10^{-8}$	7,2 10 ⁻⁹ 2,5 10 ⁻⁸	0,010	1,7 10-9
Nb-95	35,1 d	M S	0,010 0,010	1,4 10 ⁻⁹ 1,6 10 ⁻⁹	1,3 10 ⁻⁹ 1,3 10 ⁻⁹	0,010	5,8 10 ⁻¹⁰
Nb-95m	3,61 d	M S	0,010 0,010	7,6 10 ⁻¹⁰ 8,5 10 ⁻¹⁰	7,7 10 ⁻¹⁰ 8,5 10 ⁻¹⁰	0,010	5,6 10 ⁻¹⁰
Nb-96	23,3 h	M S	0,010 0,010	6,5 10 ⁻¹⁰ 6,8 10 ⁻⁹	9,7 10 ⁻¹⁰ 1,0 10 ⁻¹⁰	0,010	1,1 10-9
Nb-97	1,20 h	M S	0,010 0,010	4,4 10 ⁻¹¹ 4,7 10 ⁻¹¹	6,9 10 ⁻¹¹ 7,2 10 ⁻¹¹	0,010	6,8 10 ⁻¹¹
Nb-98	0,858 h	M S	0,010 0,010	5,9 10 ⁻¹¹ 6,1 10 ⁻¹¹	9,6 10 ⁻¹¹ 9,9 10 ⁻¹¹	0,010	1,1 10 ⁻¹⁰
Molybdène						·	
Mo-90	5,67 h	F S	0,800 0,050	$1,7 \ 10^{-10}$ $3,7 \ 10^{-10}$	2,9 10 ⁻¹⁰ 5,6 10 ⁻¹⁰	0,800 0,050	$3,1 \ 10^{-10}$ $6,2 \ 10^{-10}$
Mo-93	3,50 10 ³ a	F S	0,800 0,050	1,0 10 ⁻⁹ 2,2 10 ⁻⁹	1,4 10 ⁻⁹ 1,2 10 ⁻⁹	0,800 0,050	2,6 10 ⁻⁹ 2,0 10 ⁻¹⁰

NT 1011	Période			Inhalation		In	igestion
Nucléide	physique	Type	f ₁	h(g) _{1μm}	h(g) _{5µm}	f ₁	h(g)
Mo-93m	6,85 h	F	0,800	1,0 10 ⁻¹⁰	1,9 10 ⁻¹⁰ 3,0 10 ⁻¹⁰	0,800	1,6 10 ⁻¹⁰
Ло-99	2,75 d	S F S	0,050 0,800 0,050	1,8 10 ⁻¹⁰ 2,3 10 ⁻¹⁰ 9,7 10 ⁻¹⁰	3,6 10 ⁻¹⁰ 1,1 10 ⁻⁹	0,050 0,800 0,050	2,8 10 ⁻¹⁰ 7,4 10 ⁻¹⁰ 1,2 10 ⁻⁹
Ио-101	0,244 h	F S	0,800 0,050	1,5 10 ⁻¹¹ 2,7 10 ⁻¹¹	2,7 10 ⁻¹¹ 4,5 10 ⁻¹¹	0,800 0,050	4,2 10 ⁻¹¹ 4,2 10 ⁻¹¹
echnétium] 3	0,030	2,7 10	1,5 10	0,030	7,2 10
`c-93	2,75 h	F M	0,800 0,800	3,4 10 ⁻¹¹ 3,6 10 ⁻¹¹	6,2 10 ⁻¹¹ 6,5 10 ⁻¹¹	0,800	4,9 10 ⁻¹¹
c-93m	0,725 h	F M	0,800 0,800	1,5 10 ⁻¹¹ 1,7 10 ⁻¹¹	$\begin{array}{c} 2,6 \ 10^{-11} \\ 3,1 \ 10^{-11} \end{array}$	0,800	2,4 10 ⁻¹¹
c-94	4,88 h	F M	0,800 0,800	1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	$\begin{array}{c} 2,1 \ 10^{-10} \\ 2,2 \ 10^{-10} \end{array}$	0,800	1,8 10 ⁻¹⁰
c-94m	0,867 h	F M	0,800 0,800	4,3 10 ⁻¹¹ 4,9 10 ⁻¹¹	6,9 10 ⁻¹¹ 8,0 10 ⁻¹¹	0,800	1,1 10-10
c-95	20,0 h	F M	0,800 0,800	1,0 10 ⁻¹⁰ 1,0 10 ⁻¹⁰	1,8 10 ⁻¹⁰ 1,8 10 ⁻¹⁰	0,800	1,6 10 ⁻¹⁰
Cc-95m	61,0 d	F M	0,800 0,800	3,1 10 ⁻¹⁰ 8,7 10 ⁻¹⁰	4,8 10 ⁻¹⁰ 8,6 10 ⁻¹⁰	0,800	6,2 10 ⁻¹⁰
c-96	4,28 d	F M	0,800 0,800	6,0 10 ⁻¹⁰ 7,1 10 ⁻¹⁰	9,8 10 ⁻¹⁰ 1,0 10 ⁻⁹	0,800	1,1 10-9
Cc-96m	0,858 h	F M	0,800 0,800	6,5 10 ⁻¹² 7,7 10 ⁻¹²	1,1 10 ⁻¹¹ 1,1 10 ⁻¹¹	0,800	1,3 10 ⁻¹¹
c-97	2,60 10 ⁶ a	F M	0,800 0,800	4,5 10 ⁻¹¹ 2,1 10 ⁻¹⁰	7,2 10 ⁻¹¹ 1,6 10 ⁻¹⁰	0,800	8,3 10 ⁻¹¹
c-97m	87,0 d	F M	0,800 0,800	2,8 10 ⁻¹⁰ 3,1 10 ⁻⁹	4,0 10 ⁻¹⁰ 2,7 10 ⁻⁹	0,800	6,6 10 ⁻¹⁰
`c-98	4,20 10.6 a	F M	0,800 0,800	1,0 10 ⁻⁹ 8,1 10 ⁻⁹	1,5 10 ⁻⁹ 6,1 10 ⁻⁹	0,800	2,3 10-9
'c-99	2,13 10 ⁵ a	F M	0,800 0,800	2,9 10 ⁻¹⁰ 3,9 10 ⁻⁹	4,0 10 ⁻¹⁰ 3,2 10 ⁻⁹	0,800	7,8 10 ⁻¹⁰
c-99m	6,02 h	F M	0,800 0,800	1,2 10 ⁻¹¹ 1,9 10 ⁻¹¹	2,0 10 ⁻¹¹ 2,9 10 ⁻¹¹	0,800	2,2 10 ⁻¹¹
c-101	0,237 h	F M	0,800 0,800	8,7 10 ⁻¹² 1,3 10 ⁻¹¹	1,5 10 ⁻¹¹ 2,1 10 ⁻¹¹	0,800	1,9 10-1
c-104	0,303 h	F M	0,800 0,800	2,4 10 ⁻¹¹ 3,0 10 ⁻¹¹	3,9 10 ⁻¹¹ 4,8 10 ⁻¹¹	0,800	8,1 10 ⁻¹³
uthénium							
Ru-94	0,863 h	F M	0,050	2,7 10 ⁻¹¹ 4,4 10 ⁻¹¹ 4,6 10 ⁻¹¹	4,9 10 ⁻¹¹ 7,2 10 ⁻¹¹ 7,4 10 ⁻¹¹	0,050	9,4 10 ⁻¹¹
Ru-97	2,90 d	F M S	0,050 0,050 0,050 0,050	6,7 10 ⁻¹¹ 1,1 10 ⁻¹⁰ 1,1 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,6 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	0,050	1,5 10 ⁻¹⁰
Ru-103	39,3 d	F M S	0,050 0,050 0,050	4,9 10 ⁻¹⁰ 2,3 10 ⁻⁹ 2,8 10 ⁻⁹	6,8 10 ⁻¹⁰ 1,9 10 ⁻⁹ 2,2 10 ⁻⁹	0,050	7,3 10 ⁻¹⁰
Ru-105	4,44 h	F M S	0,050 0,050 0,050	7,1 10 ⁻¹¹ 1,7 10 ⁻¹⁰ 1,8 10 ⁻¹⁰	1,3 10 ⁻¹⁰ 2,4 10 ⁻¹⁰ 2,5 10 ⁻¹⁰	0,050	2,6 10-10
Ru-106	1,01 a	F M S	0,050 0,050 0,050	8,0 10 ⁻⁹ 2,6 10 ⁻⁸ 6,2 10 ⁻⁸	9,8 10 ⁻⁹ 1,7 10 ⁻⁸ 3,5 10 ⁻⁸	0,050	7,0 10-9
Rhodium	•			P.	•	1	•
Rh-99	16,0 d	F M	0,050 0,050	3,3 10 ⁻¹⁰ 7,3 10 ⁻¹⁰	4,9 10 ⁻¹⁰ 8,2 10 ⁻¹⁰	0,050	5,1 10-1
Rh-99m	4,70 h	S F M	0,050 0,050 0,050	8,3 10 ⁻¹⁰ 3,0 10 ⁻¹¹ 4,1 10 ⁻¹¹ 4,3 10 ⁻¹¹	8,9 10 ⁻¹⁰ 5,7 10 ⁻¹¹ 7,2 10 ⁻¹¹ 7,3 10 ⁻¹¹	0,050	6,6 10-1

Nucléide	Période			Inhalation		I	ngestion
	physique	Туре	f ₁	$h(g)_{1\mu m}$	$h(g)_{5\mu m}$	f ₁	h(g)
Rh-100	20,8 h	F	0,050	2,8 10 ⁻¹⁰	5,1 10 ⁻¹⁰	0,050	7,1 10 ⁻¹⁰
		M	0,050	3,6 10 ⁻¹⁰	$6,2 \ 10^{-10}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		S	0,050	3,7 10 ⁻¹⁰	6,3 10 ⁻¹⁰		
Rh-101	3,20 a	F	0,050	1,4 10-9	1,7 10-9	0,050	5,5 10 ⁻¹⁰
		M	0,050	2,2 10-9	1,7 10-9		
		S	0,050	5,0 10-9	3,1 10 ⁻⁹		
Rh-101m	4,34 d	F	0,050	1,0 10 ⁻¹⁰	$1,7 \ 10^{-10}$	0,050	2,2 10 ⁻¹⁰
		M	0,050	2,0 10 ⁻¹⁰	$2,5 \ 10^{-10}$		
DI 102	2.00	S	0,050	2,1 10 ⁻¹⁰ 7,3 10 ⁻⁹	2,7 10 ⁻¹⁰ 8,9 10 ⁻⁹	0.050	2 < 10-9
Rh-102	2,90 a	F M	0,050 0,050	6,5 10 ⁻⁹	5,0 10-9	0,050	2,6 10-9
		S	0,050	1,6 10-8	9,0 10-9		
Rh-102m	207 d	F	0,050	1,5 10 ⁻⁹	1,9 10-9	0,050	1,2 10-9
XII-102III	207 u	M	0,050	3,8 10-9	2,7 10-9	0,030	1,2 10
		S	0,050	6,7 10-9	4,2 10-9		
Rh-103m	0,935 h	F	0,050	8,6 10 ⁻¹³	1,2 10 ⁻¹²	0,050	3,8 10 ⁻¹²
	7	M	0,050	$2,3 \ 10^{-12}$	2,4 10 ⁻¹²	,,,,,	,- ,-
		S	0,050	2,5 10 ⁻¹²	$2,5 \ 10^{-12}$		
Rh-105	1,47 d	F	0,050	8,7 10-11	1,5 10 ⁻¹⁰	0,050	3,7 10 ⁻¹⁰
		M	0,050	$3,1 \ 10^{-10}$	4,1 10 ⁻¹⁰		
		S	0,050	3,4 10-10	4,4 10 ⁻¹⁰		
Rh-106m	2,20 h	F	0,050	7,0 10 ⁻¹¹	$1,3 \ 10^{-10}$	0,050	1,6 10 ⁻¹⁰
		M	0,050	$1,1 \ 10^{-10}$	1,8 10 ⁻¹⁰		
		S	0,050	1,2 10 ⁻¹⁰	1,9 10 ⁻¹⁰		
Rh-107	0,362 h	F	0,050	9,6 10 ⁻¹²	1,6 10 ⁻¹¹	0,050	2,4 10 ⁻¹¹
		M S	0,050 0,050	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Palladium	1) 3	0,030	1,7 10	2,0 10	1	1
	1 2 (2 1		0.00-	1 40 40-10	J =	1 000-	
Pd-100	3,63 d	F	0,005	4,9 10 ⁻¹⁰ 7,9 10 ⁻¹⁰	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,005	9,4 10 ⁻¹⁰
		M S	0,005	8,3 10 ⁻¹⁰	9,7 10 ⁻¹⁰		
NJ 101	0.271	F	0,005 0,005	4,2 10 ⁻¹¹	7,5 10 ⁻¹¹	0,005	9,4 10 ⁻¹¹
Pd-101	8,27 h	M	0,005	6,2 10 ⁻¹¹	9,8 10-11	0,003	9,4 10
		S	0,005	6,4 10-11	1,0 10 ⁻¹⁰		
Pd-103	17,0 d	F	0,005	9.0 10-11	1,2 10 ⁻¹⁰	0,005	1,9 10-10
u-105	17,0 4	M	0,005	3,5 10 ⁻¹⁰	3,0 10-10	0,003	1,5 10
		S	0,005	4,0 10 ⁻¹⁰	$2,9 \ 10^{-10}$		
Pd-107	6,50 10 ⁶ a	F	0,005	2,6 10 ⁻¹¹	3,3 10-11	0,005	3,7 10-11
	,	M	0,005	8,0 10-11	5,2 10 ⁻¹¹		ĺ
		S	0,005	5,5 10 ⁻¹⁰	2,9 10 ⁻¹⁰		
Pd-109	13,4 h	F	0,005	1,2 10 ⁻¹⁰	2,1 10 ⁻¹⁰	0,005	5,5 10 ⁻¹⁰
		M	0,005	3,4 10 ⁻¹⁰	4,7 10 ⁻¹⁰		
		S	0,005	3,6 10 ⁻¹⁰	$5,0\ 10^{-10}$		
rgent							
Ag-102	0,215 h	F	0,050	1,4 10 ⁻¹¹	2,4 10-11	0,050	4,0 10-11
		M	0,050	1,8 10 ⁻¹¹	3,2 10-11		
		S	0,050	1,9 10-11	3,2 10 ⁻¹¹]	
Ag-103	1,09 h	F	0,050	1,6 10-11	2,8 10 ⁻¹¹	0,050	4,3 10-11
		M	0,050	$2,7 \ 10^{-11}$	4,3 10 ⁻¹¹		1
104	1 151	S	0,050	2,8 10 ⁻¹¹	4,5 10 ⁻¹¹	0.050	C 0 40=11
Ag-104	1,15 h	F	0,050	3,0 10 ⁻¹¹ 3,9 10 ⁻¹¹	5,7 10 ⁻¹¹ 6,9 10 ⁻¹¹	0,050	6,0 10 ⁻¹¹
		M S	0,050 0,050	4,0 10 ⁻¹¹	7,1 10 ⁻¹¹		
a 104m	0,558 h	F	0,050	1,7 10 ⁻¹¹	$3,1 \ 10^{-11}$	0,050	5,4 10-11
.g-104m	0,556 11	M	0,050	2,6 10-11	4,4 10 ⁻¹¹	0,030	3,4 10
		S	0,050	$2,010$ $2,710^{-11}$	4,5 10 ⁻¹¹		
g-105	41,0 d	F	0,050	5,4 10 ⁻¹⁰	8,0 10-10	0,050	4, 7 1 0 ⁻¹⁰
-0 -00	11,0 4	M	0,050	6,9 10 ⁻¹⁰	$7.0 \ 10^{-10}$	5,030	1,,, 10
		S	0,050	7,8 10 ⁻¹⁰	7,3 10 ⁻¹⁰		
.g-106	0,399 h	F	0,050	9,8 10 ⁻¹²	1,7 10-11	0,050	3,2 10 ⁻¹¹
O 144	1,500	M	0,050	1,6 10-11	2,6 10 ⁻¹¹	1	-,
	1	S	0,050	1,6 10-11	$2,7 \cdot 10^{-11}$	1	1

Ag-108m	h(g) 1,5 10 ⁻⁹ 2,3 10 ⁻⁹ 2,8 10 ⁻⁹ 1,3 10 ⁻⁹ 4,3 10 ⁻¹⁰
Ag-108m	2,3 10 ⁻⁹ 2,8 10 ⁻⁹ 1,3 10 ⁻⁹ 4,3 10 ⁻¹⁰
Ag-110m	2,8 10 ⁻⁹ 1,3 10 ⁻⁹ 4,3 10 ⁻¹⁰
M	1,3 10 ⁻⁹
M	4,3 10 ⁻¹⁰
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6,0 10 ⁻¹¹
Cd-104	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} \text{Cd-}107 \\ \text{Cd-}107 \\ \text{Cd-}107 \\ \text{Cd-}107 \\ \text{Cd-}107 \\ \text{Cd-}109 $	5,8 10 ⁻¹¹
$ \begin{array}{c} \text{Cd-}109 \\ \text{Cd-}109 \\ \text{Cd-}113 $	6,2 10-11
Cd-113 9,30 10 ¹⁵ a F 0,050 1,2 10 ⁻⁷ 1,4 10 ⁻⁷ 0,050 2 Cd-113m 13,6 a F 0,050 2,5 10 ⁻⁸ 2,1 10 ⁻⁸ 0,050 2 Cd-113m 13,6 a F 0,050 1,1 10 ⁻⁷ 1,3 10 ⁻⁷ 0,050 2 M 0,050 5,0 10 ⁻⁸ 4,0 10 ⁻⁸ 2,4 10 ⁻⁸ 2 0,050 3,7 10 ⁻¹⁰ 5,4 10 ⁻¹⁰ 0,050 Cd-115 2,23 d F 0,050 3,7 10 ⁻¹⁰ 5,4 10 ⁻¹⁰ 0,050 1,2 10 ⁻⁹ S 0,050 9,7 10 ⁻¹⁰ 1,2 10 ⁻⁹ 1,3 10 ⁻⁹ 0,050 1,3 10 ⁻⁹ Cd-115m 44,6 d F 0,050 5,3 10 ⁻⁹ 6,4 10 ⁻⁹ 0,050 S 0,050 7,3 10 ⁻⁹ 5,5 10 ⁻⁹ 5,5 10 ⁻⁹ S 0,050 7,3 10 ⁻¹¹ 1,3 10 ⁻¹⁰ 0,050 Cd-117m 3,36 h F 0,050 1,7 10 ⁻¹⁰ 1,9 10 ⁻¹⁰ 0,050	2,0 10 ⁻⁹
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,5 10 ⁻⁸
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,3 10 ⁻⁸
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1,4 10-9
Cd-117	3,3 10 ⁻⁹
Cd-117m 3,36 h F 0,050 1,0 10 ⁻¹⁰ 1,9 10 ⁻¹⁰ 0,050 2	2,8 10 ⁻¹⁰
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2,8 10 ⁻¹⁰
Indium	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6,6 10-11
	2,4 10 ⁻¹⁰
	1,0 10-10
	2,9 10 ⁻¹⁰
	1,0 10-11
	2,8 10 ⁻¹
	4,1 10-9

Nucléide	Période			Inhalation		Ingestion		
raciciae	physique	Туре	f ₁	h(g) _{1µm}	h(g) _{5μm}	f ₁	h(g)	
n-115	5,10 10 ¹⁵ a	F M	0,020 0,020	3,9 10 ⁻⁷ 1,5 10 ⁻⁷	4,5 10 ⁻⁷ 1,1 10 ⁻⁷	0,020	3,2 10 ⁻⁸	
n-115m	4,49 h	F M	0,020 0,020	2,5 10 ⁻¹¹ 6,0 10 ⁻¹¹	4,5 10 ⁻¹¹ 8,7 10 ⁻¹¹	0,020	8,6 10 ⁻¹¹	
n-116m	0,902 h	F M	0,020 0,020	3,0 10 ⁻¹¹ 4,8 10 ⁻¹¹	5,5 10 ⁻¹¹ 8,0 10 ⁻¹¹	0,020	6,4 10 ⁻¹¹	
n-117	0,730 h	F M	0,020 0,020	1,6 10 ⁻¹¹ 3,0 10 ⁻¹¹	2,8 10 ⁻¹¹ 4,8 10 ⁻¹¹	0,020	3,1 10 ⁻¹¹	
n-117m	1,94 h	F M	0,020 0,020	3,1 10 ⁻¹¹ 7,3 10 ⁻¹¹	5,5 10 ⁻¹¹ 1,1 10 ⁻¹⁰	0,020	1,2 10 ⁻¹⁰	
n-119m	0,300 h	F M	0,020 0,020	1,1 10 ⁻¹¹ 1,8 10 ⁻¹¹	1,8 10 ⁻¹¹ 2,9 10 ⁻¹¹	0,020	4,7 10 ⁻¹¹	
tain								
Sn-110	4,00 h	F M	0,020 0,020	1,1 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	1,9 10 ⁻¹⁰ 2,6 10 ⁻¹⁰	0,020	3,5 10 ⁻¹⁰	
n-111	0,588 h	F M	0,020 0,020	8,3 10 ⁻¹² 1,4 10 ⁻¹¹	1,5 10 ⁻¹¹ 2,2 10 ⁻¹¹	0,020	2,3 10 ⁻¹¹	
Sn-113	115 d	F M	0,020 0,020	5,4 10 ⁻¹⁰ 2,5 10 ⁻⁹	7,9 10 ⁻¹⁰ 1,9 10 ⁻⁹	0,020	7,3 10 ⁻¹⁰	
n-117m	13,6 d	F M	0,020 0,020	2,9 10 ⁻¹⁰ 2,3 10 ⁻⁹	3,9 10 ⁻¹⁰ 2,2 10 ⁻⁹	0,020	7,1 10 ⁻¹⁰	
n-119m	293 d	F M	0,020 0,020	2,9 10 ⁻¹⁰ 2,0 10 ⁻⁹	3,6 10 ⁻¹⁰ 1,5 10 ⁻⁹	0,020	3,4 10 ⁻¹⁰	
n-121	1,13 d	F M	0,020 0,020	6,4 10 ⁻¹¹ 2,2 10 ⁻¹⁰	1,0 10 ⁻¹⁰ 2,8 10 ⁻¹⁰	0,020	2,3 10 ⁻¹⁰	
n-121m	55,0 a	F M	0,020 0,020	8,0 10 ⁻¹⁰ 4,2 10 ⁻⁹	9,7 10 ⁻¹⁰ 3,3 10 ⁻⁹	0,020	3,8 10 ⁻¹⁰	
n-123	129 d	F M	0,020 0,020	1,2 10 ⁻⁹ 7,7 10 ⁻⁹	1,6 10 ⁻⁹ 5,6 10 ⁻⁹	0,020	2,1 10 ⁻⁹	
n-123m	0,668 h	F M	0,020 0,020	1,4 10 ⁻¹¹ 2,8 10 ⁻¹¹	2,4 10 ⁻¹¹ 4,4 10 ⁻¹¹	0,020	3,8 10 ⁻¹¹	
n-125	9,64 d	F M	0,020 0,020	9,2 10 ⁻¹⁰ 3,0 10 ⁻⁹	1,3 10 ⁻⁹ 2,8 10 ⁻⁹	0,020	3,1 10 ⁻⁹	
n-126	1,00 10 ⁵ a	F M	0,020 0,020	1,1 10 ⁻⁸ 2,7 10 ⁻⁸	1,4 10 ⁻⁸ 1,8 10 ⁻⁸	0,020	4,7 10-9	
n-127	2,10 h	F M	0,020 0,020	6,9 10 ⁻¹¹ 1,3 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	0,020	2,0 10 ⁻¹⁰	
5n-128	0,985 h	F M	0,020 0,020	5,4 10 ⁻¹¹ 9,6 10 ⁻¹¹	9,5 10 ⁻¹¹ 1,5 10 ⁻¹⁰	0,020	1,5 10 ⁻¹⁰	
Antimoine							•	
b-115	0,530 h	F M	0,100 0,010	9,2 10 ⁻¹² 1,4 10 ⁻¹¹	1,7 10 ⁻¹¹ 2,3 10 ⁻¹¹	0,100	2,4 10 ⁻¹¹	
b-116	0,263 h	F M	0,100 0,010	9,9 10 ⁻¹² 1,4 10 ⁻¹¹	1,8 10 ⁻¹¹ 2,3 10 ⁻¹¹	0,100	2,6 10 ⁻¹¹	
b-116m	1,00 h	F M	0,100 0,010	3,5 10 ⁻¹¹ 5,0 10 ⁻¹¹	6,4 10 ⁻¹¹ 8,5 10 ⁻¹¹	0,100	6,7 10 ⁻¹¹	
b-117	2,80 h	F M	0,100 0,010	9,3 10 ⁻¹² 1,7 10 ⁻¹¹	1,7 10 ⁻¹¹ 2,7 10 ⁻¹¹	0,100	1,8 10 ⁻¹¹	
b-118m	5,00 h	F M	0,100 0,010	1,0 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	1,9 10 ⁻¹⁰ 2,3 10 ⁻¹⁰	0,100	2,1 10 ⁻¹⁰	
b-119	1,59 d	F M	0,100 0,010	2,5 10 ⁻¹¹ 3,7 10 ⁻¹¹	4,5 10 ⁻¹¹ 5,9 10 ⁻¹¹	0,100	8,1 10 ⁻¹¹	
b-120	5,76 d	F M	0,100 0,010	5,9 10 ⁻¹⁰ 1,0 10 ⁻⁹	9,8 10 ⁻¹⁰ 1,3 10 ⁻⁹	0,100	1,2 10-9	
b-120	0,265 h	F M	0,100 0,010	4,9 10 ⁻¹² 7,4 10 ⁻¹²	8,5 10 ⁻¹² 1,2 10 ⁻¹¹	0,100	1,4 10-11	

Nucléide	Période			Inhalation		I	ngestion
Nucleide	physique	Type	f ₁	h(g) _{1μm}	h(g) _{5μm}	fı	h(g)
Sb-122	2,70 d	F M	0,100 0,010	3,9 10 ⁻¹⁰ 1,0 10 ⁻⁹	6,3 10 ⁻¹⁰ 1,2 10 ⁻⁹	0,100	1,7 10-9
Sb-124	60,2 d	F M	0,100 0,010	1,3 10 ⁻⁹ 6,1 10 ⁻⁹	1,9 10 ⁻⁹ 4,7 10 ⁻⁹	0,100	2,5 10-9
Sb-124m	0,337 h	F M	0,100 0,010	3,0 10 ⁻¹² 5,5 10 ⁻¹²	5,3 10 ⁻¹² 8,3 10 ⁻¹²	0,100	8,0 10 ⁻¹²
Sb-125	2,77 a	F M	0,100 0,010	1,4 10 ⁻⁹ 4,5 10 ⁻⁹	1,7 10 ⁻⁹ 3,3 10 ⁻⁹	0,100	1,1 10-9
Sb-126	12,4 d	F M	0,100 0,010	1,1 10 ⁻⁹ 2,7 10 ⁻⁹	1,7 10 ⁻⁹ 3,2 10 ⁻⁹	0,100	2,4 10 ⁻⁹
Sb-126m	0,317 h	F M	0,100 0,010	1,3 10 ⁻¹¹ 2,0 10 ⁻¹¹	2,3 10 ⁻¹¹ 3,3 10 ⁻¹¹	0,100	3,6 10 ⁻¹¹
Sb-127	3,85 d	F M	0,100 0,010	4,6 10 ⁻¹⁰ 1,6 10 ⁻⁹	7,4 10 ⁻¹⁰ 1,7 10 ⁻⁹	0,100	1,7 10-9
Sb-128	9,01 h	F M	0,100 0,010	2,5 10 ⁻¹⁰ 4,2 10 ⁻¹⁰	4,6 10 ⁻¹⁰ 6,7 10 ⁻¹⁰	0,100	7,6 10 ⁻¹⁰
Sb-128	0,173 h	F M	0,100 0,010	1,1 10 ⁻¹¹ 1,5 10 ⁻¹¹	1,9 10 ⁻¹¹ 2,6 10 ⁻¹¹	0,100	3,3 10 ⁻¹¹
Sb-129	4,32 h	F M	0,100 0,010	1,1 10 ⁻¹⁰ 2,4 10 ⁻¹⁰	2,0 10 ⁻¹⁰ 3,5 10 ⁻¹⁰	0,100	4,2 10 ⁻¹⁰
Sb-130	0,667 h	F M	0,100 0,010	3,5 10 ⁻¹¹ 5,4 10 ⁻¹¹	6,3 10 ⁻¹¹ 9,1 10 ⁻¹¹	0,100	9,1 10 ⁻¹¹
Sb-131	0,383 h	F M	0,100 0,010	3,7 10 ⁻¹¹ 5,2 10 ⁻¹¹	5,9 10 ⁻¹¹ 8,3 10 ⁻¹¹	0,100	1,0 10 ⁻¹⁰
Tellure	1	'		,		1	ı
Te-116	2,49 h	F M	0,300 0,300	6,3 10 ⁻¹¹ 1,1 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	0,300	1,7 10 ⁻¹⁰
Te-121	17,0 d	F M	0,300 0,300	2,5 10 ⁻¹⁰ 3,9 10 ⁻¹⁰	3,9 10 ⁻¹⁰ 4,4 10 ⁻¹⁰	0,300	4,3 10 ⁻¹⁰
Te-121m	154 d	F M	0,300 0,300	1,8 10 ⁻⁹ 4,2 10 ⁻⁹	2,3 10 ⁻⁹ 3,6 10 ⁻⁹	0,300	2,3 10-9
Te-123	1,00 10 ¹³ a	F M	0,300 0,300	4,0 10 ⁻⁹ 2,6 10 ⁻⁹	5,0 10 ⁻⁹ 2,8 10 ⁻⁹	0,300	4,4 10 ⁻⁹
Te-123m	120 d	F M	0,300 0,300	9,7 10 ⁻¹⁰ 3,9 10 ⁻⁹	1,2 10 ⁻⁹ 3,4 10 ⁻⁹	0,300	1,4 10-9
Te-125m	58,0 d	F M	0,300 0,300	5,1 10 ⁻¹⁰ 3,3 10 ⁻⁹	6,7 10 ⁻¹⁰ 2,9 10 ⁻⁹	0,300	8,7 10 ⁻¹⁰
Te-127	9,35 h	F M	0,300 0,300	4,2 10 ⁻¹¹ 1,2 10 ⁻¹⁰	7,2 10 ⁻¹¹ 1,8 10 ⁻¹⁰	0,300	1,7 10 ⁻¹⁰
Te-127m	109 d	F M	0,300 0,300	1,6 10 ⁻⁹ 7,2 10 ⁻⁹	2,0 10 ⁻⁹ 6,2 10 ⁻⁹	0,300	2,3 10-9
Te-129	1,16 h	F M	0,300 0,300	1,7 10 ⁻¹¹ 3,8 10 ⁻¹¹	2,9 10 ⁻¹¹ 5,7 10 ⁻¹¹	0,300	6,3 10 ⁻¹¹
Te-129m	33,6 d	F M	0,300 0,300	1,3 10 ⁻⁹ 6,3 10 ⁻⁹	1,8 10 ⁻⁹ 5,4 10 ⁻⁹	0,300	3,0 10-9
Te-131	0,417 h	F M	0,300 0,300	2,3 10 ⁻¹¹ 3,8 10 ⁻¹¹	4,6 10 ⁻¹¹ 6,1 10 ⁻¹¹	0,300	8,7 10 ⁻¹¹
Te-131m	1,25 d	F M	0,300 0,300	8,7 10 ⁻¹⁰ 1,1 10 ⁻⁹	1,2 10 ⁻⁹ 1,6 10 ⁻⁹	0,300	1,9 10-9
Te-132	3,26 d	F M	0,300 0,300	1,8 10 ⁻⁹ 2,2 10 ⁻⁹	2,4 10 ⁻⁹ 3,0 10 ⁻⁹	0,300	3,7 10-9
Te-133	0,207 h	F M	0,300 0,300	2,0 10 ⁻¹¹ 2,7 10 ⁻¹¹	3,8 10 ⁻¹¹ 4,4 10 ⁻¹¹	0,300	7,2 10 ⁻¹¹
Te-133m	0,923 h	F M	0,300 0,300	8,4 10 ⁻¹¹ 1,2 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	0,300	2,8 10 ⁻¹⁰
Te-134	0,696 h	F M	0,300 0,300	5,0 10 ⁻¹¹ 7,1 10 ⁻¹¹	8,3 10 ⁻¹¹ 1,1 10 ⁻¹⁰	0,300	1,1 10 ⁻¹⁰

Nucléide	Période			Inhalation		Ingestion		
Nucleide	physique	Type	f_1	$h(g)_{1\mu m}$	h(g) _{5μm}	f ₁	h(g)	
lode								
I-120	1,35 h	F	1,000	1,0 10 ⁻¹⁰	1,9 10-10	1,000	3,4 10 ⁻¹⁰	
I-120m	0,883 h	F	1,000	8,7 10-11	1,4 10 ⁻¹⁰	1,000	2,1 10 ⁻¹⁰	
-121	2,12 h	F	1,000	$2,8 \ 10^{-11}$	3,9 10-11	1,000	8,2 10-11	
-123	13,2 h	F	1,000	7,6 10 ⁻¹¹	1,1 10 ⁻¹⁰	1,000	2,1 10 ⁻¹⁰	
-124	4,18 d	F	1,000	4,5 10-9	6,3 10-9	1,000	1,3 10-8	
-125	60,1 d	F	1,000	5,3 10 ⁻⁹	7,3 10-9	1,000	1,5 10-8	
-126	13,0 d	F	1,000	$1,0\ 10^{-8}$	1,4 10-8	1,000	2,9 10-8	
128	0,416 h	F	1,000	1,4 10 ⁻¹¹	2,2 10 ⁻¹¹	1,000	4,6 10 ⁻¹¹	
129	$1,57 \ 10^7 \ a$	F	1,000	$3,7 \cdot 10^{-8}$	5,1 10-8	1,000	1,1 10 ⁻⁷	
-130	12,4 h	F	1,000	6,9 10 ⁻¹⁰	9,6 10 ⁻¹⁰	1,000	2,0 10-9	
131	8,04 d	F	1,000	7,6 10 ⁻⁹	1,1 10-8	1,000	$2,2\ 10^{-8}$	
132	2,30 h	F	1,000	9,6 10-11	2,0 10 ⁻¹⁰	1,000	2,9 10 ⁻¹⁰	
132m	1,39 h	F	1,000	8,1 10 ⁻¹¹	1,1 10 ⁻¹⁰	1,000	2,2 10 ⁻¹⁰	
133	20,8 h	F	1,000	1,5 10 ⁻⁹	2,1 10-9	1,000	4,3 10-9	
-134	0,876 h	F	1,000	4,8 10 ⁻¹¹	7,9 10 ⁻¹¹	1,000	1,1 10 ⁻¹⁰	
135	6,61 h	F	1,000	3,3 10 ⁻¹⁰	4,6 10 ⁻¹⁰	1,000	9,3 10 ⁻¹⁰	
Lésium	1 7	1					•	
Cs-125	0,750 h	F	1,000	1,3 10 ⁻¹¹	2,3 10-11	1,000	3,5 10-11	
Cs-127	6,25 h	F	1,000	2,2 10 ⁻¹¹	4,0 10-11	1,000	2,4 10 ⁻¹¹	
Cs-129	1,34 d	F	1,000	4,5 10 ⁻¹¹	8,1 10-11	1,000	6,0 10 ⁻¹¹	
Cs-130	0,498 h	F	1,000	8,4 10 ⁻¹²	1,5 10 ⁻¹¹ .	1,000	2,8 10 ⁻¹¹	
Ss-131	9,69 d	F	1,000	2,8 10 ⁻¹¹	4,5 10 ⁻¹¹	1,000	5,8 10 ⁻¹¹	
s-132	6,48 d	F	1,000	2,4 10 ⁻¹⁰	3,8 10 ⁻¹⁰	1,000	5,0 10 ⁻¹⁰	
Ss-134	2,06 a	F	1,000	6,8 10 ⁻⁹	9,6 10-9	1,000	1,9 10 ⁻⁸	
Ss-134m	2,90 h	F	1,000	1,5 10-11	2,6 10 ⁻¹¹	1,000	2,0 10 ⁻¹¹	
Ss-135	2,30 10 ⁶ a	F	1,000	7,1 10 ⁻¹⁰	9,9 10 ⁻¹⁰	1,000	2,0 10-9	
Cs-135m	0,883 h	F	1,000	1,3 10 ⁻¹¹	2,4 10 ⁻¹¹	1,000	1,9 10 ⁻¹¹	
S-136	13,1 d	F	1,000	1,3 10 ⁻⁹	1,9 10-9	1,000	3,0 10 ⁻⁹	
Ss-130	30,0 a	F	1,000	4,8 10 ⁻⁹	6,7 10-9	1,000	1,3 10 ⁻⁸	
Ss-138	0,536 h	F	1,000	2,6 10 ⁻¹¹	4,6 10-11	1,000	9,2 10 ⁻¹¹	
aryum	0,330 H	1 *	1,000	2,0 10	1,0 10	1,000	>, 2 10	
•	1 1 (1 1	l · r	1 0.100 1	7,8 10 ⁻¹¹	1,2 10 ⁻¹⁰	0.100	2,6 10-10	
a-126	1,61 h	F	0,100	8,0 10 ⁻¹⁰	1,3 10 ⁻⁹	0,100	2,6 10 2,7 10 ⁻⁹	
a-128 a-131	2,43 h 11,8 d	F F	0,100 0,100	2,3 10 ⁻¹⁰	3,5 10 ⁻¹⁰	0,100 0,100	4,5 10 ⁻¹⁰	
a-131 a-131m	0,243 h	F	0,100	4,1 10 ⁻¹²	6,4 10 ⁻¹²	0,100	4,9 10 ⁻¹²	
a-131m a-133	10,7 a	F	0,100	1,5 10 ⁻⁹	1,8 10-9	0,100	1,0 10 ⁻⁹	
a-133m	1,62 d	F	0,100	1,9 10 ⁻¹⁰	2,8 10 ⁻¹⁰	0,100	5,5 10 ⁻¹⁰	
a-135m	1,32 d	F	0,100	1,5 10 ⁻¹⁰	2,3 10 ⁻¹⁰	0,100	4,5 10 ⁻¹⁰	
a-139iii a-139	1,38 h	F	0,100	3,5 10 ⁻¹¹	5,5 10 ⁻¹¹	0,100	1,2 10 ⁻¹⁰	
a-140	12,7 d	F	0,100	1,0 10 ⁻⁹	1,6 10-9	0,100	2,5 10 ⁻⁹	
a-141	0,305 h	F	0,100	2,2 10 ⁻¹¹	3,5 10 ⁻¹¹	0,100	7,0 10 ⁻¹¹	
a-142	0,177 h	F	0,100	1,6 10 ⁻¹¹	2,7 10 ⁻¹¹	0,100	3,5 10 ⁻¹¹	
anthane	T T	'	. '		1	1	· · · ·	
a-131	0,983 h	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,4 10 ⁻¹¹ 2,3 10 ⁻¹¹	2,4 10 ⁻¹¹ 3,6 10 ⁻¹¹	5,0 10-4	3,5 10 ⁻¹¹	
a-132	4,80 h	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,1 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	2,0 10 ⁻¹⁰ 2,8 10 ⁻¹⁰	5,0 10-4	3,9 10 ⁻¹⁰	
a-135	19,5 h	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$1,1 \ 10^{-11}$ $1,5 \ 10^{-11}$	2,0 10 ⁻¹¹ 2,5 10 ⁻¹¹	5,0 10-4	3,0 10 ⁻¹¹	

Nucléide	Période			Inhalation		In	gestion
Nucleide	physique	Туре	f ₁	h(g) _{1μm}	h(g) _{5μm}	f ₁	h(g)
La-137	6,00 10 ⁴ a	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,6 10 ⁻⁹ 3,4 10 ⁻⁹	1,0 10 ⁻⁸ 2,3 10 ⁻⁹	5,0 10 ⁻⁴	8,1 10 ⁻¹¹
La-138	1,35 10 ¹¹ a	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$1,5 \ 10^{-7}$ $6,1 \ 10^{-8}$	1,8 10 ⁻⁷ 4,2 10 ⁻⁸	5,0 10 ⁻⁴	1,1 10 ⁻⁹
_a-140	1,68 d	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$6,0 \ 10^{-10}$ $1,1 \ 10^{-9}$	1,0 10 ⁻⁹ 1,5 10 ⁻⁹	5,0 10-4	2,0 10 ⁻⁹
La-141	3,93 h	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$6,7 ext{ } 10^{-11}$ $1,5 ext{ } 10^{-10}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,0 10-4	3,6 10 ⁻¹⁰
a-142	1,54 h	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,6 10 ⁻¹¹ 9,3 10 ⁻¹¹	1,0 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	5,0 10-4	1,8 10 ⁻¹⁰
La-143	0,237 h	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,2 10 ⁻¹¹ 2,2 10 ⁻¹¹	2,0 10 ⁻¹¹ 3,3 10 ⁻¹¹	5,0 10-4	5,6 10 ⁻¹¹
Cérium	ı	1				, ,	
Ce-134	3,00 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,3 10 ⁻⁹ 1,3 10 ⁻⁹	1,5 10 ⁻⁹ 1,6 10 ⁻⁹	5,0 10-4	2,5 10 ⁻⁹
Ce-135	17,6 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,9 10 ⁻¹⁰ 5,1 10 ⁻¹⁰	7,3 10 ⁻¹⁰ 7,6 10 ⁻¹⁰	5,0 10-4	7,9 10 ⁻¹⁰
Ce-137	9,00 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,0 10 ⁻¹¹ 1,1 10 ⁻¹¹	1,8 10 ⁻¹¹ 1,9 10 ⁻¹¹	5,0 10-4	2,5 10 ⁻¹¹
Ce-137m	1,43 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,0 10 ⁻¹⁰ 4,3 10 ⁻¹⁰	5,5 10 ⁻¹⁰ 5,9 10 ⁻¹⁰	5,0 10-4	5,4 10 ⁻¹⁰
Ce-139	138 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,6 10 ⁻⁹ 1,8 10 ⁻⁹	1,3 10 ⁻⁹ 1,4 10 ⁻⁹	5,0 10-4	2,6 10 ⁻¹⁰
Ce-141	32,5 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,1 10 ⁻⁹ 3,6 10 ⁻⁹	2,7 10 ⁻⁹ 3,1 10 ⁻⁹	5,0 10-4	7,1 10 ⁻¹⁰
Ce-143	1,38 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,4 10 ⁻¹⁰ 8,1 10 ⁻¹⁰	9,5 10 ⁻¹⁰ 1,0 10 ⁻⁹	5,0 10-4	1,1 10-9
Ce-144	284 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,4 10 ⁻⁸ 4,9 10 ⁻⁸	2,3 10 ⁻⁸ 2,9 10 ⁻⁸	5,0 10-4	5,2 10 ⁻⁹
Praséodyme	I	1	1 2,0 20 1	.,		f I	
Pr-136	0,218 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,4 10 ⁻¹¹ 1,5 10 ⁻¹¹	2,4 10 ⁻¹¹ 2,5 10 ⁻¹¹	5,0 10-4	3,3 10 ⁻¹¹
r-137	1,28 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$\begin{array}{c} 2,1 & 10^{-11} \\ 2,2 & 10^{-11} \end{array}$	3,4 10 ⁻¹¹ 3,5 10 ⁻¹¹	5,0 10-4	4,0 10 ⁻¹¹
Pr-138m	2,10 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,6 10 ⁻¹¹ 7,9 10 ⁻¹¹	1,3 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	5,0 10-4	1,3 10 ⁻¹⁰
r-139	4,51 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,9 10 ⁻¹¹ 2,0 10 ⁻¹¹	2,9 10 ⁻¹¹ 3,0 10 ⁻¹¹	5,0 10-4	3,1 10 ⁻¹¹
Pr-142	19,1 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,3 10 ⁻¹⁰ 5,6 10 ⁻¹⁰	7,0 10 ⁻¹⁰ 7,4 10 ⁻¹⁰	5,0 10-4	1,3 10-9
r-142m	0,243 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$6,7 \ 10^{-12} \\ 7,1 \ 10^{-12}$	8,9 10 ⁻¹² 9,4 10 ⁻¹²	5,0 10-4	1,7 10 ⁻¹¹
r-143	13,6 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,1 10 ⁻⁹ 2,3 10 ⁻⁹	1,9 10 ⁻⁹ 2,2 10 ⁻⁹	5,0 10-4	1,2 10 ⁻⁹
Pr-144	0,288 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,8 10 ⁻¹¹ 1,9 10 ⁻¹¹	2,9 10 ⁻¹¹ 3,0 10 ⁻¹¹	5,0 10-4	5,0 10-11
r-145	5,98 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	2,5 10 ⁻¹⁰ 2,6 10 ⁻¹⁰	5,0 10-4	3,9 10 ⁻¹⁰
r-147	0,227 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,8 10 ⁻¹¹ 1,9 10 ⁻¹¹	2,9 10 ⁻¹¹ 3,0 10 ⁻¹¹	5,0 10 ⁻⁴	3,3 10 ⁻¹¹
leodyme			,			'	
Id-136	0,844 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,3 10 ⁻¹¹ 5,6 10 ⁻¹¹	8,5 10 ⁻¹¹ 8,9 10 ⁻¹¹	5,0 10-4	9,9 10 ⁻¹¹
Nd-138	5,04 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$2,4 ext{ } 10^{-10}$ $2,6 ext{ } 10^{-10}$	3,7 10 ⁻¹⁰ 3,8 10 ⁻¹⁰	5,0 10-4	6,4 10 ⁻¹⁰
Nd-139	0,495 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,0 10 ⁻¹¹ 1,1 10 ⁻¹¹	1,7 10 ⁻¹¹ 1,7 10 ⁻¹¹	5,0 10 ⁻⁴	2,0 10 ⁻¹¹
Nd-139m	5,50 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	2,5 10 ⁻¹⁰ 2,5 10 ⁻¹⁰	5,0 10 ⁻⁴	2,5 10 ⁻¹⁰

Nucléide	Période		,	Inhalation		In	gestion
Nucleide	physique	Туре	f ₁	h(g) _{1μm}	h(g) _{5μm}	f_1	h(g)
Nd-141	2,49 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,1 10 ⁻¹² 5,3 10 ⁻¹²	8,5 10 ⁻¹² 8,8 10 ⁻¹²	5,0 10-4	8,3 10 ⁻¹²
Nd-147	11,0 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,0 10 ⁻⁹ 2,3 10 ⁻⁹	1,9 10 ⁻⁹ 2,1 10 ⁻⁹	5,0 10-4	1,1 10 ⁻⁹
Nd-149	1,73 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,5 10 ⁻¹¹ 9,0 10 ⁻¹¹	1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	5,0 10-4	1,2 10 ⁻¹⁰
Nd-151	0,207 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$1,7 \ 10^{-11}$ $1,8 \ 10^{-11}$	2,8 10 ⁻¹¹ 2,9 10 ⁻¹¹	5,0 10-4	3,0 10 ⁻¹¹
Prométhium					•		
m-141	0,348 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,5 10 ⁻¹¹ 1,6 10 ⁻¹¹	2,4 10 ⁻¹¹ 2,5 10 ⁻¹¹	5,0 10-4	3,6 10 ⁻¹¹
Pm-143	265 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,4 10 ⁻⁹ 1,3 10 ⁻⁹	9,6 10 ⁻¹⁰ 8,3 10 ⁻¹⁰	5,0 10-4	2,3 10 ⁻¹⁰
Pm-144	363 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,8 10 ⁻⁹ 7,0 10 ⁻⁹	5,4 10 ⁻⁹ 3,9 10 ⁻⁹	5,0 10-4	9,7 10 ⁻¹⁰
Pm-145	17,7 a	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,4 10 ⁻⁹ 2,1 10 ⁻⁹	2,4 10 ⁻⁹ 1,2 10 ⁻⁹	5,0 10-4	1,1 10 ⁻¹⁰
Pm-146	5,53 a	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,9 10 ⁻⁸ 1,6 10 ⁻⁸	1,3 10 ⁻⁸ 9,0 10 ⁻⁹	5,0 10-4	9,0 10 ⁻¹⁰
Pm-147	2,62 a	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,7 10 ⁻⁹ 4,6 10 ⁻⁹	3,5 10 ⁻⁹ 3,2 10 ⁻⁹	5,0 10-4	2,6 10 ⁻¹⁰
Pm-148	5,37 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,0 10 ⁻⁹ 2,1 10 ⁻⁹	2,1 10 ⁻⁹ 2,2 10 ⁻⁹	5,0 10-4	2,7 10-9
Pm-148m	41,3 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,9 10 ⁻⁹ 5,4 10 ⁻⁹	4,1 10 ⁻⁹ 4,3 10 ⁻⁹	5,0 10-4	1,8 10-9
Pm-149	2,21 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	6,6 10 ⁻¹⁰ 7,2 10 ⁻¹⁰	7,6 10 ⁻¹⁰ 8,2 10 ⁻¹⁰	5,0 10-4	9,9 10 ⁻¹⁰
Pm-150	2,68 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	2,0 10 ⁻¹⁰ 2,1 10 ⁻¹⁰	5,0 10-4	2,6 10 ⁻¹⁰
Pm-151	1,18 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,2 10 ⁻¹⁰ 4,5 10 ⁻¹⁰	6,1 10 ⁻¹⁰ 6,4 10 ⁻¹⁰	5,0 10-4	7,3 10 ⁻¹⁰
Samarium	ì	1	1 '	,		1	
Sm-141	0,170 h	M	5,0 10-4	1,6 10 ⁻¹¹	2,7 10-11	5,0 10-4	3,9 10 ⁻¹¹
Sm-141m	0,377 h	M	5,0 10-4	3,4 10 ⁻¹¹	5,6 10-11	5,0 10-4	6,5 10 ⁻¹¹
im-142	1,21 h	M	5,0 10-4	7,4 10 ⁻¹¹	1,1 10 ⁻¹⁰	5,0 10-4	1,9 10 ⁻¹⁰
Sm-145	340 d	M	5,0 10-4	1,5 10 ⁻⁹	1,1 10-9	5,0 10-4	2,1 10 ⁻¹⁰
Sm-146	1,03 10 ⁸ a	M	5,0 10-4	9,9 10 ⁻⁶	6,7 10-6	5,0 10-4	5,4 10 ⁻⁸
Sm-147	1,06 10 ¹¹ a	M	5,0 10-4	8,9 10-6	6,1 10 ⁻⁶	5,0 10-4	4,9 10-8
Sm-151	90,0 a	M	5,0 10-4	3,7 10 ⁻⁹	2,6 10-9	5,0 10-4	9,8 10 ⁻¹¹
6m-153	1,95 d	M	5,0 10-4	$6,1 \ 10^{-10}$	6,8 10 ⁻¹⁰	5,0 10-4	7,4 10 ⁻¹⁰
Sm-155	0,368 h	M	5,0 10-4	1,7 10 ⁻¹¹	2,8 10 ⁻¹¹	5,0 10-4	2,9 10 ⁻¹¹
5m-156	9,40 h	M	5,0 10-4	2,1 10 ⁻¹⁰	2,8 10 ⁻¹⁰	5,0 10-4	2,5 10 ⁻¹⁰
Europium			·			·	
Eu-145	5,94 d	M	5,0 10-4	5,6 10 ⁻¹⁰	7,3 10 ⁻¹⁰	5,0 10-4	7,5 10 ⁻¹⁰
Eu-146	4,61 d	M	5,0 10-4	8,2 10 ⁻¹⁰	1,2 10-9	5,0 10-4	1,3 10-9
Eu-147	24,0 d	M	5,0 10-4	1,0 10-9	1,0 10-9	5,0 10-4	4,4 10 ⁻¹⁰
lu-148	54,5 d	M	5,0 10-4	2,7 10 ⁻⁹	2,3 10-9	5,0 10-4	1,3 10-9
Lu-149	93,1 d	M	5,0 10-4	$2,7 \cdot 10^{-10}$	2,3 10 ⁻¹⁰	5,0 10-4	1,0 10 ⁻¹⁰
Eu-150	34,2 a	M	5,0 10 ⁻⁴	5,0 10 ⁻⁸	3,4 10 ⁻⁸	5,0 10-4	1,3 10 ⁻⁹
Eu-150	12,6 h	M	5,0 10-4	1,9 10 ⁻¹⁰	2,8 10 ⁻¹⁰	5,0 10-4	3,8 10 ⁻¹⁰
Eu-152	13,3 a	M	5,0 10-4	3,9 10 ⁻⁸	2,7 10-8	5,0 10-4	1,4 10 ⁻⁹
Eu-152m	9,32 h	M	5,0 10-4	$2,2 \ 10^{-10}$	3,2 10 ⁻¹⁰	5,0 10-4	5,0 10 ⁻¹⁰
Eu-154	8,80 a	M	5,0 10-4	5,0 10-8	3,5 10-8	5,0 10-4	2,0 10-9

Nucléide	Période			Inhalation		In	gestion
Nucleide	physique	Туре	f ₁	$h(g)_{1\mu m}$	h(g) _{5μm}	f ₁	h(g)
Eu-155	4,96 a	М	5,0 10-4	6,5 10 ⁻⁹	4,7 10-9	5,0 10-4	3,2 10 ⁻¹⁰
Eu-156	15,2 d	M	5,0 10-4	3,3 10 ⁻⁹	3,0 10-9	5,0 10-4	2,2 10-9
Eu-1 <i>57</i>	15,1 h	M	5,0 10-4	3,2 10 ⁻¹⁰	4,4 10 ⁻¹⁰	5,0 10-4	6,0 10 ⁻¹⁰
Eu-158	0,765 h	M	5,0 10-4	4,8 10 ⁻¹¹	7,5 10 ⁻¹¹	5,0 10-4	9,4 10 ⁻¹¹
Gadolinium							
Gd-145	0,382 h	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,5 10 ⁻¹¹ 2,1 10 ⁻¹¹	2,6 10 ⁻¹¹ 3,5 10 ⁻¹¹	5,0 10-4	4,4 10 ⁻¹¹
Gd-146	48,3 d	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,4 10 ⁻⁹ 6,0 10 ⁻⁹	5,2 10 ⁻⁹ 4,6 10 ⁻⁹	5,0 10-4	9,6 10 ⁻¹⁰
Gd-147	1,59 d	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$2,7 ext{ } 10^{-10}$ $4,1 ext{ } 10^{-10}$	4,5 10 ⁻¹⁰ 5,9 10 ⁻¹⁰	5,0 10-4	6,1 10 ⁻¹⁰
Gd-148	93,0 a	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,5 10 ⁻⁵ 1,1 10 ⁻⁵	3,0 10 ⁻⁵ 7,2 10 ⁻⁶	5,0 10-4	5,5 10 ⁻⁸
Gd-149	9,40 d	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,6 10 ⁻¹⁰ 7,0 10 ⁻¹⁰	4,5 10 ⁻¹⁰ 7,9 10 ⁻¹⁰	5,0 10-4	4,5 10 ⁻¹⁰
Gd-151	120 d	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,8 10 ⁻¹⁰ 8,1 10 ⁻¹⁰	9,3 10 ⁻¹⁰ 6,5 10 ⁻¹⁰	5,0 10-4	2,0 10 ⁻¹⁰
Gd-152	1,08 10 ¹⁴ a	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,9 10 ⁻⁵ 7,4 10 ⁻⁶	2,2 10 ⁻⁵ 5,0 10 ⁻⁶	5,0 10-4	4,1 10 ⁻⁸
Gd-153	242 d	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,1 10 ⁻⁹ 1,9 10 ⁻⁹	2,5 10 ⁻⁹ 1,4 10 ⁻⁹	5,0 10-4	2,7 10 ⁻¹⁰
Gd-159	18,6 h	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,1 10 ⁻¹⁰ 2,7 10 ⁻¹⁰	1,8 10 ⁻¹⁰ 3,9 10 ⁻¹⁰	5,0 10-4	4,9 10 ⁻¹⁰
Terbium -							
Ъ-147	1,65 h	M	5,0 10-4	7,9 10 ⁻¹¹	1,2 10 ⁻¹⁰	5,0 10-4	1,6 10 ⁻¹⁰
b-149	4,15 h	M	5,0 10-4	4,3 10 ⁻⁹	3,1 10-9	5,0 10-4	$2,5 ext{ } 10^{-10}$
b-150	3,27 h	M	5,0 10-4	$1,1 \ 10^{-10}$	1,8 10 ⁻¹⁰	5,0 10-4	$2,5 \ 10^{-10}$
ГЬ-151	17,6 h	M	5,0 10-4	2,3 10 ⁻¹⁰	3,3 10 ⁻¹⁰	5,0 10-4	$3,4 \ 10^{-10}$
b-153	2,34 d	M	5,0 10-4	2,0 10 ⁻¹⁰	2,4 10 ⁻¹⁰	5,0 10-4	2,5 10 ⁻¹⁰
Tb-154	21,4 h	M	5,0 10-4	3,8 10 ⁻¹⁰	6,0 10 ⁻¹⁰	5,0 10-4	$6,5 \ 10^{-10}$
Гb-155	5,32 d	M	5,0 10-4	2,1 10 ⁻¹⁰	2,5 10 ⁻¹⁰	5,0 10-4	2,1 10 ⁻¹⁰
ГЬ-156	5,34 d	М	5,0 10-4	1,2 10 ⁻⁹	1,4 10-9	5,0 10-4	1,2 10-9
Гb-156m	1,02 d	M	5,0 10-4	2,0 10 ⁻¹⁰	2,3 10 ⁻¹⁰	5,0 10-4	1,7 10 ⁻¹⁰
Гb-156m	5,00 h	M	5,0 10-4	9,2 10-11	1,3 10 ⁻¹⁰	5,0 10-4	8,1 10-11
ГЬ-157	1,50 10 ² a	M	5,0 10-4	1,1 10 ⁻⁹	7,9 10 ⁻¹⁰	5,0 10-4	3,4 10 ⁻¹¹
ГЬ-158	$1,50 \ 10^2 \ a$	M	5,0 10-4	4,3 10-8	3,0 10-8	5,0 10-4	1,1 10-9
ГЬ-160	72,3 d	М	5,0 10-4	6,6 10 ⁻⁹	5,4 10 ⁻⁹	5,0 10-4	1,6 10 ⁻⁹
Гb-161	6,91 d	M	5,0 10-4	1,2 10-9	1,2 10-9	5,0 10-4	7,2 10 ⁻¹⁰
Dysprosium							•
Dy-155	10,0 h	M	5,0 10-4	8,0 10-11	1,2 10 ⁻¹⁰	5,0 10-4	1,3 10 ⁻¹⁰
Dy-157	8,10 h	M	5,0 10-4	3,2 10 ⁻¹¹	5,5 10 ⁻¹¹	5,0 10-4	6,1 10 ⁻¹¹
Dy-159	144 d	M	5,0 10-4	3,5 10 ⁻¹⁰	2,5 10 ⁻¹⁰	5,0 10-4	1,0 10 ⁻¹⁰
Dy-165	2,33 h	M	5,0 10-4	6,1 10 ⁻¹¹	8,7 10-11	5,0 10-4	1,1 10 ⁻¹⁰
Dy-166	3,40 d	M	5,0 10-4	1,8 10-9	1,8 10 ⁻⁹	5,0 10 ⁻⁴	1,6 10-9
Holmium							
Ho-155	0,800 h	M	5,0 10-4	2,0 10-11	3,2 10-11	5,0 10-4	3,7 10 ⁻¹¹
Ho-157	0,210 h	M	5,0 10-4	4,5 10 ⁻¹²	7,6 10 ⁻¹²	5,0 10-4	6,5 10 ⁻¹²
Ho-159	0,550 h	M	5,0 10-4	6,3 10 ⁻¹²	1,0 10-11	5,0 10-4	7,9 10 ⁻¹²
Ho-161	2,50 h	M	5,0 10-4	6,3 10 ⁻¹²	1,0 10-11	5,0 10-4	1,3 10 ⁻¹¹
Ho-162	0,250 h	M	5,0 10-4	2,9 10 ⁻¹²	4,5 10 ⁻¹²	5,0 10-4	3,3 10 ⁻¹²
Ho-162m	1,13 h	M	5,0 10-4	2,2 10 ⁻¹¹	3,3 10 ⁻¹¹	5,0 10-4	2,6 10 ⁻¹¹

Nucléide Période				Inhalation		Ingestion	
ivucieide	physique	Type	. f ₁	$h(g)_{1\mu m}$	h(g) _{5μm}	f ₁	h(g)
Ho-164	0,483 h	M	5,0 10-4	8,6 10 ⁻¹²	1,3 10-11	5,0 10-4	9,5 10 ⁻¹²
Ho-164m	0,625 h	М	5,0 10-4	1,2 10 ⁻¹¹	1,6 10-11	5,0 10-4	1,6 10-11
Ho-166	1,12 d	M	5,0 10-4	6,6 10 ⁻¹⁰	8,3 10 ⁻¹⁰	5,0 10-4	1,4 10 ⁻⁹
Ho-166m	$1,20 \ 10^3 \ a$	M	5,0 10-4	1,1 10 ⁻⁷	7,8 10-8	5,0 10-4	$2,0\ 10^{-9}$
Ho-167	3,10 h	M	5,0 10-4	7,1 10 ⁻¹¹	1,0 10 ⁻¹⁰	5,0 10-4	$8,3 \ 10^{-11}$
Erbium							
Er-161	3,24 h	M	5,0 10-4	5,1 10 ⁻¹¹	8,5 10 ⁻¹¹	5,0 10-4	8,0 10 ⁻¹¹
Er-165	10,4 h	M	5,0 10-4	$8,3 \ 10^{-12}$	1,4 10 ⁻¹¹	5,0 10-4	1,9 10 ⁻¹¹
Er-169	9,30 d	M	5,0 10-4	9,8 10 ⁻¹⁰	9,2 10 ⁻¹⁰	5,0 10-4	3,7 10 ⁻¹⁰
Er-171	7,52 h	M	5,0 10-4	2,2 10 ⁻¹⁰	3,0 10 ⁻¹⁰	5,0 10-4	3,6 10 ⁻¹⁰
Er-172	2,05 d	M	5,0 10-4	1,1 10-9	1,2 10-9	5,0 10-4	$1,0 \ 10^{-9}$
Thulium							
Гт-162	0,362 h	М	5,0 10-4	$1,6 \ 10^{-11}$	2,7 10 ⁻¹¹	5,0 10-4	2,9 10 ⁻¹¹
m-166	7,70 h	М	5,0 10-4	$1,8 \ 10^{-10}$	2,8 10 ⁻¹⁰	5,0 10-4	2,8 10 ⁻¹⁰
m-167	9,24 d	М	5,0 10-4	1,1 10 ⁻⁹	1,0 10-9	5,0 10-4	5,6 10 ⁻¹⁰
m-170	129 d	M	5,0 10-4	6,6 10 ⁻⁹	5,2 10-9	5,0 10-4	1,3 10-9
m-171	1,92 a	M	5,0 10-4	1,3 10 ⁻⁹	9,1 10 ⁻¹⁰	5,0 10-4	$1,1 \ 10^{-10}$
m-172	2,65 d	M	5,0 10-4	1,1 10 ⁻⁹	1,4 10 ⁻⁹	5,0 10-4	1,7 10 ⁻⁹
Cm-173	8,24 h	M	5,0 10-4	1,8 10 ⁻¹⁰	2,6 10 ⁻¹⁰	5,0 10-4	$3,1 \ 10^{-10}$
m-175	0,253 h	M	5,0 10-4	1,9 10 ⁻¹¹	3,1 10 ⁻¹¹	5,0 10 ⁻⁴	$2,7 \ 10^{-11}$
tterbium							
/b-162	0,315 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,4 10 ⁻¹¹ 1,4 10 ⁻¹¹	2,2 10 ⁻¹¹ 2,3 10 ⁻¹¹	5,0 10-4	2,3 10 ⁻¹¹
rb-166	2,36 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,2 10 ⁻¹⁰ 7,6 10 ⁻¹⁰	9,1 10 ⁻¹⁰ 9,5 10 ⁻¹⁰	5,0 10 ⁻⁴	9,5 10 ⁻¹⁰
Yb-167	0,292 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	6,5 10 ⁻¹² 6,9 10 ⁻¹²	9,0 10 ⁻¹² 9,5 10 ⁻¹²	5,0 10-4	6,7 10 ⁻¹²
Yb-169	32,0 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,4 10 ⁻⁹ 2,8 10 ⁻⁹	2,1 10 ⁻⁹ 2,4 10 ⁻⁹	5,0 10-4	7,1 10 ⁻¹⁰
(b-175	4,19 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	6,3 10 ⁻¹⁰ 7,0 10 ⁻¹⁰	6,4 10 ⁻¹⁰ 7,0 10 ⁻¹⁰	5,0 10-4	4,4 10 ⁻¹⁰
(b-177	1,90 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	6,4 10 ⁻¹¹ 6,9 10 ⁻¹¹	8,8 10 ⁻¹¹ 9,4 10 ⁻¹¹	5,0 10-4	9,7 10 ⁻¹¹
Yb-178	1,23 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	7,1 10 ⁻¹¹ 7,6 10 ⁻¹¹	1,0 10 ⁻¹⁰ 1,1 10 ⁻¹⁰	5,0 10 ⁻⁴	1,2 10 ⁻¹⁰
Lutétium				- 10	10		10
Lu-169	1,42 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,5 10 ⁻¹⁰ 3,8 10 ⁻¹⁰	4,7 10 ⁻¹⁰ 4,9 10 ⁻¹⁰	5,0 10-4	4,6 10 ⁻¹⁰
Lu-170	2,00 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	6,4 10 ⁻¹⁰ 6,7 10 ⁻¹⁰ 7,6 10 ⁻¹⁰	9,3 10 ⁻¹⁰ 9,5 10 ⁻¹⁰	5,0 10-4	9,9 10 ⁻¹⁰
Lu-171 Lu-172	8,22 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,3 10 ⁻¹⁰ 1,4 10 ⁻⁹	8,8 10 ⁻¹⁰ 9,3 10 ⁻¹⁰ 1,7 10 ⁻⁹	5,0 10 ⁻⁴	$6,7 \ 10^{-10}$ $1,3 \ 10^{-9}$
Lu-172	6,70 d 1,37 a	M S M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,4 10 1,5 10 ⁻⁹ 2,0 10 ⁻⁹	1,8 10 ⁻⁹ 1,5 10 ⁻⁹	5,0 10-4	2,6 10 ⁻¹⁰
Lu-173	3,31 a	S M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,3 10 ⁻⁹ 4,0 10 ⁻⁹	1,4 10 ⁻⁹ 2,9 10 ⁻⁹	5,0 10	2,7 10 ⁻¹⁰
Lu-174m	142 d	S M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,9 10 ⁻⁹ 3,4 10 ⁻⁹	2,5 10 ⁻⁹ 2,4 10 ⁻⁹	5,0 10-4	5,3 10 ⁻¹⁰
		s ·	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,8 10 ⁻⁹ 6,6 10 ⁻⁸	2,6 10 ⁻⁹ 4,6 10 ⁻⁸	5,0 10-4	1,8 10 ⁻⁹
Lu-176	3,60 10 ¹⁰ a	M S	5,0 10-4	5,2 10 ⁻⁸	3,0 10-8	3,0 10	1,0 10

Nucléide	Période			In	Ingestion		
Nucleide	physique	Туре	f ₁	h(g) _{1µm}	h(g) _{5μm}	f ₁	h(g)
Lu-177	6,71 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,0 10 ⁻⁹ 1,1 10 ⁻⁹	1,0 10 ⁻⁹ 1,1 10 ⁻⁹	5,0 10-4	5,3 10 ⁻¹⁰
Lu-177m	161 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$1,2 ext{ } 10^{-8}$ $1,5 ext{ } 10^{-8}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,0 10-4	1,7 10-9
Lu-178	0,473 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$2,5 ext{ } 10^{-11}$ $2,6 ext{ } 10^{-11}$	3,9 10 ⁻¹¹ 4,1 10 ⁻¹¹	5,0 10-4	4,7 10-11
Lu-178m	0,378 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,3 10 ⁻¹¹ 3,5 10 ⁻¹¹	5,4 10 ⁻¹¹ 5,6 10 ⁻¹¹	5,0 10-4	3,8 10 ⁻¹¹
Lu-179	4,59 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$1,1 \ 10^{-10}$ $1,2 \ 10^{-10}$	$\begin{array}{c} 1,6 \ 10^{-10} \\ 1,6 \ 10^{-10} \end{array}$	5,0 10-4	2,1 10 ⁻¹⁰
Hafnium	1	'		,		1	
Hf-170	16,0 h	F M	0,002 0,002	$1.7 \ 10^{-10}$ $3.2 \ 10^{-10}$	2,9 10 ⁻¹⁰ 4,3 10 ⁻¹⁰	0,002	4,8 10 ⁻¹⁰
Hf-172	1,87 a	F M	0,002 0,002	3,2 10 ⁻⁸ 1,9 10 ⁻⁸	3,7 10 ⁻⁸ 1,3 10 ⁻⁸	0,002	1,0 10-9
Hf-173	24,0 h	F M	0,002 0,002	7,9 10 ⁻¹¹ 1,6 10 ⁻¹⁰	1,3 10 ⁻¹⁰ 2,2 10 ⁻¹⁰	0,002	2,3 10 ⁻¹⁰
Hf-175	70,0 d	F M	0,002 0,002	7,2 10 ⁻¹⁰ 1,1 10 ⁻⁹	8,7 10 ⁻¹⁰ 8,8 10 ⁻¹⁰	0,002	4,1 10 ⁻¹⁰
Hf-177m	0,856 h	F M	0,002 0,002	4,7 10 ⁻¹¹ 9,2 10 ⁻¹¹	8,4 10 ⁻¹¹ 1,5 10 ⁻¹⁰	0,002	8,1 10 ⁻¹¹
Hf-178m	31,0 a	F M	0,002 0,002	2,6 10 ⁻⁷ 1,1 10 ⁻⁷	3,1 10 ⁻⁷ 7,8 10 ⁻⁸	0,002	4, 7 10 ⁻⁹
Hf-179m	25,1 d	F M	0,002	1,1 10 ⁻⁹ 3,6 10 ⁻⁹	1,4 10 ⁻⁹ 3,2 10 ⁻⁹	0,002	1,2 10 ⁻⁹
Hf-180m	5,50 h	F M	0,002 0,002	6,4 10 ⁻¹¹ 1,4 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	0,002	1,7 10 ⁻¹⁰
Hf-181	42,4 d	F M	0,002 0,002 0,002	1,4 10 ⁻⁹ 4,7 10 ⁻⁹	1,8 10 ⁻⁹ 4,1 10 ⁻⁹	0,002	1,1 10-9
Hf-182	9,00 10 ⁶ a	F M	0,002 0,002 0,002	3,0 10 ⁻⁷ 1,2 10 ⁻⁷	3,6 10 ⁻⁷ 8,3 10 ⁻⁸	0,002	3,0 10-9
Hf-182m	1,02 h	F M	0,002	2,3 10 ⁻¹¹ 4,7 10 ⁻¹¹	4,0 10 ⁻¹¹ 7,1 10 ⁻¹¹	0,002	4,2 10 ⁻¹¹
Hf-183	1,07 h	F M	0,002 0,002 0,002	2,6 10 ⁻¹¹ 5,8 10 ⁻¹¹	4,4 10 ⁻¹¹ 8,3 10 ⁻¹¹	0,002	7,3 10 ⁻¹¹
Hf-184	4,12 h	F M	0,002 0,002 0,002	1,3 10 ⁻¹⁰ 3,3 10 ⁻¹⁰	2,3 10 ⁻¹⁰ 4,5 10 ⁻¹⁰	0,002	5,2 10 ⁻¹⁰
Fantale	I	1	,	,	7-	1	
Га-172	0,613 h	M S	0,001 0,001	3,4 10 ⁻¹¹ 3,6 10 ⁻¹¹	5,5 10 ⁻¹¹ 5,7 10 ⁻¹¹	0,001	5,3 10-11
Га-173	3,65 h	M S	0,001 0,001	1,1 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	1,6 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	0,001	1,9 10 ⁻¹⁰
Га-174	1,20 h	M S	0,001	4,2 10 ⁻¹¹ 4,4 10 ⁻¹¹	6,3 10 ⁻¹¹ 6,6 10 ⁻¹¹	0,001	5,7 10 ⁻¹¹
Га-175	10,5 h	M S	0,001	1,3 10 ⁻¹⁰ 1,4 10 ⁻¹⁰	2,0 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	0,001	2,1 10 ⁻¹⁰
Га-176	8,08 h	M S	0,001	2,0 10 ⁻¹⁰ 2,1 10 ⁻¹⁰	3,2 10 ⁻¹⁰ 3,3 10 ⁻¹⁰	0,001	3,1 10 ⁻¹⁰
Га-177	2,36 d	M S	0,001 0,001 0,001	9,3 10 ⁻¹¹ 1,0 10 ⁻¹⁰	1,2 10 ⁻¹⁰ 1,3 10 ⁻¹⁰	0,001	1,1 10-10
Га-178	2,20 h	M	0,001	6,6 10 ⁻¹¹ 6,9 10 ⁻¹¹	1,0 10 ⁻¹⁰ 1,1 10 ⁻¹⁰	0,001	7,8 10 ⁻¹¹
Га-179	1,82 a	S M	0,001	2,0 10 ⁻¹⁰ 5,2 10 ⁻¹⁰	1,3 10 ⁻¹⁰ 2,9 10 ⁻¹⁰	0,001	6,5 10 ⁻¹¹
Га-180	1,00 10 ¹³ a	S M	0,001	6,0 10 ⁻⁹ 2,4 10 ⁻⁸	4,6 10 ⁻⁹ 1,4 10 ⁻⁸	0,001	8,4 10 ⁻¹⁰
Га-180т	8,10 h	S M	0,001	4,4 10 °	5,8 10 ⁻¹¹	0,001	5,4 10 ⁻¹¹

Nucléide	Période			Inhalation		I	ngestion
1 Auctorate	physique	Туре	f ₁	h(g) _{1µm}	h(g) _{5μm}	f ₁	h(g)
Га-182	115 d	M S	0,001 0,001	7,2 10 ⁻⁹ 9,7 10 ⁻⁹	5,8 10 ⁻⁹ 7,4 10 ⁻⁹	0,001	1,5 10-9
Га-182т	0,264 h	M S	0,001 0,001	2,1 10 ⁻¹¹ 2,2 10 ⁻¹¹	3,4 10 ⁻¹¹ 3,6 10 ⁻¹¹	0,001	1,2 10 ⁻¹¹
Га-183	5,10 d	M S	0,001 0,001	1,8 10 ⁻⁹ 2,0 10 ⁻⁹	1,8 10 ⁻⁹ 2,0 10 ⁻⁹	0,001	1,3 10-9
Га-184	8,70 h	M S	0,001 0,001	4,1 10 ⁻¹⁰ 4,4 10 ⁻¹⁰	6,0 10 ⁻¹⁰ 6,3 10 ⁻¹⁰	0,001	6,8 10 ⁻¹⁰
Га-185	0,816 h	M S	0,001 0,001	4,6 10 ⁻¹¹ 4,9 10 ⁻¹¹	6,8 10 ⁻¹¹ 7,2 10 ⁻¹¹	0,001	6,8 10 ⁻¹¹
Га-186	0,175 h	M S	0,001 0,001	1,8 10 ⁻¹¹ 1,9 10 ⁻¹¹	3,0 10 ⁻¹¹ 3,1 10 ⁻¹¹	0,001	3,3 10 ⁻¹¹
Tungstène							
W-176	2,30 h	F	0,300	4,4 10-11	7,6 10 ⁻¹¹	0,300 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
W -177	2,25 h	F	0,300	2,6 10 ⁻¹¹	4,6 10 ⁻¹¹	0,300 0,010	5,8 10 ⁻¹¹ 6,1 10 ⁻¹¹
W-178	21,7 d	F	0,300	7,6 10 ⁻¹¹	1,2 10 ⁻¹⁰	0,300 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
W-179	0,625 h	F	0,300	9,9 10 ⁻¹³	1,8 10 ⁻¹²	0,300 0,010	3,3 10 ⁻¹² 3,3 10 ⁻¹²
W-181	121 d	F	0,300	2,8 10 ⁻¹¹	4,3 10 ⁻¹¹	0,300 0,010	7,6 10 ⁻¹¹ 8,2 10 ⁻¹¹
W-185	75,1 d	F	0,300	1,4 10 ⁻¹⁰	2,2 10 ⁻¹⁰	0,300 0,010	4,4 10 ⁻¹⁰ 5,0 10 ⁻¹⁰
W-187	23,9 h	F	0,300	2,0 10 ⁻¹⁰	3,3 10 ⁻¹⁰	0,300 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
W-188	69,4 d	F	0,300	5,9 10 ⁻¹⁰	8,4 10 ⁻¹⁰	0,300 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Rhénium		'		'	'	'	
Re-177	0,233 h	F M	0,800 0,800	1,0 10 ⁻¹¹ 1,4 10 ⁻¹¹	1,7 10 ⁻¹¹ 2,2 10 ⁻¹¹	0,800	2,2 10 ⁻¹¹
Re-178	0,220 h	F M	0,800 0,800	1,1 10 ⁻¹¹ 1,5 10 ⁻¹¹	1,8 10 ⁻¹¹ 2,4 10 ⁻¹¹	0,800	2,5 10 ⁻¹¹
Re-181	20,0 h	F M	0,800 0,800	1,9 10 ⁻¹⁰ 2,5 10 ⁻¹⁰	3,0 10 ⁻¹⁰ 3,7 10 ⁻¹⁰	0,800	4,2 10 ⁻¹⁰
Re-182	2,67 d	F M	0,800 0,800	6,8 10 ⁻¹⁰ 1,3 10 ⁻⁹	1,1 10 ⁻⁹ 1,7 10 ⁻⁹	0,800	1,4 10-9
Re-182	12,7 h	F M	0,800 0,800	1,5 10 ⁻¹⁰ 2,0 10 ⁻¹⁰	2,4 10 ⁻¹⁰ 3,0 10 ⁻¹⁰	0,800	2,7 10 ⁻¹⁰
Re-184	38,0 d	F M	0,800 0,800	4,6 10 ⁻¹⁰ 1,8 10 ⁻⁹	7,0 10 ⁻¹⁰ 1,8 10 ⁻⁹	0,800	1,0 10-9
Re-184m	165 d	F M	0,800 0,800	6,1 10 ⁻¹⁰ 6,1 10 ⁻⁹	8,8 10 ⁻¹⁰ 4,8 10 ⁻⁹	0,800	1,5 10-9
Re-186	3,78 d	F M	0,800 0,800	5,3 10 ⁻¹⁰ 1,1 10 ⁻⁹	7,3 10 ⁻¹⁰ 1,2 10 ⁻⁹	0,800	1,5 10-9
Re-186m	2,00 10 ⁵ a	F M	0,800 0,800	8,5 10 ⁻¹⁰ 1,1 10 ⁻⁸	1,2 10 ⁻⁹ 7,9 10 ⁻⁹	0,800	2,2 10 ⁻⁹
Re-187	5,00 10 ¹⁰ a	F M	0,800 0,800	1,9 10 ⁻¹² 6,0 10 ⁻¹²	2,6 10 ⁻¹² 4,6 10 ⁻¹²	0,800	5,1 10 ⁻¹²
Re-188	17,0 h	F M	0,800 0,800	4,7 10 ⁻¹⁰ 5,5 10 ⁻¹⁰	6,6 10 ⁻¹⁰ 7,4 10 ⁻¹⁰	0,800	1,4 10-9
Re-188m	0,3 10 h	F M	0,800 0,800	1,0 10 ⁻¹¹ 1,4 10 ⁻¹¹	1,6 10 ⁻¹¹ 2,0 10 ⁻¹¹	0,800	3,0 10-11
Re-189	1,01 d	F M	0,800 0,800	2,7 10 ⁻¹⁰ 4,3 10 ⁻¹⁰	4,3 10 ⁻¹⁰ 6,0 10 ⁻¹⁰	0,800	7,8 10 ⁻¹⁰

NT .1611.	Période			Inhalation		I	ngestion
Nucléide 	physique	Туре	f ₁	h(g) _{1µm}	h(g) _{5μm}	f ₁	h(g)
Osmium							
Os-180	0,366 h	F M	0,010 0,010	8,8 10 ⁻¹² 1,4 10 ⁻¹¹	1,6 10 ⁻¹¹ 2,4 10 ⁻¹¹	0,010	1,7 10-11
O- 191	1.75 %	S	0,010	1,5 10 ⁻¹¹ 3,6 10 ⁻¹¹	2,5 10 ⁻¹¹ 6,4 10 ⁻¹¹	0.010	8,9 10 ⁻¹¹
Os-181	1,75 h	F M S	0,010 0,010 0,010	6,3 10 ⁻¹¹ 6,6 10 ⁻¹¹	9,6 10 ⁻¹¹ 1,0 10 ⁻¹⁰	0,010	8,9 10
Os-182	22,0 h	F M	0,010 0,010	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3,2 10 ⁻¹⁰ 5,0 10 ⁻¹⁰	0,010	5,6 10 ⁻¹⁰
Os-185	94,0 d	S F M	0,010 0,010 0,010	3,9 10 ⁻¹⁰ 1,1 10 ⁻⁹ 1,2 10 ⁻⁹	5,2 10 ⁻¹⁰ 1,4 10 ⁻⁹ 1,0 10 ⁻⁹	0,010	5,1 10 ⁻¹⁰
		S	0,010	1,5 10-9	1,1 10-9		
Os-189m	6,00 h	F M S	0,010 0,010 0,010	2,7 10 ⁻¹² 5,1 10 ⁻¹² 5,4 10 ⁻¹²	5,2 10 ⁻¹² 7,6 10 ⁻¹² 7,9 10 ⁻¹²	0,010	1,8 10 ⁻¹¹
Os-191	15,4 d	F	0,010	2,5 10 ⁻¹⁰	3,5 10 ⁻¹⁰	0,010	5,7 10 ⁻¹⁰
		M S	0,010 0,010	1,5 10 ⁻⁹ 1,8 10 ⁻⁹	1,3 10 ⁻⁹ 1,5 10 ⁻⁹		
Os-191m	13,0 h	F M	0,010 0,010	2,6 10 ⁻¹¹ 1,3 10 ⁻¹⁰	4,1 10 ⁻¹¹ 1,3 10 ⁻¹⁰	0,010	9,6 10-11
		S	0,010	1,5 10 1,5 10 ⁻¹⁰	1,4 10 ⁻¹⁰		
Os-193	1,25 d	F M	0,010 0,010	1,7 10 ⁻¹⁰ 4,7 10 ⁻¹⁰	2,8 10 ⁻¹⁰ 6,4 10 ⁻¹⁰	0,010	8,1 10 ⁻¹⁰
Os-194	6,00 a	S F	0,010 0,010	5,1 10 ⁻¹⁰ 1,1 10 ⁻⁸	$\begin{array}{c} 6,8 \ 10^{-10} \\ 1,3 \ 10^{-8} \end{array}$	0,010	2,4 10-9
38-1 2 4	0,00 a	M S	0,010 0,010 0,010	2,0 10 ⁻⁸ 7,9 10 ⁻⁸	1,3 10 ⁻⁸ 4,2 10 ⁻⁸	0,010	2,4 10
ridium							
r-182	0,250 h	F M	0,010	1,5 10 ⁻¹¹ 2,4 10 ⁻¹¹	2,6 10 ⁻¹¹ 3,9 10 ⁻¹¹	0,010	4,8 10-11
[r-184	3,02 h	S F	0,010 0,010	2,5 10 ⁻¹¹ 6,7 10 ⁻¹¹	4,0 10 ⁻¹¹ 1,2 10 ⁻¹⁰	0,010	1,7 10 ⁻¹⁰
1 101	3,02 11	M S	0,010 0,010	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,8 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	0,010	1,7 10
r-185	14,0 h	F	0,010	8,8 10 ⁻¹¹	$1.5 \ 10^{-10}$	0,010	2,6 10 ⁻¹⁰
		M S	0,010	1,8 10 ⁻¹⁰ 1,9 10 ⁻¹⁰	$\begin{array}{c} 2,5 \ 10^{-10} \\ 2,6 \ 10^{-10} \end{array}$		
r-186	15,8 h	F	0,010	1,8 10 ⁻¹⁰	$3,3 \ 10^{-10}$	0,010	4,9 10 ⁻¹⁰
		M S	0,010 0,010	$\begin{array}{c} 3,2 \ 10^{-10} \\ 3,3 \ 10^{-10} \end{array}$	4,8 10 ⁻¹⁰ 5,0 10 ⁻¹⁰	,	,
Ir-186	1,75 h	F	0,010	2,5 10 ⁻¹¹	4,5 10-11	0,010	6,1 10 ⁻¹¹
	, =	M	0,010	4,3 10 ⁻¹¹ 4,5 10 ⁻¹¹	6,9 10-11	,	,
r-187	10,5 h	S F	0,010 0,010	4,0 10 ⁻¹¹	7,1 10 ⁻¹¹ 7,2 10 ⁻¹¹	0,010	1,2 10 ⁻¹⁰
. 10/	10,5 11	M S	0,010 0,010 0,010	7,5 10 ⁻¹¹ 7,9 10 ⁻¹¹	1,1 10 ⁻¹⁰ 1,2 10 ⁻¹⁰	3,010	1,2 10
Ir-188	1,73 d	F	0,010	2.6 10 ⁻¹⁰	4,4 10 ⁻¹⁰	0,010	6,3 10 ⁻¹⁰
		M S	0,010 0,010	4,1 10 ⁻¹⁰ 4,3 10 ⁻¹⁰	6,0 10 ⁻¹⁰ 6,2 10 ⁻¹⁰		
r-189	13,3 d	F	0,010	1,1 10-10	$1,7 \ 10^{-10}$	0,010	2,4 10 ⁻¹⁰
		M S	0,010 0,010	4,8 10 ⁻¹⁰ 5,5 10 ⁻¹⁰	4,1 10 ⁻¹⁰ 4,6 10 ⁻¹⁰		
r-190	12,1 d	F	0,010	7,9 10 ⁻¹⁰	1,2 10-9	0,010	1,2 10-9
	,	M	0,010	2,0 10-9	2,3 10 ⁻⁹		
r-190m	3,10 h	S F	0,010 0,010	2,3 10 ⁻⁹ 5,3 10 ⁻¹¹	2,5 10 ⁻⁹ 9,7 10 ⁻¹¹	0,010	1,2 10 ⁻¹⁰
1 170m	3,1011	M	0,010	8,3 10 ⁻¹¹	$1,4 \ 10^{-10}$	0,010	1,2 10
100	1 20 1	S	0,010	8,6 10 ⁻¹¹	1,4 10 ⁻¹⁰	0.010	0.0.40=12
r-190m	1,20 h	F M	0,010 0,010	3,7 10 ⁻¹² 9,0 10 ⁻¹²	5,6 10 ⁻¹² 1,0 10 ⁻¹¹	0,010	8,0 10 ⁻¹²
		S	0,010	1,0 10-11	1,1 10-11		

Nucléide	Période			Inhalation	***	I	ngestion
Nucleide	physique	Туре	f ₁	h(g) _{1μm}	h(g) _{5μm}	f ₁	h(g)
Ir-192	74,0 d	F M S	0,010 0,010 0,010	1,8 10 ⁻⁹ 4,9 10 ⁻⁹ 6,2 10 ⁻⁹	2,2 10 ⁻⁹ 4,1 10 ⁻⁹ 4,9 10 ⁻⁹	0,010	1,4 10-9
Ir-192m	2,41 10 ² a	F M S	0,010 0,010 0,010	4,8 10 ⁻⁹ 5,4 10 ⁻⁹ 3,6 10 ⁻⁸	5,6 10 ⁻⁹ 3,4 10 ⁻⁹ 1,9 10 ⁻⁸	0,010	3,1 10 ⁻¹⁰
Ir-193m	11,9 d	F M S	0,010 0,010 0,010	1,0 10 ⁻¹⁰ 1,0 10 ⁻⁹ 1,2 10 ⁻⁹	1,6 10 ⁻¹⁰ 9,1 10 ⁻¹⁰ 1,0 10 ⁻⁹	0,010	2,7 10 ⁻¹⁰
Ir-194	19,1 h	F M S	0,010 0,010 0,010	2,2 10 ⁻¹⁰ 5,3 10 ⁻¹⁰ 5,6 10 ⁻¹⁰	3,6 10 ⁻¹⁰ 7,1 10 ⁻¹⁰ 7,5 10 ⁻¹⁰	0,010	1,3 10-9
Ir-194m	171 d	F M S	0,010 0,010 0,010	5,4 10 ⁻⁹ 8,5 10 ⁻⁹ 1,2 10 ⁻⁸	6,5 10 ⁻⁹ 6,5 10 ⁻⁹ 8,2 10 ⁻⁹	0,010	2,1 10 ⁻⁹
Ir-195	2,50 h	F M S	0,010 0,010 0,010	2,6 10 ⁻¹¹ 6,7 10 ⁻¹¹ 7,2 10 ⁻¹¹	4,5 10 ⁻¹¹ 9,6 10 ⁻¹¹ 1,0 10 ⁻¹⁰	0,010	1,0 10 ⁻¹⁰
Ir-195m	3,80 h	F M S	0,010 0,010 0,010	6,5 10 ⁻¹¹ 1,6 10 ⁻¹⁰ 1,7 10 ⁻¹⁰	1,1 10 ⁻¹⁰ 2,3 10 ⁻¹⁰ 2,4 10 ⁻¹⁰	0,010	2,1 10 ⁻¹⁰
Platine					,		
Pt-186	2,00 h	F	0,010	3,6 10 ⁻¹¹	6,6 10 ⁻¹¹	0,010	9,3 10-11
Pt-188	10,2 d	F	0,010	4,3 10 ⁻¹⁰	6,3 10 ⁻¹⁰	0,010	7,6 10 ⁻¹⁰
Pt-189	10,9 h	F	0,010	4,1 10-11	7,3 10 ⁻¹¹	0,010	1,2 10 ⁻¹⁰
Pt-191	2,80 d	F	0,010	1,1 10 ⁻¹⁰	1,9 10 ⁻¹⁰	0,010	3,4 10 ⁻¹⁰
Pt-193	50,0 a	F	0,010	2,1 10 ⁻¹¹	2,7 10 ⁻¹¹	0,010	3,1 10 ⁻¹¹
Pt-193m	4,33 d	F	0,010	1,3 10 ⁻¹⁰	2,1 10 ⁻¹⁰	0,010	4,5 10 ⁻¹⁰
Pt-195m	4,02 d	F	0,010	1,9 10 ⁻¹⁰	3,1 10 ⁻¹⁰	0,010	6,3 10 ⁻¹⁰
Pt-197	18,3 h	F	0,010	9,1 10-11	1,6 10 ⁻¹⁰	0,010	4,0 10 ⁻¹⁰
Pt-197m	1,57 h	F	0,010	2,5 10-11	4,3 10 ⁻¹¹	0,010	8,4 10 ⁻¹¹
Pt-199	0,513 h	F	0,010	1,3 10 ⁻¹¹	2,2 10 ⁻¹¹	0,010	3,9 10-11
Pt-200	12,5 h	F	0,010	2,4 10 ⁻¹⁰	4,0 10 ⁻¹⁰	0,010	1,2 10-9
Or							
Au-193	17,6 h	F M S	0,100 0,100 0,100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7,1 10 ⁻¹¹ 1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰	0,100	1,3 10 ⁻¹⁰
Au-194	1,64 d	F M S	0,100 0,100 0,100	1,5 10 ⁻¹⁰ 2,4 10 ⁻¹⁰ 2,5 10 ⁻¹⁰	2,8 10 ⁻¹⁰ 3,7 10 ⁻¹⁰ 3,8 10 ⁻¹⁰	0,100	4,2 10 ⁻¹⁰
Au-195	183 d	F M S	0,100 0,100 0,100	7,1 10 ⁻¹¹ 1,0 10 ⁻⁹ 1,6 10 ⁻⁹	1,2 10 ⁻¹⁰ 8,0 10 ⁻¹⁰ 1,2 10 ⁻⁹	0,100	2,5 10 ⁻¹⁰
Au-198	2,69 d	F M S	0,100 0,100 0,100	2,3 10 ⁻¹⁰ 7,6 10 ⁻¹⁰ 8,4 10 ⁻¹⁰	3,9 10 ⁻¹⁰ 9,8 10 ⁻¹⁰ 1,1 10 ⁻⁹	0,100	1,0 10-9
Au-198m	2,30 d	F M S	0,100 0,100 0,100	3,4 10 ⁻¹⁰ 1,7 10 ⁻⁹ 1,9 10 ⁻⁹	5,9 10 ⁻¹⁰ 2,0 10 ⁻⁹ 1,9 10 ⁻⁹	0,100	1,3 10-9
Au-199	3,14 d	F M S	0,100 0,100 0,100	1,1 10 ⁻¹⁰ 6,8 10 ⁻¹⁰ 7,5 10 ⁻¹⁰	1,9 10 ⁻¹⁰ 6,8 10 ⁻¹⁰ 7,6 10 ⁻¹⁰	0,100	4,4 10 ⁻¹⁰
Au-200	0,807 h	F M S	0,100 0,100 0,100	1,7 10 ⁻¹¹ 3,5 10 ⁻¹¹ 3,6 10 ⁻¹¹	3,0 10 ⁻¹¹ 5,3 10 ⁻¹¹ 5,6 10 ⁻¹¹	0,100	6,8 10 ⁻¹¹

Nucléid e	Période			Inhalation		I	ngestion
Nucleide	physique	Туре	f ₁	h(g) _{1µm}	h(g) _{5μm}	f ₁	h(g)
Au-200m	18,7 h	F M S	0,100 0,100 0,100	3,2 10 ⁻¹⁰ 6,9 10 ⁻¹⁰ 7,3 10 ⁻¹⁰	5,7 10 ⁻¹⁰ 9,8 10 ⁻¹⁰ 1,0 10 ⁻⁹	0,100	1,1 10-9
Au-201	0,440 h	F M S	0,100 0,100 0,100	9,2 10 ⁻¹² 1,7 10 ⁻¹¹ 1,8 10 ⁻¹¹	1,6 10 ⁻¹¹ 2,8 10 ⁻¹¹ 2,9 10 ⁻¹¹	0,100	2,4 10-11
Mercure							
Hg-193 (organique)	3,50 h	F	0,400	2,6 10 ⁻¹¹	4,7 10 ⁻¹¹	1,000 0,400	3,1 10 ⁻¹¹ 6,6 10 ⁻¹¹
Hg-193 (inorganique)	3,50 h	F M	0,020 0,020	2,8 10 ⁻¹¹ 7,5 10 ⁻¹¹	5,0 10 ⁻¹¹ 1,0 10 ⁻¹⁰	0,020	8,2 10 ⁻¹¹
Hg-193m (organique)	11,1 h	F	0,400	1,1 10 ⁻¹⁰	2,0 10 ⁻¹⁰	1,000 0,400	1,3 10 ⁻¹⁰ 3,0 10 ⁻¹⁰
Hg-193m (inorganique)	11,1 h	F M	0,020 0,020	1,2 10 ⁻¹⁰ 2,6 10 ⁻¹⁰	2,3 10 ⁻¹⁰ 3,8 10 ⁻¹⁰	0,020	4,0 10 ⁻¹⁰
Hg-194 (organique)	2,60 10 ² a	F	0,400	1,5 10-8	1,9 10-8	1,000 0,400	5,1 10 ⁻⁸ 2,1 10 ⁻⁸
Hg-194 (inorganique)	2,60 10 ² a	F M	0,020 0,020	1,3 10 ⁻⁸ 7,8 10 ⁻⁹	1,5 10 ⁻⁸ 5,3 10 ⁻⁹	0,020	1,4 10-9
Hg-195 (organique)	9,90 h	F	0,400	2,4 10 ⁻¹¹	4,4 10 ⁻¹¹	1,000 0,400	3,4 10 ⁻¹¹ 7,5 10 ⁻¹¹
Hg-195 (inorganique) Hg-195m	9,90 h 1,73 d	F M F	0,020 0,020 0,400	2,7 10 ⁻¹¹ 7,2 10 ⁻¹¹ 1,3 10 ⁻¹⁰	4,8 10 ⁻¹¹ 9,2 10 ⁻¹¹ 2,2 10 ⁻¹⁰	0,020 1,000	9,7 10 ⁻¹¹ 2,2 10 ⁻¹⁰
(organique)	1,73 u	•				0,400	4,1 10 ⁻¹⁰
Hg-195m (inorganique)	1,73 d	F M	0,020 0,020	1,5 10 ⁻¹⁰ 5,1 10 ⁻¹⁰	2,6 10 ⁻¹⁰ 6,5 10 ⁻¹⁰	0,020	5,6 10 ⁻¹⁰
Hg-197 (organique)	2,67 d	F	0,400	5,0 10-11	8,5 10 ⁻¹¹	1,000 0,400	9,9 10 ⁻¹¹ 1,7 10 ⁻¹⁰
Hg-197 (inorganique)	2,67 d	F M F	0,020 0,020	6,0 10 ⁻¹¹ 2,9 10 ⁻¹⁰ 1,0 10 ⁻¹⁰	1,0 10 ⁻¹⁰ 2,8 10 ⁻¹⁰ 1,8 10 ⁻¹⁰	1,000	2,3 10 ⁻¹⁰ 1,5 10 ⁻¹⁰
Hg-197m (organique)	23,8 h		0,400			0,400	3,4 10 ⁻¹⁰
Hg-197m (inorganique)	23,8 h	F M	0,020 0,020	1,2 10 ⁻¹⁰ 5,1 10 ⁻¹⁰	2,1 10 ⁻¹⁰ 6,6 10 ⁻¹⁰	0,020	4, 7 10 ⁻¹⁰
Hg-199m (organique)	0,7 10 h	F	0,400	1,6 10-11	2,7 10 ⁻¹¹	1,000 0,400	2,8 10 ⁻¹¹ 3,1 10 ⁻¹¹
Hg-199m (inorganique)	0,7 10 h	F M	0,020 0,020	1,6 10 ⁻¹¹ 3,3 10 ⁻¹¹	2,7 10 ⁻¹¹ 5,2 10 ⁻¹¹	0,020	3,1 10 ⁻¹¹
Hg-203 (organique)	46,6 d	F	0,400	5,7 10 ⁻¹⁰	7,5 10 ⁻¹⁰	1,000 0,400	1,9 10 ⁻⁹ 1,1 10 ⁻⁹
Hg-203 (inorganique)	46,6 d	F M	0,020 0,020	4,7 10 ⁻¹⁰ 2,3 10 ⁻⁹	5,9 10 ⁻¹⁰ 1,9 10 ⁻⁹	0,020	5,4 10 ⁻¹⁰
Thallium							
Tl-194	0,550 h	F	1,000	4,8 10 ⁻¹²	8,9 10 ⁻¹²	1,000	8,1 10-12
Tl-194m	0,546 h	F	1,000	2,0 10 ⁻¹¹	3,6 10-11	1,000	4,0 10-11
Tl-195	1,16 h	F	1,000	1,6 10 ⁻¹¹	3,0 10 ⁻¹¹	1,000	2,7 10 ⁻¹¹
Tl-197	2,84 h	F	1,000	1,5 10 ⁻¹¹	2,7 10 ⁻¹¹	1,000	2,3 10 ⁻¹¹
Tl-198	5,30 h	F	1,000	6,6 10 ⁻¹¹	1,2 10 ⁻¹⁰	1,000	7,3 10 ⁻¹¹
Tl-198m	1,87 h	F	1,000	4,0 10 ⁻¹¹	7,3 10-11	1,000	5,4 10 ⁻¹¹
Tl-199	7,42 h	F	1,000	2,0 10 ⁻¹¹	3,7 10 ⁻¹¹	1,000	2,6 10-11
T1-200	1,09 d	F	1,000	1,4 10 ⁻¹⁰	2,5 10 ⁻¹⁰	1,000	2,0 10-10
Tl-201	3,04 d	F	1,000	4,7 10-11	7,6 10-11	1,000	9,5 10 ⁻¹¹
Tl-202	12,2 d	F	1,000	2,0 10 ⁻¹⁰	3,1 10 ⁻¹⁰	1,000	4,5 10 ⁻¹⁰
Tl-204	3,78 a	F	1,000	4,4 10 ⁻¹⁰	6,2 10 ⁻¹⁰	1,000	1,3 10-9

Nucléide	Période			Inhalation		I	ngestion
Nucleide	physique	Туре	f_1	h(g) _{1μm}	h(g) _{5μm}	f ₁	h(g)
Plomb ·						·	
Pb-195m	0,263 h	F	0,200	1,7 10-11	3,0 10-11	0,200	2,9 10-11
Pb-198	2,40 h	F	0,200	4,7 10 ⁻¹¹	8,7 10 ⁻¹¹	0,200	1,0 10-10
b-199	1,50 h	F	0,200	2,6 10 ⁻¹¹	4,8 10 ⁻¹¹	0,200	5,4 10 ⁻¹¹
Pb-200	21,5 h	F	0,200	1,5 10 ⁻¹⁰	2,6 10 ⁻¹⁰	0,200	4,0 10-10
Pb-201	9,40 h	F	0,200	6,5 10 ⁻¹¹	1,2 10 ⁻¹⁰	0,200	1,6 10-10
b-202	3,00 10 ⁵ a	F	0,200	1,1 10-8	1,4 10 ⁻⁸	0,200	8,7 10 ⁻⁹
b-202m	3,62 h	F	0,200	6,7 10 ⁻¹¹	1,2 10 ⁻¹⁰	0,200	1,3 10 ⁻¹⁰
b-203	2,17 d	F	0,200	9,1 10 ⁻¹¹	1,6 10 ⁻¹⁰	0,200	2,4 10 ⁻¹⁰
b-205	1,43 10 ⁷ a	F	0,200	3,4 10 ⁻¹⁰	4,1 10 ⁻¹⁰	0,200	2,8 10 ⁻¹⁰
b-209	3,25 h	F	0,200	1,8 10 ⁻¹¹	3,2 10 ⁻¹¹	0,200	5,7 10-11
b-21 0	22,3 a	F	0,200	8,9 10 ⁻⁷	1,1 10 ⁻⁶	0,200	6,8 10 ⁻⁷
b-211	0,601 h	F	0,200	3,9 10-9	5,6 10-9	0,200	1,8 10 ⁻¹⁰
b-212	10,6 h	F	0,200	1,9 10-8	3,3 10-8	0,200	5,9 10-9
b-214	0,447 h	F	0,200	2,9 10-9	4,8 10 ⁻⁹	0,200	1,4 10 ⁻¹⁰
ismuth							
3i-200	0,606 h	F M	0,050 0,050	2,4 10 ⁻¹¹ 3,4 10 ⁻¹¹	4,2 10 ⁻¹¹ 5,6 10 ⁻¹¹	0,050	5,1 10 ⁻¹¹
5i-201	1,80 h	F M	0,050 0,050	4,7 10 ⁻¹¹ 7,0 10 ⁻¹¹	8,3 10 ⁻¹¹ 1,1 10 ⁻¹⁰	0,050	1,2 10 ⁻¹⁰
5i-202	1,67 h	F M	0,050 0,050	4,6 10 ⁻¹¹ 5,8 10 ⁻¹¹	8,4 10 ⁻¹¹ 1,0 10 ⁻¹⁰	0,050	8,9 10 ⁻¹¹
si-203	11,8 h	F M	0,050 0,050	2,0 10 ⁻¹⁰ 2,8 10 ⁻¹⁰	3,6 10 ⁻¹⁰ 4,5 10 ⁻¹⁰	0,050	4,8 10 ⁻¹⁰
i-205	15,3 d	F M	0,050 0,050	4,0 10 ⁻¹⁰ 9,2 10 ⁻¹⁰	6,8 10 ⁻¹⁰ 1,0 10 ⁻⁹	0,050	9,0 10 ⁻¹⁰
i-206	6,24 d	F M	0,050 0,050	7,9 10 ⁻¹⁰ 1,7 10 ⁻⁹	1,3 10 ⁻⁹ 2,1 10 ⁻⁹	0,050	1,9 10-9
Si-207	38,0 a	F M	0,050 0,050	5,2 10 ⁻¹⁰ 5,2 10 ⁻⁹	8,4 10 ⁻¹⁰ 3,2 10 ⁻⁹	0,050	1,3 10-9
3i-210	5,01 d	F M	0,050 0,050 0,050	1,1 10 ⁻⁹ 8,4 10 ⁻⁸ 4,5 10 ⁻⁸	1,4 10 ⁻⁹ 6,0 10 ⁻⁸ 5,3 10 ⁻⁸	0,050	1,3 10 ⁻⁹ 1,5 10 ⁻⁸
3i-210m 3i-212	3,00 10 ⁶ a	M F	0,030 0,050 0,050	3,1 10 ⁻⁶ 9,3 10 ⁻⁹	2,1 10 ⁻⁶ 1,5 10 ⁻⁸	0,050	2,6 10 ⁻¹⁰
DI-Z1Z	1,01 11	M	0,050	3,0 10 ⁻⁸	3,9 10 ⁻⁸		
3i-213	0,761 h	F M	0,050 0,050	1,1 10 ⁻⁸ 2,9 10 ⁻⁸	1,8 10 ⁻⁸ 4,1 10 ⁻⁸	0,050	2,0 10 ⁻¹⁰
3i-214	0,332 h	F M	0,050 0,050	7,2 10 ⁻⁹ 1,4 10 ⁻⁸	1,2 10 ⁻⁸ 2,1 10 ⁻⁸	0,050	1,1 10 ⁻¹⁰
Polonium							
Po-203	0,612 h	F M	0,100 0,100	2,5 10 ⁻¹¹ 3,6 10 ⁻¹¹	4,5 10 ⁻¹¹ 6,1 10 ⁻¹¹	0,100	5,2 10 ⁻¹¹
Po-205	1,80 h	F M	0,100 0,100	3,5 10 ⁻¹¹ 6,4 10 ⁻¹¹	6,0 10 ⁻¹¹ 8,9 10 ⁻¹¹	0,100	5,9 10 ⁻¹¹
2 0-207	5,83 h	F M	0,100 0,100	6,3 10 ⁻¹¹ 8,4 10 ⁻¹¹	1,2 10 ⁻¹⁰ 1,5 10 ⁻¹⁰	0,100	1,4 10 ⁻¹⁰
Po-210	138 d	F M	0,100 0,100	6,0 10 ⁻⁷ 3,0 10 ⁻⁶	7,1 10 ⁻⁷ 2,2 10 ⁻⁶	0,100	2,4 10 ⁻⁷
Astate							
At-207	1,80 h	F M	1,000 1,000	3,5 10 ⁻¹⁰ 2,1 10 ⁻⁹	4,4 10 ⁻¹⁰ 1,9 10 ⁻⁹	1,000	2,3 10 ⁻¹⁰
At-211	7,21 h	F M	1,000 1,000	1,6 10 ⁻⁸ 9,8 10 ⁻⁸	2,7 10 ⁻⁸ 1,1 10 ⁻⁷	1,000	1,1 10 ⁻⁸

NT -12:1	Période			Inhalation		Ir	ngestion
Nucléide	physique	Туре	f ₁	$h(g)_{1\mu m}$	h(g) _{5µm}	f ₁	h(g)
Francium							
Fr-222	0,240 h	F	1,000	$1,4 \ 10^{-8}$	2,1 10 ⁻⁸	1,000	7,1 10 ⁻¹⁰
Fr-223	0,363 h	F	1,000	$9,1 \ 10^{-10}$	1,3 10-9	1,000	2,3 10 ⁻⁹
Radium							
Ra-223	11,4 d	M	0,200	6,9 10 ⁻⁶	5,7 10-6	0,200	1,0 10-7
Ra-224	3,66 d	- M	0,200	2,9 10 ⁻⁶	2,4 10 ⁻⁶	0,200	6,5 10-8
Ra-225	14,8 d	M	0,200	5,8 10 ⁻⁶	4,8 10-6	0,200	9,5 10 ⁻⁸
Ra-226	$1,60\ 10^3\ a$	M	0,200	3,2 10-6	2,2 10 ⁻⁶	0,200	2,8 10 ⁻⁷
Ra-227	0,703 h	M	0,200	2,8 10 ⁻¹⁰	2,1 10 ⁻¹⁰	0,200	8,4 10 ⁻¹¹
Ra-228	5,75 a	M	0,200	2,6 10 ⁻⁶	1,7 10-6	0,200	6,7 10 ⁻⁷
Actinium					_		
Ac-224	2,90 h	F M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	1,1 10 ⁻⁸ 1,0 10 ⁻⁷ 1,2 10 ⁻⁷	1,3 10 ⁻⁸ 8,9 10 ⁻⁸ 9,9 10 ⁻⁸	5,0 10-4	7,0 10 ⁻¹⁰
Ac-225	10,0 d	F M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	8,7 10 ⁻⁷ 6,9 10 ⁻⁶ 7,9 10 ⁻⁶	1,0 10 ⁻⁶ 5,7 10 ⁻⁶ 6,5 10 ⁻⁶	5,0 10-4	2,4 10 ⁻⁸
Ac-226	1,21 d	F M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$9,5 10^{-8} \\ 1,1 10^{-6} \\ 1,2 10^{-6}$	2,2 10 ⁻⁷ 9,2 10 ⁻⁷ 1,0 10 ⁻⁶	5,0 10-4	1,0 10-8
Ac-227	21,8 a	F M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,4 10 ⁻⁴ 2,1 10 ⁻⁴ 6,6 10 ⁻⁵	6,3 10 ⁻⁴ 1,5 10 ⁻⁴ 4,7 10 ⁻⁵	5,0 10-4	1,1 10-6
Ac-228	6,13 h	F M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,5 10 ⁻⁸ 1,6 10 ⁻⁸ 1,4 10 ⁻⁸	2,9 10 ⁻⁸ 1,2 10 ⁻⁸ 1,2 10 ⁻⁸	5,0 10-4	4,3 10 ⁻¹⁰
Thorium	•						
Th-226	0,515 h	M S	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	5,5 10 ⁻⁸ 5,9 10 ⁻⁸	7,4 10 ⁻⁸ 7,8 10 ⁻⁸	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	3,5 10 ⁻¹⁰ 3,6 10 ⁻¹⁰
Th-227	18,7 d	M S	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	7,8 10 ⁻⁶ 9,6 10 ⁻⁶	6,2 10 ⁻⁶ 7,6 10 ⁻⁶	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	8,9 10 ⁻⁹ 8,4 10 ⁻⁹
Th-228	1,91 a	M S	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	3,1 10 ⁻⁵ 3,9 10 ⁻⁵	2,3 10 ⁻⁵ 3,2 10 ⁻⁵	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	7,0 10 ⁻⁸ 3,5 10 ⁻⁸
Th-229	7,34 10 ³ a	M S	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	9,9 10 ⁻⁵ 6,5 10 ⁻⁵	6,9 10 ⁻⁵ 4,8 10 ⁻⁵	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	4,8 10 ⁻⁷ 2,0 10 ⁻⁷
Th-230	7,70 10 ⁴ a	M S	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	4,0 10 ⁻⁵ 1,3 10 ⁻⁵	2,8 10 ⁻⁵ 7,2 10 ⁻⁶	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	2,1 10 ⁻⁷ 8,7 10 ⁻⁸
Th-231	1,06 d	M S	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	$\begin{array}{c} 2.9 \ 10^{-10} \\ 3.2 \ 10^{-10} \\ \end{array}$	3,7 10 ⁻¹⁰ 4,0 10 ⁻¹⁰ 2,9 10 ⁻⁵	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Th-232 Th-234	1,40 10 ¹⁰ a 24,1 d	M S M	5,0 10 ⁻⁴ 2,0 10 ⁻⁴ 5,0 10 ⁻⁴	4,2 10 ⁻⁵ 2,3 10 ⁻⁵ 6,3 10 ⁻⁹	1,2 10 ⁻⁵ 5,3 10 ⁻⁹	5,0 10 ⁻⁴ 2,0 10 ⁻⁴ 5,0 10 ⁻⁴	9,2 10 ⁻⁸ 3,4 10 ⁻⁹
	24,1 d	S	2,0 10-4	7,3 10-9	5,8 10-9	2,0 10-4	3,4 10 ⁻⁹
Protactinium	1 0 639 h	l M	5,0 10-4	7,0 10-8	9,0 10-8	5,0 10-4	4,5 10-10
Pa-227	0,638 h	M S	5,0 10-4	7,6 10-8	9,7 10 ⁻⁸ 4,6 10 ⁻⁸		
Pa-228	22,0 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,9 10 ⁻⁸ 6,9 10 ⁻⁸	5,1 10 ⁻⁸	5,0 10-4	7,8 10 ⁻¹⁰
Pa-230	17,4 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	5,6 10 ⁻⁷ 7,1 10 ⁻⁷	4,6 10 ⁻⁷ 5,7 10 ⁻⁷ 8,9 10 ⁻⁵	5,0 10-4	9,2 10 ⁻¹⁰
Pa-231	3,27 10 ⁴ a	M S	5,0 10-4	1,3 10 ⁻⁴ 3,2 10 ⁻⁵	1,7 10-5	5,0 10-4	7,1 10 ⁻⁷
Pa-232	1,31 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	9,5 10 ⁻⁹ 3,2 10 ⁻⁹	6,8 10 ⁻⁹ 2,0 10 ⁻⁹	5,0 10-4	7,2 10 ⁻¹⁰

Nucléide	Période			Inhalation		In	gestion
Nucleide	physique	Туре	f_1	h(g) _{1µm}	h(g) _{5µm}	f ₁	h(g)
Pa-233	27,0 d	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,1 10 ⁻⁹ 3,7 10 ⁻⁹	2,8 10 ⁻⁹ 3,2 10 ⁻⁹	5,0 10-4	8,7 10 ⁻¹⁰
Pa-234	6,70 h	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	$3.8 ext{ } 10^{-10}$ $4.0 ext{ } 10^{-10}$	5,5 10 ⁻¹⁰ 5,8 10 ⁻¹⁰	5,0 10 ⁻⁴	5,1 10 ⁻¹⁰
Uranium	1	1	1 5,5 25 1	.,	1 3,5 23	1	
U-230	20,8 d	F	0,020	3,6 10 ⁻⁷	4,2 10 ⁻⁷	0,020	5,5 10-8
		M	0,020	$1,2 \ 10^{-5}$	1,0 10-5	0,002	$2,8 \ 10^{-8}$
11 224	4 20 1	S F	0,002	1,5 10 ⁻⁵ 8,3 10 ⁻¹¹	1,2 10 ⁻⁵ 1,4 10 ⁻¹⁰	0,020	2,8 10 ⁻¹⁰
U-231	4,20 d	M	0,020	3,4 10 ⁻¹⁰	3,7 10 ⁻¹⁰	0,020	2,8 10 ⁻¹⁰
		S	0,002	$3,7 \ 10^{-10}$	4,0 10 ⁻¹⁰	,	,
J-232	72,0 a	F	0,020	4,0 10-6	4,7 10-6	0,020	$3,3 \ 10^{-7}$
		M	0,020	$7,2 ext{ } 10^{-6}$ $3,5 ext{ } 10^{-5}$	4,8 10 ⁻⁶ 2,6 10 ⁻⁵	0,002	3,7 10 ⁻⁸
J- 23 3	1,58 10 ⁵ a	S F	0,002 0,020	5,7 10 ⁻⁷	6,6 10 ⁻⁷	0,020	5,0 10-8
)-233	1,36 10 a	M	0,020	3,2 10 ⁻⁶	2,2 10-6	0,002	8,5 10 ⁻⁹
		S	0,002	8,7 10-6	6,9 10-6		•
J-234	2,44 10 ⁵ a	F	0,020	5,5 10 ⁻⁷	6,4 10 ⁻⁷	0,020	4,9 10 ⁻⁸
		M S	0,020 0,002	$3,1 \ 10^{-6}$ $8,5 \ 10^{-6}$	2,1 10 ⁻⁶ 6,8 10 ⁻⁶	0,002	8,3 10 ⁻⁹
J-235	7,04 10 ⁸ a	F	0,002	5,1 10 ⁻⁷	6,0 10 ⁻⁷	0,020	4,6 10 ⁻⁸
233	,,o.10 u	M	0,020	$2.8 \ 10^{-6}$	1,8 10-6	0,002	8,3 10-9
		S	0,002	7,7 10 ⁻⁶	6,1 10 ⁻⁶		
J-236	$2,34\ 10^7\ a$	F	0,020	5,2 10 ⁻⁷	6,1 10 ⁻⁷	0,020	4,6 10 ⁻⁸
		M S	0,020 0,002	2,9 10 ⁻⁶ 7,9 10 ⁻⁶	1,9 10 ⁻⁶ 6,3 10 ⁻⁶	0,002	7,9 10 ⁻⁹
J- 23 7	6,75 d	F	0,020	1,9 10 ⁻¹⁰	3,3 10 ⁻¹⁰	0,020	7,6 10 ⁻¹⁰
J-237	0,73 u	M	0,020	$1.6 \ 10^{-9}$	1,5 10-9	0,002	$7,7 \ 10^{-10}$
		S	0,002	1,8 10-9	1,7 10-9		
J- 2 38	4,47 10 ⁹ a	F	0,020	4,9 10 ⁻⁷	5,8 10 ⁻⁷	0,020	4,4 10 ⁻⁸
		M S	0,020 0,002	$2,6 \ 10^{-6}$ $7,3 \ 10^{-6}$	1,6 10 ⁻⁶ 5,7 10 ⁻⁶	0,002	7,6 10 ⁻⁹
J- 23 9	0,392 h	F	0,002	1,1 10 ⁻¹¹	1,8 10 ⁻¹¹	0,020	2,7 10-11
J-237	0,372 11	M	0,020	$2.3 ext{ } 10^{-11}$	3,3 10-11	0,002	2,8 10 ⁻¹¹
		S	0,002	$2,4 \ 10^{-11}$	3,5 10 ⁻¹¹		
J- 24 0	14,1 h	F	0,020	$2,1 \ 10^{-10}$	3,7 10 ⁻¹⁰	0,020	1,1 10 ⁻⁹
		M S	0,020 0,002	$5,3 10^{-10}$ $5,7 10^{-10}$	7,9 10 ⁻¹⁰ 8,4 10 ⁻¹⁰	0,002	1,1 10 ⁻⁹
Veptunium	1	1	, -,	-,		1	
Np-232	0,245 h	M	5,0 10-4	4,7 10 ⁻¹¹	3,5 10-11	5,0 10-4	9,7 10 ⁻¹²
Np-233	0,603 h	M	5,0 10-4	$1,7 \ 10^{-12}$	3,0 10 ⁻¹²	5,0 10-4	2,2 10 ⁻¹²
√p-234	4,40 d	M	5,0 10-4	$5,4 \ 10^{-10}$	7,3 10 ⁻¹⁰	5,0 10-4	8,1 10 ⁻¹⁰
Np-235	1,08 a	M	5,0 10-4	4,0 10 ⁻¹⁰	2,7 10 ⁻¹⁰	5,0 10-4	5,3 10 ⁻¹¹
Np-236	1,15 10 ⁵ a	M	5,0 10-4	3,0 10 ⁻⁶	2,0 10-6	5,0 10-4	1,7 10 ⁻⁸
Np-236	22,5 h	M	5,0 10-4	5,0 10 ⁻⁹	3,6 10-9	5,0 10-4	1,9 10 ⁻¹⁰
Np-237	$2,14\ 10^6\ a$	M	5,0 10-4	$2,1 \ 10^{-5}$	1,5 10 ⁻⁵	5,0 10-4	1,1 10 ⁻⁷
Np-238	2,12 d	M	5,0 10-4	2,0 10 ⁻⁹	1,7 10-9	5,0 10-4	9,1 10 ⁻¹⁰
Np-239	2,36 d	M	5,0 10-4	9,0 10 ⁻¹⁰	1,1 10-9	5,0 10 ⁻⁴	8,0 10 ⁻¹⁰
Np-240	1,08 h	M	5,0 10 ⁻⁴	8,7 10 ⁻¹¹	1,3 10 ⁻¹⁰	5,0 10-4	8,2 10 ⁻¹¹
lutonium							
Pu-234	8,80 h	M	5,0 10-4	1,9 10-8	1,6 10-8	5,0 10-4	1,6 10 ⁻¹⁰
		S	1,0 10-5	$2,2 \ 10^{-8}$	1,8 10-8	1,0 10 ⁻⁵	1,5 10 ⁻¹⁰ 1,6 10 ⁻¹⁰
. 225	0.422.1		5,0 10-4	1,5 10 ⁻¹²	2,5 10 ⁻¹²	1,0 10 ⁻⁴ 5,0 10 ⁻⁴	2,1 10 ⁻¹²
Pu-235	0,422 h	M S	1,0 10 ⁻⁵	1,5 10 12 1,6 10 ⁻¹²	2,6 10 ⁻¹²	1,0 10 ⁻⁵	2,1 10 ⁻¹²
			,			1,0 10-4	2,1 10 ⁻¹²
Pu-236	2,85 a	M	5,0 10-4	1,8 10-5	1,3 10-5	5,0 10-4	8,6 10 ⁻⁸
		S	1,0 10-5	9,6 10 ⁻⁶	7,4 10 ⁻⁶	1,0 10 ⁻⁵ 1,0 10 ⁻⁴	6,3 10 ⁻⁹ 2,1 10 ⁻⁸

Nucléide	Période		·	Inhalation		Ingestion		
. Tuciente	physique	Type	f ₁	h(g) _{1µm}	h(g) _{5μm}	f ₁	h(g)	
Pu-237	45,3 d	M S	5,0 10 ⁻⁴ 1,0 10 ⁻⁵	3,3 10 ⁻¹⁰ 3,6 10 ⁻¹⁰	2,9 10 ⁻¹⁰ 3,0 10 ⁻¹⁰	5,0 10 ⁻⁴ 1,0 10 ⁻⁵ 1,0 10 ⁻⁴	1,0 10 ⁻¹⁰ 1,0 10 ⁻¹⁰ 1,0 10 ⁻¹⁰	
Pu-238	87,7 a	M S	5,0 10 ⁻⁴ 1,0 10 ⁻⁵	4,3 10 ⁻⁵ 1,5 10 ⁻⁵	3,0 10 ⁻⁵ 1,1 10 ⁻⁵	5,0 10 ⁻⁴ 1,0 10 ⁻⁵ 1,0 10 ⁻⁴	2,3 10 ⁻⁷ 8,8 10 ⁻⁹ 4,9 10 ⁻⁸	
Pu-239	2,41 10 ⁴ a	M S	5,0 10 ⁻⁴ 1,0 10 ⁻⁵	4,7 10 ⁻⁵ 1,5 10 ⁻⁵	3,2 10 ⁻⁵ 8,3 10 ⁻⁶	5,0 10 ⁻⁴ 1,0 10 ⁻⁵ 1,0 10 ⁻⁴	2,5 10 ⁻⁷ 9,0 10 ⁻⁹ 5,3 10 ⁻⁸	
Pu-240	6,54 10 ³ a	M S	5,0 10 ⁻⁴ 1,0 10 ⁻⁵	4,7 10 ⁻⁵ 1,5 10 ⁻⁵	3,2 10 ⁻⁵ 8,3 10 ⁻⁶	5,0 10 ⁻⁴ 1,0 10 ⁻⁵ 1,0 10 ⁻⁴	2,5 10 ⁻⁷ 9,0 10 ⁻⁹ 5,3 10 ⁻⁸	
Pu-241	14,4 a	M S	5,0 10 ⁻⁴ 1,0 10 ⁻⁵	8,5 10 ⁻⁷ 1,6 10 ⁻⁷	5,8 10 ⁻⁷ 8,4 10 ⁻⁸	5,0 10 ⁻⁴ 1,0 10 ⁻⁵ 1,0 10 ⁻⁴	4,7 10 ⁻⁹ 1,1 10 ⁻¹⁰ 9,6 10 ⁻¹⁰	
Pu-242	3,76 10 ⁵ a	M S	5,0 10 ⁻⁴ 1,0 10 ⁻⁵	4,4 10 ⁻⁵ 1,4 10 ⁻⁵	3,1 10 ⁻⁵ 7,7 10 ⁻⁶	5,0 10 ⁻⁴ 1,0 10 ⁻⁵ 1,0 10 ⁻⁴	2,4 10 ⁻⁷ 8,6 10 ⁻⁹ 5,0 10 ⁻⁸	
Pu-243	4,95 h	M S	5,0 10 ⁻⁴ 1,0 10 ⁻⁵	8,2 10 ⁻¹¹ 8,5 10 ⁻¹¹	1,1 10 ⁻¹⁰ 1,1 10 ⁻¹⁰	5,0 10 ⁻⁴ 1,0 10 ⁻⁵ 1,0 10 ⁻⁴	8,5 10 ⁻¹¹ 8,5 10 ⁻¹¹ 8,5 10 ⁻¹¹	
Pu-244	8,26 10 ⁷ a	M S	5,0 10 ⁻⁴ 1,0 10 ⁻⁵	4,4 10 ⁻⁵ 1,3 10 ⁻⁵	3,0 10 ⁻⁵ 7,4 10 ⁻⁶	5,0 10 ⁻⁴ 1,0 10 ⁻⁵ 1,0 10 ⁻⁴	2,4 10 ⁻⁷ 1,1 10 ⁻⁸ 5,2 10 ⁻⁸	
Pu-245	10,5 h	M S	5,0 10 ⁻⁴ 1,0 10 ⁻⁵	4,5 10 ⁻¹⁰ 4,8 10 ⁻¹⁰	6,1 10 ⁻¹⁰ 6,5 10 ⁻¹⁰	5,0 10 ⁻⁴ 1,0 10 ⁻⁵ 1,0 10 ⁻⁴	7,2 10 ⁻¹⁰ 7,2 10 ⁻¹⁰ 7,2 10 ⁻¹⁰	
Pu-246	10,9 d	M S	5,0 10 ⁻⁴ 1,0 10 ⁻⁵	7,0 10 ⁻⁹ 7,6 10 ⁻⁹	6,5 10 ⁻⁹ 7,0 10 ⁻⁹	5,0 10 ⁻⁴ 1,0 10 ⁻⁵ 1,0 10 ⁻⁴	3,3 10 ⁻⁹ 3,3 10 ⁻⁹ 3,3 10 ⁻⁹	
Americium								
Am-237	1,22 h	M	5,0 10-4	$2,5 \ 10^{-11}$	3,6 10-11	5,0 10-4	1,8 10 ⁻¹¹	
Am-238	1,63 h	M	5,0 10-4	8,5 10 ⁻¹¹	6,6 10 ⁻¹¹	5,0 10-4	3,2 10 ⁻¹¹	
Am-239	11,9 h	M	5,0 10-4	$2,2 \ 10^{-10}$	2,9 10 ⁻¹⁰	5,0 10-4	2,4 10 ⁻¹⁰	
Am-240	2,12 d	M	5,0 10-4	4,4 10 ⁻¹⁰	5,9 10 ⁻¹⁰	5,0 10-4	5,8 10 ⁻¹⁰	
Am-241	$4,32 \ 10^2 \ a$	M	5,0 10-4	3,9 10 ⁻⁵	2,7 10-5	5,0 10-4	2,0 10 ⁻⁷	
Am-242	16,0 h	M	5,0 10-4	1,6 10-8	1,2 10-8	5,0 10-4	3,0 10 ⁻¹⁰	
Am-242m	1,52 10 ² a	M	5,0 10-4	3,5 10 ⁻⁵	2,4 10 ⁻⁵	5,0 10 ⁻⁴	1,9 10 ⁻⁷	
Am-243	7,38 10 ³ a	M	5,0 10-4	3,9 10 ⁻⁵	2,7 10-5	5,0 10-4	2,0 10 ⁻⁷	
Am-244	10,1 h	M	5,0 10-4	1,9 10 ⁻⁹	1,5 10-9	5,0 10-4	4,6 10 ⁻¹⁰	
Am-244m	0,433 h	M	5,0 10-4	7,9 10 ⁻¹¹	6,2 10 ⁻¹¹	5,0 10-4	2,9 10 ⁻¹¹	
Am-245	2,05 h	M	5,0 10-4	5,3 10 ⁻¹¹	7,6 10 ⁻¹¹	5,0 10-4	6,2 10 ⁻¹¹ 5,8 10 ⁻¹¹	
Am-246	0,650 h	M	5,0 10-4	6,8 10 ⁻¹¹ 2,3 10 ⁻¹¹	1,1 10 ⁻¹⁰ 3,8 10 ⁻¹¹	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	3,4 10 ⁻¹¹	
Am-246m Curium	0,417 h	M	5,0 10-4	2,3 10 ··	3,8 10	3,0 10	3, 4 10 ··	
Cm-238	2,40 h	M	5,0 10 ⁻⁴	4,1 10 ⁻⁹	4,8 10-9	5,0 10 ⁻⁴	8,0 10 ⁻¹¹	
Cm-240	27,0 d	M	5,0 10	2,9 10 ⁻⁶	2,3 10 ⁻⁶	5,0 10	7,6 10 ⁻⁹	
			5,0 10	3,4 10 ⁻⁸	2,5 10 2,6 10 ⁻⁸	5,0 10	9,1 10 ⁻¹⁰	
Cm-241	32,8 d	M	5,0 10 ⁻⁴	4,8 10 ⁻⁶	3,7 10 ⁻⁶	5,0 10	1,2 10 ⁻⁸	
Cm-242	163 d	M	1		2,0 10 ⁻⁵	5,0 10	1,2 10 ° 1,5 10 ⁻⁷	
Cm-243	28,5 a	M	5,0 10-4	2,9 10 ⁻⁵		1 1		
Cm-244	18,1 a	M	5,0 10-4	2,5 10 ⁻⁵	1,7 10 ⁻⁵	5,0 10-4	1,2 10 ⁻⁷	
Cm-245	8,50 10 ³ a	M	5,0 10-4	4,0 10 ⁻⁵	2,7 10-5	5,0 10-4	2,1 10 ⁻⁷	
Cm-246	$4,73 \ 10^3 \ a$	M	5,0 10-4	4,0 10 ⁻⁵	2,7 10 ⁻⁵	5,0 10-4	2,1 10 ⁻⁷	

NT 1211	Période			Inhalation		In	gestion
Nucléide remote physique	Type	f ₁	h(g) _{1μm}	h(g) _{5µm}	f ₁	h(g)	
Cm-247	1,56 10 ⁷ a	М	5,0 10 ⁻⁴	3,6 10 ⁻⁵	2,5 10-5	5,0 10-4	1,9 10 ⁻⁷
Cm-248	3,39 10 ^s a	M	5,0 10-4	1,4 10-4	9,5 10-5	5,0 10-4	7,7 10 ⁻⁷
Cm-249	1,07 h	M	5,0 10-4	3,2 10 ⁻¹¹	5,1 10 ⁻¹¹	5,0 10-4	3,1 10 ⁻¹¹
Cm-250	6,90 10 ³ a	M	5,0 10-4	7,9 10 ⁻⁴	5,4 10-4	5,0 10-4	4,4 10 ⁻⁶
Berkélium	•	•					
Bk-245	4,94 d	M	5,0 10-4	2,0 10 ⁻⁹	1,8 10-9	5,0 10-4	5,7 10 ⁻¹⁰
Bk-246	1,83 d	M	5,0 10-4	3,4 10 ⁻¹⁰	4,6 10 ⁻¹⁰	5,0 10-4	4,8 10 ⁻¹⁰
Bk-247	$1,38 \ 10^3 a$	M	5,0 10-4	6,5 10 ⁻⁵	4,5 10-5	5,0 10-4	3,5 10 ⁻⁷
Bk-249	320 d	M	5,0 10-4	1,5 10 ⁻⁷	1,0 10 ⁻⁷	5,0 10-4	9,7 10 ⁻¹⁰
Bk-250	3,22 h	М	5,0 10-4	9,6 10 ⁻¹⁰	7,1 10 ⁻¹⁰	5,0 10-4	1,4 10 ⁻¹⁰
Californium							
Cf-244	0,323 h	M	5,0 10-4	1,3 10 ⁻⁸	$1,8 \ 10^{-8}$	5,0 10 ⁻⁴	7,0 10 ⁻¹¹
Cf-246	1,49 d	M	5,0 10-4	4,2 10 ⁻⁷	3,5 10 ⁻⁷	5,0 10-4	3,3 10-9
Cf-248	334 d	M	5,0 10-4	8,2 10 ⁻⁶	6,1 10-6	5,0 10-4	2,8 10-8
Cf-249	$3,50 \ 10^2 a$	M	5,0 10-4	6,6 10-5	4,5 10-5	5,0 10-4	3,5 10 ⁻⁷
Cf-250	13,1 a	M	5,0 10-4	3,2 10 ⁻⁵	2,2 10 ⁻⁵	5,0 10-4	1,6 10 ⁻⁷
Cf-251	$8,98 10^2 a$	M	5,0 10-4	6,7 10 ⁻⁵	4,6 10-5	5,0 10-4	3,6 10 ⁻⁷
Cf-252	2,64 a	M	5,0 10-4	1,8 10 ⁻⁵	1,3 10-5	5,0 10-4	9,0 10-8
Cf-253	17,8 d	M	5,0 10-4	1,2 10 ⁻⁶	1,0 10-6	5,0 10-4	1,4 10 ⁻⁹
Cf-254	60,5 d	M	5,0 10-4	3,7 10-5	2,2 10 ⁻⁵	5,0 10-4	4,0 10 ⁻⁷
Einsteinium							
Es-250	2,10 h	M	5,0 10-4	5,9 10 ⁻¹⁰	4,2 10 ⁻¹⁰	5,0 10-4	2,1 10 ⁻¹¹
Es-251	1,38 d	M	5,0 10-4	2,0 10-9	1,7 10-9	5,0 10-4	1,7 10 ⁻¹⁰
Es-253	20,5 d	M	5,0 10-4	2,5 10 ⁻⁶	2,1 10-6	5,0 10-4	6,1 10 ⁻⁹
Es-254	276 d	M	5,0 10-4	8,0 10 ⁻⁶	6,0 10-6	5,0 10-4	$2,8 \ 10^{-8}$
Es-254m	1,64 d	M	5,0 10-4	4,4 10 ⁻⁷	3,7 10-7	5,0 10-4	4,2 10 ⁻⁹
Fermium							
Fm-252	22,7 h	M	5,0 10-4	3,0 10 ⁻⁷	2,6 10 ⁻⁷	5,0 10-4	2,7 10 ⁻⁹
Fm-253	3,00 d	M	5,0 10-4	3,7 10 ⁻⁷	3,0 10 ⁻⁷	5,0 10-4	9,1 10 ⁻¹⁰
Fm-254	3,24 h	М	5,0 10-4	5,6 10 ⁻⁸	7,7 10-8	5,0 10-4	4,4 10 ⁻¹⁰
Fm-255	20,1 h	М	5,0 10-4	2,5 10 ⁻⁷	2,6 10 ⁻⁷	5,0 10-4	2,5 10 ⁻⁹
Fm-257	101 d	M	5,0 10 ⁻⁴	6,6 10 ⁻⁶	5,2 10 ⁻⁶	5,0 10-4	$1,5 \ 10^{-8}$
Mendélévium	•						
Md-257	5,20 h	M	5,0 10-4	2,3 10 ⁻⁸	2,0 10-8	5,0 10-4	1,2 10 ⁻¹⁰
Md-258	55,0 d	M	5,0 10-4	5,5 10 ⁻⁶	4,4 10-6	5,0 10-4	1,3 10-8

TABLEAU C 2

Coefficients de dose efficace pour les gaz solubles ou réactifs

Nucléide/forme chimique	t _{1/2}	h(g) (Sv Bq ⁻¹)
Tritium gazeux	12,3 a	1,8 10 ⁻¹⁵
Eau tritiée	12,3 a	1,8 10 ⁻¹¹
Tritium dans un composé organique	12,3 a	4,1 10 ⁻¹¹
Vapeur de carbone-11	0,34 h	3,2 10 ⁻¹²
Dioxyde de carbone-11	0,34 h	2,2 10 ⁻¹²
Monoxyde de carbone-11	0,34 h	1,2 10 ⁻¹²
Vapeur de carbone-14	5,73 10 ³ a	5,8 10 ⁻¹⁰
Dioxyde de carbone-14	5,73 10 ³ a	6,5 10 ⁻¹²
Monoxyde de carbone-14	5,73 10 ³ a	8,0 10 ⁻¹³
Vapeur de soufre-35	87,4 d	1,2 10 ⁻¹⁰
Nickel-56 carbonyle	6,10 d	1,2 10-9
Nickel-57 carbonyle	1,50 d	5,6 10 ⁻¹⁰
Nickel-59 carbonyle	7,50 10 ⁴ a	8,3 10 ⁻¹⁰
Nickel-63 carbonyle	96,0 a	2,0 10-9
Nickel-65 carbonyle	2,52 h	3,6 10 ⁻¹⁰
Nickel-66 carbonyle	2,27 d	1,6 10-9
Vapeur d'iode-120	1,35 h	3,0 10 ⁻¹⁰
Vapeur d'iode-120m	0,88 h	1,8 10 ⁻¹⁰
Vapeur d'iode-121	2,12 h	8,6 10 ⁻¹¹
Vapeur d'iode-123	13,2 h	2,1 10 ⁻¹⁰
Vapeur d'iode-124	4, 18 d	1,2 10 ⁻⁸
Vapeur d'iode-125	60,1 d	1,4 10 ⁻⁸
Vapeur d'iode-126	13,0 d	2,6 10-8
Vapeur d'iode-128	0,42 h	6,5 10-11
Vapeur d'iode-129	1,57 10 ⁷ a	9,6 10-8
Vapeur d'iode-130	12,4 h	1,9 10-9
Vapeur d'iode-131	8,04 d	2,0 10-8
Vapeur d'iode-132	2,30 h	3,1 10 ⁻¹⁰
Vapeur d'iode-132m	1,39 h	2,7 10 ⁻¹⁰
Vapeur d'iode-133	20,8 h	4,0 10-9
Vapeur d'iode-134	0,88 h	1,5 10 ⁻¹⁰
Vapeur d'iode-135	6,61 h	9,2 10 ⁻¹⁰
Vapeur de mercure-193	3,50 h	1,1 10-9
Vapeur de mercure-193m	11,1 h	3,1 10-9
Vapeur de mercure-194	2,60 10 ² a	4,0 10-8
Vapeur de mercure-195	9,90 h	1,4 10-9
Vapeur de mercure-195m	1,73 d	8,2 10-9
Vapeur de mercure-197	2,67 d	4,4 10-9
Vapeur de mercure-197m	23,8 h	5,8 10-9
Vapeur de mercure-199m	0,71 h	1,8 10-10
Vapeur de mercure-203	46,60 d	7,0 10-9

 $TABLEAU\ D$ Composés et valeurs de f_1 utilisées pour le calcul des coefficients de dose pour l'ingestion

Élément	f ₁	Composés		
Hydrogène	1,000 1,000	Ingestion d'eau tritiée Tritium dans un composé organique		
Béryllium	0,005	Tous composés		
Carbone	1,000	Composés organiques marqués		
Fluor	1,000	Tous composés		
Sodium	1,000	Tous composés		
Magnésium	0,500	Tous composés		
Aluminium	0,010	Tous composés		
Silicium	0,010	Tous composés		
Phosphore	0,800	Tous composés		
Soufre	0,800 0,100 1,000	Composés inorganiques Soufre élémentaire Soufre organique		
Chlore	1,000	Tous composés		
Potassium	1,000	Tous composés		
Calcium	0,300	Tous composés		
Scandium	1,0 10-4	Tous composés		
Titane	0,010	Tous composés		
Vanadium	0,010	Tous composés		
Chrome	0,100 0,010	Composés hexavalents Composés trivalents		
Manganèse	0,100	Tous composés		
Fer	0,100	Tous composés		
Cobalt	0,100 0,050	Composés non spécificiés Oxydes, hydroxydes et composés inorganiques		
Nickel	0,050	Tous composés		
Cuivre	0,500	Tous composés		
Zinc	0,500	Tous composés		
Gallium	0,001	Tous composés		
Germanium	1,000	Tous composés		
Arsenic	0,500	Tous composés		
Sélénium	0,800 0,050	Composés non spécifiés Sélénium élémentaire et séléniures		
Brome	1,000	Tous composés		
Rubidium	1,000	Tous composés		
Strontium	0,300 0,010	Composés non spécifiés Titanate de strontium (SrTiO ₃)		
Yttrium	1,0 10-4	Tous composés		
Zirconium	0,002	Tous composés		

Élément	f ₁	Composés		
Niobium	0,010	Tous composés		
Molybdène	0,800 0,050	Conposés non spécifiés Sulfure de molybdène		
Technétium	0,800	Tous composés		
Ruthénium	0,050	Tous composés		
Rhodium	0,050	Tous composés		
Palladium	0,005	Tous composés		
Argent	0,050	Tous composés		
Cadmium	0,050	Tous composés inorganiques		
Indium	0,020	Tous composés		
Étain	0,020	Tous composés		
Antimoine	0,100	Tous composés		
Tellure	0,300	Tous composés		
Iode	1,000	Tous composés		
Césium	1,000	Tous composés		
Baryum	0,100	Tous composés		
Lanthane	5,0 10-4	Tous composés		
Cérium	5,0 10 ⁻⁴	Tous composés		
Praséodyme	5,0 10-4	Tous composés		
Néodyme	5,0 10-4	Tous composés		
Prométhium	5,0 10 ⁻⁴	Tous composés		
Samarium	5,0 10-4	Tous composés		
Europium	5,0 10-4	Tous composés		
Gadolinium	5,0 10-4	Tous composés		
Terbium	5,0 10-4	Tous composés		
Dysprosium	5,0 10 ⁻⁴	Tous composés		
Holmium	5,0 10-4	Tous composés		
Erbium	5,0 10-4	Tous composés		
Thulium	5,0 10-4	Tous composés		
Ytterbium	5,0 10-4	Tous composés		
Lutétium	5,0 10-4	Tous composés		
Hafnium	0,002	Tous composés		
Tantale	0,001	Tous composés		
Tungstène	0,300 0,010	Composés non spécifiés Acide tungstique		
Rhénium	0,800	Tous composés		
Osmium	0,010	Tous composés		
Iridium	0,010	Tous composés		
Platine	0,010	Tous composés		

Élément	f ₁	Composés	
Or	0,100	Tous composés	
Mercure	0,020	Tous composés inorganiques	
Mercure	1,000 0,400	Méthylmercure Composés organiques non spécifiés	
Thallium	1,000	Tous composés	
Plomb	0,200	Tous composés	
Bismuth	0,050	Tous composés	
Polonium	0,100	Tous composés	
Astate	1,000	Tous composés	
Francium	1,000	Tous composés	
Radium	0,200	Tous composés	
Actinium	5,0 10-4	Tous composés	
Thorium	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	Composés non spécifiés Oxydes et hydroxydes	
Protactinium	5,0 10-4	Tous composés	
Uranium	0,020 0,002	Composés non spécifiés La plupart des composés tétravalents, ex: UO ₂ , U ₃ O ₈ , UF ₄	
Neptunium	5,0 10-4	Tous composés	
Plutonium	5,0 10 ⁻⁴ 1,0 10 ⁻⁴ 1,0 10 ⁻⁴	Composés non spécifiés Nitrates Oxydes insolubles	
Américium	5,0 10-4	Tous composés	
Curium	5,0 10 ⁻⁴	Tous composés	
Berkélium	5,0 10-4	Tous composés	
Californium	5,0 10-4	Tous composés	
Einsteinium	5,0 10-4	Tous composés	
Fermium	5,0 10-4	Tous composés	
Mendélévium	5,0 10-4	Tous composés	

TABLEAU E

Composés, types d'absorption pulmonaire et valeurs de f₁ utilisées pour le calcul des coefficients de dose

Elément	Type(s) d'absorption	f ₁	Composés
Béryllium	M S	0,005 0,005	Composés non spécifiés Oxydes, halogénures et nitrates
Fluorine	F F	1,000	Selon le cation auquel il est combiné
	M	1,000	Selon le cation auquel il est combiné
	S	1,000	Selon le cation auquel il est combiné
Sodium	F	1,000	Tous composés
Magnésium	F	0,500	Composés non spécifiés
	M	0,500	Oxydes, hydroxydes, carbures, halogénures en nitrates
Aluminium	F	0,010	Composés non spécifiés
	M	0,010	Oxydes, hydroxydes, carbures, halogénures nitrates et aluminium métallique
Silicium	F	0,010	Composés non spécifiés
	M S	0,010 0,010	Oxydes, hydroxydes, carbures et nitrates Aérosol de verre d'aluminosilicate
Di I		,	
Phosphore	F M	0,800 0,800	Composés non spécifiés Certains phosphates: selon le cation auquel il est
			combiné
Soufre	F	0,800	Sulfures et sulfates: selon le cation auquel il est
	М	0,800	Soufre élementaire. Sulfures et sulfates: selon le cation auquel il est combiné
Chlore	F	1,0 00	Selon le cation auquel il est combiné
	M	1,000	Selon le cation auquel il est combiné
Potassium	F	1,000	Tous composés
Calcium	M	0,300	Tous composés
Scandium	S	1,0 10-4	Tous composés
Titane	F	0,010	Composés non spécifiés
	M	0,010	Oxydes, hydroxydes, carbures, halogénures e
	S	0,010	Titanate de strontium (SrTiO ₃)
Vanadium	F	0,010	Composés non spécifiés
	M	0,010	Oxydes, hydroxydes, carbures et halogénures
Chrome	F	0,100	Composés non spécifiés
	M S	0,100 0,100	Halogénures et nitrates Oxydes et hydroxydes
Manganèse	F M	0,100 0,100	Composés non spécifiés Oxydes, hydroxydes, halogénures et nitrates
Fer	F	0,100	Composés non spécifiés
101	M	0,100	Oxydes, hydroxydes et halogénures
Cobalt	M	0,100	Composés non spécifiés
Cooun	S	0,050	Oxydes, hydroxydes, halogénures et nitrates
Nickel	F	0,050	Composés non spécifiés
	М	0,050	Oxydes, hydroxydes et carbures
Cuivre	F	0,500	Composés inorganiques non spécifiés
	M S	0,500 0,500	Sulfures, halogénures et nitrates Oxydes et hydroxydes

Elément	Type(s) d'absorption	f ₁	Composés
Zinc	S	0,500	Tous composés
Gallium	F M	0,001 0,001	Composés non spécifiés Oxydes hydroxydes, carbures, halogénures et nitrates
Germanium	F	1,000	Composés non spécifiés
	M	1,000	Oxydes, sulfures et halogénures
Arsenic	М	0,500	Tous composés
Sélénium	F M	0,800 0,800	Composés inorganiques non spécifiés Sélénium élémentaire, oxydes, hydroxydes et carbures
Brome	F	1,000	Selon le cation auquel il est combiné
	M	1,000	Selon le cation auquel il est combiné
Rubidium	F	1,000	Tous composés
Strontium	F	0,300	Composés non spécifiés
	S	0,010	Titanate de strontium (SrTiO ₃)
Yttrium ·	M S	1,0 10 ⁻⁴ 1,0 10 ⁻⁴	Composés non spécifiés Oxydes et hydroxydes
Zirconium	F	0,002	Composés non spécifiés
	M	0,002	Oxydes, hydroxydes, halogénures et nitrates
	S	0,002	Carbure de zirconium
Niobium	M	0,010	Composés non spécifiés
	S	0,010	Oxydes et hydroxydes
Molybdène	F	0,800	Composés non spécifiés
	S	0,050	Sulfure, oxydes et hydroxydes de molybdène
Technétium	F	0,800	Composés non spécifiés
	M	0,800	Oxydes, hydroxydes, halogénures et nitrates
Ruthénium	F	0,050	Composés non spécifiés
	M	0,050	Halogénures
	S	0,050	Oxydes et hydroxydes
Rhodium	F	0,050	Composés non spécifiés
	M	0,050	Halogénures
	S	0,050	Oxydes et hydroxydes
Palladium	F	0,005	Composés non spécifiés
	M	0,005	Nitrates et halogénures
	S	0,005	Oxydes et hydroxydes
Argent	F	0,050	Composés non spécifiés et argent métallique
	M	0,050	Nitrates et sulfures
	S	0,050	Oxydes et hydroxydes, carbures
Cadmium	F	0,050	Composés non spécifiés
	M	0,050	Sulfures, halogénures et nitrates
	S	0,050	Oxydes et hydroxydes
Indium	F	0,020	Composés non spécifiés
	M	0,020	Oxydes, hydroxydes, halogénures et nitrates
Étain	F M	0,020 0,020	Composés non spécifiés Phosphate stannique, sulfures, oxydes, hydroxy- des, halogénures et nitrates
Antímoine	F	0,100	Composés non spécifiés
	M	0,010	Oxydes, hydroxydes, halogénures, sulfures, sulfates et nitrates

Elément	Type(s) d'absorption	f ₁	Composés
Tellure	F M	0,300 0,300	Composés non spécifiés Oxydes, hydroxydes et nitrates
Iode	F	1,000	Tous composés
Césium	F	1,000	Tous composés
Baryum	F	0,100	Tous composés
Lanthane	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	Composés non spécifiés Oxydes et hydroxydes
Cérium	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	Composés non spécifiés Oxydes, hydroxydes et fluorures
Praséodyme	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	Composés non spécifiés Oxydes, hydroxydes, carbures et fluorures
Néodyme	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	Composés non spécifiés Oxydes, hydroxydes, carbures et fluorures
Prométhium	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	Composés non spécifiés Oxydes, hydroxydes, carbures et fluorures
Samarium	M	5,0 10-4	Tous composés
Europium	M	5,0 10-4	Tous composés
Gadolinium	F M	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	Composés non spécifiés Oxydes, hydroxydes et fluorures
Terbium	M	5,0 10-4	Tous composés
Dysprosium	M	5,0 10-4	Tous composés
Holmium	M	5,0 10-4	Composés non spécifiés
Erbium	M	5,0 10-4	Tous composés
Thulium	М	5,0 10-4	Tous composés
Ytterbium	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	Composés non spécifiés Oxydes, hydroxydes et fluorures
Lutétium	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	Composés non spécifiés Oxydes, hydroxydes et fluorures
Hafnium	F M	0,002 0,002	Composés non spécifiés Oxydes, hydroxydes, halogénures, carbures e nitrates
Tantale	M S	0,001 0,001	Composés non spécifiés Tantale élementaire, oxydes, hydroxydes, halo génures, carbures, nitrates et nitrites
Tungstène	F	0,300	Tous composés
Rhénium	F M	0,800 0,800	Composés non spécifiés Oxydes, hydroxydes, halogénures et nitrates
Osmium	F M S	0,010 0,010 0,010	Composés non spécifiés Halogénures et nitrates Oxydes et hydroxydes
Iridium	F M S	0,010 0,010 0,010	Composés non spécifiés Iridium métallique, halogénures et nitrates Oxydes et hydroxydes
Platine	F	0,010	Tous composés

Elément	Type(s) d'absorption	f ₁	Composés
Or	F M	0,100 0,100	Composés non spécifiés Halogénures et nitrates
	S	0,100	Oxydes et hydroxydes
Mercure	F M	0,020 0,020	Sulfates Oxydes, hydroxydes, halogénures, nitrates et sulfures
Mercure	F	0,400	Tous composés organiques
Thallium	F	1,000	Tous composés
Plomb	F	0,200	Tous composés
Bismuth	F M	0,050 0,050	Nitrate de bismuth Composés non spécifiés
Polonium	F M	0,100 0,100	Composés non spécifiés Oxydes, hydroxydes et nitrates
Astate	F M	1,000 1,000	Selon le cation auquel il est combiné Selon le cation auquel il est combiné
Francium	F	1,000	Tous composés
Radium	М	0,200	Tous composés
Actinium	F M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴ 5,0 10 ⁻⁴	Composés non spécifiés Halogénures et nitrates Oxydes et hydroxydes
Thorium	M S	5,0 10 ⁻⁴ 2,0 10 ⁻⁴	Composés non spécifiés Oxydes et hydroxydes
Protactinium	M S	5,0 10 ⁻⁴ 5,0 10 ⁻⁴	Composés non spécifiés Oxydes et hydroxydes
Uranium	F	0,020	La plupart des composés hexavalents, par exem-
	М	0,020	ple UF ₆ , UO ₂ F ₂ et UO ₂ (NO ₃) ₂ Composés moins solubles, par exemple UO ₃ , UF ₄ , UCl ₄ et la plupart des autres composés
	S	0,002	hexavalents Composés très insolubles, par exemple UO_2 et U_3O_8
Neptunium	M	5,0 10-4	Tous composés
Plutonium	M S	5,0 10 ⁻⁴ 1,0 10 ⁻⁵	Composés non spécifiés Oxydes insolubles
Américium	М	5,0 10-4	Tous composés
Curium	М	5,0 10-4	Tous composés
Berkélium	М	5,0 10-4	Tous composés
Californium	M	5,0 10-4	Tous composés
Einsteinium	М	5,0 10 ⁻⁴	Tous composés
Fermium	M	5,0 10-4	Tous composés
Mendélévium	M	5,0 10 ⁻⁴	Tous composés