Contents

II Information

INFORMATION FROM EUROPEAN UNION INSTITUTIONS, BODIES, OFFICES AND AGENCIES

European Commission

2022/C 100/01 Non-opposition to a notified concentration (Case M.10320 – APERAM / ELG HANIEL) (¹) ………………… 1

2022/C 100/02 Non-opposition to a notified concentration (Case M.10601 – WARBURG PINCUS / OXFORD PROPERTIES / HALE) (¹) ……………………………………………………………………………………………… 2

IV Notices

NOTICES FROM EUROPEAN UNION INSTITUTIONS, BODIES, OFFICES AND AGENCIES

Council

European Commission

2022/C 100/04 New national side of euro coins intended for circulation ………………………………………………………… 36

2022/C 100/05 Euro exchange rates — 28 February 2022 ………………………………………………………………………………… 37

(¹) Text with EEA relevance.
NOTICES FROM MEMBER STATES

2022/C 100/06 Information communicated by Member States regarding closure of fisheries .. 38

V Announcements

ADMINISTRATIVE PROCEDURES

European Commission

2022/C 100/07 Call for proposals and related activities under the 2022 work plan of the Clean Hydrogen Joint Undertaking ... 39

2022/C 100/08 Dedicated Calls for proposals in 2022 under the Work Programme 2021-2022 of the Research Fund for Coal and Steel Programme (2021-2027) ... 40

PROCEDURES RELATING TO THE IMPLEMENTATION OF COMPETITION POLICY

European Commission

2022/C 100/09 Prior notification of a concentration (Case M.10559 – A P MOELLER-MAERSK / SENATOR INTERNATIONAL) (*) ... 41

OTHER ACTS

European Commission

2022/C 100/10 Publication of an application for registration of a name pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs ... 43

(*) Text with EEA relevance.
II

(Information)

INFORMATION FROM EUROPEAN UNION INSTITUTIONS, BODIES, OFFICES AND AGENCIES

EUROPEAN COMMISSION

Non-opposition to a notified concentration
(Case M.10320 – APERAM / ELG HANIEL)

(Text with EEA relevance)

(2022/C 100/01)

On 25 November 2021, the Commission decided not to oppose the above notified concentration and to declare it compatible with the internal market. This decision is based on Article 6(1)(b) of Council Regulation (EC) No 139/2004 (1). The full text of the decision is available only in English and will be made public after it is cleared of any business secrets it may contain. It will be available:

— in the merger section of the ’Competition policy’ website of the Commission (http://ec.europa.eu/competition/mergers/cases/). This website provides various facilities to help locate individual merger decisions, including company, case number, date and sectoral indexes,

Non-opposition to a notified concentration
(Case M.10601 – WARBURG PINCUS / OXFORD PROPERTIES / HALE)

(Text with EEA relevance)

(2022/C 100/02)

On 21 February 2022, the Commission decided not to oppose the above notified concentration and to declare it compatible with the internal market. This decision is based on Article 6(1)(b) of Council Regulation (EC) No 139/2004 (¹).

The full text of the decision is available only in English and will be made public after it is cleared of any business secrets it may contain. It will be available:

— in the merger section of the 'Competition policy' website of the Commission (http://ec.europa.eu/competition/mergers/cases/). This website provides various facilities to help locate individual merger decisions, including company, case number, date and sectoral indexes,

IV

(Notices)

NOTICES FROM EUROPEAN UNION INSTITUTIONS, BODIES, OFFICES AND AGENCIES

COUNCIL

COMMON MILITARY LIST OF THE EUROPEAN UNION

adopted by the Council on 21 February 2022

(equipment covered by Council Common Position 2008/944/CFSP defining common rules governing the control of exports of military technology and equipment)

(updating and replacing the Common Military List of the European Union adopted by the Council on 17 February 2020 (1))

(CFSP)

(2022/C 100/03)

Note 1 Terms in ‘quotations’ are defined terms. Refer to ‘Definitions of Terms used in this List’ annexed to this List.

Note 2 In some instances chemicals are listed by name and CAS number. The list applies to chemicals of the same structural formula (including hydrates) regardless of name or CAS number. CAS numbers are shown to assist in identifying a particular chemical or mixture, irrespective of nomenclature. CAS numbers cannot be used as unique identifiers because some forms of the listed chemical have different CAS numbers, and mixtures containing a listed chemical may also have different CAS numbers.

ML1 Smooth-bore weapons with a calibre of less than 20 mm, other arms and automatic weapons with a calibre of 12.7 mm (calibre 0.50 inches) or less and accessories, as follows, and specially designed components therefor:

Note ML1. does not apply to:

 a. Firearms specially designed for dummy ammunition and which are incapable of discharging a projectile;

 b. Firearms specially designed to launch tethered projectiles having no high explosive charge or communications link, to a range of less than or equal to 500 m;

 c. Weapons using non-centre fire cased ammunition and which are not of the fully automatic firing type;

 d. ‘Deactivated firearms’.

Technical Note

A ‘deactivated firearm’ is a firearm that has been made incapable of firing any projectile by processes defined by the Wassenaar Arrangement Participating State’s national authority. These processes irreversibly modify the essential elements of the firearm. According to national laws and regulations, deactivation of the firearm may be attested by a certificate delivered by a competent authority and may be marked on the firearm by a stamp on an essential part.

a. Rifles and combination guns, handguns, machine, sub-machine and volley guns;

Note ML1.a. does not apply to the following:
 a. Rifles and combination guns, manufactured earlier than 1938;
 b. Reproductions of rifles and combination guns, the originals of which were manufactured earlier than 1890;
 c. Handguns, volley guns and machine guns manufactured earlier than 1890, and their reproductions;
 d. Rifles or handguns, specially designed to discharge an inert projectile by compressed air or CO₂;
 e. Handguns specially designed for any of the following:
 1. Slaughtering of domestic animals; or
 2. Tranquilising of animals.

b. Smooth-bore weapons as follows:
 1. Smooth-bore weapons specially designed for military use;
 2. Other smooth-bore weapons as follows:
 a. Fully automatic type weapons;
 b. Semi-automatic or pump-action type weapons;

Note ML1.b. does not apply to weapons specially designed to discharge an inert projectile by compressed air or CO₂.

Note ML1.b.2. does not apply to weapons specially designed to discharge an inert projectile by compressed air or CO₂.

c. Weapons using caseless ammunition;

d. Accessories designed for arms specified by ML1.a., ML1.b. or ML1.c., as follows:
 1. Detachable cartridge magazines;
 2. Sound suppressors or moderators;
 3. ‘Gun-mountings’;

N.B. For disruptors, see ML4. and entry 1A006 on the EU Dual-Use List.
Technical Note

For the purposes of ML1.d.3., a ‘gun-mounting’ is a fixture designed to mount a gun onto a ground vehicle, ‘aircraft’, vessel or structure.

4. Flash suppressors;

5. Optical weapon-sights with electronic image processing;

6. Optical weapon-sights specially designed for military use.

ML2 Smooth-bore weapons with a calibre of 20 mm or more, other weapons or armament with a calibre greater than 12.7 mm (calibre 0.50 inches), projectors specially designed or modified for military use and accessories, as follows, and specially designed components therefor:

a. Guns, howitzers, cannon, mortars, anti-tank weapons, projectile launchers, military flame throwers, rifles, recoiless rifles and smooth-bore weapons;

Note 1 ML2.a. includes injectors, metering devices, storage tanks and other specially designed components for use with liquid propelling charges for any of the equipment specified by ML2.a.

Note 2 ML2.a. does not apply to weapons as follows:

a. Rifles, smooth-bore weapons and combination guns, manufactured earlier than 1938;

b. Reproductions of rifles, smooth-bore weapons and combination guns, the originals of which were manufactured earlier than 1890;

c. Guns, howitzers, cannons and mortars, manufactured earlier than 1890;

d. Smooth-bore weapons used for hunting or sporting purposes. These weapons must not be specially designed for military use or of the fully automatic firing type;

e. Smooth-bore weapons specially designed for any of the following:
 1. Slaughtering of domestic animals;
 2. Tranquilizing of animals;
 3. Seismic testing;
 4. Firing of industrial projectiles; or
 5. Disrupting Improvised Explosive Devices (IEDs);

 N.B. For disruptors, see ML4. and entry 1A006 on the EU Dual-Use List.

f. Hand-held projectile launchers specially designed to launch tethered projectiles having no high explosive charge or communications link, to a range of less than or equal to 500 m.

b. Projectors, specially designed or modified for military use, as follows:

1. Smoke canister projectors;

2. Gas canister projectors;

3. Pyrotechnics projectors;

Note ML2.b. does not apply to signal pistols.

c. Accessories specially designed for the weapons specified in ML2.a., as follows:

1. Weapons sights and weapon sight mounts, specially designed for military use;

2. Signature reduction devices;

3. Mountings;

4. Detachable cartridge magazines;
d. Not used since 2019.

ML3 Ammunition and fuze setting devices, as follows, and specially designed components therefor:

a. Ammunition for weapons specified by ML1, ML2 or ML12;
b. Fuze setting devices specially designed for ammunition specified by ML3.a.

Note 1 Specially designed components specified by ML3 include:

a. Metal or plastic fabrications such as primer anvils, bullet cups, cartridge links, rotating bands and munitions metal parts;
b. Safing and arming devices, fuzes, sensors and initiation devices;
c. Power supplies with high one-time operational output;
d. Combustible cases for charges;
e. Submunitions including bomblets, minelets and terminally guided projectiles.

Note 2 ML3.a. does not apply to any of the following:

a. Ammunition crimped without a projectile (blank star);
b. Dummy ammunition with a pierced powder chamber;
c. Other blank and dummy ammunition, not incorporating components designed for live ammunition; or

d. Components specially designed for blank or dummy ammunition, specified in this Note 2.a., b. or c.

Note 3 ML3.a. does not apply to cartridges specially designed for any of the following purposes:

a. Signalling;
b. Bird scaring; or

c. Lighting of gas flares at oil wells.

ML4 Bombs, torpedoes, rockets, missiles, other explosive devices and charges and related equipment and accessories, as follows, and specially designed components therefor:

N.B.1: For guidance and navigation equipment, see ML11.

N.B.2: For Aircraft Missile Protection Systems (AMPS), see ML4.c.

a. Bombs, torpedoes, grenades, smoke canisters, rockets, mines, missiles, depth charges, demolition-charge, demolition-devices, demolition-kits, pyrotechnic devices, cartridges and simulators (i.e. equipment simulating the characteristics of any of these items), specially designed for military use;

Note ML4.a. includes:

a. Smoke grenades, fire bombs, incendiar bombs and explosive devices;
b. Missile or rocket nozzles and re-entry vehicle nozertips.

b. Equipment having all of the following:

1. Specially designed for military use; and

2. Specially designed for ‘activities’ relating to any of the following:

a. Items specified by ML4.a.; or

b. Improvised Explosive Devices (IEDs).

Technical Note:

For the purpose of ML4.b.2. ‘activities’ applies to handling, launching, laying, controlling, discharging, detonating, activating, powering with one-time operational output, decoying, jamming, sweeping, detecting, disrupting or disposing.
Note 1 ML4.b. includes:

a. Mobile gas liquefying equipment capable of producing 1 000 kg or more per day of gas in liquid form;

b. Buoyant electric conducting cable suitable for sweeping magnetic mines.

Note 2 ML4.b. does not apply to hand-held devices, limited by design solely to the detection of metal objects and incapable of distinguishing between mines and other metal objects.

c. Aircraft Missile Protection Systems (AMPS).

Note ML4.c. does not apply to AMPS having all of the following:

a. Any of the following missile warning sensors:
 1. Passive sensors having peak response between 100-400 nm; or
 2. Active pulsed Doppler missile warning sensors;

b. Countermeasures dispensing systems;

c. Flares, which exhibit both a visible signature and an infrared signature, for decoying surface-to-air missiles; and

d. Installed on ‘civil aircraft’ and having all of the following:
 1. The AMPS is only operable in a specific ‘civil aircraft’ in which the specific AMPS is installed and for which any of the following has been issued:
 a. A civil Type Certificate issued by civil aviation authorities of one or more EU Member States or Wassenaar Arrangement Participating States; or
 b. An equivalent document recognised by the International Civil Aviation Organisation (ICAO);
 2. The AMPS employs protection to prevent unauthorised access to ‘software’; and
 3. The AMPS incorporates an active mechanism that forces the system not to function when it is removed from the ‘civil aircraft’ in which it was installed.

ML5 Fire control, surveillance and warning equipment, and related systems, test and alignment and countermeasure equipment, as follows, specially designed for military use, and specially designed components and accessories therefor:

a. Weapon sights, bombing computers, gun laying equipment and weapon control systems;

b. Other fire control, surveillance and warning equipment, and related systems, as follows:
 1. Target acquisition, designation, range-finding, surveillance or tracking systems;
 2. Detection, recognition or identification equipment;
 3. Data fusion or sensor integration equipment;

c. Countermeasure equipment for items specified by ML5.a. or ML5.b.;

Note For the purposes of ML5.c., countermeasure equipment includes detection equipment.

d. Field test or alignment equipment, specially designed for items specified by ML5.a., ML5.b. or ML5.c.

ML6 Ground vehicles and components, as follows:

N.B. For guidance and navigation equipment, see ML11.

a. Ground vehicles and components therefor, specially designed or modified for military use;
Note 1 ML6.a. includes:

a. Tanks and other military armed vehicles and military vehicles fitted with mountings for arms or equipment for mine laying or the launching of munitions specified by ML4;

b. Armoured vehicles;

c. Amphibious and deep water fording vehicles;

d. Recovery vehicles and vehicles for towing or transporting ammunition or weapon systems and associated load handling equipment;

e. Trailers.

Note 2 Modification of a ground vehicle for military use specified by ML6.a. entails a structural, electrical or mechanical change involving one or more components that are specially designed for military use. Such components include:

a. Pneumatic tyre casings of a kind specially designed to be bullet-proof;

b. Armoured protection of vital parts (e.g. fuel tanks or vehicle cabs);

c. Special reinforcements or mountings for weapons;

d. Black-out lighting.

b. Other ground vehicles and components, as follows:

1. Vehicles having all of the following:

a. Manufactured or fitted with materials or components to provide ballistic protection equal to or better than level III (NIJ 0108.01, September 1985), or 'equivalent standards';

b. A transmission to provide drive to both front and rear wheels simultaneously, including those for vehicles having additional wheels for load bearing purposes whether driven or not;

c. Gross Vehicle Weight Rating (GVWR) greater than 4 500 kg; and

d. Designed or modified for off-road use;

2. Components having all of the following:

a. Specially designed for vehicles specified in ML6.b.1.; and

b. Providing ballistic protection equal to or better than level III (NIJ 0108.01, September 1985), or 'equivalent standards'.

N.B. See also ML13.a.

Note 1 ML6 does not apply to civil vehicles designed or modified for transporting money or valuables.

Note 2 ML6. does not apply to vehicles that meet all of the following:

a. Were manufactured before 1946;

b. Do not have items specified by the EU Common Military List and manufactured after 1945, except for reproductions of original components or accessories for the vehicle; and

c. Do not incorporate weapons specified in ML1., ML2. or ML4. unless they are inoperable and incapable of discharging a projectile.

ML7 Chemical agents, 'biological agents', 'riot control agents', radioactive materials, related equipment, components and materials, as follows:

a. 'Biological agents' or radioactive materials selected or modified to increase their effectiveness in producing casualties in humans or animals, degrading equipment or damaging crops or the environment;
b. Chemical warfare (CW) agents, including:

1. CW nerve agents:
 a. O-Alkyl (equal to or less than C₁₀, including cycloalkyl) alkyl (Methyl, Ethyl, n-Propyl or Isopropyl) -phosphonofluoridates, such as:
 - Sarin (GB): O-Isopropyl methylphosphonofluoridate (CAS 107-44-8); and
 - Soman (GD): O-Pinacolyl methylphosphonofluoridate (CAS 96-64-0);
 b. O-Alkyl (equal to or less than C₁₀, including cycloalkyl) N,N-dialkyl (Methyl, Ethyl, n-Propyl or Isopropyl) phosphoramidocyanidates, such as:
 - Tabun (GA): O-Ethyl N,N-dimethylphosphoramidocyanidate (CAS 77-81-6);
 c. O-Alkyl (H or equal to or less than C₁₀, including cycloalkyl) S-2-dialkyl (Methyl, Ethyl, n-Propyl or Isopropyl)-aminoethyl alkyl (Methyl, Ethyl, n-Propyl or Isopropyl) phosphonothiolates and corresponding alkylated and protonated salts, such as:
 - VX: O-Ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate (CAS 50782-69-9);

2. CW vesicant agents:
 a. Sulphur mustards, such as:
 - 2-Chloroethylchloromethylsulphide (CAS 2625-76-5);
 - Bis(2-chloroethyl) sulphide (CAS 505-60-2);
 - Bis(2-chloroethylthio) methane (CAS 63869-13-6);
 - 1,2-bis (2-chloroethylthio) ethane (CAS 3563-36-8);
 - 1,3-bis (2-chloroethylthio) -n-propane (CAS 63905-10-2);
 - 1,4-bis (2-chloroethylthio) -n-butane (CAS 142868-93-7);
 - 1,5-bis (2-chloroethylthio) -n-pentane (CAS 142868-94-8);
 - Bis (2-chloroethylthiomethyl) ether (CAS 63918-90-1);
 - Bis (2-chloroethylthioethyl) ether (CAS 63918-89-8);
 b. Lewisites, such as:
 - 2-chlorovinyl dichloroarsine (CAS 541-25-3);
 - Tris (2-chlorovinyl) arsine (CAS 40334-70-1);
 - Bis (2-chlorovinyl) chloroarsine (CAS 40334-69-8);
 c. Nitrogen mustards, such as:
 - HN1: bis (2-chloroethyl) ethylamine (CAS 538-07-8);
 - HN2: bis (2-chloroethyl) methylamine (CAS 51-75-2);
 - HN3: tris (2-chloroethyl) amine (CAS 555-77-1);

3. CW incapacitating agents, such as:
 a. 3-quinuclidinyl benzilate (BZ) (CAS 6581-06-2);

4. CW defoliants, such as:
 a. Butyl 2-chloro-4-fluorophenoxacetate (LNF);
 b. 2,4,5-trichlorophenoxyacetic acid (CAS 93-76-5) mixed with 2,4-dichlorophenoxyacetic acid (CAS 94-75-7) (Agent Orange (CAS 39277-47-9));

5. CW binary precursors and key precursors, as follows:
 1. Alkyl (Methyl, Ethyl, n-Propyl or Isopropyl) Phosphonyldifluorides, such as:
 - DF: Methyl Phosphonyldifluoride (CAS 676-99-3);
2. O-Alkyl (H or equal to or less than C\textsubscript{10}, including cycloalkyl) O-2-dialkyl (Methyl, Ethyl, n-Propyl or Isopropyl)-aminoethyl alkyl (Methyl, Ethyl, n-Propyl or Isopropyl) phosphonites and corresponding alkylated and protonated salts, such as:
 QL: O-Ethyl O-2-di-isopropylaminoethyl methylphosphonite (CAS 57856-11-8);
3. Chlorosarin: O-Isopropyl methylphosphonochloridate (CAS 1445-76-7);
4. Chlorosoman: O-Pinacolyl methylphosphonochloridate (CAS 7040-57-5);
d. 'Riot control agents', active constituent chemicals and combinations thereof, including:
 1. α-Bromobenzeneacetonitrile, (Bromobenzyl cyanide) (CA) (CAS 5798-79-8);
 2. [(2-chlorophenyl) methylene] propanedinitrile, (o-Chlorobenzylidenemalononitrile (CS) (CAS 2698-41-1);
 3. 2-Chloro-1-phenylethanone, Phenylacetyl chloride (α-chloroacetophenone) (CN) (CAS 532-27-4);
 4. Dibenz-(b,f)-1,4-oxazepine, (CR) (CAS 257-07-8);
 5. 10-Chloro-5,10-dihydrophenarsazine, (Phenarsazine chloride), (Adamsite), (DM) (CAS 578-94-9);
 6. N-Nonanoylmorpholine, (MPA) (CAS 5299-64-9);

 Note 1 ML7.d. does not apply to ‘riot control agents’ individually packaged for personal self-defence purposes.

 Note 2 ML7.d. does not apply to active constituent chemicals, and combinations thereof, identified and packaged for food production or medical purposes.
e. Equipment specially designed or modified for military use, designed or modified for the dissemination of any of the following, and specially designed components thereof:
 1. Materials or agents specified by ML7.a., ML7.b. or ML7.d.; or
 2. CW agents made up of precursors specified by ML7.c.;
f. Protective and decontamination equipment, specially designed or modified for military use, components and chemical mixtures, as follows:
 1. Equipment designed or modified for defence against materials specified by ML7.a., ML7.b. or ML7.d., and specially designed components thereof;
 2. Equipment designed or modified for decontamination of objects contaminated with materials specified by ML7.a. or ML7.b., and specially designed components thereof;
 3. Chemical mixtures specially developed or formulated for the decontamination of objects contaminated with materials specified by ML7.a. or ML7.b.;

 Note ML7.f.1. includes:
 a. Air conditioning units specially designed or modified for nuclear, biological or chemical filtration;
 b. Protective clothing.

 N.B. For civil gas masks, protective and decontamination equipment, see also entry 1A004 on the EU Dual-Use List.
g. Equipment specially designed or modified for military use designed or modified for the detection or identification of materials specified by ML7.a., ML7.b. or ML7.d., and specially designed components thereof;

 Note ML7.g. does not apply to personal radiation monitoring dosimeters.

 N.B. See also entry 1A004 on the EU Dual-Use List.
h. 'Biopolymers' specially designed or processed for the detection or identification of CW agents specified by ML7.b., and the cultures of specific cells used to produce them;

i. 'Biocatalysts' for the decontamination or degradation of CW agents, and biological systems therefor, as follows:
 1. 'Biocatalysts' specially designed for the decontamination or degradation of CW agents specified by ML7.b., and resulting from directed laboratory selection or genetic manipulation of biological systems;
 2. Biological systems containing the genetic information specific to the production of 'biocatalysts' specified by ML7.i.1., as follows:
 a. 'Expression vectors';
 b. Viruses;
 c. Cultures of cells.

Note 1 ML7.b. and ML7.d. do not apply to the following:
 a. Cyanogen chloride (CAS 506-77-4). See entry 1C450.a.5. on the EU Dual-Use List;
 b. Hydrocyanic acid (CAS 74-90-8);
 c. Chlorine (CAS 7782-50-5);
 d. Carbonyl chloride (phosgene) (CAS 75-44-5). See entry 1C450.a.4. on the EU Dual-Use List;
 e. Diphosgene (trichloromethyl-chlorof ormate) (CAS 503-38-8);
 f. Not used since 2004;
 g. Xylyl bromide, ortho: (CAS 89-92-9), meta: (CAS 620-13-3), para: (CAS 104-81-4);
 h. Benzyl bromide (CAS 100-39-0);
 i. Benzyl iodide (CAS 620-05-3);
 j. Bromo acetone (CAS 598-31-2);
 k. Cyanogen bromide (CAS 506-68-3);
 l. Bromo methylethylketone (CAS 816-40-0);
 m. Chloro acetone (CAS 78-95-5);
 n. Ethyl iodoacetate (CAS 623-48-3);
 o. Iodo acetone (CAS 3019-04-3);
 p. Chloropicrin (CAS 76-06-2). See entry 1C450.a.7. on the EU Dual-Use List.

Note 2 The cultures of cells and biological systems specified by ML7.h. and ML7.i.2. are exclusive and these sub-items do not apply to cells or biological systems for civil purposes, such as agricultural, pharmaceutical, medical, veterinary, environmental, waste management, or in the food industry.

ML8 'Energetic materials', and related substances, as follows:

N.B.1. See also entry 1C011 on the EU Dual-Use List.

N.B.2. For charges and devices, see ML4 and entry 1A008 on the EU Dual-Use List.

Technical Notes

1. For the purposes of ML8., excluding ML8.c.11. or ML8.c.12., 'mixture' refers to a composition of two or more substances with at least one substance being listed in the ML8 sub-items.

2. Any substance listed in the ML8 sub-items is subject to this list, even when utilised in an application other than that indicated. (e.g. TAGN is predominantly used as an explosive but can also be used either as a fuel or an oxidizer.)
3. For the purposes of ML8, particle size is the mean particle diameter on a weight or volume basis. International or equivalent national standards will be used in sampling and determining particle size.

a. ‘Explosives’ as follows, and ‘mixtures’ thereof:

1. ADNBF (aminodinitrobenzofuroxan or 7-amino-4,6-dinitrobenzofurazane-1-oxide) (CAS 97096-78-1);
2. BNCP (cis-bis (5-nitrotetrazolato) tetra amine-cobalt (III) perchlorate) (CAS 117412-28-9);
3. CL-14 (diamino dinitrobenzofuroxan or 5,7-diamino-4,6-dinitrobenzofurazane-1-oxide) (CAS 117907-74-1);
4. CL-20 (HNIW or Hexanitrohexaazaisowurtzitane) (CAS 135285-90-4); clathrates of CL-20 (see also ML8.g.3. and g.4. for its ‘precursors’);
5. CP (2-(5-cyanotetrazolato) penta amine-cobalt (III) perchlorate) (CAS 70247-32-4);
6. DADE (1,1-diamino-2,2-dinitroethylene, FOX-7) (CAS 145250-81-3);
7. DATB (diaminotrinitrobenzene) (CAS 1630-08-6);
8. DDFP (1,4-dinitrofurazanopiperazine);
9. DDPO (2,6-diamino-3,5-dinitropyrazine-1-oxide, PZO) (CAS 194486-77-6);
10. DIPAM (3,3’-diamino-2,2’,4,4’,6,6’-hexanitrobiphenyl or dipicramide) (CAS 17215-44-0);
11. DNGU (DINGU or dinitroglycoluril) (CAS 55510-04-8);
12. Furazans as follows:
 a. DAAOF (DAAF, DAAFox, or diaminoazoxyfurazan);
 b. DAAzF (diaminoazofurazan) (CAS 78644-90-3);
13. HMX and derivatives (see also ML8.g.5. for its ‘precursors’), as follows:
 a. HMX (Cyclohexamethylene trinitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine, 1,3,5,7-tetranitro-1,3,5,7-tetraza-cyclooctane, octogen or octogene) (CAS 2691-41-0);
 b. difluoroaminated analogs of HMX;
 c. K-55 (2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo [3,3,0]-octane-3, tetranitrosemiglycouril or keto-bicyclic HMX) (CAS 130256-72-3);
14. HNAD (hexanitroadamantane) (CAS 143850-71-9);
15. HNS (hexanitrostilbene) (CAS 20062-22-0);
16. Imidazoles as follows:
 a. BNNII (Octahydro-2,5-bis(nitroimino)imidazo [4,5-d]imidazole);
 b. DNI (2,4-dinitroimidazole) (CAS 5213-49-0);
 c. FDIA (1-fluoro-2,4-dinitroimidazole);
 d. NTDNIA (N-(2-nitrotetrazolo)-2,4-dinitroimidazole);
 e. PTIA (1-picryl-2,4,5-trinitroimidazole);
17. NTNMH (1-(2-nitrotetrazolo)-2-dinitromethylene hydrazine);
18. NTO (ONTA or 3-nitro-1,2,4-triazol-5-one) (CAS 932-64-9);
19. Polynitrocubanes with more than four nitro groups;
20. PYX (2,6-Bis(picyramino)-3,5-dinitropyridine) (CAS 38082-89-2);
21. RDX and derivatives, as follows:
 a. RDX (cyclohexamethylene trinitramine, cyclonite, T4, hexahydro-1,3,5-trinitro-1,3,5-triazine, 1,3,5-trinitro-1,3,5-triaza-cyclohexane, hexogen or hexogene) (CAS 121-82-4);
 b. Keto-RDX (K-6 or 2,4,6-trinitro-2,4,6-triazacyclohexanone) (CAS 115029-35-1);
22. T.AGN (triaminoguanidinenitrate) (CAS 4000-16-2);
23. TATB (triaminotrinitrobenzene) (CAS 3058-38-6) (see also ML8.g.7 for its 'precursors');
24. TEDDZ (3,3,7,7-tetrabis(difluoroamine) octahydro-1,5-dinitro-1,5-diazocine);
25. Tetrazoles as follows:
 a. NTAT (nitrotriazolaminotetrazole);
 b. NTNT (1-N-(2-nitrotriazolo)-4-nitrotetrazole);
26. Tetryl (trinitrophenylmethylnitramine) (CAS 479-45-8);
27. TNAD (1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin) (CAS 135877-16-6) (see also ML8.g.6. for its 'precursors');
28. TNAZ (1,3,3-trinitroazetidine) (CAS 97645-24-4) (see also ML8.g.2. for its 'precursors');
29. TNAD (1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin) (CAS 135877-16-6) (see also ML8.g.6. for its 'precursors');
30. TNP (1,4,5,8-tetranitropyridazine[4,5-d]pyrazine) (CAS 229176-04-9);
31. Triazines as follows:
 a. DNAM (2-oxo-4,6-dinitroamino-s-triazine) (CAS 19899-80-0);
 b. NNHT (2-nitroimino-5-nitro-hexahydro-1,3,5-triazine) (CAS 130400-13-4);
32. Triazoles as follows:
 a. 5-azido-2-nitrotriazole;
 b. ADHTDN (4-amino-3,5-dihydrazino-1,2,4-triazole dinitramide) (CAS 1614-08-0);
 c. ADNT (1-amino-3,5-dinitro-1,2,4-triazole);
 d. BDNTA ([bis-dinitrotetriazole]amine);
 e. DBT (3,3’-dinitro-5,5-bi-1,2,4-triazole) (CAS 30003-46-4);
 f. DNBT (dinitrobatriazole) (CAS 70890-46-9);
 g. Not used since 2010;
 h. NTDNT (1-N-(2-nitrotriazolo) 3,5-dinitrotriazole);
 i. PDNT (1-picryl-3,5-dinitrotetrazole);
 j. TACOT (tetrinitrobenzotriazolobenzotriazole) (CAS 25243-36-1);
33. 'Explosives' not listed elsewhere in ML8.a. and having any of the following:
 a. Detonation velocity exceeding 8 700 m/s, at maximum density, or
 b. Detonation pressure exceeding 34 GPa (340 kbar);
34. Not used since 2013;
35. DNAN (2,4-dinitroanisole) (CAS 119-27-7);
36. TEX (4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazaisowurtzitane);
37. GUDN (Guanylurea dinitramide) FOX-12 (CAS 217464-38-5);
38. Tetrazines as follows:
 a. BTAT (Bis(2,2,2-trinitroethyl)-3,6-diaminotetrazine);
 b. LAX-112 (3,6-diamino-1,2,4,5-tetrazine-1,4-dioxide);
39. Energetic ionic materials melting between 343 K (70 °C) and 373 K (100 °C) and with detonation velocity exceeding 6 800 m/s or detonation pressure exceeding 18 GPa (180 kbar);
40. BTNEN (Bis(2,2,2-trinitroethyl)-nitramine) (CAS 19836-28-3);
41. FTDO (5,6-(3′,4′-furazano)- 1,2,3,4-tetrazine-1,3-dioxide);
42. EDNA (Ethyle nedinitramine) (CAS 505-71-5);
43. TKX-50 (Dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate);

Note ML8.a. includes ‘explosive co-crystals’.

Technical Note

An ‘explosive co-crystal’ is a solid material consisting of an ordered three dimensional arrangement of two or more explosive molecules, where at least one is specified in ML8.a.

b. ‘Propellants’ as follows:

1. Any solid ‘propellant’ with a theoretical specific impulse (under standard conditions) of more than:
 a. 240 seconds for non-metallized, non-halogenized ‘propellant’;
 b. 250 seconds for non-metallized, halogenized ‘propellant’; or
 c. 260 seconds for metallized ‘propellant’;
2. Not used since 2013;
3. ‘Propellants’ having a force constant of more than 1 200 kJ/kg;
4. ‘Propellants’ that can sustain a steady-state linear burning rate of more than 38 mm/s under standard conditions (as measured in the form of an inhibited single strand) of 6.89 MPa (68.9 bar) pressure and 294 K (21 °C);
5. Elastomer Modified Cast Double Base (EMCDB) ‘propellants’ with extensibility at maximum stress of more than 5 % at 233 K (−40 °C);
6. Any ‘propellant’ containing substances specified by ML8.a.;
7. ‘Propellants’, not specified elsewhere in the EU Common Military List, specially designed for military use;

c. ‘Pyrotechnics’, fuels and related substances, as follows, and ‘mixtures’ thereof:

1. ‘Aircraft’ fuels specially formulated for military purposes;
 Note 2 ‘Aircraft’ fuels specified by ML8.c.1. are finished products, not their constituents.
2. Alane (aluminium hydride) (CAS 7784-21-6);
3. Boranes, as follows, and their derivatives:
 a. Carboranes;
 b. Borane homologues, as follows:
 1. Decaborane (14) (CAS 17702-41-9);
 2. Pentaborane (9) (CAS 19624-22-7);
 3. Pentaborane (11) (CAS 18433-84-6);
4. Hydrazine and derivatives, as follows (see also ML8.d.8. and d.9. for oxidising hydrazine derivatives):
 a. Hydrazine (CAS 302-01-2) in concentrations of 70 % or more;
 b. Monomethyl hydrazine (CAS 60-34-4);
 c. Symmetrical dimethyl hydrazine (CAS 540-73-8);
 d. Unsymmetrical dimethyl hydrazine (CAS 57-14-7);
 Note ML8.c.4.a. does not apply to hydrazine ‘mixtures’ specially formulated for corrosion control.
5. Metal fuels, fuel 'mixtures' or 'pyrotechnic' 'mixtures', in particle form whether spherical, atomised, spheroidal, flaked or ground, manufactured from material consisting of 99 % or more of any of the following:
 a. Metals, as follows, and 'mixtures' thereof:
 1. Beryllium (CAS 7440-41-7) in particle sizes of less than 60 μm;
 2. Iron powder (CAS 7439-89-6) with particle size of 3 μm or less produced by reduction of iron oxide with hydrogen;
 b. 'Mixtures' containing any of the following:
 1. Zirconium (CAS 7440-67-7), magnesium (CAS 7439-95-4) or alloys of these in particle sizes of less than 60 μm; or
 2. Boron (CAS 7440-42-8) or boron carbide (CAS 12069-32-8) fuels of 85 % purity or higher and particle sizes of less than 60 μm;

 Note 1 ML8.c.5. applies to 'explosives' and fuels, whether or not the metals or alloys are encapsulated in aluminium, magnesium, zirconium, or beryllium.

 Note 2 ML8.c.5.b. only applies to metal fuels in particle form when they are mixed with other substances to form a 'mixture' formulated for military purposes such as liquid 'propellant' slurries, solid 'propellants', or 'pyrotechnic' 'mixtures'.

 Note 3 ML8.c.5.b.2. does not apply to boron and boron carbide enriched with boron-10 (20 % or more of total boron-10 content.)

6. Military materials, containing thickeners for hydrocarbon fuels, specially formulated for use in flame throwers or incendiary munitions, such as metal stearates (e.g. octal (CAS 637-12-7)) or palmitates;

7. Perchlorates, chlorates and chromates, composed with powdered metal or other high energy fuel components;

8. Spherical or spheroidal aluminium powder (CAS 7429-90-5) with a particle size of 60 μm or less and manufactured from material with an aluminium content of 99 % or more;

9. Titanium subhydride (TiH$_n$) of stoichiometry equivalent to $n = 0,65-1,68$;

10. Liquid high energy density fuels not specified in ML8.c.1., as follows:
 a. Mixed fuels, that incorporate both solid and liquid fuels (e.g. boron slurry), having a mass-based energy density of 40 MJ/kg or greater;
 b. Other high energy density fuels and fuel additives (e.g. cubane, ionic solutions, JP-7, JP-10), having a volume-based energy density of 37,5 GJ per cubic meter or greater, measured at 293 K (20 °C) and one atmosphere (101,325 kPa) pressure;

 Note ML8.c.10.b. does not apply to fossil refined fuels or biofuels, or fuels for engines certified for use in civil aviation.

11. ‘Pyrotechnic’ and pyrophoric materials, as follows:
 a. ‘Pyrotechnic’ or pyrophoric materials specifically formulated to enhance or control the production of radiated energy in any part of the IR spectrum;
 b. Mixtures of magnesium, polytetrafluoroethylene (PTFE) and a vinylidene difluoride-hexafluoropropylene copolymer (e.g. MTV);

12. Fuel mixtures, ‘pyrotechnic’ mixtures or ‘energetic materials’, not specified elsewhere in ML8, having all of the following:
 a. Containing greater than 0,5 % of particles of any of the following:
 1. Aluminium;
 2. Beryllium;
 3. Boron;
4. Zirconium;
5. Magnesium; or
6. Titanium;

b. Particles specified by ML8.c.12.a. with a size less than 200 nm in any direction; and
c. Particles specified by ML8.c.12.a. with a metal content of 60 % or greater;

Note ML8.c.12. includes thermites.

d. Oxidizers, as follows, and 'mixtures' thereof:
1. ADN (ammonium dinitramide or SR 12) (CAS 140456-78-6);
2. AP (ammonium perchlorate) (CAS 7790-98-9);
3. Compounds composed of fluorine and any of the following:
 a. Other halogens;
 b. Oxygen; or
 c. Nitrogen;

Note 1 ML8.d.3. does not apply to chlorine trifluoride (CAS 7790-91-2).

Note 2 ML8.d.3 does not apply to nitrogen trifluoride (CAS 7783-54-2) in its gaseous state.
4. DNAD (1,3-dinitro-1,3-diazetidine) (CAS 78246-06-7);
5. HAN (hydroxylammonium nitrate) (CAS 13465-08-2);
6. HAP (hydroxylammonium perchlorate) (CAS 15588-62-2);
7. HNF (hydrazinium nitroformate) (CAS 20773-28-8);
8. Hydrazine nitrate (CAS 37836-27-4);
9. Hydrazine perchlorate (CAS 27978-54-7);
10. Liquid oxidisers comprised of or containing inhibited red fuming nitric acid (IRFNA) (CAS 8007-58-7);

Note ML8.d.10 does not apply to non-inhibited fuming nitric acid.

e. Binders, plasticisers, monomers and polymers, as follows:
1. AMMO (azidomethylmethyloxetane and its polymers) (CAS 90683-29-7) (see also ML8.g.1. for its 'precursors');
2. BAMO (3,3-bis(azidomethyl)oxetane and its polymers) (CAS 17607-20-4) (see also ML8.g.1. for its 'precursors');
3. BDNPA (bis (2,2-dinitropropyl)acetal) (CAS 5108-69-0);
4. BDNPF (bis (2,2-dinitropropyl)formal) (CAS 5917-61-3);
5. BTTN (butanetrioltrinitrate) (CAS 6659-60-5) (see also ML8.g.8. for its 'precursors');
6. Energetic monomers, plasticizers or polymers, specially formulated for military use and containing any of the following:
 a. Nitro groups;
 b. Azido groups;
 c. Nitrate groups;
 d. Nitraza groups; or
 e. Difluoroamino groups;
7. FAMAO (3-difluoroaminomethyl-3-azidomethyl oxetane) and its polymers;
8. FEFO (bis-(2-fluoro-2,2-dinitroethyl) formal) (CAS 17003-79-1);
9. FPF-1 (poly-2,2,3,3,4,4-hexafluoropentane-1,5-diol formal) (CAS 376-90-9);
10. FPF-3 (poly-2,4,4,5,6,6-heptafluoro-2-trifluoromethyl-3-oxaheptane-1,7-diol formal);
11. GAP (glycidylazide polymer) (CAS 143178-24-9) and its derivatives;
12. HTPB (hydroxyl terminated polybutadiene) with a hydroxyl functionality equal to or greater than 2,2 and less than or equal to 2,4, a hydroxyl value of less than 0,77 meq/g, and a viscosity at 30 °C of less than 47 poise (CAS 69102-90-5);
13. Alcohol functionalised poly(epichlorohydrin) with a molecular weight less than 10 000, as follows:
 a. Poly(epichlorohydrindiol);
 b. Poly(epichlorohydrintriol)
14. NENAs (nitraetoethylnitramine compounds) (CAS 17096-47-8, 85068-73-1, 82486-83-7, 82486-82-6 and 85954-06-9);
15. PGN (poly-GLYN, polyglycidyl nitrate or polynitratomethyl oxirane) (CAS 27814-48-8);
16. Poly-NIMMO (poly(nitratomethylmethyloxetane), poly-NMNO or poly(3-Nitratomethyl-3-methyloxetane)) (CAS 84051-81-0);
17. Polynitroorthocarbonates;
18. TVOPA (1,2,3-tri[1,2-bis(difluoroamino)ethoxy] propane or tris vinoxy propane adduct) (CAS 53159-39-0);
19. 4,5 diazidomethyl-2-methyl-1,2,3-triazole (iso-DAMTR);
20. PNO (Poly(3-nitro xetane));
21. TMETN (Trimethylolethane trinitrate) (CAS 3032-55-1);
f. ‘Additives’ as follows:
 1. Basic copper salicylate (CAS 62320-94-9);
 2. BHEGA (bis-(2-hydroxyethy l) glycolamide) (CAS 17409-41-5);
 3. BNO (butadienenitrileoxide);
 4. Ferrocene derivatives as follows:
 a. Butacene (CAS 125856-62-4);
 b. Catocene (2,2-bis-ethylferroacenyl propane) (CAS 37206-42-1);
 c. Ferrocene carboxylic acids and ferrocene carboxylic acid esters;
 d. n-butyl-ferrocene (CAS 31904-29-7);
 e. Other added polymer ferrocene derivatives not specified elsewhere in ML8.f.4.;
 f. Ethyl ferrocene (CAS 1273-89-8);
 g. Propyl ferrocene;
 h. Pentyl ferrocene (CAS 1274-00-6);
 i. Dicyclopentyl ferrocene;
 j. Dicyclohexyl ferrocene;
 k. Diethyl ferrocene (CAS 1273-97-8);
 l. Dipropyl ferrocene;
 m. Dibutyl ferrocene (CAS 1274-08-4);
 n. Dihexyl ferrocene (CAS 93894-59-8);
 o. Acetyl ferrocene (CAS 1271-55-2) or copper beta-resorcy late (CAS 70983-44-7);
6. Lead citrate (CAS 14450-60-3);
7. Lead-copper chelates of beta-resorcylate or salicylates (CAS 68411-07-4);
8. Lead maleate (CAS 19136-34-6);
9. Lead salicylate (CAS 15748-73-9);
10. Lead stannate (CAS 12036-31-6);
11. MAPO (tris-1-(2-methylaziridinyl)phosphine oxide) (CAS 57-39-6); BOBBA 8 (bis(2-methyl aziridinyl)2-(2-hydroxypropanoxy)propylamino phosphine oxide); and other MAPO derivatives;
12. Methyl BAPO (bis(2-methyl aziridinyl)methylamino phosphine oxide) (CAS 85068-72-0);
13. N-methyl-p-nitroaniline (CAS 100-15-2);
14. 3-Nitraza-1,5-pentane diisocyanate (CAS 7406-61-9);
15. Organo-metallic coupling agents as follows:
 a. Neopentyl[di(propynyl)]phosphato-titanate (CAS 103850-22-2); also known as titanium IV, 2,2-[bis-2-propenolato-methyl, butanolate, tris(dioclyl) phospate)] (CAS 110438-25-0); or LICA 12 (CAS 103850-22-2);
 b. Titanium IV, [(2-propenolato-1) methyl, n-propanolatomethyl]butanolate-1, tris(dioclyl) pyrophosphate or KR3538;
 c. Titanium IV, [(2-propenolato-1)methyl, n-propanolamethyl]butanolate-1, tris(dioclyl)phosphate;
16. Polycyanodifluoroaminoethylenoxide;
17. Bonding agents as follows:
 a. 1,1R,1S-trimesoyl-tris(2-ethylaziridine) (HX-868, BITA) (CAS 7722-73-8);
 b. Polyfunctional aziridine amides with isophthalic, trimesic, isocyanuric or trimethyladipic backbone also having a 2-methyl or 2-ethyl aziridine group;

 Note Item ML.8.f.17.b. includes:
 a. 1,1H-Isophthaloyl-bis(2-methylaziridine) (HX-752) (CAS 7652-64-4);
 b. 2,4,6-tris(2-ethyl-1-aziridinyl)-1,3,5-triazine (HX-874) (CAS 18924-91-9);
18. Propyleneimine (2-methylaziridine) (CAS 75-55-8);
19. Superfine iron oxide (Fe₂O₃) (CAS 1317-60-8) with a specific surface area more than 250 m²/g and an average particle size of 3.0 nm or less;
20. TEPAN (tetraethylenepentaamineacrylonitrile) (CAS 68412-45-3); cyanoethylated polyamines and their salts;
21. TEPANOL (tetraethylenepentaamineacrylonitrileglycidol) (CAS 68412-46-4); cyanoethylated polyamines adducted with glycidol and their salts;
22. TPB (triphenyl bismuth) (CAS 603-33-8);
23. TEPB (Tris (ethoxyphenyl) bismuth) (CAS 90591-48-3);
g. 'Precursors' as follows:

 N.B. In ML.8.g. the references are to specified 'Energetic Materials' manufactured from these substances.
1. BCMO (3,3-bis(chloromethyl)oxetane) (CAS 78-71-7) (see also ML.8.e.1. and e.2.);
2. Dinitroazetidine-t-butyl salt (CAS 125735-38-8) (see also ML.8.a.28.);
3. Hexaaazaisowurztiane derivatives including HBIW (hexabenzyhexaaazaisowurtzitane) (CAS 124782-15-6) (see also ML.8.a.4.) and TAIW (tetraacetyldibenzylhexaaazaisowurtzitane) (CAS 182763-60-6) (see also ML.8.a.4.);
4. Not used since 2013;
5. TAT (1,3,5,7-tetraacetyl-1,3,5,7-tetraaza-cyclo-octane) (CAS 41378-98-7) (see also ML8.a.13.);
6. 1,4,5,8-tetraazadecalin (CAS 5409-42-7) (see also ML8.a.27.);
7. 1,3,5-trichlorobenzene (CAS 108-70-3) (see also ML8.a.23.);
8. 1,2,4-trihydroxybutane (1,2,4-butanetriol) (CAS 3068-00-6) (see also ML8.e.5.);
9. DADN (1,5-diacectyl-3,7-dinitro-1,3,5,7-tetraaza-cyclooctane) (see also ML8.a.13.).
h. 'Reactive material' powders and shapes, as follows:
 1. Powders of any of the following materials, with a particle size less than 250 μm in any direction and not
 specified elsewhere by ML8:
 a. Aluminium;
 b. Niobium;
 c. Boron;
 d. Zirconium;
 e. Magnesium;
 f. Titanium;
 g. Tantalum;
 h. Tungsten;
 i. Molybdenum; or
 j. Hafnium;
 2. Shapes, not specified by ML3, ML4, ML12 or ML16, fabricated from powders specified by ML8.h.1.

Technical Notes

1. 'Reactive materials' are designed to produce an exothermic reaction only at high shear rates and for use as liners or
 casings in warheads.

2. 'Reactive material' powders are produced by, for example, a high energy ball milling process.

3. 'Reactive material' shapes are produced by, for example, selective laser sintering.

Note 1 ML8 does not apply to the following substances unless they are compounded or mixed with the 'energetic
material' specified by ML8.a. or powdered metals specified by ML8.c.:
 a. Ammonium picrate (CAS 131-74-8);
 b. Black powder;
 c. Hexanitrodiphenylamine (CAS 131-73-7);
 d. Difluoroamine(CAS 10405-27-3);
 e. Nitrostarch (CAS9056-38-6);
 f. Potassium nitrate (CAS 7757-79-1);
 g. Tetranitronaphthalene;
 h. Trinitroanisol;
 i. Trinitrophenolphthaleine;
 j. Trinitroxyylene;
 k. N-pyrrolidinone; 1-methyl-2-pyrrolidinone (CAS 872-50-4);
 l. Dioctylmaleate (CAS 142-16-5);
m. Ethylhexylacrylate (CAS 103-11-7);

n. Triethylaluminium (TEA) (CAS 97-93-8), trimethylaluminium (TMA) (CAS 75-24-1), and other pyrophoric metal alkyls and aryls of lithium, sodium, magnesium, zinc or boron;

o. Nitrocellulose (CAS 9004-70-0);

p. Nitroglycerin (or glyceroltrinitrate, trinitroglycerine) (NG) (CAS 55-63-0);

q. 2,4,6-trinitrotoluene (TNT) (CAS 118-96-7);

r. Ethylenediaminedinitrinate (EDDN) (CAS 20829-66-7);

s. Pentaerythritoltetranitrinate (PETN) (CAS 78-11-5);

t. Lead azide (CAS 13424-46-9), normal lead styphnate(CAS 15245-44-0) and basic lead styphnate (CAS 12403-82-6), and primary explosives or priming compositions containing azides or azide complexes;

u. Triethyleneglycoldinitrinate (TEGDN)(CAS 111-22-8);

v. 2,4,6-trinitrolesorcinol (styphnic acid) (CAS 82-71-3);

w. Diethyl diphenylurea (CAS 85-98-3); dimethyldiphenylurea(CAS 611-92-7); methylethyl diphenylurea [Centralites];

x. N,N-diphenylurea (unsymmetrical diphenylurea) (CAS 603-54-3);

y. Methyl-N,N-diphenylurea (methyl unsymmetrical diphenylurea)(CAS 13114-72-2);

z. Ethyl-N,N-diphenylurea (ethyl unsymmetrical diphenylurea) (CAS 64544-71-4);

aa. 2-Nitrodiphenylamine (2-NDPA)(CAS 119-75-5);

bb. 4-Nitrodiphenylamine (4-NDPA)(CAS 836-30-6);

c. 2,2-dinitropropanol (CAS 918-52-5);

d. Nitroguanidine (CAS 556-88-7) (see entry 1C011.d. on the EU Dual-Use List).

Note 2 ML8. does not apply to ammonium perchlorate (ML8.d.2.), NTO (ML8.a.18.) or catocene (ML8.f.4.b.), and meeting all of the following:

a. Specially shaped and formulated for civil-use gas generation devices;

b. Compounded or mixed, with non-active thermoset binders or plasticizers, and having a mass of less than 250 g;

c. Having a maximum of 80 % ammonium perchlorate (ML8.d.2.) in mass of active material;

d. Having less than or equal to 4 g of NTO (ML8.a.18.); and

e. Having less than or equal to 1 g of catocene (ML8.f.4.b.).

ML9 Vessels of war (surface or underwater), special naval equipment, accessories, components and other surface vessels, as follows:

N.B. For guidance and navigation equipment, see ML11.

a. Vessels and components, as follows:

1. Vessels (surface or underwater) specially designed or modified for military use, regardless of current state of repair or operating condition, and whether or not they contain weapon delivery systems or armour, and hulls or parts of hulls for such vessels, and components therefor specially designed for military use:
Note ML9.a.1. includes vehicles specially designed or modified for the delivery of divers.

2. Surface vessels, not specified in ML9.a.1., having any of the following, fixed or integrated into the vessel:
 a. Automatic weapons – specified in ML1, or weapons specified in ML2, ML4, ML12 or ML19, or
 'mountings' or hard points for weapons having a calibre of 12,7 mm or greater;

 Technical Note
 'Mountings' refers to weapon mounts or structural strengthening for the purpose of installing weapons.

 b. Fire control systems specified in ML5;

 c. Having all of the following:
 1. 'Chemical, Biological, Radiological and Nuclear (CBRN) protection'; and
 2. 'Pre-wet or wash down system' designed for decontamination purposes; or

 Technical Notes
 1. 'CBRN protection' is a self-contained interior space containing features such as over-pressurization,
 isolation of ventilation systems, limited ventilation openings with CBRN filters and limited personnel
 access points incorporating air-locks.

 2. 'Pre-wet or wash down system' is a seawater spray system capable of simultaneously wetting the exterior
 superstructure and decks of a vessel.

 d. Active weapon countermeasure systems specified in ML4.b., ML5.c. or ML11.a. and having any of the
 following:
 1. 'CBRN protection';
 2. Hull and superstructure, specially designed to reduce the radar cross section;
 3. Thermal signature reduction devices, (e.g. an exhaust gas cooling system), excluding those specially
 designed to increase overall power plant efficiency or to reduce the environmental impact; or
 4. A degaussing system designed to reduce the magnetic signature of the whole vessel;

 b. Engines and propulsion systems, as follows, specially designed for military use and components therefor
 specially designed for military use:
 1. Diesel engines specially designed for submarines;
 2. Electric motors specially designed for submarines and having all of the following:
 a. Power output of more than 0,75 MW (1 000 hp);
 b. Quick reversing;
 c. Liquid cooled; and
 d. Totally enclosed;
 3. Diesel engines having all of the following:
 a. Power output of 37,3 kW (50 hp) or more; and
 b. 'Non-magnetic' content in excess of 75 % of total mass;

 Technical Note
 For the purpose of ML9.b.3., 'non-magnetic' means the relative permeability is less than 2.
4. 'Air Independent Propulsion' (AIP) systems specially designed for submarines;

Technical Note

'Air Independent Propulsion' (AIP) allows a submerged submarine to operate its propulsion system, without access to atmospheric oxygen, for a longer time than the batteries would have otherwise allowed. For the purposes of ML9.b.4., AIP does not include nuclear power.

c. Underwater detection devices, specially designed for military use, controls therefor and components therefor specially designed for military use;

d. Anti-submarine nets and anti-torpedo nets, specially designed for military use;

e. Not used since 2003;

f. Hull penetrators and connectors, specially designed for military use, that enable interaction with equipment external to a vessel, and components therefor specially designed for military use;

Note ML9.f. includes connectors for vessels which are of the single-conductor, multi-conductor, coaxial or waveguide type, and hull penetrators for vessels, both of which are capable of remaining impervious to leakage from without and of retaining required characteristics at marine depths exceeding 100 m; and fibre-optic connectors and optical hull penetrators, specially designed for ‘laser’ beam transmission, regardless of depth. ML9.f. does not apply to ordinary propulsive shaft and hydrodynamic control-rod hull penetrators.

g. Silent bearings having any of the following, components therefor and equipment containing those bearings, specially designed for military use:

1. Gas or magnetic suspension;
2. Active signature controls; or
3. Vibration suppression controls.

h. Nuclear power generating equipment or propulsion equipment, specially designed for vessels specified in ML9. a. and components therefor specially designed or ‘modified’ for military use.

Technical Note

For the purpose of ML9.h., ‘modified’ means any structural, electrical, mechanical, or other change that provides a non-military item with military capabilities equivalent to an item which is specially designed for military use.

Note ML9.h. includes ‘nuclear reactors’.

ML10 ‘Aircraft’, ‘lighter-than-air vehicles’, ‘Unmanned Aerial Vehicles’ (‘UAVs’), aero-engines and ‘aircraft’ equipment, related equipment, and components, as follows, specially designed or modified for military use:

N.B. For guidance and navigation equipment, see ML11.

a. Manned ‘aircraft’ and ‘lighter-than-air vehicles’, and specially designed components therefor;

b. Not used since 2011;

c. Unmanned ‘aircraft’ and ‘lighter-than-air vehicles’, and related equipment, as follows, and specially designed components therefor:

1. ‘UAVs’, Remotely Piloted Air Vehicles (RPVs), autonomous programmable vehicles and unmanned ‘lighter-than-air vehicles’;
2. Launchers, recovery equipment and ground support equipment;
3. Equipment designed for command or control;
d. Propulsion aero-engines and specially designed components therefor;

e. Airborne refuelling equipment specially designed or modified for any of the following, and specially designed components therefor:

 1. ‘Aircraft’ specified by ML10.a.; or
 2. Unmanned ‘aircraft’ specified by ML10.c.;

f. Ground equipment specially designed for ‘aircraft’ specified by ML10.a. or aero-engines specified by ML10.d.;

 Note ML10.f. includes pressure refuelling equipment and equipment designed to facilitate operations in confined areas, including equipment located on board a ship.

g. Aircrew life support equipment, aircrew safety equipment and other devices for emergency escape, not specified in ML10.a., designed for ‘aircraft’ specified by ML10.a.;

 Note ML10.g. does not control aircrew helmets that do not incorporate, or have mountings or fittings for, equipment specified in the EU Common Military List.

N.B. For helmets see also ML13.c.

h. Parachutes, paragliders and related equipment, as follows, and specially designed components therefor:

 1. Parachutes not specified elsewhere in the EU Common Military List;
 2. Paragliders;
 3. Equipment specially designed for high altitude parachutists (e.g. suits, special helmets, breathing systems, navigation equipment);

i. Controlled opening equipment or automatic piloting systems, designed for parachuted loads.

 Note 1 ML10.a. does not apply to ‘aircraft’ and ‘lighter-than-air vehicles’ or variants of those ‘aircraft’, specially designed for military use and which are all of the following:

 a. Not a combat ‘aircraft’;
 b. Not configured for military use and not fitted with equipment or attachments specially designed or modified for military use; and
 c. Certified for civil use by civil aviation authorities of one or more EU Member States or Wassenaar Arrangement Participating States.

 Note 2 ML10.d. does not apply to:

 a. Aero-engines designed or modified for military use which have been certified by civil aviation authorities of one or more EU Member States or Wassenaar Arrangement Participating States for use in ‘civil aircraft’, or specially designed components therefor;
 b. Reciprocating engines or specially designed components therefor, except those specially designed for ‘UAV’s’.

 Note 3 For the purposes of ML10.a. and ML10.d., specially designed components and related equipment for non-military ‘aircraft’ or aero-engines modified for military use applies only to those military components and to military related equipment required for the modification to military use.

 Note 4 For the purposes of ML10.a., military use includes: combat, military reconnaissance, assault, military training, logistics support, and transporting and airdropping troops or military equipment.

 Note 5 ML10.a. does not apply to ‘aircraft’ or ‘lighter-than-air-vehicles’ that meet all of the following:

 a. Were first manufactured before 1946;
b. Do not incorporate items specified by the EU Common Military List, unless the items are required to meet safety or airworthiness standards of civil aviation authorities of one or more EU Member States or Wassenaar Arrangement Participating States; and

c. Do not incorporate weapons specified by the EU Common Military List, unless inoperable and incapable of being returned to operation.

Note 6 ML10.d. does not apply to propulsion aero-engines that were first manufactured before 1946.

ML11 Electronic equipment, ‘spacecraft’ and components, not specified elsewhere on the EU Common Military List, as follows:

a. Electronic equipment specially designed for military use and specially designed components therefor;

Note ML11.a. includes:

a. Electronic countermeasure and electronic counter-countermeasure equipment (i.e. equipment designed to introduce extraneous or erroneous signals into radar or radio communication receivers or otherwise hinder the reception, operation or effectiveness of adversary electronic receivers including their countermeasure equipment), including jamming and counter-jamming equipment;

b. Frequency agile tubes;

c. Electronic systems or equipment, designed either for surveillance and monitoring of the electro-magnetic spectrum for military intelligence or security purposes or for counteracting such surveillance and monitoring;

d. Underwater countermeasures, including acoustic and magnetic jamming and decoy, equipment designed to introduce extraneous or erroneous signals into sonar receivers;

e. Data processing security equipment, data security equipment and transmission and signalling line security equipment, using ciphering processes;

f. Identification, authentification and keyloader equipment and key management, manufacturing and distribution equipment;

g. Guidance and navigation equipment;

h. Digital troposcatter-radio communications transmission equipment;

i. Digital demodulators specially designed for signals intelligence;

j. ‘Automated command and control systems’.

N.B. For ‘software’ associated with military ‘Software’ Defined Radio (SDR), see ML21.

b. ‘Satellite navigation system’ jamming equipment and specially designed components therefor;

c. ‘Spacecraft’ specially designed or modified for military use, and ‘spacecraft’ components specially designed for military use.

ML12 High velocity kinetic energy weapon systems and related equipment, as follows, and specially designed components therefor:

a. Kinetic energy weapon systems specially designed for destruction or effecting mission-abort of a target;

b. Specially designed test and evaluation facilities and test models, including diagnostic instrumentation and targets, for dynamic testing of kinetic energy projectiles and systems.

N.B. For weapon systems using sub-calibre ammunition or employing solely chemical propulsion, and ammunition therefor, see ML1 to ML4.

Note 1 ML12 includes the following when specially designed for kinetic energy weapon systems:

a. Launch propulsion systems capable of accelerating masses larger than 0.1 g to velocities in excess of 1.6 km/s, in single or rapid fire modes;
b. Prime power generation, electric armour, energy storage (e.g. high energy storage capacitors), thermal management, conditioning, switching or fuel-handling equipment; and electrical interfaces between power supply, gun and other turret electric drive functions;

N.B. See also 3A001.e.2. on the EU Dual-Use List for high energy storage capacitors.

c. Target acquisition, tracking, fire control or damage assessment systems;

d. Homing seeker, guidance or divert propulsion (lateral acceleration) systems for projectiles.

Note 2 ML12 applies to weapon systems using any of the following methods of propulsion:

a. Electromagnetic;

b. Electrothermal;

c. Plasma;

d. Light gas; or

e. Chemical (when used in combination with any of the above).

ML13 Armoured or protective equipment, constructions, components, and accessories, as follows:

a. Metallic or non-metallic armoured plate, having any of the following:

1. Manufactured to comply with a military standard or specification; or

2. Suitable for military use;

N.B. For body armour plates, see ML13.d.2.

b. Constructions of metallic or non-metallic materials, or combinations thereof, specially designed to provide ballistic protection for military systems, and specially designed components therefor;

c. Helmets and specially designed components and accessories therefor, as follows:

1. Helmets manufactured according to military standards or specifications, or comparable national standards;

2. Shells, liners, or comfort pads, specially designed for helmets specified in ML13.c.1.;

3. Add-on ballistic protection elements, specially designed for helmets specified in ML13.c.1.

N.B. For other military helmet components or accessories, see the relevant EU Common Military List entry.

d. Body armour or protective garments, and components therefor, as follows:

1. Soft body armour or protective garments, manufactured to military standards or specifications, or to their equivalents, and specially designed components therefor;

Note For the purposes of ML13.d.1., military standards or specifications include, at a minimum, specifications for fragmentation protection.

2. Hard body armour plates providing ballistic protection equal to or greater than level III (NIJ 0101.06, July 2008) or 'equivalent standards'.

Note 1 ML13.b. includes materials specially designed to form explosive reactive armour or to construct military shelters.
Note 2 ML13.c. does not apply to helmets that meet all of the following:
 a. Were first manufactured before 1970; and
 b. Are neither designed or modified to accept, nor equipped with items specified by the EU Common Military List.

Note 3 ML13.c. and d. do not apply to helmets, body armour or protective garments, when accompanying their user for the user’s own personal protection.

Note 4 The only helmets specially designed for bomb disposal personnel that are specified by ML13.c. are those specially designed for military use.

N.B. 1 See also entry 1A005 on the EU Dual-Use List.

N.B. 2 For 'fibrous or filamentary materials' used in the manufacture of body armour and helmets, see entry 1C010 on the EU Dual-Use List.

ML14 'Specialised equipment for military training' or for simulating military scenarios, simulators specially designed for training in the use of any firearm or weapon specified by ML1 or ML2, and specially designed components and accessories thereof.

Technical Note

The term ‘specialised equipment for military training’ includes military types of attack trainers, operational flight trainers, radar target trainers, radar target generators, gunnery training devices, anti-submarine warfare trainers, flight simulators (including human-rated centrifuges for pilot/astronaut training), radar trainers, instrument flight trainers, navigation trainers, missile launch trainers, target equipment, drone ‘aircraft’, armament trainers, pilotless ‘aircraft’ trainers, mobile training units and training equipment for ground military operations.

Note 1 ML14 includes image generating and interactive environment systems for simulators, when specially designed or modified for military use.

Note 2 ML14 does not apply to equipment specially designed for training in the use of hunting or sporting weapons.

ML15 Imaging or countermeasure equipment, as follows, specially designed for military use, and specially designed components and accessories thereof:
 a. Recorders and image processing equipment;
 b. Cameras, photographic equipment and film processing equipment;
 c. Image intensifier equipment;
 d. Infrared or thermal imaging equipment;
 e. Imaging radar sensor equipment;
 f. Countermeasure or counter-countermeasure equipment, for the equipment specified by ML15.a. to ML15.e.

Note ML15.f. includes equipment designed to degrade the operation or effectiveness of military imaging systems or to minimize such degrading effects.

Note ML15. does not apply to ‘first generation image intensifier tubes’ or equipment specially designed to incorporate ‘first generation image intensifier tubes’.

N.B. For the classification of weapons sights incorporating ‘first generation image intensifier tubes’ see ML1, ML2. and ML5.a.

N.B. See also entries 6A002.a.2. and 6A002.b. on the EU Dual-Use List.
ML16 **Forgings, castings and other unfinished products, specially designed for items specified by ML1 to ML4, ML6, ML9, ML10, ML12 or ML19.**

Note ML16. applies to unfinished products when they are identifiable by material composition, geometry or function.

ML17 **Miscellaneous equipment, materials and ‘libraries’, as follows, and specially designed components therefor:**

a. Diving and underwater swimming apparatus, specially designed or modified for military use, as follows:
 1. Self-contained diving rebreathers, closed or semi-closed circuit;
 2. Underwater swimming apparatus specially designed for use with the diving apparatus specified in ML17.a.1.;

 N.B. See also 8A002.q. on the EU Dual-Use List.

b. Construction equipment specially designed for military use;

c. Fittings, coatings and treatments, for signature suppression, specially designed for military use;

d. Field engineer equipment specially designed for use in a combat zone;

e. ‘Robots’, ‘robot’ controllers and ‘robot’ ‘end-effectors’, having any of the following characteristics:
 1. Specially designed for military use;
 2. Incorporating means of protecting hydraulic lines against externally induced punctures caused by ballistic fragments (e.g. incorporating self-sealing lines) and designed to use hydraulic fluids with flash points higher than 839 K (566 °C); or
 3. Specially designed or rated for operating in an electromagnetic pulse (EMP) environment;

 Technical Note

 Electro-magnetic pulse does not refer to unintentional interference caused by electromagnetic radiation from nearby equipment (e.g. machinery, appliances or electronics) or lightning.

f. ‘Libraries’ specially designed or modified for military use with systems, equipment or components, specified by the EU Common Military List;

g. Nuclear power generating equipment or propulsion equipment, not specified elsewhere, specially designed for military use and components therefor specially designed or ‘modified’ for military use;

 Note ML17.g. includes ‘nuclear reactors’.

h. Equipment and material, coated or treated for signature suppression, specially designed for military use, not specified elsewhere in the EU Common Military List;

i. Simulators specially designed for military ‘nuclear reactors’;

j. Mobile repair shops specially designed or ‘modified’ to service military equipment;

k. Field generators specially designed or ‘modified’ for military use;

l. ISO intermodal containers or demountable vehicle bodies (i.e. swap bodies), specially designed or ‘modified’ for military use;

m. Ferries, not specified elsewhere in the EU Common Military List, bridges and pontoons, specially designed for military use;

n. Test models specially designed for the ‘development’ of items specified by ML4, ML6, ML9 or ML10;

o. ‘Laser’ protection equipment (e.g. eye or sensor protection) specially designed for military use;

p. ‘Fuel cells’, not specified elsewhere in the EU Common Military List, specially designed or ‘modified’ for military use.
Technical Notes

1. Not used since 2014.

2. For the purpose of ML17, 'modified' means any structural, electrical, mechanical, or other change that provides a non-military item with military capabilities equivalent to an item which is specially designed for military use.

ML18 'Production' equipment, environmental test facilities and components, as follows:

a. Specially designed or modified 'production' equipment for the 'production' of products specified by the EU Common Military List, and specially designed components therefor;

b. Specially designed environmental test facilities and specially designed equipment therefor, not specified elsewhere, for the certification, qualification or testing of products specified by the EU Common Military List.

Technical Note

For the purposes of ML18, the term 'production' includes design, examination, manufacture, testing and checking.

Note ML18.a. and ML18.b. include the following equipment:

a. Continuous nitrators;

b. Centrifugal testing apparatus or equipment having any of the following:
 1. Driven by a motor or motors having a total rated horsepower of more than 298 kW (400 hp);
 2. Capable of carrying a payload of 113 kg or more; or
 3. Capable of exerting a centrifugal acceleration of 8 g or more on a payload of 91 kg or more;

c. Dehydration presses;

d. Screw extruders specially designed or modified for military 'explosive' extrusion;

e. Cutting machines for the sizing of extruded 'propellants';

f. Sweetie barrels (tumblers) 1.85 m or more in diameter and having over 227 kg product capacity;

g. Continuous mixers for solid 'propellants';

h. Fluid energy mills for grinding or milling the ingredients of military 'explosives';

i. Equipment to achieve both sphericity and uniform particle size in metal powder listed in ML8.c.8.;

j. Convection current converters for the conversion of materials listed in ML8.c.3.

ML19 Directed Energy Weapon (DEW) systems, related or countermeasure equipment and test models, as follows, and specially designed components therefor:

a. 'Laser' systems specially designed for destruction or effecting mission-abort of a target;

b. Particle beam systems capable of destruction or effecting mission-abort of a target;

c. High power Radio-Frequency (RF) systems capable of destruction or effecting mission-abort of a target;

d. Equipment specially designed for the detection or identification of, or defence against, systems specified by ML19.a. to ML19.c.;

e. Physical test models for the systems, equipment and components, specified by ML19;
f. ‘Laser’ systems specially designed to cause permanent blindness to unenhanced vision, i.e. to the naked eye or to the eye with corrective eyesight devices.

Note 1 DEW systems specified by ML19 include systems whose capability is derived from the controlled application of:
 a. ‘Lasers’ of sufficient power to effect destruction similar to the manner of conventional ammunition;
 b. Particle accelerators which project a charged or neutral particle beam with destructive power;
 c. High pulsed power or high average power radio frequency beam transmitters, which produce fields sufficiently intense to disable electronic circuitry at a distant target.

Note 2 ML19 includes the following when specially designed for DEW systems:
 a. Prime power generation, energy storage, switching, power conditioning or fuel-handling equipment;
 b. Target acquisition or tracking systems;
 c. Systems capable of assessing target damage, destruction or mission-abort;
 d. Beam-handling, propagation or pointing equipment;
 e. Equipment with rapid beam slew capability for rapid multiple target operations;
 f. Adaptive optics and phase conjugators;
 g. Current injectors for negative hydrogen ion beams;
 h. ‘Space-qualified’ accelerator components;
 i. Negative ion beam funnelling equipment;
 j. Equipment for controlling and slewing a high energy ion beam;
 k. ‘Space-qualified’ foils for neutralising negative hydrogen isotope beams.

ML20 Cryogenic and ‘superconductive’ equipment, as follows, and specially designed components and accessories therefor:
 a. Equipment specially designed or configured to be installed in a vehicle for military ground, marine, airborne or space applications, capable of operating while in motion and of producing or maintaining temperatures below 103 K (-170 °C);

Note ML20.a. includes mobile systems incorporating or employing accessories or components manufactured from non-metallic or non-electrical conductive materials, such as plastics or epoxy-impregnated materials.

b. ‘Superconductive’ electrical equipment (rotating machinery or transformers) specially designed or configured to be installed in a vehicle for military ground, marine, airborne or space applications, and capable of operating while in motion.

Note ML20.b. does not apply to direct current hybrid homopolar generators that have single-pole normal metal armatures which rotate in a magnetic field produced by superconducting windings, provided those windings are the only superconducting components in the generator.

ML21 ‘Software’ as follows:
 a. ‘Software’ specially designed or modified for any of the following:
 1. ‘Development’, ‘production’, operation or maintenance of equipment specified by the EU Common Military List;
 2. ‘Development’ or ‘production’ of materials specified by the EU Common Military List; or
 3. ‘Development’, ‘production’, operation or maintenance of ‘software’ specified by the EU Common Military List.
b. Specific ‘software’, other than that specified by ML21.a., as follows:

1. ‘Software’ specially designed for military use and specially designed for modelling, simulating or evaluating military weapon systems;
2. ‘Software’ specially designed for military use and specially designed for modelling or simulating military operational scenarios;
3. ‘Software’ for determining the effects of conventional, nuclear, chemical or biological weapons;
4. ‘Software’ specially designed for military use and specially designed for Command, Communications, Control and Intelligence (C3I) or Command, Communications, Control, Computer and Intelligence (C4I) applications;
5. ‘Software’ specially designed or modified for the conduct of military offensive cyber operations;

Note 1 ML21.b.5. includes ‘software’ designed to destroy, damage, degrade or disrupt systems, equipment or ‘software’, specified by the EU Common Military List, cyber reconnaissance and cyber command and control ‘software’, therefore.

Note 2 ML21.b.5. does not apply to ‘vulnerability disclosure’ or to ‘cyber incident response’, limited to non-military defensive cybersecurity readiness or response.

c. ‘Software’, not specified by ML21.a. or ML21.b., specially designed or modified to enable equipment not specified by the EU Common Military List to perform the military functions of equipment specified by the EU Common Military List.

N.B. See systems, equipment or components specified by the EU Common Military List for general purpose ‘digital computers’ with installed ‘software’ specified by ML21.c.

ML22 ‘Technology’ as follows:

a. ‘Technology’, other than specified in ML22.b., which is ‘required’ for the ‘development’, ‘production’, operation, installation, maintenance (checking), repair, overhaul or refurbishing of items specified in the EU Common Military List;

b. ‘Technology’ as follows:

1. ‘Technology’ ‘required’ for the design of, the assembly of components into, and the operation, maintenance and repair of, complete production installations for items specified in the EU Common Military List, even if the components of such production installations are not specified;
2. ‘Technology’ ‘required’ for the ‘development’ and ‘production’ of small arms even if used to produce reproductions of antique small arms;
3. Not used since 2013;

 N.B. See ML22.a. for ‘technology’ previously specified by ML22.b.3.

4. Not used since 2013;

 N.B. See ML22.a. for ‘technology’ previously specified by ML22.b.4.

5. ‘Technology’ ‘required’ exclusively for the incorporation of ‘biocatalysts’, specified by ML7.i.1., into military carrier substances or military material.

Note 1 ‘Technology’ ‘required’ for the ‘development’, ‘production’, operation, installation, maintenance (checking), repair, overhaul or refurbishing of items specified by the EU Common Military List remains under control even when applicable to any item not specified by the EU Common Military List.

Note 2 ML22 does not apply to:

a. ‘Technology’ that is the minimum necessary for the installation, operation, maintenance (checking) or repair, of those items which are not controlled or whose export has been authorised;
b. ‘Technology’ that is ‘in the public domain’, ‘basic scientific research’ or the minimum necessary information for patent applications;

c. ‘Technology’ for magnetic induction for continuous propulsion of civil transport devices.

DEFINITIONS OF TERMS USED IN THIS LIST

The following are definitions of the terms used in this List, in alphabetical order.

Note 1 Definitions apply throughout the List. The references are purely advisory and have no effect on the universal application of defined terms throughout the List.

Note 2 Words and terms contained in this List of Definitions only take the defined meaning where this is indicated by their being enclosed in ‘double quotations marks’. Definitions of terms between 'single quotation marks' are given in a Technical note to the relevant item. Elsewhere, words and terms take their commonly accepted (dictionary) meanings.

ML8 ‘Additives’ Substances used in explosive formulations to improve their properties.
ML8, 10, 14 ‘Aircraft’ A fixed wing, swivel wing, rotary wing (helicopter), tilt rotor or tilt-wing airborne vehicle.
ML11 ‘Automated Command and Control Systems’ Electronic systems, through which information essential to the effective operation of the grouping, major formation, tactical formation, unit, ship, subunit or weapons under command is entered, processed and transmitted. This is achieved by the use of computer and other specialised hardware designed to support the functions of a military command and control organisation. The main functions of an automated command and control system are: the efficient automated collection, accumulation, storage and processing of information; the display of the situation and the circumstances affecting the preparation and conduct of combat operations; operational and tactical calculations for the allocation of resources among force groupings or elements of the operational order of battle or battle deployment according to the mission or stage of the operation; the preparation of data for appreciation of the situation and decision-making at any point during operation or battle; computer simulation of operations.
ML22 ‘Basic scientific research’ Experimental or theoretical work undertaken principally to acquire new knowledge of the fundamental principles of phenomena or observable facts, not primarily directed towards a specific practical aim or objective.
ML7, 22 ‘Biocatalysts’ ‘Enzymes’ for specific chemical or biochemical reactions or other biological compounds which bind to and accelerate the degradation of CW agents.

Technical Note
‘Enzymes’ means ‘biocatalysts’ for specific chemical or biochemical reactions.

ML7 ‘Biological agents’ Pathogens or toxins, selected or modified (such as altering purity, shelf life, virulence, dissemination characteristics, or resistance to UV radiation) to produce casualties in humans or animals, degrade equipment or damage crops or the environment.

ML7 ‘Biopolymers’ Biological macromolecules as follows:
a. Enzymes for specific chemical or biochemical reactions;
b. ‘Anti-idiotypic’, ‘monoclonal’ or ‘polyclonal’ ‘antibodies’;
c. Specially designed or specially processed ‘receptors’.
Technical Notes

1. 'Anti-idiotypic antibodies' means antibodies which bind to the specific antigen binding sites of other antibodies;

2. 'Monoclonal antibodies' means proteins which bind to one antigenic site and are produced by a single clone of cells;

3. 'Polyclonal antibodies' means a mixture of proteins which bind to the specific antigen and are produced by more than one clone of cells;

4. 'Receptors' means biological macromolecular structures capable of binding ligands, the binding of which affects physiological functions.

ML4, 10 'Civil aircraft' Those 'aircraft' listed by designation in published airworthiness certification lists by civil aviation authorities of one or more EU Member States or Wassenaar Arrangement Participating States to fly commercial civil internal and external routes or for legitimate civil, private or business use.

ML21 'Cyber incident response' The process of exchanging necessary information on a cybersecurity incident with individuals or organisations responsible for conducting or coordinating remediation to address the cybersecurity incident.

ML17 21, 22 'Development' Is related to all stages prior to serial production, such as: design, design research, design analyses, design concepts, assembly and testing of prototypes, pilot production schemes, design data, process of transforming design data into a product, configuration design, integration design, layouts.

ML21 'Digital computer' Equipment which can, in the form of one or more discrete variables, perform all of the following:

a. Accept data;

b. Store data or instructions in fixed or alterable (writable) storage devices;

c. Process data by means of a stored sequence of instructions which is modifiable; and

d. Provide output of data.

Technical Note

Modifications of a stored sequence of instructions include replacement of fixed storage devices, but not a physical change in wiring or interconnections.

ML17 'End-effectors' Grippers, 'active tooling units' and any other tooling that is attached to the baseplate on the end of a 'robot' manipulator arm.

Technical Note

'Active tooling units' are devices for applying motive power, process energy or sensing to a workpiece.

ML8 'Energetic materials' Substances or mixtures that react chemically to release energy required for their intended application. 'Explosives', 'pyrotechnics' and 'propellants' are subclasses of energetic materials.

ML6, 13 'Equivalent standards' Comparable national or international standards recognised by one or more EU Member States or Wassenaar Arrangement Participating States and applicable to the relevant entry.

ML8, 18 'Explosives' Solid, liquid or gaseous substances or mixtures of substances which, in their application as primary, booster, or main charges in warheads, demolition and other applications, are required to detonate.

ML7 'Expression Vectors' Carriers (e.g. plasmid or virus) used to introduce genetic material into host cells.
ML13 ‘Fibrous or filamentary materials’
Include:
 a. Continuous monofilaments;
 b. Continuous yarns and rovings;
 c. Tapes, fabrics, random mats and braids;
 d. Chopped fibres, staple fibres and coherent fibre blankets;
 e. Whiskers, either monocrystalline or polycrystalline, of any length;
 f. Aromatic polyamide pulp.

ML15 ‘First generation image intensifier tubes’
Electrostatically focused tubes, employing input and output fibre optic or glass face plates, multi-alkali photocathodes (S-20 or S-25), but not microchannel plate amplifiers.

ML17 ‘Fuel cell’
An electrochemical device that converts chemical energy directly into Direct Current (DC) electricity by consuming fuel from an external source.

ML22 ‘In the public domain’
This means ‘technology’ or ‘software’ which has been made available without restrictions upon its further dissemination.
Note: Copyright restrictions do not remove ‘technology’ or ‘software’ from being ‘in the public domain’.

ML9, 19 ‘Laser’
An item that produces spatially and temporally coherent light through amplification by stimulated emission of radiation.

ML17 ‘Library’ (parametric technical database)
A collection of technical information, reference to which may enhance the performance of relevant systems, equipment or components.

ML10 ‘Lighter-than-air vehicles’
Balloons and ‘airships’ that rely on hot air or on lighter-than-air gases such as helium or hydrogen for their lift.

Technical Note
‘Airship’
A power-driven airborne vehicle that is kept buoyant by a body of gas (usually helium, formerly hydrogen) which is lighter than air.

ML17 ‘Nuclear reactor’
Includes the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the components which normally contain or come into direct contact with or control the primary coolant of the reactor core.

ML8 ‘Precursors’
Speciality chemicals used in the manufacture of explosives.

ML 21, 22 ‘Production’
Means all production stages, such as: product engineering, manufacture, integration, assembly (mounting), inspection, testing, quality assurance.

ML8 ‘Propellants’
Substances or mixtures that react chemically to produce large volumes of hot gases at controlled rates to perform mechanical work.

ML4, 8 ‘Pyrotechnics’
Mixtures of solid or liquid fuels and oxidizers which, when ignited, undergo an energetic chemical reaction at a controlled rate intended to produce specific time delays, or quantities of heat, noise, smoke, visible light or infrared radiation. Pyrophorics are a subclass of pyrotechnics, which contain no oxidizers but ignite spontaneously on contact with air.

ML22 ‘Required’
As applied to ‘technology’, refers to only that portion of ‘technology’ which is peculiarly responsible for achieving or exceeding the controlled performance levels, characteristics or functions. Such ‘required’ technology may be shared by different products.
"Riot control agents" Substances which, under the expected conditions of use for riot control purposes, produce rapidly in humans sensory irritation or disabling physical effects which disappear within a short time following termination of exposure. (Tear gases are a subset of 'riot control agents'.)

"Robot" A manipulation mechanism, which may be of the continuous path or of the point-to-point variety, may use sensors, and has all the following characteristics:

a. Is multifunctional;
b. Is capable of positioning or orienting material, parts, tools or special devices through variable movements in three-dimensional space;
c. Incorporates three or more closed or open loop servo-devices which may include stepping motors; and
d. Has 'user-accessible programmability' by means of the teach/playback method or by means of an electronic computer which may be a programmable logic controller, i.e. without mechanical intervention.

'User-accessible programmability' refers to the facility allowing a user to insert, modify or replace 'programs' by means other than:

a. A physical change in wiring or interconnections; or
b. The setting of function controls including entry of parameters.

Note The above definition does not include the following devices:
1. Manipulation mechanisms which are only manually/teleoperator controllable;
2. Fixed sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The programme is mechanically limited by fixed stops, such as pins or cams. The sequence of motions and the selection of paths or angles are not variable or changeable by mechanical, electronic or electrical means;
3. Mechanically controlled variable sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The programme is mechanically limited by fixed, but adjustable, stops, such as pins or cams. The sequence of motions and the selection of paths or angles are variable within the fixed programme pattern. Variations or modifications of the programme pattern (e.g. changes of pins or exchanges of cams) in one or more motion axes are accomplished only through mechanical operations;
4. Non-servo-controlled variable sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The programme is variable but the sequence proceeds only by the binary signal from mechanically fixed electrical binary devices or adjustable stops;
5. Stacker cranes defined as Cartesian coordinate manipulator systems manufactured as an integral part of a vertical array of storage bins and designed to access the contents of those bins for storage or retrieval.

"Satellite navigation system" A system consisting of ground stations, a constellation of satellites, and receivers, that enables receiver locations to be calculated on the basis of signals received from the satellites. It includes Global Navigation Satellite Systems and Regional Navigation Satellite Systems.

"Software" A collection of one or more 'programs' or 'microprograms' fixed in any tangible medium of expression.
Technical Note 1

‘Program’
A sequence of instructions to carry out a process in, or convertible into, a form executable by an electronic computer.

Technical Note 2

‘Microprogram’
A sequence of elementary instructions maintained in a special storage, the execution of which is initiated by the introduction of its reference instruction into an instruction register.

ML11
‘Spacecraft’
Active and passive satellites and space probes.

ML19
‘Space-qualified’
Designed, manufactured, or qualified through successful testing, for operation at altitudes greater than 100 km above the surface of the Earth.

Note: A determination that a specific item is ‘space-qualified’ by virtue of testing does not mean that other items in the same production run or model series are ‘space-qualified’ if not individually tested.

ML20
‘Superconductive’
Refers to materials, (i.e. metals, alloys or compounds) which can lose all electrical resistance (i.e. which can attain infinite electrical conductivity and carry very large electrical currents without Joule heating).

‘Critical temperature’ (sometimes referred to as the transition temperature) of a specific ‘superconductive’ material is the temperature at which the material loses all resistance to the flow of direct electrical current.

Technical Note

The ‘superconductive’ state of a material is individually characterised by a ‘critical temperature’, a critical magnetic field, which is a function of temperature, and a critical current density which is, however, a function of both magnetic field and temperature.

ML22
‘Technology’
Specific information necessary for the ‘development’, ‘production’ or ‘use’ of a product. The information takes the form of ‘technical data’ or ‘technical assistance’. Specified ‘technology’ for the EU Common Military List is defined in ML22.

Technical Notes

1. ‘Technical data’ may take forms such as blueprints, plans, diagrams, models, formulae, tables, engineering designs and specifications, manuals and instructions written or recorded on other media or devices such as disk, tape, read-only memories.
2. ‘Technical assistance’ may take forms such as instruction, skills, training, working knowledge, consulting services. ‘Technical assistance’ may involve transfer of ‘technical data’.

ML10
‘Unmanned aerial vehicle’ (‘UAV’)
Any ‘aircraft’ capable of initiating flight and sustaining controlled flight and navigation without any human presence on board.

ML21
‘Vulnerability disclosure’
The process of identifying, reporting or communicating a vulnerability to, or analysing a vulnerability with, individuals or organisations responsible for conducting or coordinating remediation for the purpose of resolving the vulnerability.
New national side of euro coins intended for circulation

(2022/C 100/04)

National side of the new commemorative 2-euro coin intended for circulation and issued by France

Euro coins intended for circulation have legal tender status throughout the euro area. For the purpose of informing the public and all parties who handle the coins, the Commission publishes a description of the designs of all new coins (1). In accordance with the Council conclusions of 10 February 2009 (2), euro-area Member States and countries that have concluded a monetary agreement with the European Union providing for the issuing of euro coins are allowed to issue commemorative euro coins intended for circulation, provided that certain conditions are met, particularly that only the 2-euro denomination is used. These coins have the same technical characteristics as other 2-euro coins, but their national face features a commemorative design that is highly symbolic in national or European terms.

Issuing country: France

Subject of commemoration: The 90th anniversary of President Jacques Chirac’s birth

Description of the design: President of the French Republic for two terms, Jacques Chirac was a major architect of the European construction. As such, he was President when the Euro was introduced in 2002, whose 20th anniversary we celebrate at the beginning of this year.

The design shows a solemn profile of President Jacques Chirac looking towards the future. He is surrounded by several symbols representing his actions: a euro symbol, as sign of his involvement in the introduction of the Euro and his European spirit, and a French flag represented in heraldic colours, itself embellished with the RF as a reference to his presidency. His dates and name are inserted in the Euro’s logo. The mintmarks as well as the year date fit into the design.

The coin’s outer ring depicts the 12 stars of the European flag.

Estimated number of coins to be issued: 9 000 000

Date of issue: January 2022

Euro exchange rates (*)
28 February 2022
(2022/C 100/05)

1 euro =

<table>
<thead>
<tr>
<th>Currency</th>
<th>Exchange rate</th>
<th>Currency</th>
<th>Exchange rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>1,1199</td>
<td>CAD</td>
<td>1,4264</td>
</tr>
<tr>
<td>JPY</td>
<td>129,31</td>
<td>HKD</td>
<td>8,7514</td>
</tr>
<tr>
<td>DKK</td>
<td>7,4404</td>
<td>NZD</td>
<td>1,6628</td>
</tr>
<tr>
<td>GBP</td>
<td>0,83550</td>
<td>SGD</td>
<td>1,5201</td>
</tr>
<tr>
<td>SEK</td>
<td>10,6055</td>
<td>KRW</td>
<td>1,347,62</td>
</tr>
<tr>
<td>CHF</td>
<td>1,0336</td>
<td>ZAR</td>
<td>17,2863</td>
</tr>
<tr>
<td>ISK</td>
<td>141,80</td>
<td>HRK</td>
<td>7,5655</td>
</tr>
<tr>
<td>NOK</td>
<td>9,9465</td>
<td>IDR</td>
<td>16,100,72</td>
</tr>
<tr>
<td>BGN</td>
<td>1,9558</td>
<td>MYR</td>
<td>4,7019</td>
</tr>
<tr>
<td>CZK</td>
<td>24,997</td>
<td>PHP</td>
<td>57,432</td>
</tr>
<tr>
<td>HUF</td>
<td>369,72</td>
<td>RUB</td>
<td>115,4842</td>
</tr>
<tr>
<td>PLN</td>
<td>4,6835</td>
<td>THB</td>
<td>36,593</td>
</tr>
<tr>
<td>RON</td>
<td>4,9484</td>
<td>BRL</td>
<td>5,7828</td>
</tr>
<tr>
<td>TRY</td>
<td>15,4532</td>
<td>MXN</td>
<td>22,9011</td>
</tr>
<tr>
<td>AUD</td>
<td>1,5508</td>
<td>INR</td>
<td>84,5540</td>
</tr>
</tbody>
</table>

(*) Source: reference exchange rate published by the ECB.
NOTICES FROM MEMBER STATES

Information communicated by Member States regarding closure of fisheries

(2022/C 100/06)

In accordance with Article 35(3) of Council Regulation (EC) No 1224/2009 of 20 November 2009 establishing a Union control system for ensuring compliance with the rules of the common fisheries policy (1), a decision has been taken to close the fishery as set down in the following table:

<table>
<thead>
<tr>
<th>Date and time of closure</th>
<th>17.12.2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member State</td>
<td>France</td>
</tr>
<tr>
<td>Stock or Group of stocks</td>
<td>SOL/7HJK.</td>
</tr>
<tr>
<td>Species</td>
<td>Common sole (Solea solea)</td>
</tr>
<tr>
<td>Zone</td>
<td>7h, 7j and 7k</td>
</tr>
<tr>
<td>Type(s) of fishing vessels</td>
<td>—</td>
</tr>
<tr>
<td>Reference number</td>
<td>26/TQ92</td>
</tr>
</tbody>
</table>

Call for proposals and related activities under the 2022 work plan of the Clean Hydrogen Joint Undertaking

(2022/C 100/07)

Notice is hereby given of the launch of the call for proposals and related activities under the 2022 work plan of the Clean Hydrogen Joint Undertaking (CleanH2 JU).

This work plan, including deadlines and budgets for the activities, is available through the Participant Portal website (https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/home) along with information on the modalities of the call and related activities, and guidance for applicants on how to submit proposals. All this information will be updated as necessary on the same Participant Portal.
Dedicated Calls for proposals in 2022 under the Work Programme 2021-2022 of the Research Fund for Coal and Steel Programme (2021-2027)

(2022/C 100/08)

Notice is hereby given of the launch of two dedicated calls for proposals (i.e. one Big Tickets in coal and one Big Tickets call in steel) and related activities in 2022 under the Work Programme 2021-2022 of the Research Fund for Coal and Steel programme (2021-2027).

The Commission has adopted the RFCS Work Programme 2021-2022 by Decision C(2022)905 of 18 February 2022.

Proposals are invited for these calls. The RFCS Work Programme 2021-2022, including objectives, deadlines and budgets, is available through the Funding & Tender opportunities website along with information on the modalities of the calls and related activities and the information for applicants on how to submit proposals: https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/home.
PROCEDURES RELATING TO THE IMPLEMENTATION OF COMPETITION POLICY

EUROPEAN COMMISSION

Prior notification of a concentration
(Case M.10559 – A P MOELLER-MAERSK / SENATOR INTERNATIONAL)
(Text with EEA relevance)
(2022/C 100/09)

1. On 22 February 2022, the Commission received notification of a proposed concentration pursuant to Article 4 of Council Regulation (EC) No 139/2004 (1).

This notification concerns the following undertakings:
— A.P. Møller-Mærsk A/S Group (‘APMM’, Denmark),
— Senator International group (‘Senator International’, Germany).

APMM will acquire within the meaning of Article 3(1)(b) of the Merger Regulation sole control of the whole of Senator International.

The concentration is accomplished by way of purchase of shares and assets.

2. The business activities of the undertakings concerned are:
— APMM: integrated transport and logistics company with worldwide activities. APMM’s core activities comprise container liner shipping through its subsidiaries Maersk A/S, SeaLand, and Hamburg Süd, container terminal services, inland transportation, inland services, supply chain management services, harbour towage and reefer container manufacturing,
— Senator International: family-owned company primarily specialized in international freight, shipping and logistics, with its main focus on air and ocean freight forwarding, as well as logistics, packaging and customs services.

3. On preliminary examination, the Commission finds that the notified transaction could fall within the scope of the Merger Regulation. However, the final decision on this point is reserved.

4. The Commission invites interested third parties to submit their possible observations on the proposed operation to the Commission.

Observations must reach the Commission not later than 10 days following the date of this publication. The following reference should always be specified:

M.10559 – A P MOELLER-MAERSK / SENATOR INTERNATIONAL

Observations can be sent to the Commission by email, by fax, or by post. Please use the contact details below:

Email: COMP-MERGER-REGISTRY@ec.europa.eu
Fax +32 22964301

Postal address:

European Commission
Directorate-General for Competition
Merger Registry
1049 Bruxelles/Brussel
BELGIQUE/BELGIÉ
OTHER ACTS

EUROPEAN COMMISSION

Publication of an application for registration of a name pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs

(2022/C 100/10)

This publication confers the right to oppose the application pursuant to Article 51 of Regulation (EU) No 1151/2012 of the European Parliament and of the Council (1) within 3 months from the date of this publication.

SINGLE DOCUMENT

‘Cidre du Perche / Perche’

EU No: PDO-FR-2648 – 1 December 2020

PDO (X) PGI ()

1. Name(s)
 ‘Cidre du Perche / Perche’

2. Member State or third country
 France

3. Description of the agricultural product or foodstuff

3.1. Type of product
 Class 1.8 – Other products listed in Annex I to the Treaty (spices etc.)

3.2. Description of product to which the name in point 1 applies
 ‘Cidre du Perche / Perche’ is an unpasteurised, ungasified semi-dry or brut sparkling cider obtained through secondary fermentation in the bottle. It is made from the pure juice of specific varieties of cider apple.

 ‘Cidre du Perche / Perche’ is notable for its golden-yellow to orange colour, its roundness, balance of sweet, bitter and acidic flavours, fruity notes, slight bitterness in the mid-palate and hint of freshness in the finish.

 ‘Cidre du Perche / Perche’ has the following analytical characteristics:
 — an actual alcoholic strength by volume greater than or equal to 3.5 % vol.;
 — a total alcoholic strength by volume greater than or equal to 6 % vol.;
 — a sugar content greater than or equal to 18 g/litre;
 — a minimum pressure of 1.5 bar at 20 °C.

 The cider apples used to make ‘Cidre du Perche / Perche’ come from orchards located in the geographical area.

These orchards are kept under grass, except for the soil at the foot of the trees (over a radius of 0.30 metres or over a 1-metre strip under the row), which may be cleared of grass.

Tall-stemmed trees account for at least 30 % of the orchard’s total surface area.

The orchards consist of the following varieties of cider apple:

Main varieties:

<table>
<thead>
<tr>
<th>Bitter varieties:</th>
<th>Fréquin rouge</th>
<th>Tardive de la Sarthe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ameret or Améret blanc</td>
<td>Gringoire</td>
<td></td>
</tr>
<tr>
<td>Fréquin blanc</td>
<td>Médaille d’or</td>
<td></td>
</tr>
<tr>
<td>Fréquin long</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bittersweet varieties:</th>
<th>Cartigny</th>
<th>Noël des Champs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argile grise</td>
<td>Damelot</td>
<td>(Petit) Jaunet pointu</td>
</tr>
<tr>
<td>Argile rouge</td>
<td>Moulin à vent ou Moulin à vent de l’Eure</td>
<td>Saint-Hilaire</td>
</tr>
<tr>
<td>Bedan or Calotte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binet rouge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bois droit or Drébois</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sweet varieties:</th>
<th>Grise de l’Eure</th>
<th>Rouge Duret</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atroche or Troche</td>
<td>Muscadet petit de l’Orne or Muscadet doré</td>
<td>Doux Normand</td>
</tr>
<tr>
<td>Bérat blanc</td>
<td>Petite sorte</td>
<td>Doux Véret de Carrouges</td>
</tr>
<tr>
<td>Coquerelle</td>
<td>Pilée</td>
<td>Rousse de l’Orne or Rousse de la Sarthe</td>
</tr>
<tr>
<td>Doux Normandie or Normandie</td>
<td>Roger Guyot</td>
<td></td>
</tr>
<tr>
<td>Fréquin Lacaille</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acidic varieties:</th>
<th>Pomme de Boué or Pomme de Bouet or Boué de Bonnétable</th>
<th>Queue torse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groiselle</td>
<td>Pomme de fer</td>
<td>Marnière</td>
</tr>
<tr>
<td>Locard blanc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locard vert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Secondary varieties:

Bitter varieties:	Peau de chien	
------------------	---------------	
Kermerrien		

<table>
<thead>
<tr>
<th>Bittersweet varieties:</th>
<th>Clos Renaux</th>
<th>Douce Moën</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisquet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sweet varieties:		
-----------------	-------------	
Douce Coët Ligné		

Acidic varieties:	Petit jaune	
------------------	-------------	
Avrolles		

To preserve varietal diversity, cider apple varieties that are grown on tall-stemmed trees but not listed above may account for up to 20 % of the orchard’s total surface area. These are considered as secondary varieties.

Each blend (cuvée) consists of ciders:

— made from apples harvested during the same harvest year;
— in which the proportion of acidic varieties is less than or equal to 20 % and
— in which the proportion of main varieties is greater than or equal to 50 %.
3.3. Feed (for products of animal origin only) and raw materials (for processed products only)

3.4. Specific steps in production that must take place in the defined geographical area
The apples must be grown and the cider made in the geographical area.

3.5. Specific rules concerning slicing, grating, packaging, etc. of the product to which the registered name refers
‘Cidre du Perche / Perche’ is a sparkling cider obtained through secondary fermentation in the bottle. It may be sold in packaged form only, to retain its pressure. Packaging must take place in the geographical area.

3.6. Specific rules concerning labelling of the product to which the registered name refers
In addition to the mandatory information provided for in the rules on the labelling and presentation of foodstuffs, the labelling must include the name of the designation and the abbreviation ‘AOP’ [PDO] or the words ‘Appellation d’Origine Protégée’ [Protected Designation of Origin] in lettering which is clear, legible, indelible and sufficiently large to be clearly distinguishable from all other writing and designs on the label.

On the label, the words ‘Appellation d’Origine Protégée’ must be placed immediately below the name of the designation, with no other words in between.

4. Concise definition of the geographical area
The geographical area covers the territory of the following municipalities, based on the 2019 Official Geographic Code:

Department of Eure-et-Loir (28)

Department of Orne (61)

Municipalities in part: Tournouvre au Perche (only the territory of the delegated municipalities of Autheuil, Bivilliers, Bubertré et Tournouvre), Longny les Villages (only the territory of the delegated municipalities of Longny-au-Perche, Maletable, Monceaux-au-Perche, Moulicent and Saint-Victor-de-Réno).

Department of Sarthe (72)
Municipalities in their entirety; Avezé, La Chapelle-du-Bois, Cormes, Courgenard, Gréez-sur-Roc, Nogent-le-Bernard, Préval, Saint-Ulphace, Souvigné-sur-Même, Théligny.

Municipalities in part: Chéré-Au (only the territory of the delegated municipality of Cheureau).

5. Link with the geographical area
‘Cidre du Perche / Perche’ owes its specific characteristics to the area’s soil and climate conditions, particularly the lateness of the climate, which have led producers to adapt their practices in terms of the varieties grown and production methods.

The varieties used are ones that have been selected locally or that have acclimatised to the lateness of the area’s climate. The harvesting and processing of the fruit as the first cold spells arrive help slow down fermentation and are conducive to the development of aromas.
Specificity of the geographical area

Natural factors

The geographical area of the designation of origin ‘Cidre du Perche / Perche’ is situated in a transitional zone between the Armorican Massif to the west and the Paris Basin to the east. It forms an entity characterised by undulating landscapes ranging from green hills to forests extending over the departments of Eure-et-Loir, Orne and Sarthe.

The sub-soil was mostly formed during the Jurassic and Cenomanian Cretaceous periods. The most commonly found soils are clay-limestone or sandy soils: the chalkstone of Rouen, green clays, and the sands of the Perche. Flint clay – a product of the decalcification of the chalky mantle, which may be covered with loess of varied thickness – is also found here. All these substrates have a good workable soil depth and good drainage.

In terms of climate, the Perche region lies at the intersection of oceanic influences to the west and continental influences to the east. The result is a modified oceanic climate, characterised by annual temperature ranges marked by cold winters (snow is rare, but there may be up to 60 frost days per year) and warm summers.

The continental influence is reflected in the frequent occurrence of late frost, which is common in May and June.

Human factors

Normandy has a long tradition of growing apple trees, but it was only around the 16th century that orchards began to develop on religious or noble estates. By the 17th and 18th centuries, they would cover most of the Perche countryside. Most of the apples grown were for making cider, a drink that had become popular and was produced on almost all the farms of the Perche.

In the 19th century, the region gradually began to specialise in cattle and horse-breeding, while continuing to produce cider. The Perche then became an area of mixed crop-livestock farming, with the distinctive feature of crop fields planted with apple trees.

During the first half of the 20th century, ‘Cidre du Perche / Perche’ was being produced on every farm and in specialised cideries throughout the province. The production of apples frequently allowed farmers to double their earnings from the 1930s to the 1950s.

From the 1950s, however, the closure of industrial cideries, the mechanisation of farming equipment and the intensification of agriculture practically led to the disappearance of apple trees from the pastures and ploughlands of the Perche.

It was not until the late 1980s that a number of farmers began specialising in cider production, leading to the revival of the cider industry in the Perche. These producers mobilised the province’s traditional expertise in cider-making, such as the use of late varieties, harvesting the fruit when ripe, or spontaneous and slow fermentation as well as natural secondary fermentation.

Mixed crop-livestock farming – the traditional agricultural system of the Perche – entailed a heavy workload in September and October. Varietal choices were therefore guided by the need to stagger agricultural work and to adapt to the climate of the Perche. Preference was given to late-blooming varieties as they suffer less from the impact of the spring frosts and their fruit ripens at a later stage of the year. Besides the locally selected varieties, other varieties have been introduced to the Perche and have adapted well. Any single variety can be seen to ripen at different stages of the year in different regions, but it is in the Perche that it ripens last. The most common varieties are Bedan, Doux Normandie, Tardive de la Sarthe, Saint-Hilaire, Fréquin rouge and Binet rouge.
The apples are harvested when ripe. Harvesting usually begins at the end of October and continues until December for the varieties that sprout the latest. Brewing mainly takes place from mid-November on. The low temperatures at that time of the year limit microbial growth, which could alter the quality of the product, and allow for a slow start to fermentation. Fermentation in vats, with no addition of yeast, extends over a minimum 8-week period, compared with 6 weeks in other parts of Normandy.

Specificity of the product

‘Cidre du Perche / Perche’ is a cider obtained through secondary fermentation in the bottle. It has:

— a golden-yellow to orange colour;
— a balance of bitter, sweet and acidic flavours;
— a slight bitterness in the mid-palate and a hint of freshness in the finish;
— and lively but not abundant effervescence.

Causal link

The abundance of apple trees is the result of the topographical, climatic and geological characteristics of the geographical area. The Perche provides favourable conditions for apple-growing, with its undulating landscape and well-drained soil, which allows the water to circulate and provides a sufficient supply of minerals.

Producers in the province have been guided in their choice of varieties by the traditional practice of mixed crop-livestock farming and the lateness of the climate. The orchards of the Perche include some 40 of the 200 or more cider apple varieties found in Normandy.

The blending of varieties combines the distinct qualities of each category of variety to produce a cider with a balance of bitter, sweet and acidic flavours: rich in phenolic compounds, the bitter and bittersweet varieties give the cider its golden-yellow to orange colour and slight bitterness in the mid-palate; the sweet and bittersweet varieties give the cider its roundness, while the acidic varieties – in limited proportions – lend it a hint of freshness.

The later ripening of the fruit means brewing mainly begins in November. As the temperature is lower at that time of year than in September/October, fermentation is slow, allowing the distinctive aromas of ‘Cidre du Perche / Perche’ to develop.

Secondary fermentation in the bottle gives the cider a lively but not abundant effervescence and helps the aromas to develop.

Reference to publication of the specification

https://info.agriculture.gouv.fr/gedei/site/bo-agri/document_administratif-964fa31f-76f5-4816-ad72-f8e3bcb255a
ISSN 1977-091X (electronic edition)
ISSN 1725-2423 (paper edition)