Π

(Preparatory Acts)

COMMISSION

Proposal for a Council Directive amending Directive 70/220/EEC on the approximation of the laws of the Member States relating to measures to be taken against air pollution by gases from the engines of motor vehicles

COM(85) 288 final

(submitted by the Commission to the Council pursuant to the second paragraph of Article 149 of the EEC Treaty on 21 June 1985)

(85/C 245/01)

THE COUNCIL OF THE EUROPEAN COMMUNITIES,

Having regard to the Treaty establishing the European Economic Community, and in particular Article 100 thereof,

Having regard to the proposal from the Commission,

Having regard to the opinion of the European Parliament.

Having regard to the opinion of the Economic and Social Committee,

Whereas the first programme of action of the European Communities on the environment, which was adopted by the Council on 22 November 1973, calls for account to be taken of the latest scientific progress in combating air pollution caused by exhaust gases from motor vehicles and for Directives adopted previously to be amended accordingly, and whereas the third programme of action provides for further efforts to reduce considerably the present level of emissions of pollutants from motor vehicles;

Whereas, Directive 70/220/EEC (1) lays down limit values for emissions of carbon monoxide and unburnt hydrocarbons from such engines; whereas these limit values were lowered for the first time by Directive 74/ 290/EEC (2) and supplemented, pursuant to Directive 77/102/EEC (3) with limit values for permissible emissions of oxides of nitrogen; whereas the limit values for these three pollutants were successively reduced by

Directives 78/665/EEC (4) and 83/351/EEC (5);

Whereas the work undertaken by the Commission in connection with its policy of pursuing a comprehensive approach to the development of rules for the motor industry has shown that the Community industry already has, or is currently perfecting, engine technology which will allow a further reduction in limit values: whereas this reduction does not compromise, for the period in question, the objectives of Community policy in other fields, particularly that of the rational use of energy;

Whereas the Community has an obligation to implement Directives on the protection of the environment which, as far as vehicle emissions are concerned, make it possible to obtain values adapted to European conditions so that their effect on the environment is equivalent to that of US standards for vehicle emissions; whereas this is also essential for reasons of innovation and industrial competitiveness; whereas, to achieve this objective, it is advisable to provide for a differentiated solution for the various categories of vehicle engine capacity so as to allow, as far as possible, compliance with Community requirements at reasonable cost and using different technical means; whereas the limit values laid down for vehicles with an engine capacity of less than 1,4 litres reflect the current technical and economic conditions of European manufacturers in this section of the market and whereas the limit values

OJ No L 223, 14. 8. 1978, p. 48.

OJ No L 76, 6. 4. 1970, p. 1.

OJ No L 159, 15. 6. 1974, p. 61. OJ No L 32, 3. 2. 1977, p. 32.

OJ No L 197, 20. 7. 1983, p. 1.

applicable in 1993/1994 should be fixed in 1987;

Whereas the limit values in this Directive are based on the test method laid down in Directive 70/220/EEC but this procedure must be adapted subsequently so that it reflects not only traffic conditions in congested urban centres but those outside such centres; whereas a decision concerning such adaptation should be taken by 1987 at the latest;

Whereas the Directive 70/220/EEC refers in its Article 5 to the possibility of adapting the provision of the Annexes to take account of technical progress;

Whereas petrol engines in all vehicles caught by this Directive should be designed to run exclusively on unleaded petrol so as to make it possible to abandon the use of lead-based additives in petrol and thus make a decisive contribution to the reduction of environmental pollution by this element;

Whereas it is necessary to ensure that the provisions relating to the compression-ignition engines of vehicles covered by this Directive remain compatible, with due regard to the specific nature of all the pollutants emitted by such engines, with the subsequent evolution of provisions relating to the other pollutants emitted by such engines and covered by Directive 72/306/EEC;

Whereas, during the interim period between the adoption of European standards and the implementation of the modified European test cycle, it is desirable that vehicles which obtain type approval in accordance with equivalent standards on Community export markets also qualify for EEC type-approval;

Whereas, with due regard for the Treaty's rules, Member States which so wish may apply in advance the new values laid down in this Directive, on the understanding that if they do so they may not prohibit the marketing or use of vehicles, whether manufactured at home or imported, which comply with Community requirements,

HAD ADOPTED THIS DIRECTIVE:

Article 1

Annexes I, II, III, VI and VII to Directive 70/220/EEC shall be amended in accordance with the Annex to this Directive. A new Annex III A shall be introduced.

Article 2

1. From 1 January 1986, Member States, for reasons connected with pollution of the air by exhaust gases or with engine fuel requirements, may:

- neither refuse, in respect of a motor-vehicle type, to grant EEC type-approval, to issue the document provided for in the last indent of Article 10 (1) of Directive 70/156/EEC or to grant national typeapproval,
- nor prohibit the initial entry of the vehicles into free circulation,

if emissions of polluting gases from that type of motor vehicle, or from those vehicles, and the engine fuel requirements satisfy the provisions of Directive 70/220/EEC, as amended by this Directive.

2. From 1 October 1988 as regards vehicle types with an engine capacity of over 2 000 cm³,

from 1 October 1990 as regards vehicle types with an engine capacity of 1 400 cm³ or less, and

from 1 October 1991 as regards vehicle types with an engine capacity of and between 1401 cm^3 and 2000 cm^3 ,

Member States may:

- cease to issue the document provided for in the last indent of Article 10 (1) of Directive 70/156/EEC for a motor-vehicle type, and
- refuse national approval for a motor-vehicle type,

whose emissions of polluting gases and whose engine fuel requirements do not satisfy the provisions in the Annexes to Directive 70/220/EEC, as amended by this Directive.

3. From 1 October 1989 as regards vehicle types with an engine capacity of over 2 000 cm³,

from 1 October 1991 as regards vehicle types with an engine capacity of 1 400 cm³ or less, and

from 1 October 1993 as regards vehicle types with an engine capacity of and between 1401 cm^3 and 2000 cm^3 ,

Member States may prohibit the initial entry of vehicles into free circulation whose emissions of polluting gases and whose engine fuel requirements do not satisfy the provisions in the Annexes of Directive 70/220/EEC, as amended by this Directive. Article 3

By 31 December 1987 at the latest,

- the limit values to be applied from 1993/94 to vehicles with an engine capacity of 1 400 cm³ or less, or equivalent, shall have been adopted in accordance with Article 100 of the Treaty;
- the Council, acting by qualified majority, on proposals from the Commission, shall have amended the test contained in Annex III to Directive 70/

220/EEC in order to adapt it to traffic conditions both in and outside congested urban centres.

Article 4

The Member States shall bring into force, before 1 January 1986, the provisions necessary to comply with this Directive and shall forthwith inform the Commission thereof.

Article 5

This Directive is addressed to the Member States.

ANNEX

Amendments to the Annexes to Directive 70/220/EEC

ANNEX I

The following new point shall be added:

'3.2.4. a description of the measures taken to ensure that the vehicle can be supplied only with unleaded petrol in accordance with the provisions of Directive 85/210/EEC(1). By way of example, this condition is deemed to be met if it can be demonstrated that the inlet orifice of the fuel tank is so designed that it enables the tank to be filled only from a petrol pump delivery nozzle which has an external diameter not exceeding 2,1 cm and a straight section with a minimum length of 6,3 cm.'

In item 5.1, the existing text shall be numbered 5.1.1.

The following new point shall be added:

Point 5.2.1.1.4 shall read as follows:

5.2.1.1.4. Subject to the requirements of 5.2.1.1.4.2 and 5.2.1.1.5 the test is to be carried out three times. The mass of the carbon monoxide, the combined mass of the hydrocarbons and the nitrogen oxides and the mass of the nitrogen oxides obtained in the test must be less than the amounts shown in the table below, for the corresponding vehicle categories:

Cubic capacity	Mass of carbon monoxide	Combined mass of hydrocarbons and oxides of nitrogen	Mass of oxides of nitrogen
C (cm ³)	L ₁ (g/test)	L ₂ (g/test)	L ₃ (g/test)
C > 2 000	25	6,5	3,5
$1 \ 401 \le C \le 2 \ 000$	30	8	4
C ≤ 1 400	45	15	6

Vehicles equipped with compression-ignition engines whose cubic capacity exceeds 1 401 cm³ must comply with the limit values corresponding or equivalent to the category of cubic capacities ranging between 1 401 cm³ and 2 000 cm³.'

In points 5.2.1.1.4.1, 5.2.1.1.4.2, 5.2.1.1.5.1 and 5.2.1.1.5.2, the words 'and the mass of nitrogen oxides' or 'and the emissions of oxides of nitrogen' shall be added after any reference to combined figures for hydrocarbons and oxides of nitrogen.

The table in point 7.1.1.1 shall be replaced by the following:

Cubic capacity	 Mass of carbon monoxide 	Combined mass of hydrocarbons and oxides of nitrogen	Mass of oxides of nitrogen
C (cm ³)	L ₁ (g/test)	L ₂ (g/test)	L ₃ (g/test)
C > 2 000	30	8,1	4,4
$1 401 \le C \le 2 000$	36	10	5
C ≤ 1 400	54	19	7,5

^{&#}x27;5.1.2. the vehicle must be designed to run on unleaded petrol as specified by Directive 85/210/ EEC.'

Vehicles equipped with compression-ignition engines whose cubic capacity exceeds 1 401 cm³ must comply with the limit values corresponding or equivalent to the category of cubic capacities ranging between 1 401 cm³ and 2 000 cm³.³

The second paragraph of point 7.1.1.2 shall read as follows:

'L is the limit value laid down in 7.1.1.1 for the emissions of carbon monoxide, the combined emissions of hydrocarbons and oxides of nitrogen and the emissions of oxides of nitrogen;'.

Point 8.1 shall read as follows:

- '8.1. The limit values specified in the tables set out in 5.2.1.1.4 and 7.1.1.1 in Annex I to Directive 70/220/EEC, as amended by Directive 83/351/EEC, shall apply for the type approval and verification of production conformity of the following vehicles:
 - vehicles other than those of category M_1 ;
 - passenger vehicles of category M₁ designed to carry more than six occupants including the driver or whose maximum mass exceeds 2 500 kg; and
 - vehicles designed for use off the public highway.'

The following new point shall be added:

- '8.3. Test equivalent to the type I test for verifying emissions after a cold start.
- 8.3.1. Until a modified version of the test specified in 5.2.1.1 (European cycle) enters into force and for the type approval and verification of production conformity of passenger vehicles of category M_1 equipped with an engine whose cubic capacity exceeds 1 401 cm³, designed to carry not more than six occupants including the driver and/or having a maximum mass not exceeding 2 500 kg, the technical service may, at the request of a maufacturer, carry out the equivalent test described in Annex III A (EPA cycle) instead of that described in 5.2.1.1. If so, the following provisions shall apply:
- 8.3.1.1. For vehicle type-approval, the limit values specified in the table set out in 5.2.1.1.4 shall be replaced by the following:

 Mass of carbon monoxide (L ₁):	2,1 g/km
 Combined mass of hydrocarbons and oxides of nitrogen (L_2) :	0,9 g/km
 Mass of oxides of nitrogen (L_2) :	0.6 g/km.

These limit values are deemed to be met if they are not exceeded by the results of tests on a vehicle type multiplied by a factor of 1,3.

8.3.1.2. For the verification of production conformity, the limit values specified in the table set out in 7.1.1.1 shall be replaced by those of 8.3.1.1. They are deemed to be met if the conditions set out in 7 are satisfied.'

ANNEX II

A footnote reference '(4)' shall be inserted after 1.4 and 1.5.

A footnote reference '(5)' shall be inserted after 1.7.

The following footnotes shall be added:

- (4) This figure must be rounded off to the nearest tenth of a millimetre.
- (5) This value must be calculated with $\pi = 3,1416$ and rounded off to the nearest cm³.

ANNEX III

Point 3.1.7 shall be deleted.

ANNEX VI

(Specifications of reference fuels)

The table set out in point 1 shall be replaced by the following:

1. TECHNICAL DATA OF THE REFERENCEE FUEL TO BE USED FOR TESTING VEHICLES EQUIPPED WITH A GASOLINE-FUELLED ENGINE

CEC reference fuel RF-08-T-85

Type: Premium gasoline, unleaded

	Limits a	ind units	
	Minimum	Maximum	ASTM method
Research octane number	95,0		D 2699
Motor octane number	85,0		D 2700
Sensivity			D 2699/D 2700
Delta R at 100 °C			IP 325/D 2699
Density at 15 °C	0,745	0,765	D 1298
Reid vapour pressure	0,56 bar	0.64 bar	D 323
Distillation	,	, ,	
 initial boiling point 	24 °C	40 °C	D 86
— 10 % vol point	42 °C	58 °C	D 86
— 50 % vol point	90 °C	110 °C	D 86
- 90 % vol point	155 °C	180 °C	D 86
— final boiling point	190 °C	215 °C	D 86
Residue		2 %	D 86
Hydrocarbon analysis			
— olefins		20 % Vol.	D 1319
— aromatics	(Including		D 1319
	maximum 5 % vol		
	benzene*)	45 % vol	*D 3606/D 2267
— saturates		balance	D 1319
Carbon/hydrogen ratio	ratio		
Oxidation stability	480 min.		D 525
Existent gum		4 mg/100 ml	D 381
Potential gum			D 873
Sulphur content		0,04 % mass	D 1266/D 2622/
			D 2785
Copper corrosion at 50 °C		1	D 130
Lead content		0,005 g/1	D 3237
Scavenger			
Organic lead compound			
Phosphorous content		0,0013 g/l	D 3231
Other additives		0,0015 8/1	
Other additives			

ANNEX VII

- The following words shall be inserted at the end of the first line of point 14: 'carried out in accordance with Annex III/Annex III A 1'.
- The following words shall be inserted at the end of the first line of point 14.1: 'carried out in accordance with Annex III 1'.

The following new item shall be inserted after point 14.1:

'14.2. Type I test carried out in accordance with Annex III A 1:

CO:...g/km

HC:...g/km

 $NO_X: \ldots g/km'$.

Point 14.2 shall become 14.3.

Point 14.3 shall become 14.4.

ANNEX III A

TEST EQUIVALENT TO THE TYPE I TEST FOR VERIFYING EMISSIONS AFTER A COLD START

1. INTRODUCTION

... defined in 8.3, Annex I.

2. OPERATING CYCLE ON THE CHASSIS DYNAMOMETER

2.1. Description of the cycle

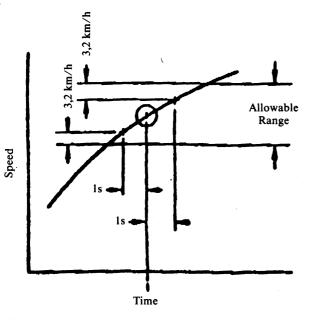
The operating in the table depicted in the graph in Appendix 1.

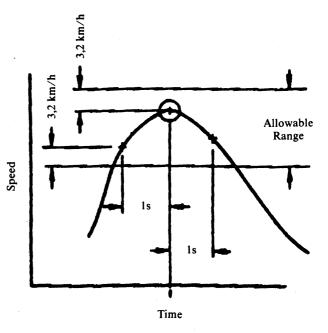
The breakdown Appendix.

2.2. (id. 2.2, Annex III).

2.3. Transmissions

- 2.3.1. All test conditions, except as noted, shall be run according to the manufacturer's recommendations to the ultimate purchaser, provided that such recommendations are representative of what may reasonably be expected to be followed by the ultimate purchaser under in-use conditions.
- 2.3.2. Vehicles equipped with free wheeling or overdrive, except as noted, shall be tested with these features operated according to the manufacturer's recommendations to the ultimate purchaser.
- 2.3.3. Idle modes shall be run with automatic transmission in 'drive' and the wheels braked: manual transmissions shall be in gear with the clutch disengaged, except first idle.


The vehicle shall be driven with minimum accelerator pedal movement to maintain the desired speed.


- 2.3.4. Accelerations shall be driven smoothly following representative shift speeds and procedures. For manual transmissions, the operator shall release the accelerator pedal during each shift and accomplish the shift with minimum time. If the vehicle cannot accelerate at the specified rate, the vehicle shall be operated at maximum available power until the vehicle speed reaches the value prescribed for that time in the driving schedule.
- 2.3.5. The deceleration modes shall be run in gear using brakes or accelerator pedal as necessary to maintain the desired speed. Manual transmission vehicles shall have the clutch engaged and shall not change gears from the previous mode. For those modes which decelerate to zero, manual transmission clutches shall be depressed when the speed drops below 24,1 km/h, when engine roughness is evident, or when engine stalling is imminent.
- 2.3.6. Manual transmission
- 2.3.6.1. In the case of test vehicles equipped with manual transmissions, the transmission shall be shifted in accordance with procedures which are representative of shift patterns that may reasonably be expected to be followed by vehicles in use in terms of such variables as vehicle speed or percent rated engine speed. At the administrator's discretion, a test vehicle may also be shifted according to the shift procedures recommended by the manufacturer to the ultimate purchaser, if such procedures differ from those which are reasonably expected to be followed by vehicles in use.
- 2.3.6.2. A manufacturer may recommend to the ultimate purchaser shift procedures other than those used in testing by the technical service, provided that all shift procedures (including multiple shift speeds) which the manufacturer proposes to supply to the ultimate purchaser are provided to the administrator as part of the manufacturer's application for certification.
- 2.3.7. Downshifting is allowed at the beginning of or during a power mode in accordance with the shift procedure determined in paragraph 2.3.6.1 of this section.

2.4. Tolerances

- 2.4.1. The dynamometer driving schedule is listed in Appendix 1. The driving schedule is defined by a smooth trace drawn through the specified speed vs. time relationships. It consists of a non-repetitive series of idle, acceleration, cruise, and deceleration modes of various time sequences and rates.
- 2.4.2. The dynamometer driving schedule is prescribed in Appendix 1. The speed tolerances at any given time for this schedule, or for a driver's aid chart approved by the administrator, when conducted to meet the provisions of 6.2 are:
 - The upper limit is 3,2 km/h higher than the highest point on the trace within 1 second of the given time.
 - The lower limit is 3,2 km/h lower than the lowest point on the trace within 1 second of the given time.

- Speed variations greater than the tolerances (such as may occur during gear changes) are
 acceptable provided they occur for less than 2 seconds on any occasion.
- Speeds lower than those prescribed are acceptable provided the vehicle is operated at maximum available power during such occurrences.
- The speed tolerance shall be as specified above, except that the upper lower limits shall be 6,4 km/h.
- The following figures show the range of acceptable speed tolerances for typical points. Figure A is typical of portions of the speed curve which are increasing or decreasing throughout the 2-second time interval. Figure B is typical of portions of the speed curve which include a maximum or minimum.

3. VEHICLE AND FUEL 3.1. Test vehicle 3.1.1. .1.2. 3.1.3. .1.4. 3.1.5. .1.1 to 3.1.6, Annex III.

3.2. Fuel

id. 3.2, Annex III (+ unleaded fuel).

4. TEST EQUIPMENT

- 4.1. Chassis
- 4.1.1. 4.1.2. id. 4.1.1, 4.1.2 and 4.1.3, Annex III.
- 4.1.3.) 4.1.4. Accuracy
- 4.1.4.1. id. 4.1.4.1, Annex III.
- 4.1.4.2. In the case of a dynamometer with a fixed load curve the accuracy of the load setting at 60,5 km/h must be 5%. In the case of a dynamometer with an adjustable load curve, the accuracy of matching a dynamometer load to road must be 5% at 80,5,60 and 40 km/h and 10% at 20 km/h. Below this, dynamometer absorption must be positive.

- 4.1.4.3. 4.1.4.4. id. 4.1.4.3 and 4.1.4.4, Annex III.
- 4.1.5. Load and inertia setting
- 4.1.5.1. Dynamometer with a fixed load curve: the load simulator must be adjusted to absorb the power exerted on the driving wheels at a steady speed of 80,5 km/h. The means by which a load is determined and set are described in Appendix 3.
- 4.1.5.2. Dynamometer with an adjustable load curve: the load simulator must be adjusted in order to absorb the power exerted on the driving wheels at steady speeds of 20, 40, 80 and 80,5 km/h. The means by which these loads are determined and set are described in Appendix 3.
- 4.1.5.3. id. 4.1.5.3, Annex III.

4.2.	
4.3.	
4.4.	
4.5.	id. 4.2. to 4.7, Annex III.
4.6.	
4.7.)

5. PREPARING THE TEST

5.1. Adjustment of inertia simulators

		Refer	ence m	ass of the vehicle	Equivalent inertial mass
		Pr		480	450
480 <	<	Pr	≤	540	510
540 -	<	Pr	≤	600	570
600 <	<	Pr	≼	650	625
650 <	<	Pr	≼	700	680
700 <	<	Pr	≼	780	740
780 <	<	Pr	≤	820	800
820 <	<	Pr	≼	880	850
880 <	<	Pr	≼	940	910
940 <	<	Pr	≤	990	960
990 <	<	Pr	≤	1 050	1 020
050 <	<	Pr	≤	1 110	1 080
110 <	<	Pr	≼	1 160	1 130
160 <	<	Pr	≼	1 220	1 190
220 <	<	Pr	≤	1 280	1 250
280 <	<	Pr	≤	1 330	1 300
330 <	<	Pr	≦	1 390	1 360
390 <	<	Pr	≼	1 450	1 420
450 <	<	Pr	≼	1 500	1 470
500 <	<	Pr	≤	1 560	1 530
560 <	<	Pr	≤	1 620	1 590
620 <	<	Pr	≤	1 670	1 640
670 <	<	Pr	<	1 730	1 700
730 <	<	Pr	≼	1 790	1 760
790 <	<	Pr	≤	1 870	1 810
870 <	<	Pr	≤	1 980	1 930
980 <	<	Pr	≼	2 100	2 040
100 <	<	Pr	≤	2 210	2 150
210 <	<	Pr	≤	2 320	2 270
320 <	<	Pr	≤	2 440	2 380
440 <	<	Pr	≤	2 610	2 490
610 <	<	Pr	≤	2 830	2 720
830 <	<	Pr			2 940

Flywheels electrical or other means of simulating test weight as shown in the following table shall be used. If the equivalent test weight specified is not available on the dynamometer being used, the next higher equivalent test weight (not to exceed 125 kg) available shall be used.

NB: the reference mass of the vehicle is the mass of the vehicle in running order less the uniform mass of the driver and increased by a uniform mass of 136 kg.

5.2. Setting of the dynamometer: id. 5.2, Annex III.

5.3. Conditioning of vehicle

5.3.1. Before the test, the vehicle must be kept in a room in which the temperature remains relatively constant between 20 and 30° C. This conditioning must be carried out for at least 12 hours and continue until the engine oil temperature and coolant, if any, are within $\pm 2^{\circ}$ C of the temperature of the room.

If the manufacturer so requests, the test must be carried out not later than 36 hours after the vehicle has been run at its normal temperature.

5.3.2. id. 5.3.2, Annex III.

6. **PROCEDURE FOR BENCH TESTS**

6.1. id. 5.1 to 6.1.4, Annex III.

to 6.1.4.

6.2. Test and sampling

- 6.2.1. The vehicle shall be stored prior to the emission test in such a manner that precipitation (e.g., rain or dew) does not occur on the vehicle. The complete dynamometer test consists of a cold-start drive of 12,1 km and simulates a hot-start drive of 12,1 km. The vehicle is allowed to stand on the dynamometer during the 10-minute time period between the cold and hot start tests. The cold start test is divided into two periods. The first period, representing the cold start 'transient' phase, terminates at the end of the deceleration which is scheduled to occur at 505 seconds of the driving schedule. The second period, representing the 'stabilized' phase, consists of the remainder of the driving schedule including engine shutdown. The hot-start test similarly consists of two periods. The first period, representing the hot-start test. The second period of the hot-start test, 'stabilized' phase, is assumed to be identical to the second period of the cold start test. Therefore the hot-start test terminates after the first period (505 seconds) is run.
- 6.2.2. The following steps shall be taken for each test:
- 6.2.2.1. Place drive wheels of vehicle on dynamometer without starting engine. Reset and enable the roll revolution counter.
- 6.2.2.2. Open the vehicle engine compartment cover and position the cooling fan.
- 6.2.2.3. With the sample selector valves in the 'standby' position, connect evacuated sample collection bags to the dilute exhaust and dilution air sample collection systems.
- 6.2.2.4. Start the CVS (if not already on), the sample pumps, the temperature recorder, the vehicle cooling fan and the heated hydrocarbon analysis recorder (diesel only). (The heat exchanger of the constant volume sampler, if used, diesel hydrocarbon analyzer continuous sample line and filter (if applicable) should be preheated to their respective operating temperatures before the test begins.)
- 6.2.2.5. Adjust the sample flow rates to the desired flow rate (minimum of 0,28 m³/h) and set the gas flow measuring devices to zero.

NB: CFV-CVS sample flow rate is fixed by the venturi design.

- 6.2.2.6. Attach the flexible exhaust tube to the vehicle tailpipe(s).
- 6.2.2.7. Start the gas flow measuring device, position the sample selector valves to direct the sample flow into the 'transient' exhaust sample bag and the 'transient' dilution air sample bag (turn on the diesel hydrocarbon analyzer system integrator and mark the recorder chart, if applicable), turn the key on and start cranking the engine.
- 6.2.2.8. Fifteen seconds after the engine starts, place the transmission in gear.
- 6.2.2.9. Twenty seconds after the engine starts, begin the initial vehicle acceleration of the driving schedule.
- 6.2.2.10. Operate the vehicle according to the dynamometer driving schedule.
- 6.2.2.11. At the end of the deceleration which is scheduled to occur at 505 seconds, simultanneously switch the sample flows from the 'transient' bags to the 'stabilized' bags, switch off gas flow measuring device No 1 (and the diesel hydrocarbon integrator No 1 mark the diesel hydrocarbon recorder chart) and start gas flow measuring device No 2 (and diesel hydrocarbon integrator second diesel hydrocarbon diesel hydrocar

grator No 2). Before the acceleration which is scheduled to occur at 510 seconds, record the measured roll or shaft revolutions and reset the counter or switch to a second counter. As soon as possible transfer the 'transient' exhaust and dilution air samples to the analytical system and process the samples according to obtain a stabilized reading of the exhaust sample on all analyzers within 20 minutes of the end of the sample collection phase of the test.

- 6.2.2.12. Turn the engine off 2 seconds after the end of the last deceleration (at 1 369 seconds).
- 6.2.2.13. Five seconds after the engine stops running, simultaneously turn off gas flow measuring device No 2 (and the diesel hydrocarbon integrator No 2, mark the hydrocarbon recorder chart, if applicable) and position the sample selector valves to the 'standby' position. Record the measured roll or shaft revolutions and reset the counter. As soon as possible transfer the 'stabilized' exhaust and dilution air samples to the analytical system and process the samples in order to obtain a stabilized reading of the exhaust sample on all analyzers within 20 minutes of the end of the sample collection phase of the test.
- 6.2.2.14. Immediately after the end of the sample period turn off the cooling fan and close the engine compartment cover.
- 6.2.2.15. Turn off the CVS or disconnect the exhaust tube from the tailpipe of the vehicle.
- 6.2.2.16. Repeat the steps in paragraph 6.2.2.2 through 6.2.2.10 of this section for the hot-start test, except only one evacuated sample bag is required for sampling exhaust gas and one for dilution air. The key-on operation step described in paragraph 6.2.2.7 of this section shall begin between 9 and 11 minutes after the end of the sample period for the cold-start test.
- 6.2.2.17. At the end of the deceleration which is scheduled to occur at 505 seconds, simultaneously turn off gas flow measuring device No 1 (and diesel hydrocarbon integrator No 1, mark the diesel hydrocarbon recorder chart, if applicable) and position the sample selector valve to the 'standby' position (engine shutdown is not part of the hot-start test sample period). Record the measured roll or shaft revolutions.
- 6.2.2.18. As soon as possible transfer the hot start 'transient' exhaust and dilution air samples to the analytical system and process the samples in order to obtain a stabilized reading of the exhaust sample on all analyzers within 20 minutes of the end of the sample collection phase of the test.

6.3. Engine starting and restarting

- 6.3.1. Gasoline-fuelled vehicles: This paragraph applies to gasoline-fuelled vehicles.
- 6.3.1.1. The engine shall be started according to the manufacturer's recommended starting procedures in the owner's manual. The initial 20-second idle period shall begin when the engine starts.
- 6.3.1.2. Choke operation: (*) Vehicles equipped with automatic chokes shall be operated according to the manufacturer's operating instructions in the owner's manual, including choke setting and 'kick-down' from cold fast idle.

(*) Vehicles equiped with manual chokes shall be operated according to the manufacturer's operating instructions in the owner's manual.

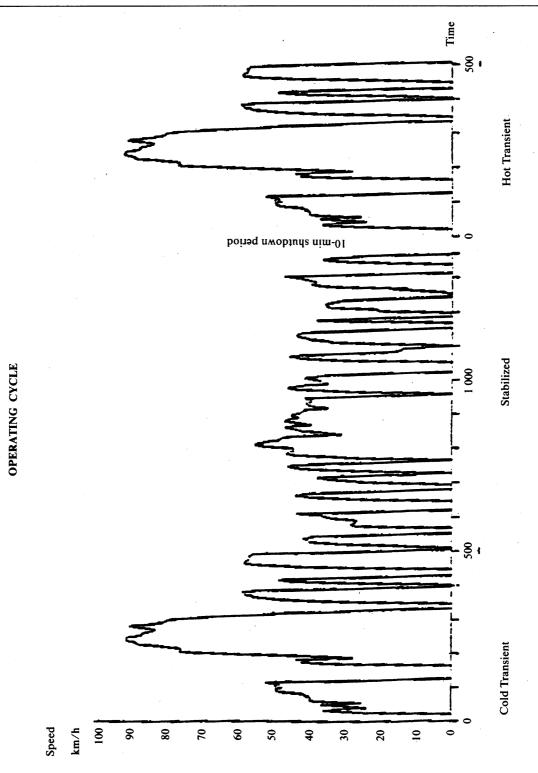
- 6.3.1.3. The transmission shall be placed in gear 15 seconds after the engine is started. If necessary, braking may be employed to keep the drive wheels from turning.
- 6.3.1.4. The operator may use the choke, accelerator pedal, etc., where necessary to keep the engine running.
- 6.3.1.5. If the manufacturer's operating instructions in the owner's manual do not specify a warm engine starting procedure, the engine (automatic- and manual-choke engines) shall be started by depressing the accelerator pedal about half-way and cranking the engine until it starts.
- 6.3.2. *Diesel vehicles:* The engine shall be started according to the manufacturer's recommended starting procedures in the owner's manual. The initial 20-second idle period shall begin when the engine starts. The transmission shall be placed in gear 15 seconds after the engine is started. If necessary, braking may be employed to keep the drive wheels from turning.
- 6.3.3. If the vehicle does not start after 10 seconds of cranking, cranking shall cease and the reason for failure to start shall be determined. The gas flow measuring device on the constant volume sampler (usually a revolution counter) or CFV (and the hydrocarbon integrator when testing diesel vehicles) shall be turned off and the sampler selector valves placed in the 'standby' position during this diagnostic period. In addition, either the CVS should be turned off, or the

exhaust tube disconnected from the tailpipe during the diagnostic period. If failure to start is an operational error, the vehicle shall be rescheduled for testing from a cold start.

- 6.3.3.1. If a failure to start occurs during the cold portion of the test and is caused by a vehicle malfunction, corrective action of less than 30 minutes duration may be taken and the test continued. All sampling system(s) shall be reactivated at the same time cranking begins. When the engine starts, the driving schedule timing sequence shall begin. If failure to start is caused by vehicle malfunction and the vehicle cannot be started, the test shall be voided.
- 6.3.3.2. If a failure to start occurs during the hot-start portion of the test and is caused by vehicle malfunction, the vehicle must be started within one minute of key on. All sampling systems(s) shall be reactivated at the same time cranking begins. When the engine starts, the driving schedule timing sequence shall begin. If the vehicle cannot be started within 1 minute of key on, the test shall be voided.
- 6.3.4. If the engine 'false starts' the operator shall repeat the recommended starting procedure (such as resetting the choke, etc.)
- 6.3.5. Stalling: (*) If the engine stalls during an idle period, the engine shall be restarted immediately and the test continued. If the engine cannot be started soon enough to allow the vehicle to follow the next acceleration as prescribed, the driving schedule indicator shall be stopped. When the vehicle restarts, the driving schedule indicator shall be reactived.

(*) If the engine stalls during some operating mode other than idle, the driving schedule indicator shall be stopped, the vehicle shall than be restarted and accelerated to the speed required at the point in the driving schedule and the test continued.

(*) If the vehicle will not restart within 1 minute, the test shall be voided.


7. PROCEDURE FOR ANALYSES

- 7.1. id. 7.2.2, Annex III.
- 7.2. id. 7.2.3, Annex III.
- 7.3. id. 7.2.4, Annex III.
- 7.4. id. 7.2.5, Annex III.
- 7.5. id. 7.2.6, Annex III.
- 7.6. id. 7.2.7, Annex III.
- 7.7. id. 7.2.8, Annex III.

8.

DETERMINATION OF THE QUANTITY OF GASEOUS POLLUTANTS

8.1. 8.2. id. 8.1. and 8.2, Annex III. APPENDIX I

				כ		\$	+ -	S	+	S	t	2
	20	0,0	40	24,0	09	38,9	80	41,4	100	48,8	120	24,8
	21	4,8	41	24,5	61	39,6	81	42,0	101	49,4	121	19,5
	22	9,5	42	24,9	62	40,1	82	43,0	102	49,7	122	14,2
	23	13,8	43	25,7	63	40,2	83	44,3	103	49,9	123	8,9
	24	16,5	44	27,5	64	39,6	84	46,0	104	49,7	124	3,5
	25	23,0	45	30,7	65	39,4	85	47,2	105	48,9	125	0,0
	26	27,2	46	34,0	6 6	39,8	86	48,0	106	48,0	126	0,0
	27	27,8	47	36,5	67	39,9	87	48,4	107	48,1	127	0,0
	28	29,1	48	36,9	68	39,8	88	48,9	108	48,6	128	0,0
	29	33,3	49	36,5	69	39,6	89	49,4	109	49,4	129	0,0
	30	34,9	50	36,4	- 10	39,6	90	49,4	110	50,2	130	0,0
	31	36,0	51	34,3	71	40,4	91	49,1	111	51,2	131	0,0
	32	36,2	52	30,6	72	41,2	92	48,9	112	51,8	132	0,0
	33	35,6	53	27,5	73	41,4	93	48,8	113	52,1	133	0,0
	34	34,6	54	25,4	74	40,9	94	48,9	114	51,8	134	0,0
	35	33,6	55	25,4	75	40,1	95	49,6	115	51,0	135	0,0
	36	32,8	56	28,5	76	40,2	96	48,9	116	46,0	136	0,0
	37	31,9	57	31,9	77	40,9	97	48,1	117	40,7	137	0'0
	38	27,6	58	34,8	78	41,8	98	47,5	118	35,4	138	0,0
_	39	24,0	59	37,3	62	41,8	66	48,0	119	30,1	139	0,0
	t	S	t	S	÷	S	t	S	t.	S	t	S
	160	0'0	180	41,5	200	67,8	220	80,5	240	91,2	260	87,1
	161	0,0	181	43,8	201	70,0	221	81,4	241	91,2	261	86,6
	162	0,0	182	42,6	202	- 72,6	222	82,1	242	6'06	262	85,9
-	163	0,0	183	38,6	203	74,0	223	82,9	243	90,9	263	85,3
	164	5,3	184	36,5	204	75,3	224	84,0	244	6'06	264	84,7
	165	10,6	185	31,2	205	76,4	225	85,6	245	6'06	265	83,8
	166	15,9	186	28,5	206	76,4	226	87,1	246	90,9	266	84,3
	167	21,2	187	27,7	207	76,1	227	87,9	247	6'06	267	83,7
	168	26,6	188	29,1	208	76,0	228	88,4	248	90,8	268	83,5
	169	31,9	189	29,9	209	75,6	229	88,5	249	90,3	269	83,2
	170	35,7	190	32,2	210	75,6	230	88,4	250	89,8	270	82,9
	171	39,1	191	35,7	211	75,6	231	87,9	251	88,7	271	83,0
	172	41,5	192	39,4	212	75,6	232	87,9	252	87,9	272	83,4
	173	42,5	193	43,9	213	75,6	233	88,2	253	87,2	273	83,8
,	174	41,4	194	49,1	214	76,0	234	88,7	254	86,9	274	84,5
	175	40,4	195	53,9	215	76,3	235	89,3	255	86,4	275	85,3
	176	39,8	196	58,3	216	17,1	236	89,6	256	86,3	276	86,1
	177	40,2	197	60,0	217	78,1	237	90,3	257	86,7	277	86,9
	178	40,6	198	63,2	218	79,0	238	90,6	258	86,9	278	88,4
,	179	40,9	199	65,2	219	7.97	239	91.1	259	87.1	279	89,2

No C 245/14

Official Journal of the European Communities

26. 9. 85

s	0.0	0'0	0,0	4,2	9,5	14,5	20,1	25,4	30,7	36,0	40,2	41,2	44,3	46,7	48,3	48,4	48,3	47,8	47,2	46,3	s	40,6	40,2	40,2	40,2	39,3	37,2	31,9	26,6	21,2	15,9	10,6	5,3	0,0	0,0	0,0	0'0	0,0	0,0	0,0	0.0
t	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	÷	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559
S	58.7	58,6	57,9	56,5	54,9	53,9	50,5	46,7	41,4	37,0	32,7	28,2	23,3	19,3	14,0	8,7	3,4	0,0	0,0	0,0	s	25,7	28,5	30,6	32,3	33,6	35,4	37,0	38,3	39,4	40,1	40,2	40,2	40,2	40,2	40,2	40,2	41,2	41,5	41,8	41.2
t	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	1	520	521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539
Š	49,0	50,9	51,7	52,3	54,1	55,5	55,7	56,2	56,0	55,5	55,8	57,1	57,9	57,9	57,9	57,9	57,9	57,9	58,1	58,6	S	21,2	16,6	11,6	6,4	1,6	0,0	0,0	0,0	0,0	0,0	0,0	1,9	5,6	8,9	10,5	13,7	15,4	16,9	19,2	22.5
t	360	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	t	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519
S	0'0	0,0	0,0	0,0	0,0	0,0	0,0	1,6	6,9	12,2	17,5	22,9	27,8	32,2	36,2	38,1	40,6	42,8	45,2	46,3	S	56,6	56,3	56,5	56,6	57,1	56,6	56,3	56,3	56,3	56,0	55,7	55,8	53,9	51,5	46,4	45,1	41,0	36,2	31,9	26,6
⊷	340	341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	t	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499
S	44,3	39,9	34,6	32,3	30,7	29,8	27,4	24,9	20,1	17,4	12,9	7,6	2,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	s	54,1	56,0	56,5	57,3	58,1	57,9	58,1	58,3	57,9	57,5	57,9	57,9	57,3	57,1	57,0	56,6	56,6	56,6	56,6	56,6
t	320	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	t	460	461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479
S	79,0	78,2	77,4	76,0	74,2	72,4	70,5	68,6	66,8	64,9	62,0	59,5	56,6	54,4	52,3	50,7	49,2	49,1	48,3	46,7	S	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	5,3	10,6	15,9	21,2	26,6	31,0	37,2	42,5	44,7	46,8	50,7	53,1
÷	300	301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	t	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459
s	89,5	90,1	90,1	8,98	88,8	87,7	86,3	84,5	82,9	82,9	82,9	82,2	80,6	80,5	80,6	80,5	79,8	7,97	7,97	79,7	s	45,1	40,2	34,9	29,6	24,3	19,0	13,7	8,4	3,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
t	280	281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	t	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439

26. 9. 85

Official Journal of the European Communities

No C 245/15

418
0 661
642 0,0 643 0,0
0.0 642
672 0
36 7
603
4,12 07.0
582 582 583
0,0

No C 245/16

.

Official Journal of the European Communities

26. 9. 85

															_																										
s	3,2	8,5	13,8	19,2	24,5	28,2	29,9	32,2	34,0	35,4	37,0	39,4	42,3	44,3	45,2	45,7	45,9	45,9	45,9	44,6	S	0,0	0,2	1,0	2,6	5,8	11,1	16,1	20,6	22,5	23,3	25,7	29,1	32,2	33,8	34,1	34,3	34,4	34,9	36,2	37,0
÷	960	961	962	963	964	965	996	967	968	696	970	179	972	973	974	975	976	776	978	979	t	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110		1112	1113	1114	1115	1116	1117	1118	1119
s	40,2	39,6	39,6	38,8	39,4	40,4	41,2	40,4	38,6	35,4	32,3	27,2	21,9	16,6	11,3	6,0	0,6	0,0	0,0	0,0	S	29,0	24,1	19,8	17,9	17,1	16,1	15,3	14,6	14,0	13,8	14,2	14,5	14,0	13,8	12,9	11,3	8,0	6,8	4,2	1,6
t	940	941	942	943	944	945	946	947	948	949	950	951	952	953	954	955	956	957	958	959	t	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1601	1092	1093	1094	1095	1096	1097	1098	1099
s	36,4	37,7	38,6	38,9	39,3	40,1	40,4	40,6	40,7	41,0	40,6	40,2	40,3	40,2	39,8	39,4	39,1	39,1	39,4	40,2	S	32,2	35,1	37,0	38,6	39,9	41,2	42,6	43,1	44,1	44,9	45,5	45,1	44,3	43,5	43,5	42,3	39,4	36,2	34,6	33,2
, ,	920	921	922	923	924	925	926	927	928	929	930	931	932	933	934	935	936	937	938	939	÷	1060	1061	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075	1076	1077	1078	1079
S	43,3	42,8	42,6	42,6	42,6	42,3	42,2	42,2	41,7	41,2	41,2	41,7	41,5	41,0	39,6	37,8	35,7	34,8	34,8	34,9	s	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,9	6,4	11,7	17,1	22,4	27,4	29,8
	006	901	902	903	904	905	906	607	908	606	910	116	912	913	914	915	916	917	918	919	t	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1001	1052	1053	1054	1055	1056	1057	1058	1059
S	46,8	46,7	46,5	45,9	45,2	45,1	45,1	44,4	43,8	42,8	43,5	44,3	44,7	45,1	44,7	45,1	45,1	45,1	44,6	44,1	S	12,2	6,9	1,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0'0	0,0	0,0	0,0
t	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	- 895	896	897	868	899	ţ	1020	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039
s	46,7	46,8	46,7	45,2	44,3	43,5	41,5	40,2	39,4	39,9	40,4	41,0	41,4	42,2	43,3	44,3	44,7	45,7	46,7	47,0	S	37,8	38,6	39,6	39,9	40,4	41,0	41,2	41,0	40,2	38,8	38,1	5,15	36,9	36,2	35,4	34,8	33,0	28,2	22,9	17,5
t	860	861	862	863	864	865	866	867	868	869	870	871	872	873	874	875	- 876	877	878	879	t	1000	1001	1002	1003	1004	1005	1006	1007	1008	6001	1010	101	1012	1013	1014	1015	1016	1017	1018	1019
S	30,9	30,9	32,3	33,6	34,4	35,4	36,4	37,3	38,6	40,2	41,8	42,8	42,8	43,1	43,5	43,8	44,7	45,2	46,3	46,5	s	44,3	43,8	43,1	42,6	41,8	41,4	40,6	38,6	35,4	34,6	34,6	1,05	36,2	37,0	36,7	36,7	37,0	36,5	36,5	36,5
t	840	841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	856	857	858	859		980	981	982	983	984	985	986	987	988	686	066 • • • •	166	992	993	994	995	966	7997	866	666

Official Journal of the European Communities

`

26. 9. 85

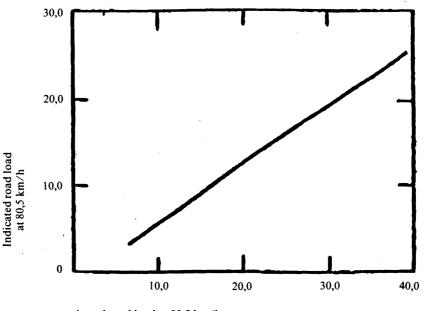
No C 245/17

t	S	t	S	-	S		S	t	s	t	S	+	s
1120	38,3	1140	41,8	1160	0'0	1180	32,2	1200	10,5	1220	34,6	1240	9,7
1121	39,4	1141	41,0	1161	0,0	1181	26,9	1201	15,8	1221	35,1	1241	6,4
1122	40,2	1142	39,6	1162	0,0	1182	21,6	1202	19,3	1222	35,4	1242	4,0
1123	40,1	1143	37,8	1163	0,0	1183	16,3	1203	20,8	1223	35,2	1243	1,1
1124	39,9	1144	34,6	1164	0,0	1184	10,9	1204	20,9	1224	34,9	1244	0,0
1125	40,2	1145	32,2	1165	0,0	1185	5,6	1205	20,3	1225	34,6	1245	0,0
1126	40,9	1146	28,2	1166	0'0	1186	0,3	1206	20,6	1226	34,6	1246	0,0
1127	41,5	1147	25,7	1167	0,0	1187	0,0	1207	21,1	1227	34,4	1247	0,0
1128	41,8	1148	22,5	1168	0'0	1188	0,0	1208	21,1	1228	32,3	1248	0,0
1129	42,5	1149	17,2	1169	3,4	1189	0,0	1209	22,5	1229	31,4	1249	0,0
1130	42,8	1150	11,9	1170	8,7	1190	0,0	1210	24,9	1230	30,9	1250	0,0
1131	43,3	1151	6,6	1171	14,0	1611	0,0	1211	27,4	1231	31,5	1251	0,0
1132	43,5	1152	1,3	1172	19,3	1192	0,0	1212	29,9	1232	31,9	1252	1,6
1133	43,5	1153	0,0	1173	24,6	1193	0,0	1213	31,7	1233	32,2	1253	1,6
1134	43,5	1154	0,0	1174	29,9	1194	0,0	1214	33,8	1234	31,4	1254	1,6
1135	43,3	1155	0,0	1175	34,0	1195	0,0	1215	34,6	1235	28,2	1255	1,6
1136	43,1	1156	0,0	1176	37,0	1196	0,0	1216	35,1	1236	24,9	1256	1,6
1137	43,1	1157	0'0	1177	37,8	1197	0,3	1217	35,1	1237	20,9	1257	2,6
1138	42,6	1158	0,0	1178	37,0	1198	2,4	1218	34,6	1238	16,1	1258	4,8
1139	42,5	1159	0,0	1179	36,2	6611	5,6	1219	34,1	1239	12,9	1259	6,4
÷	S	÷	S	t	S	t,	S	+	s	t	s		
1260	8,0	1280	39,4	1300	45,5	1320	0,0	1340	13,0	1360	26,6		
1261	10,1	1281	38,6	1301	46,7	1321	0,0	1341	18,3	1361	24,9		
1262	12,9	1282	37,8	1302	46,8	1322	0,0	1342	21,2	1362	22,5		
1263	16,1	1283	37,8	1303	46,7	1323	0,0	1343	24,3	1363	17,7		
1264	16,9	1284	37,8	1304	45,1	1324	0,0	1344	27,0	1364	12,9		
1265	15,3	1285	37,8	1305	39,8	1325	0,0	1345	29,5	1365	6,4		
1266	13,7	1286	37,8	1306	34,4	1326	0,0	1346	31,4	1366	4,0		
1267	12,2	1287	37,8	1307	29,1	1327	0,0	1347	32,7	1367	0,0		
1268	14,2	1288	38,6	1308	23,8	1328	0,0	1346	34,3	1368	0,0		
1269	17,7	1289	38,8	1309	18,5	1329	0,0	1349	35,2	1369	0,0		
1270	22,5	1290	39,4	1310	13,2	1330	0,0	1350	35,6	1370	0,0		
1271	27,4	1291	39,8	1311	6,7	1331	0,0	1351	36,0	1371	0,0		
1272	31,4	1292	40,2	1312	2,6	1332	0,0	1352	35,4				
1273	33,8	1293	40,9	1313	0'0	1333	0,0	1353	34,8				
1274	35,1	1294	41,2	1314	0,0	1334	0,0	1354	34,0				
1275	35,7	1295	41,4	1315	0,0	1335	0,0	1355	33,0				
1276	37,0	1296	41,8	1316	0,0	1336	0,0	1356	32,2				
1277	38,0	1297	42,2	1317	0,0	1337	0,0	1357	31,5				
1278	38,8	1298	43,5	1318	0,0	1338	2,4	1358	29,8				
1279	39,4	1299	44,7	1319	0,0	1339	7,7	1359	28,2				
S = speed	speed (km/h)												×
N	(6												

No C 245/18

26. 9. 85

APPENDIX 2


CHASSIS DYNAMOMETER

1. DEFINITION

- 1.1. id. 1.1, Appendix 2, Annex III, but replace '10 to 50 km/h' by '10 to 80,5 km/h'.
- 2. METHOD OF CALIBRATING THE DYNAMOMETER
- 2.1. id. 2.1, Appendix 2, Annex III.
- 2.2. Calibrating the power indicator to 80,5 km/h.
- 2.2.1. The dynamometer shall be calibrated at least once each month or performance verified at least once each week and then calibrate as required. The calibration shall consist of the manufacturer's recommended calibration procedure plus a determination of the dynamometer frictional power absorption at 80,5 km/h. One method for determining dynamometer frictional power absorption at 80,5 km/h is described below, other methods may be used if shown to yield equivalent results. The measured absorbed road power includes the dynamometer friction as well as the power absorbed by the power absorption unit. The dynamometer is driven above the test speed range. The device used to drive the dynamometer is then disengaged from the dynamometer and the roll(s) is (are) allowed to coast down. The kinetic energy of the system is dissipated by the dynamometer. This method neglects the variations in roll bearing friction due to the drive axle weight of the vehicle. The inertia of the free (rear) roll may be neglected in the case of dynamometers with paired rolls.
- 2.2.1.1. Devise a method to determine the speed of the drive roll if it has not already been measured. A fifth wheel, revolution pickup, or other suitable means may be used.
- 2.2.1.2. Place a vehicle on the dynamometer or devise another method of driving the dynamometer.
- 2.2.1.3. Engage the inertial flywheel or other inertial simulation system for the most common vehicle mass category for which the dynamometer is used. In addition other vehicle mass categories may be calibrated, if desired.
- 2.2.1.4. Drive the dynamometer up to 80,5 km/h.
- 2.2.1.5. Record indicated road power.
- 2.2.1.6. Drive the dynamometer up to 96,9 km/h.
- 2.2.1.7. Disengage the device used to drive the dynamometer.
- 2.2.1.8. Record the time for the dynamometer drive roll to coast down from 88,5 km/h to 72,4 km/h.
- 2.2.1.9. Adjust the power absorption unit to a different level.
- 2.2.1.10. Repeat steps 2.2.1 to 2.2.1.9 above sufficient times to cover the range of road power used.
- 2.2.1.11. Calculate absorbed road power. See paragraph 2.2.3 of this section.
- 2.2.1.12. Plot indicated road load power at 80,5 km/h vs. road load power as shown in Figure A.
- 2.2.2. The performance check consists of conducting a dynamometer coastdown at one or more inertia-horsepower settings and comparing the coastdown time to that recorded during the last calibration. If the coastdown times differ by more than 1 s a new calibration is required.
- 2.2.3. Calculations. The road load power actually absorbed by the dynamometer is calculated from the following equation:

$$Pa = W \frac{V_1^2 - V_2^2}{2\ 000\ t}$$

- Pa = Power, kilowatt
- W = Equivalent inertia, kg
- V_1 = Initial velocity (m/s)
- V_2 = Final velocity (m/s)
- = elapsed time for rolls to coast from 88,5 to 72,4 km/h

Actual road load at 80,5 km/h

Figure A: Road load — Actual vs. Indicated

- 2.3. id. 2.3, Appendix 2, Annex III.
- 2.4. Deleted.

3. SETTING OF THE DYNAMOMETER

- 3.1. Vacuum method: id 3.1, Appendix 2, Annex III, but replace 'at the speed of 50 km/h' by 'at the speed of 80,5 km/h'.
- 3.2. **Other setting method:** id. 3.2, Appendix 2, Annex III, but replace 'at the speed of 50 km/h' by 'at the speed of 80,5 km/h'.
- 3.3. Alternative method
- 3.3.1. The power absorption unit shall be adjusted to reproduce road load power at 80,5 km/h true speed. The dynamometer power absorption shall take into account the dynamometer friction.
- 3.3.2. The dynamometer road load setting is determined from the equivalent test weight, the reference frontal area, the body shape, the vehicle protuberances and the fire type by the following equations.
- 3.3.2.1. For light-duty vehicles to be tested on a twin roll dynamometer.

$$P_A(kW) = 0,746$$
 $\left[aA + P - \frac{tW}{0,454}\right]$

where: $P_A =$ The dynamometer power absorber setting at 80,5 km/h (horsepower)

- A= The vehicle reference frontal area (m²). The vehicle reference frontal area is defined as the area of the orthogonal projection of the vehicle including tyres and suspension components, but excluding vehicle protuberances, on to a plane perpendicular to both the longitudinal plane of the vehicle and the surface upon which the vehicle is positioned. Measurements of this area shall be computed to the nearest hundredth of a square metre using a method approved in advance by the administrator.
- P = the protuberance power correction factor from Table 1 of this paragraph (horsepower)
- W = vehicle equivalent test weight (kg)
- a = 0,43 for fastback-shaped vehicles; = 0,50 for all other light-duty vehicles

t =

0,0 for vehicles equipped with radical ply tyres = 3×10 for all other vehicles

A vehicle is considered to have a fastback shape if the rearward projection of that portion of the rear surface (A_2) which slopes at an angle of less than 20° from the horizontal is at least 25% as large as the vehicle reference frontal area. In addition, this surface must be smooth, continuous, and free from any local transitions greater than 4°. An example of a fastback shape is presented in Figure 1.

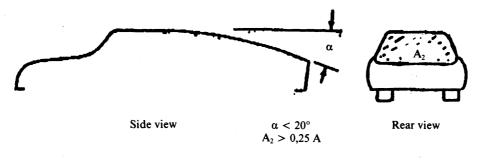


Figure 1

TABLE 1

Protuberance power, P, versus total protuberance frontal area, A₂

Α	P (horsepower)
A 0,30	0,0
0,30 A 0,60	,40
0,60 A 0,90	,70
0,90 A 1,20	1,00
1,20 A 1,50	1,30
1,50 A 1,80	1,50
1,80 A 2,10	1,90
2,10 A 2,40	2,20
2,40 A 2,70	2,50
2,70 A 3,00	2,80
3,00 A	3,10

The protuberance frontal area, A_2 , is defined in a manner analogous to the definition of the vehicle reference frontal area, i. e. the total area of the orthogonal projections of the vehicle mirrors, hand ornaments, roof racks, and other protuberance onto a plane(s) perpendicular to both the longitudinal plane of the vehicle and the surface upon which the vehicle is positioned. A protuberance is defined as any fixture attached to the vehicle protruding more than 2,54 cm from the vehicle surface and having a projected area greater than 0,00093 m² with the area calculated by a method approved in advance by the administrator. Included in the total protuberance frontal area shall be all fixtures which occur as standard equipment. The area of any optional equipment shall also be included if it is expected that more than 33 % of the car line sold will be equipped with this option.

3.3.2.2. The dynamometer power absorber setting for light-duty vehicles shall be rounded to the nearest 0,1 kilowatt.

3.3.2.3. For light-duty vehicles to be tested on a single, large roll dynamometer.

$$P_A (kW) = \left[aA + P + (5,0 \times 10^{-4} + 0,33 t \frac{W}{0,454}) \right] 0,746$$

All symbols in the above equation are defined in paragraph 3.3.2.1 of this section.

APPENDIX 3

RESISTANCE TO PROGRESS OF A VEHICLE — MEASUREMENT METHOD ON THE ROAD SIMULATION ON A CHASSIS DYNAMOMETER

id. Appendix 3, Annex III

APPENDIX 4

VERIFICATION OF INERTIAS OTHER THAN MECHANICAL

id. Appendix 4, Annex III

APPENDIX 5

DEFINITION OF GAS SAMPLING SYSTEMS

id. Appendix 5, Annex III, but six bags (instead of two) are necessary on the CVS

APPENDIX 6

METHOD OF CALIBRATING THE EQUIPMENT

id. Appendix 6, Annex III

APPENDIX 7

TOTAL SYSTEM VERIFICATION

id. Appendix 7, Annex III

APPENDIX 8

CALCULATION OF THE MASS EMISSIONS OF POLLUTANTS

The mass emissions of pollutants are calculated by the following equation:

$$M_{i} = 0.43 \frac{M_{icT} M_{is}}{S_{cT} + S_{s}} + 0.57 \frac{M_{iHT} + M_{is}}{S_{HT} + S_{s}}$$

where:

- M_i = mass emission of the pollutant i in grams per test
- M_{icT} = mass emission of the pollutant i in grams during the first phase (transient cold)
- M_{iHT} = mass emission of the pollutant i in grams during the last phase (transient hot)

 M_{is} = mass emission of the pollutant i in grams during the second phase (stabilized)

 S_{cT} = distance (in km) which has been run during the first phase

 S_{HT} = distance (in km) which has been run during the last phase

 S_s = distance (in km) which has been run during the second phase

The mass emissions of pollutants are calculated by means of the following:

 $M_i = V_{mix} \times Q_i \times k_H \times C_i \times 10^{-6}$

where:

 M_i = mass emission of the pollutant i in grams per phase

- V_{mix} = volume of the diluted exhaust gas expressed in litres per phase and corrected to standard conditions (273,2 K and 101,33 kPa)
- Q_i = density of the pollutant i in grams per litres at normal temperature and pressure (273,2 K and 101,33 kPa)
- k_H = humidity correction factor used for the calculation of the mass emissions of oxides of nitrogen. There is no humidity correction for HC and CO
- C_i = concentration of the pollutant i in the diluted exhaust gas expressed in ppm and corrected by the amount of the pollutant i contained in the dilution air

1. VOLUME DETERMINATION

1.1.

1.2. id 1.1 to 1.3 Appendix 8, Annex III (but replace 'test' by 'phase').

1.3.

2. CALCULATION OF THE CORRECTED CONCENTRATION OF POLLUTANTS IN THE SAMPLING BAG

id 2. Appendix 8, Annex III.

- 3. DETERMINATION OF THE NO-HUMIDITY CORRECTION FACTOR id 3 Appendix 8, Annex III.
- 4. HC MEASUREMENTS WITH DIESEL ENGINES
- 4.1. id 4.3 Appendix 8, Annex III.

Proposal for a Council Directive on the dumping of waste at sea

COM(85) 373 final

(Submitted by the Commission to the Council on 13 August 1985)

(85/C 245/02)

THE COUNCIL OF THE EUROPEAN COMMUNITIES,

Having regard to the Treaty establishing the European Economic Community, and in particular Articles 100 and 235 thereof,

Having regard to the proposal from the Commission,

Having regard to the opinion of the European Parliament,

Having regard to the opinion of the Economic and Social Committee,

Whereas the Declaration of the Council of the European Communities and of the Representatives of the Governments of the Member States meeting within the Council of 22 November 1973, calls for the implementation of a European Community action programme on the environment $(^1)$;

Whereas this action programme was renewed and extended for 1977 to 1981 and 1982 to 1986 by the resolutions of the Council and of the Representatives of the

(¹) OJ No C 112, 20. 12. 1973, p. 1.