30.12.2014   

EN

Official Journal of the European Union

L 371/1


COMMISSION DELEGATED REGULATION (EU) No 1382/2014

of 22 October 2014

amending Council Regulation (EC) No 428/2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items

THE EUROPEAN COMMISSION,

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Council Regulation (EC) No 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items (1) and in particular Article 15(3) thereof,

Whereas:

(1)

Regulation (EC) No 428/2009 requires dual-use items to be subject to effective control when they are exported from or transit through the Union, or are delivered to a third country as a result of brokering services provided by a broker resident or established in the Union.

(2)

Annex I to Regulation (EC) No 428/2009 establishes the common list of dual-use items that are subject to controls in the Union. Decisions on the items subject to controls are taken within the framework of the Australia Group, the Missile Technology Control Regime, the Nuclear Suppliers Group, the Wassenaar Arrangement and the Chemical Weapons Convention.

(3)

The list of dual-use items set out in Annex I to Regulation (EC) No 428/2009 needs to be updated regularly so as to ensure full compliance with international security obligations, to guarantee transparency, and to maintain the competitiveness of exporters. In order to facilitate references for export control authorities and operators, an updated and consolidated version of Annex I to Regulation (EC) No 428/2009 should be published.

(4)

Regulation (EC) No 428/2009 empowers the Commission to update the list of dual-use items set out in Annex I by means of delegated acts, in conformity with the relevant obligations and commitments, and any modifications thereto, that Member States have accepted as members of the international non-proliferation regimes and export control arrangements, or by ratification of relevant international treaties.

(5)

Regulation (EC) No 428/2009 should therefore be amended accordingly,

HAS ADOPTED THIS REGULATION:

Article 1

Annex I to Regulation (EC) No 428/2009 is replaced by the text set out in the Annex to this Regulation.

Article 2

This Regulation shall enter into force on the day following that of its publication in the Official Journal of the European Union.

This Regulation shall be binding in its entirety and directly applicable in all Member States.

Done at Brussels, 22 October 2014.

For the Commission

The President

José Manuel BARROSO


(1)  OJ L 134, 29.5.2009, p. 1.


ANNEX

‘ANNEX I

List referred to in Article 3 of this Regulation

LIST OF DUAL-USE ITEMS

This list implements internationally agreed dual-use controls including the Wassenaar Arrangement, the Missile Technology Control Regime (MTCR), the Nuclear Suppliers' Group (NSG), the Australia Group and the Chemical Weapons Convention (CWC).

CONTENTS

Notes

Acronyms and abbreviations

Definitions

Category 0

Nuclear materials, facilities and equipment

Category 1

Special materials and related equipment

Category 2

Materials processing

Category 3

Electronics

Category 4

Computers

Category 5

Telecommunications and “information security”

Category 6

Sensors and lasers

Category 7

Navigation and avionics

Category 8

Marine

Category 9

Aerospace and propulsion

GENERAL NOTES TO ANNEX I

1.

For control of goods which are designed or modified for military use, see the relevant list(s) of controls on military goods maintained by individual Member States. References in this Annex that state “SEE ALSO MILITARY GOODS CONTROLS” refer to the same lists.

2.

The object of the controls contained in this Annex should not be defeated by the export of any non-controlled goods (including plant) containing one or more controlled components when the controlled component or components are the principal element of the goods and can feasibly be removed or used for other purposes.

N.B.: In judging whether the controlled component or components are to be considered the principal element, it is necessary to weigh the factors of quantity, value and technological know-how involved and other special circumstances which might establish the controlled component or components as the principal element of the goods being procured.

3.

Goods specified in this Annex include both new and used goods.

4.

In some instances chemicals are listed by name and CAS number. The list applies to chemicals of the same structural formula (including hydrates) regardless of name or CAS number. CAS numbers are shown to assist in identifying a particular chemical or mixture, irrespective of nomenclature. CAS numbers cannot be used as unique identifiers because some forms of the listed chemical have different CAS numbers, and mixtures containing a listed chemical may also have different CAS numbers.

NUCLEAR TECHNOLOGY NOTE (NTN)

(To be read in conjunction with section E of Category 0.)

The “technology” directly associated with any goods controlled in Category 0 is controlled according to the provisions of Category 0.

“Technology” for the “development”, “production” or “use” of goods under control remains under control even when applicable to non-controlled goods.

The approval of goods for export also authorizes the export to the same end-user of the minimum “technology” required for the installation, operation, maintenance and repair of the goods.

Controls on “technology” transfer do not apply to information “in the public domain” or to “basic scientific research”.

GENERAL TECHNOLOGY NOTE (GTN)

(To be read in conjunction with section E of Categories 1 to 9.)

The export of “technology” which is “required” for the “development”, “production” or “use” of goods controlled in Categories 1 to 9, is controlled according to the provisions of Categories 1 to 9.

“Technology”“required” for the “development”, “production” or “use” of goods under control remains under control even when applicable to non-controlled goods.

Controls do not apply to that “technology” which is the minimum necessary for the installation, operation, maintenance (checking) or repair of those goods which are not controlled or whose export has been authorised.

N.B.: This does not release such “technology” specified in 1E002.e., 1E002.f., 8E002.a. and 8E002.b.

Controls on “technology” transfer do not apply to information “in the public domain”, to “basic scientific research” or to the minimum necessary information for patent applications.

GENERAL SOFTWARE NOTE (GSN)

(This note overrides any control within section D of Categories 0 to 9.)

Categories 0 to 9 of this list do not control “software” which is any of the following:

a.

Generally available to the public by being:

1.

Sold from stock at retail selling points, without restriction, by means of:

a.

Over-the-counter transactions;

b.

Mail order transactions;

c.

Electronic transactions; or

d.

Telephone call transactions; and

2.

Designed for installation by the user without further substantial support by the supplier;

N.B.: Entry a. of the General Software Note does not release “software” specified in Category 5 — Part 2 (“Information Security”).

b.

“In the public domain”; or

c.

The minimum necessary “object code” for the installation, operation, maintenance (checking) or repair of those items whose export has been authorised.

N.B.: Entry c. of the General Software Note does not release “software” specified in Category 5 — Part 2 (“Information Security”).

EDITORIAL PRACTICES IN THE OFFICIAL JOURNAL OF THE EUROPEAN UNION

In accordance with the rules set out in paragraph 6.5 on page 108 of the Interinstitutional style guide (2011 edition), for texts in English published in the Official Journal of the European Union:

a comma is used to separate whole number from decimals (e.g. 3,67 cm),

a space is used to indicate thousands in whole numbers (e.g. 100 000).

The text reproduced in this annex follows the above-described practice.

ACRONYMS AND ABBREVIATIONS USED IN THIS ANNEX

An acronym or abbreviation, when used as a defined term, will be found in ‘Definitions of Terms used in this Annex’.

ACRONYM OR ABBREVIATION

MEANING

ABEC

Annular Bearing Engineers Committee

AGMA

American Gear Manufacturers' Association

AHRS

attitude and heading reference systems

AISI

American Iron and Steel Institute

ALU

arithmetic logic unit

ANSI

American National Standards Institute

ASTM

the American Society for Testing and Materials

ATC

air traffic control

AVLIS

atomic vapour laser isotope separation

CAD

computer-aided-design

CAS

Chemical Abstracts Service

CDU

control and display unit

CEP

circular error probable

CNTD

controlled nucleation thermal deposition

CRISLA

chemical reaction by isotope selective laser activation

CVD

chemical vapour deposition

CW

chemical warfare

CW (for lasers)

continuous wave

DME

distance measuring equipment

DS

directionally solidified

EB-PVD

electron beam physical vapour deposition

EBU

European Broadcasting Union

ECM

electro-chemical machining

ECR

electron cyclotron resonance

EDM

electrical discharge machines

EEPROMS

electrically erasable programmable read only memory

EIA

Electronic Industries Association

EMC

electromagnetic compatibility

ETSI

European Telecommunications Standards Institute

FFT

Fast Fourier Transform

GLONASS

global navigation satellite system

GPS

global positioning system

HBT

hetero-bipolar transistors

HDDR

high density digital recording

HEMT

high electron mobility transistors

ICAO

International Civil Aviation Organisation

IEC

International Electro-technical Commission

IEEE

Institute of Electrical and Electronic Engineers

IFOV

instantaneous-field-of-view

ILS

instrument landing system

IRIG

inter-range instrumentation group

ISA

international standard atmosphere

ISAR

inverse synthetic aperture radar

ISO

International Organization for Standardization

ITU

International Telecommunication Union

JIS

Japanese Industrial Standard

JT

Joule-Thomson

LIDAR

light detection and ranging

LRU

line replaceable unit

MAC

message authentication code

Mach

ratio of speed of an object to speed of sound (after Ernst Mach)

MLIS

molecular laser isotopic separation

MLS

microwave landing systems

MOCVD

metal organic chemical vapour deposition

MRI

magnetic resonance imaging

MTBF

mean-time-between-failures

Mtops

million theoretical operations per second

MTTF

mean-time-to-failure

NBC

Nuclear, Biological and Chemical

NDT

non-destructive test

PAR

precision approach radar

PIN

personal identification number

ppm

parts per million

PSD

power spectral density

QAM

quadrature-amplitude-modulation

RF

radio frequency

SACMA

Suppliers of Advanced Composite Materials Association

SAR

synthetic aperture radar

SC

single crystal

SLAR

sidelooking airborne radar

SMPTE

Society of Motion Picture and Television Engineers

SRA

shop replaceable assembly

SRAM

static random access memory

SRM

SACMA Recommended Methods

SSB

single sideband

SSR

secondary surveillance radar

TCSEC

trusted computer system evaluation criteria

TIR

total indicated reading

UV

ultraviolet

UTS

ultimate tensile strength

VOR

very high frequency omni-directional range

YAG

yttrium/aluminium garnet

DEFINITIONS OF TERMS USED IN THIS ANNEX

Definitions of terms between ‘single quotation marks’ are given in a Technical Note to the relevant item.

Definitions of terms between “double quotation marks” are as follows:

N.B.: Category references are given in brackets after the defined term.

“Accuracy” (2 6), usually measured in terms of inaccuracy, means the maximum deviation, positive or negative, of an indicated value from an accepted standard or true value.

“Active flight control systems” (7) are systems that function to prevent undesirable “aircraft” and missile motions or structural loads by autonomously processing outputs from multiple sensors and then providing necessary preventive commands to effect automatic control.

“Active pixel” (6 8) is a minimum (single) element of the solid state array which has a photoelectric transfer function when exposed to light (electromagnetic) radiation.

“Adapted for use in war” (1) means any modification or selection (such as altering purity, shelf life, virulence, dissemination characteristics, or resistance to UV radiation) designed to increase the effectiveness in producing casualties in humans or animals, degrading equipment or damaging crops or the environment.

“Adjusted Peak Performance” (4) is an adjusted peak rate at which “digital computers” perform 64-bit or larger floating point additions and multiplications, and is expressed in Weighted TeraFLOPS (WT) with units of 1012 adjusted floating point operations per second.

N.B.: See Category 4, Technical Note.

“Aircraft” (1 7 9) means a fixed wing, swivel wing, rotary wing (helicopter), tilt rotor or tilt-wing airborne vehicle.

N.B.: See also “civil aircraft”.

“Airship” (9) means a power-driven airborne vehicle that is kept buoyant by a body of gas (usually helium, formerly hydrogen) which is lighter than air.

“All compensations available” (2) means after all feasible measures available to the manufacturer to minimise all systematic positioning errors for the particular machine-tool model or measuring errors for the particular coordinate measuring machine are considered.

“Allocated by the ITU” (3 5) means the allocation of frequency bands according to the current edition of the ITU Radio Regulations for primary, permitted and secondary services.

N.B.: Additional and alternative allocations are not included.

“Angular position deviation” (2) means the maximum difference between angular position and the actual, very accurately measured angular position after the workpiece mount of the table has been turned out of its initial position

“Angle random walk” (7) means the angular error build up with time that is due to white noise in angular rate. (IEEE STD 528-2001)

“APP” (4) is equivalent to “Adjusted Peak Performance”.

“Asymmetric algorithm” (5) means a cryptographic algorithm using different, mathematically-related keys for encryption and decryption.

N.B.: A common use of “asymmetric algorithms” is key management.

“Automatic target tracking” (6) means a processing technique that automatically determines and provides as output an extrapolated value of the most probable position of the target in real time.

“Average output power” (6) means the total “laser” output energy, in joules, divided by the period over which a series of consecutive pulses is emitted, in seconds. For a series of uniformly spaced pulses it is equal to the total “laser” output energy in a single pulse, in joules, multiplied by the pulse frequency of the “laser”, in Hertz.

“Basic gate propagation delay time” (3) means the propagation delay time value corresponding to the basic gate used in a “monolithic integrated circuit”. For a ‘family’ of “monolithic integrated circuits”, this may be specified either as the propagation delay time per typical gate within the given ‘family’ or as the typical propagation delay time per gate within the given ‘family’.

N.B. 1: “Basic gate propagation delay time” is not to be confused with the input/output delay time of a complex “monolithic integrated circuit”.

N.B. 2: ‘Family’ consists of all integrated circuits to which all of the following are applied as their manufacturing methodology and specifications except their respective functions:

a.

The common hardware and software architecture;

b.

The common design and process technology; and

c.

The common basic characteristics.

“Basic scientific research” (GTN NTN) means experimental or theoretical work undertaken principally to acquire new knowledge of the fundamental principles of phenomena or observable facts, not primarily directed towards a specific practical aim or objective.

“Bias” (accelerometer) (7) means the average over a specified time of accelerometer output, measured at specified operating conditions, that has no correlation with input acceleration or rotation. “Bias” is expressed in g or in metres per second squared (g or m/s2). (IEEE Std 528-2001) (Micro g equals 1 × 10-6 g).

“Bias” (gyro) (7) means the average over a specified time of gyro output measured at specified operating conditions that has no correlation with input rotation or acceleration. “Bias” is typically expressed in degrees per hour (deg/hr). (IEEE Std 528-2001).

“Camming” (2) means axial displacement in one revolution of the main spindle measured in a plane perpendicular to the spindle faceplate, at a point next to the circumference of the spindle faceplate (Reference: ISO 230/1 1986, paragraph 5.63).

“Carbon fibre preforms” (1) means an ordered arrangement of uncoated or coated fibres intended to constitute a framework of a part before the “matrix” is introduced to form a “composite”.

“CEP” (circle of equal probability) (7) is a measure of accuracy; the radius of the circle centred at the target, at a specific range, in which 50 % of the payloads impact.

“Chemical laser” (6) means a “laser” in which the excited species is produced by the output energy from a chemical reaction.

“Chemical mixture” (1) means a solid, liquid or gaseous product made up of two or more components which do not react together under the conditions under which the mixture is stored.

“Circulation-controlled anti-torque or circulation controlled direction control systems” (7) are systems that use air blown over aerodynamic surfaces to increase or control the forces generated by the surfaces.

“Civil aircraft” (1 3 4 7) means those “aircraft” listed by designation in published airworthiness certification lists by the civil aviation authorities to fly commercial civil internal and external routes or for legitimate civil, private or business use.

N.B.: See also “aircraft”.

“Commingled” (1) means filament to filament blending of thermoplastic fibres and reinforcement fibres in order to produce a fibre reinforcement “matrix” mix in total fibre form.

“Comminution” (1) means a process to reduce a material to particles by crushing or grinding.

“Communications channel controller” (4) means the physical interface which controls the flow of synchronous or asynchronous digital information. It is an assembly that can be integrated into computer or telecommunications equipment to provide communications access.

“Compensation systems” (6) consist of the primary scalar sensor, one or more reference sensors (e.g., vector magnetometers) together with software that permit reduction of rigid body rotation noise of the platform.

“Composite” (1 2 6 8 9) means a “matrix” and an additional phase or additional phases consisting of particles, whiskers, fibres or any combination thereof, present for a specific purpose or purposes.

“Compound rotary table” (2) means a table allowing the workpiece to rotate and tilt about two non-parallel axes, which can be coordinated simultaneously for “contouring control”.

“III/V compounds” (3 6) means polycrystalline or binary or complex monocrystalline products consisting of elements of groups IIIA and VA of Mendeleyev's periodic classification table (e.g., gallium arsenide, gallium-aluminium arsenide, indium phosphide).

“Contouring control” (2) means two or more “numerically controlled” motions operating in accordance with instructions that specify the next required position and the required feed rates to that position. These feed rates are varied in relation to each other so that a desired contour is generated (ref. ISO/DIS 2806 - 1980).

“Critical temperature” (1 3 5) (sometimes referred to as the transition temperature) of a specific “superconductive” material means the temperature at which the material loses all resistance to the flow of direct electrical current.

“Cryptographic activation” (5) means any technique that activates or enables cryptographic capability, via a secure mechanism that is implemented by the manufacturer of the item and is uniquely bound to the item or customer for which the cryptographic capability is being activated or enabled (e.g., a serial number-based licence key or an authentication instrument such as a digitally signed certificate).

Technical Note:

“Cryptographic activation” techniques and mechanisms may be implemented as hardware, “software” or “technology”.

“Cryptography” (5) means the discipline which embodies principles, means and methods for the transformation of data in order to hide its information content, prevent its undetected modification or prevent its unauthorized use. “Cryptography” is limited to the transformation of information using one or more ‘secret parameters’ (e.g., crypto variables) or associated key management.

Note: “Cryptography” does not include “fixed” data compression or coding techniques.

Technical Note:

‘Secret parameter’: a constant or key kept from the knowledge of others or shared only within a group.

“CW laser” (6) means a “laser” that produces a nominally constant output energy for greater than 0,25 seconds.

“Data-Based Referenced Navigation” (“DBRN”) (7) Systems means systems which use various sources of previously measured geo-mapping data integrated to provide accurate navigation information under dynamic conditions. Data sources include bathymetric maps, stellar maps, gravity maps, magnetic maps or 3-D digital terrain maps.

“Deformable mirrors” (6) (also known as adaptive optic mirrors) means mirrors having:

a.

A single continuous optical reflecting surface which is dynamically deformed by the application of individual torques or forces to compensate for distortions in the optical waveform incident upon the mirror; or

b.

Multiple optical reflecting elements that can be individually and dynamically repositioned by the application of torques or forces to compensate for distortions in the optical waveform incident upon the mirror.

“Depleted uranium” (0) means uranium depleted in the isotope 235 below that occurring in nature.

“Development” (GTN NTN All) is related to all phases prior to serial production, such as: design, design research, design analyses, design concepts, assembly and testing of prototypes, pilot production schemes, design data, process of transforming design data into a product, configuration design, integration design, layouts.

“Diffusion bonding” (1 2 9) means a solid state joining of at least two separate pieces of metals into a single piece with a joint strength equivalent to that of the weakest material, wherein the principal mechanism is interdiffusion of atoms across the interface.

“Digital computer” (4 5) means equipment which can, in the form of one or more discrete variables, perform all of the following:

a.

Accept data;

b.

Store data or instructions in fixed or alterable (writable) storage devices;

c.

Process data by means of a stored sequence of instructions which is modifiable; and

d.

Provide output of data.

N.B.: Modifications of a stored sequence of instructions include replacement of fixed storage devices, but not a physical change in wiring or interconnections.

“Digital transfer rate” (def) means the total bit rate of the information that is directly transferred on any type of medium.

N.B.: See also “total digital transfer rate”.

“Direct-acting hydraulic pressing” (2) means a deformation process which uses a fluid-filled flexible bladder in direct contact with the workpiece.

“Drift rate” (gyro) (7) means the component of gyro output that is functionally independent of input rotation. It is expressed as an angular rate. (IEEE STD 528-2001).

“Effective gramme” (0 1) of “special fissile material” means:

a.

For plutonium isotopes and uranium-233, the isotope weight in grammes;

b.

For uranium enriched 1 per cent or greater in the isotope uranium-235, the element weight in grammes multiplied by the square of its enrichment expressed as a decimal weight fraction;

c.

For uranium enriched below 1 per cent in the isotope uranium-235, the element weight in grammes multiplied by 0,0001;

“Electronic assembly” (2 3 4 5) means a number of electronic components (i.e., ‘circuit elements’, ‘discrete components’, integrated circuits, etc.) connected together to perform (a) specific function(s), replaceable as an entity and normally capable of being disassembled.

N.B. 1: ‘Circuit element’: a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc.

N.B. 2: ‘Discrete component’: a separately packaged ‘circuit element’ with its own external connections.

“Electronically steerable phased array antenna” (5 6) means an antenna which forms a beam by means of phase coupling, i.e., the beam direction is controlled by the complex excitation coefficients of the radiating elements and the direction of that beam can be varied in azimuth or in elevation, or both, by application, both in transmission and reception, of an electrical signal.

“Energetic materials” (1) means substances or mixtures that react chemically to release energy required for their intended application. “Explosives”, “pyrotechnics” and “propellants” are subclasses of energetic materials.

“End-effectors” (2) means grippers, ‘active tooling units’ and any other tooling that is attached to the baseplate on the end of a “robot” manipulator arm.

N.B.: ‘Active tooling unit’ means a device for applying motive power, process energy or sensing to the workpiece.

“Equivalent Density” (6) means the mass of an optic per unit optical area projected onto the optical surface.

“Explosives” (1) means solid, liquid or gaseous substances or mixtures of substances which, in their application as primary, booster, or main charges in warheads, demolition and other applications, are required to detonate.

“FADEC Systems” (7 9) means Full Authority Digital Engine Control Systems – A digital electronic control system for a gas turbine engine that is able to autonomously control the engine throughout its whole operating range from demanded engine start until demanded engine shut-down, in both normal and fault conditions.

“Fibrous or filamentary materials” (0 1 8) include:

a.

Continuous “monofilaments”;

b.

Continuous “yarns” and “rovings”;

c.

“Tapes”, fabrics, random mats and braids;

d.

Chopped fibres, staple fibres and coherent fibre blankets;

e.

Whiskers, either monocrystalline or polycrystalline, of any length;

f.

Aromatic polyamide pulp.

“Film type integrated circuit” (3) means an array of ‘circuit elements’ and metallic interconnections formed by deposition of a thick or thin film on an insulating “substrate”.

N.B.: ‘Circuit element’ is a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc.

“Fixed” (5) means that the coding or compression algorithm cannot accept externally supplied parameters (e.g., cryptographic or key variables) and cannot be modified by the user.

“Flight control optical sensor array” (7) is a network of distributed optical sensors, using “laser” beams, to provide real-time flight control data for on-board processing.

“Flight path optimisation” (7) is a procedure that minimizes deviations from a four-dimensional (space and time) desired trajectory based on maximizing performance or effectiveness for mission tasks.

“Focal plane array” (6 8) means a linear or two-dimensional planar layer, or combination of planar layers, of individual detector elements, with or without readout electronics, which work in the focal plane.

N.B.: This is not intended to include a stack of single detector elements or any two, three or four element detectors provided time delay and integration is not performed within the element.

“Fractional bandwidth” (3 5) means the “instantaneous bandwidth” divided by the centre frequency, expressed as a percentage.

“Frequency hopping” (5) means a form of “spread spectrum” in which the transmission frequency of a single communication channel is made to change by a random or pseudo-random sequence of discrete steps.

“Frequency mask trigger” (3) for “signal analysers” is a mechanism where the trigger function is able to select a frequency range to be triggered on as a subset of the acquisition bandwidth while ignoring other signals that may also be present within the same acquisition bandwidth. A “frequency mask trigger” may contain more than one independent set of limits.

“Frequency switching time” (3) means the time (i.e., delay) taken by a signal when switched from an initial specified output frequency, to arrive at or within ± 0,05 % of a final specified output frequency. Items having a specified frequency range of less than ± 0,05 % around their centre frequency are defined to be incapable of frequency switching.

“Frequency synthesiser” (3) means any kind of frequency source, regardless of the actual technique used, providing a multiplicity of simultaneous or alternative output frequencies, from one or more outputs, controlled by, derived from or disciplined by a lesser number of standard (or master) frequencies.

“Fuel cell” (8) is an electrochemical device that converts chemical energy directly into Direct Current (DC) electricity by consuming fuel from an external source.

“Fusible” (1) means capable of being cross-linked or polymerized further (cured) by the use of heat, radiation, catalysts, etc., or that can be melted without pyrolysis (charring).

“Gas Atomisation” (1) means a process to reduce a molten stream of metal alloy to droplets of 500 micrometre diameter or less by a high pressure gas stream.

“Geographically dispersed” (6) is where each location is distant from any other more than 1 500 m in any direction. Mobile sensors are always considered “geographically dispersed”.

“Guidance set” (7) means systems that integrate the process of measuring and computing a vehicles position and velocity (i.e. navigation) with that of computing and sending commands to the vehicles flight control systems to correct the trajectory.

“Hot isostatic densification” (2) means the process of pressurising a casting at temperatures exceeding 375 K (102 °C) in a closed cavity through various media (gas, liquid, solid particles, etc.) to create equal force in all directions to reduce or eliminate internal voids in the casting.

“Hybrid integrated circuit” (3) means any combination of integrated circuit(s), or integrated circuit with ‘circuit elements’ or ‘discrete components’ connected together to perform (a) specific function(s), and having all of the following characteristics:

a.

Containing at least one unencapsulated device;

b.

Connected together using typical IC production methods;

c.

Replaceable as an entity; and

d.

Not normally capable of being disassembled.

N.B. 1: ‘Circuit element’: a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc.

N.B. 2: ‘Discrete component’: a separately packaged ‘circuit element’ with its own external connections.

“Image enhancement” (4) means the processing of externally derived information-bearing images by algorithms such as time compression, filtering, extraction, selection, correlation, convolution or transformations between domains (e.g., fast Fourier transform or Walsh transform). This does not include algorithms using only linear or rotational transformation of a single image, such as translation, feature extraction, registration or false coloration.

“Immunotoxin” (1) is a conjugate of one cell specific monoclonal antibody and a “toxin” or “sub-unit of toxin”, that selectively affects diseased cells.

“In the public domain” (GTN NTN GSN), as it applies herein, means “technology” or “software” which has been made available without restrictions upon its further dissemination (copyright restrictions do not remove “technology” or “software” from being “in the public domain”).

“Information security” (4 5) is all the means and functions ensuring the accessibility, confidentiality or integrity of information or communications, excluding the means and functions intended to safeguard against malfunctions. This includes “cryptography”, “cryptographic activation”, ‘cryptanalysis’, protection against compromising emanations and computer security.

N.B.: ‘Cryptanalysis’: analysis of a cryptographic system or its inputs and outputs to derive confidential variables or sensitive data, including clear text.

“Instantaneous bandwidth” (3 5 7) means the bandwidth over which output power remains constant within 3 dB without adjustment of other operating parameters.

“Instrumented range” (6) means the specified unambiguous display range of a radar.

“Insulation” (9) is applied to the components of a rocket motor, i.e. the case, nozzle, inlets, case closures, and includes cured or semi-cured compounded rubber sheet stock containing an insulating or refractory material. It may also be incorporated as stress relief boots or flaps.

“Interior lining” (9) is suited for the bond interface between the solid propellant and the case or insulating liner. Usually a liquid polymer based dispersion of refractory or insulating materials, e.g. carbon filled hydroxyl terminated polybutadiene (HTPB) or other polymer with added curing agents sprayed or screeded over a case interior.

“Intrinsic Magnetic Gradiometer” (6) is a single magnetic field gradient sensing element and associated electronics the output of which is a measure of magnetic field gradient.

N.B.: See also “magnetic gradiometer”.

“Intrusion software” (4) means “software” specially designed or modified to avoid detection by ‘monitoring tools’, or to defeat ‘protective countermeasures’, of a computer or network-capable device, and performing any of the following:

a.

The extraction of data or information, from a computer or network-capable device, or the modification of system or user data; or

b.

The modification of the standard execution path of a program or process in order to allow the execution of externally provided instructions.

Notes:

1.

“Intrusion software” does not include any of the following:

a.

Hypervisors, debuggers or Software Reverse Engineering (SRE) tools;

b.

Digital Rights Management (DRM) “software”; or

c.

“Software” designed to be installed by manufacturers, administrators or users, for the purposes of asset tracking or recovery.

2.

Network-capable devices include mobile devices and smart meters.

Technical Notes:

1.

‘Monitoring tools’: “software” or hardware devices, that monitor system behaviours or processes running on a device. This includes antivirus (AV) products, end point security products, Personal Security Products (PSP), Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS) or firewalls.

2.

‘Protective countermeasures’: techniques designed to ensure the safe execution of code, such as Data Execution Prevention (DEP), Address Space Layout Randomisation (ASLR) or sandboxing.

“Isolated live cultures” (1) includes live cultures in dormant form and in dried preparations.

“Isostatic presses” (2) mean equipment capable of pressurising a closed cavity through various media (gas, liquid, solid particles, etc.) to create equal pressure in all directions within the cavity upon a workpiece or material.

“Laser” (0 2 3 5 6 7 8 9) is an assembly of components which produce both spatially and temporally coherent light that is amplified by stimulated emission of radiation.

N.B.: See also:

“Chemical laser”;

“Super High Power Laser”;

“Transfer laser”.

“Lighter-than-air vehicles” (9) means balloons and airships that rely on hot air or other lighter-than-air gases such as helium or hydrogen for their lift.

“Linearity” (2) (usually measured in terms of non-linearity) means the maximum deviation of the actual characteristic (average of upscale and downscale readings), positive or negative, from a straight line so positioned as to equalise and minimise the maximum deviations.

“Local area network” (4 5) is a data communication system having all of the following characteristics:

a.

Allows an arbitrary number of independent ‘data devices’ to communicate directly with each other; and

b.

Is confined to a geographical area of moderate size (e.g., office building, plant, campus, warehouse).

N.B.: ‘Data device’ means equipment capable of transmitting or receiving sequences of digital information.

“Magnetic Gradiometers” (6) are instruments designed to detect the spatial variation of magnetic fields from sources external to the instrument. They consist of multiple “magnetometers” and associated electronics the output of which is a measure of magnetic field gradient.

N.B.: See also “intrinsic magnetic gradiometer”.

“Magnetometers” (6) are instruments designed to detect magnetic fields from sources external to the instrument. They consist of a single magnetic field sensing element and associated electronics the output of which is a measure of the magnetic field.

“Main storage” (4) means the primary storage for data or instructions for rapid access by a central processing unit. It consists of the internal storage of a “digital computer” and any hierarchical extension thereto, such as cache storage or non-sequentially accessed extended storage.

“Materials resistant to corrosion by UF6” (0) include copper, copper alloys, stainless steel, aluminium, aluminium oxide, aluminium alloys, nickel or alloys containing 60 % or more nickel by weight and fluorinated hydrocarbon polymers.

“Matrix” (1 2 8 9) means a substantially continuous phase that fills the space between particles, whiskers or fibres.

“Measurement uncertainty” (2) is the characteristic parameter which specifies in what range around the output value the correct value of the measurable variable lies with a confidence level of 95 %. It includes the uncorrected systematic deviations, the uncorrected backlash and the random deviations (ref. ISO 10360-2).

“Mechanical Alloying” (1) means an alloying process resulting from the bonding, fracturing and rebonding of elemental and master alloy powders by mechanical impact. Non-metallic particles may be incorporated in the alloy by addition of the appropriate powders.

“Melt Extraction” (1) means a process to ‘solidify rapidly’ and extract a ribbon-like alloy product by the insertion of a short segment of a rotating chilled block into a bath of a molten metal alloy.

N.B.: ‘Solidify rapidly’: solidification of molten material at cooling rates exceeding 1 000 K/s.

“Melt Spinning” (1) means a process to ‘solidify rapidly’ a molten metal stream impinging upon a rotating chilled block, forming a flake, ribbon or rod-like product.

N.B.: ‘Solidify rapidly’: solidification of molten material at cooling rates exceeding 1 000 K/s.

“Microcomputer microcircuit” (3) means a “monolithic integrated circuit” or “multichip integrated circuit” containing an arithmetic logic unit (ALU) capable of executing general purpose instructions from an internal storage, on data contained in the internal storage.

N.B.: The internal storage may be augmented by an external storage.

“Microprocessor microcircuit” (3) means a “monolithic integrated circuit” or “multichip integrated circuit” containing an arithmetic logic unit (ALU) capable of executing a series of general purpose instructions from an external storage.

N.B. 1: The “microprocessor microcircuit” normally does not contain integral user-accessible storage, although storage present on-the-chip may be used in performing its logic function.

N.B. 2: This includes chip sets which are designed to operate together to provide the function of a “microprocessor microcircuit”.

“Microorganisms” (1 2) means bacteria, viruses, mycoplasms, rickettsiae, chlamydiae or fungi, whether natural, enhanced or modified, either in the form of “isolated live cultures” or as material including living material which has been deliberately inoculated or contaminated with such cultures.

“Missiles” (1 3 6 7 9) means complete rocket systems and unmanned aerial vehicle systems, capable of delivering at least 500 kg payload to a range of at least 300 km.

“Monofilament” (1) or filament is the smallest increment of fibre, usually several micrometres in diameter.

“Monolithic integrated circuit” (3) means a combination of passive or active ‘circuit elements’ or both which:

a.

Are formed by means of diffusion processes, implantation processes or deposition processes in or on a single semiconducting piece of material, a so-called ‘chip’;

b.

Can be considered as indivisibly associated; and

c.

Perform the function(s) of a circuit.

N.B.: ‘Circuit element’ is a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc.

“Monospectral imaging sensors” (6) are capable of acquisition of imaging data from one discrete spectral band.

“Multichip integrated circuit” (3) means two or more “monolithic integrated circuits” bonded to a common “substrate”.

“Multispectral imaging sensors” (6) are capable of simultaneous or serial acquisition of imaging data from two or more discrete spectral bands. Sensors having more than twenty discrete spectral bands are sometimes referred to as hyperspectral imaging sensors.

“Natural uranium” (0) means uranium containing the mixtures of isotopes occurring in nature.

“Network access controller” (4) means a physical interface to a distributed switching network. It uses a common medium which operates throughout at the same “digital transfer rate” using arbitration (e.g., token or carrier sense) for transmission. Independently from any other, it selects data packets or data groups (e.g., IEEE 802) addressed to it. It is an assembly that can be integrated into computer or telecommunications equipment to provide communications access.

“Neural computer” (4) means a computational device designed or modified to mimic the behaviour of a neuron or a collection of neurons, i.e., a computational device which is distinguished by its hardware capability to modulate the weights and numbers of the interconnections of a multiplicity of computational components based on previous data.

“Nuclear reactor” (0) means a complete reactor capable of operation so as to maintain a controlled self-sustaining fission chain reaction. A “nuclear reactor” includes all the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the components which normally contain, come into direct contact with or control the primary coolant of the reactor core.

“Numerical control” (2) means the automatic control of a process performed by a device that makes use of numeric data usually introduced as the operation is in progress (ref. ISO 2382).

“Object code” (GSN) means an equipment executable form of a convenient expression of one or more processes (“source code” (source language)) which has been compiled by programming system.

“Optical amplification” (5), in optical communications, means an amplification technique that introduces a gain of optical signals that have been generated by a separate optical source, without conversion to electrical signals, i.e., using semiconductor optical amplifiers, optical fibre luminescent amplifiers.

“Optical computer” (4) means a computer designed or modified to use light to represent data and whose computational logic elements are based on directly coupled optical devices.

“Optical integrated circuit” (3) means a “monolithic integrated circuit” or a “hybrid integrated circuit”, containing one or more parts designed to function as a photosensor or photoemitter or to perform (an) optical or (an) electro-optical function(s).

“Optical switching” (5) means the routing of or switching of signals in optical form without conversion to electrical signals.

“Overall current density” (3) means the total number of ampere-turns in the coil (i.e., the sum of the number of turns multiplied by the maximum current carried by each turn) divided by the total cross-section of the coil (comprising the superconducting filaments, the metallic matrix in which the superconducting filaments are embedded, the encapsulating material, any cooling channels, etc.).

“Participating state” (7 9) is a state participating in the Wassenaar Arrangement. (See www.wassenaar.org)

“Peak power” (6) means the highest power attained in the “pulse duration”.

“Personal area network” (5) means a data communication system having all of the following characteristics:

a.

Allows an arbitrary number of independent or interconnected ‘data devices’ to communicate directly with each other; and

b.

Is confined to the communication between devices within the immediate vicinity of an individual person or device controller (e.g., single room, office, or automobile, and their nearby surrounding spaces).

Technical Note:

‘Data device’ means equipment capable of transmitting or receiving sequences of digital information.

“Power management” (7) means changing the transmitted power of the altimeter signal so that received power at the “aircraft” altitude is always at the minimum necessary to determine the altitude.

“Previously separated” (0 1) means the application of any process intended to increase the concentration of the controlled isotope.

“Primary flight control” (7) means an “aircraft” stability or manoeuvering control using force/moment generators, i.e., aerodynamic control surfaces or propulsive thrust vectoring.

“Principal element” (4), as it applies in Category 4, is a “principal element” when its replacement value is more than 35 % of the total value of the system of which it is an element. Element value is the price paid for the element by the manufacturer of the system, or by the system integrator. Total value is the normal international selling price to unrelated parties at the point of manufacture or consolidation of shipment.

“Production” (GTN NTN All) means all production phases, such as: construction, production engineering, manufacture, integration, assembly (mounting), inspection, testing, quality assurance.

“Production equipment” (1 7 9) means tooling, templates, jigs, mandrels, moulds, dies, fixtures, alignment mechanisms, test equipment, other machinery and components therefor, limited to those specially designed or modified for “development” or for one or more phases of “production”.

“Production facilities” (7 9) means “production equipment” and specially designed software therefor integrated into installations for “development” or for one or more phases of “production”.

“Programme” (2 6) means a sequence of instructions to carry out a process in, or convertible into, a form executable by an electronic computer.

“Pulse compression” (6) means the coding and processing of a radar signal pulse of long time duration to one of short time duration, while maintaining the benefits of high pulse energy.

“Pulse duration” (6) is the duration of a “laser” pulse and means the time between the half-power points on the leading edge and trailing edge of an individual pulse.

“Pulsed laser” (6) means a “laser” having a “pulse duration” that is less than or equal to 0,25 seconds.

“Quantum cryptography” (5) means a family of techniques for the establishment of shared key for “cryptography” by measuring the quantum-mechanical properties of a physical system (including those physical properties explicitly governed by quantum optics, quantum field theory or quantum electrodynamics).

“Radar frequency agility” (6) means any technique which changes, in a pseudo-random sequence, the carrier frequency of a pulsed radar transmitter between pulses or between groups of pulses by an amount equal to or larger than the pulse bandwidth.

“Radar spread spectrum” (6) means any modulation technique for spreading energy originating from a signal with a relatively narrow frequency band, over a much wider band of frequencies, by using random or pseudo-random coding.

“Radiant sensitivity” (6) is Radiant sensitivity (mA/W) = 0,807 × (wavelength in nm) × Quantum Efficiency (QE).

Technical Note:

QE is usually expressed as a percentage; however, for the purposes of this formula QE is expressed as a decimal number less than one, e.g., 78 % is 0,78.

“Real-time bandwidth” (3) for “signal analysers” is the widest frequency range for which the analyser can continuously transform time-domain data entirely into frequency-domain results, using a Fourier or other discrete time transformation that processes every incoming time point without gaps or windowing effects that causes a reduction of measured amplitude of more than 3 dB below the actual signal amplitude, while outputting or displaying the transformed data.

“Real time processing” (2 6 7) means the processing of data by a computer system providing a required level of service, as a function of available resources, within a guaranteed response time, regardless of the load of the system, when stimulated by an external event.

“Repeatability” (7) means the closeness of agreement among repeated measurements of the same variable under the same operating conditions when changes in conditions or non-operating periods occur between measurements. (Reference: IEEE STD 528-2001 (one sigma standard deviation))

“Required” (GTN 1-9), as applied to “technology”, refers to only that portion of “technology” which is peculiarly responsible for achieving or extending the controlled performance levels, characteristics or functions. Such “required”“technology” may be shared by different goods.

“Resolution” (2) means the least increment of a measuring device; on digital instruments, the least significant bit (ref. ANSI B-89.1.12).

“Riot control agent” (1) means substances which, under the expected conditions of use for riot control purposes, produce rapidly in humans sensory irritation or disabling physical effects which disappear within a short time following termination of exposure.

Technical Note:

Tear gases are a subset of “riot control agents”.

“Robot” (2 8) means a manipulation mechanism, which may be of the continuous path or of the point-to-point variety, may use sensors, and has all the following characteristics:

a.

Is multifunctional;

b.

Is capable of positioning or orienting material, parts, tools or special devices through variable movements in three dimensional space;

c.

Incorporates three or more closed or open loop servo-devices which may include stepping motors; and

d.

Has “user accessible programmability” by means of teach/playback method or by means of an electronic computer which may be a programmable logic controller, i.e., without mechanical intervention.

N.B.: The above definition does not include the following devices:

1.

Manipulation mechanisms which are only manually/teleoperator controllable;

2.

Fixed sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The programme is mechanically limited by fixed stops, such as pins or cams. The sequence of motions and the selection of paths or angles are not variable or changeable by mechanical, electronic or electrical means;

3.

Mechanically controlled variable sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The programme is mechanically limited by fixed, but adjustable stops, such as pins or cams. The sequence of motions and the selection of paths or angles are variable within the fixed programme pattern. Variations or modifications of the programme pattern (e.g., changes of pins or exchanges of cams) in one or more motion axes are accomplished only through mechanical operations;

4.

Non-servo-controlled variable sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The programme is variable but the sequence proceeds only by the binary signal from mechanically fixed electrical binary devices or adjustable stops;

5.

Stacker cranes defined as Cartesian coordinate manipulator systems manufactured as an integral part of a vertical array of storage bins and designed to access the contents of those bins for storage or retrieval.

“Rotary atomisation” (1) means a process to reduce a stream or pool of molten metal to droplets to a diameter of 500 micrometre or less by centrifugal force.

“Roving” (1) is a bundle (typically 12-120) of approximately parallel ‘strands’.

N.B.: ‘Strand’ is a bundle of “monofilaments” (typically over 200) arranged approximately parallel.

“Run-out” (2) (out-of-true running) means radial displacement in one revolution of the main spindle measured in a plane perpendicular to the spindle axis at a point on the external or internal revolving surface to be tested (Reference: ISO 230/1 1986, paragraph 5.61).

“Scale factor” (gyro or accelerometer) (7) means the ratio of change in output to a change in the input intended to be measured. Scale factor is generally evaluated as the slope of the straight line that can be fitted by the method of least squares to input-output data obtained by varying the input cyclically over the input range.

“Settling time” (3) means the time required for the output to come within one-half bit of the final value when switching between any two levels of the converter.

“SHPL” is equivalent to “super high power laser”.

“Signal analysers” (3) means apparatus capable of measuring and displaying basic properties of the single-frequency components of multi-frequency signals.

“Signal processing” (3 4 5 6) means the processing of externally derived information-bearing signals by algorithms such as time compression, filtering, extraction, selection, correlation, convolution or transformations between domains (e.g., fast Fourier transform or Walsh transform).

“Software” (GSN All) means a collection of one or more “programmes” or ‘microprogrammes’ fixed in any tangible medium of expression.

N.B.: ‘Microprogramme’ means a sequence of elementary instructions, maintained in a special storage, the execution of which is initiated by the introduction of its reference instruction into an instruction register.

“Source code” (or source language) (6 7 9) is a convenient expression of one or more processes which may be turned by a programming system into equipment executable form (“object code” (or object language)).

“Spacecraft” (7 9) means active and passive satellites and space probes.

“Space-qualified” (3 6 7) means designed, manufactured or qualified through successful testing, for operation at altitudes greater than 100 km above the surface of the Earth.

N.B.: A determination that a specific item is “Space-qualified” by virtue of testing does not mean that other items in the same production run or model series are “Space-qualified” if not individually tested.

“Special fissile material” (0) means plutonium-239, uranium-233, “uranium enriched in the isotopes 235 or 233”, and any material containing the foregoing.

“Specific modulus” (0 1 9) is Young's modulus in pascals, equivalent to N/m2 divided by specific weight in N/m3, measured at a temperature of (296 ± 2) K ((23 ± 2) °C) and a relative humidity of (50 ± 5) %.

“Specific tensile strength” (0 1 9) is ultimate tensile strength in pascals, equivalent to N/m2 divided by specific weight in N/m3, measured at a temperature of (296 ± 2) K ((23 ± 2) °C) and a relative humidity of (50 ± 5) %.

“Spinning mass gyros” (7) means gyros which use a continually rotating mass to sense angular motion.

“Splat Quenching” (1) means a process to ‘solidify rapidly’ a molten metal stream impinging upon a chilled block, forming a flake-like product.

N.B.: ‘Solidify rapidly’ solidification of molten material at cooling rates exceeding 1 000 K/s.

“Spread spectrum” (5) means the technique whereby energy in a relatively narrow-band communication channel is spread over a much wider energy spectrum.

“Spread spectrum” radar (6) - see “Radar spread spectrum”

“Stability” (7) means the standard deviation (1 sigma) of the variation of a particular parameter from its calibrated value measured under stable temperature conditions. This can be expressed as a function of time.

“States (not) Party to the Chemical Weapon Convention” (1) are those states for which the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons has (not) entered into force. (See www.opcw.org)

“Substrate” (3) means a sheet of base material with or without an interconnection pattern and on which or within which ‘discrete components’ or integrated circuits or both can be located.

N.B. 1: ‘Discrete component’: a separately packaged ‘circuit element’ with its own external connections.

N.B. 2: ‘Circuit element’: a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc.

“Substrate blanks” (3 6) means monolithic compounds with dimensions suitable for the production of optical elements such as mirrors or optical windows.

“Sub-unit of toxin” (1) is a structurally and functionally discrete component of a whole “toxin”.

“Superalloys” (2 9) means nickel-, cobalt- or iron-base alloys having strengths superior to any alloys in the AISI 300 series at temperatures over 922 K (649 °C) under severe environmental and operating conditions.

“Superconductive” (1 3 5 6 8) means materials, i.e., metals, alloys or compounds, which can lose all electrical resistance, i.e., which can attain infinite electrical conductivity and carry very large electrical currents without Joule heating.

N.B.: The “superconductive” state of a material is individually characterised by a “critical temperature”, a critical magnetic field, which is a function of temperature, and a critical current density which is, however, a function of both magnetic field and temperature.

“Super High Power Laser” (“SHPL”) (6) means a “laser” capable of delivering (the total or any portion of) the output energy exceeding 1 kJ within 50 ms or having an average or CW power exceeding 20 kW.

“Superplastic forming” (1 2) means a deformation process using heat for metals that are normally characterised by low values of elongation (less than 20 %) at the breaking point as determined at room temperature by conventional tensile strength testing, in order to achieve elongations during processing which are at least 2 times those values.

“Symmetric algorithm” (5) means a cryptographic algorithm using an identical key for both encryption and decryption.

N.B.: A common use of “symmetric algorithms” is confidentiality of data.

“System tracks” (6) means processed, correlated (fusion of radar target data to flight plan position) and updated aircraft flight position report available to the Air Traffic Control centre controllers.

“Systolic array computer” (4) means a computer where the flow and modification of the data is dynamically controllable at the logic gate level by the user.

“Tape” (1) is a material constructed of interlaced or unidirectional “monofilaments”, ‘strands’, “rovings”, “tows”, or “yarns”, etc., usually pre-impregnated with resin.

N.B.: ‘Strand’ is a bundle of “monofilaments” (typically over 200) arranged approximately parallel.

“Technology” (GTN NTN All) means specific information necessary for the “development”, “production” or “use” of goods. This information takes the form of ‘technical data’ or ‘technical assistance’.

N.B. 1: ‘Technical assistance’ may take forms such as instructions, skills, training, working knowledge and consulting services and may involve the transfer of ‘technical data’.

N.B. 2: ‘Technical data’ may take forms such as blueprints, plans, diagrams, models, formulae, tables, engineering designs and specifications, manuals and instructions written or recorded on other media or devices such as disk, tape, read-only memories.

“Three dimensional integrated circuit” (3) means a collection of semiconductor die, integrated together, and having vias passing completely through at least one die to establish interconnections between die.

“Tilting spindle” (2) means a tool-holding spindle which alters, during the machining process, the angular position of its centre line with respect to any other axis.

“Time constant” (6) is the time taken from the application of a light stimulus for the current increment to reach a value of 1-1/e times the final value (i.e., 63 % of the final value).

“Tip shroud” (9) means a stationary ring component (solid or segmented) attached to the inner surface of the engine turbine casing or a feature at the outer tip of the turbine blade, which primarily provides a gas seal between the stationary and rotating components.

“Total control of flight” (7) means an automated control of “aircraft” state variables and flight path to meet mission objectives responding to real time changes in data regarding objectives, hazards or other “aircraft”.

“Total digital transfer rate” (5) means the number of bits, including line coding, overhead and so forth per unit time passing between corresponding equipment in a digital transmission system.

N.B.: See also “digital transfer rate”.

“Tow” (1) is a bundle of “monofilaments”, usually approximately parallel.

“Toxins” (1 2) means toxins in the form of deliberately isolated preparations or mixtures, no matter how produced, other than toxins present as contaminants of other materials such as pathological specimens, crops, foodstuffs or seed stocks of “microorganisms”.

“Transfer laser” (6) means a “laser” in which the lasing species is excited through the transfer of energy by collision of a non-lasing atom or molecule with a lasing atom or molecule species.

“Tunable” (6) means the ability of a “laser” to produce a continuous output at all wavelengths over a range of several “laser” transitions. A line selectable “laser” produces discrete wavelengths within one “laser” transition and is not considered “tunable”.

“Unmanned Aerial Vehicle” (“UAV”) (9) means any aircraft capable of initiating flight and sustaining controlled flight and navigation without any human presence on board.

“Uranium enriched in the isotopes 235 or 233” (0) means uranium containing the isotopes 235 or 233, or both, in an amount such that the abundance ratio of the sum of these isotopes to the isotope 238 is more than the ratio of the isotope 235 to the isotope 238 occurring in nature (isotopic ratio 0,71 per cent).

“Use” (GTN NTN All) means operation, installation (including on-site installation), maintenance (checking), repair, overhaul and refurbishing.

“User accessible programmability” (6) means the facility allowing a user to insert, modify or replace “programmes” by means other than:

a.

A physical change in wiring or interconnections; or

b.

The setting of function controls including entry of parameters.

“Vaccine” (1) is a medicinal product in a pharmaceutical formulation licensed by, or having marketing or clinical trial authorisation from, the regulatory authorities of either the country of manufacture or of use, which is intended to stimulate a protective immunological response in humans or animals in order to prevent disease in those to whom or to which it is administered.

“Vacuum Atomisation” (1) means a process to reduce a molten stream of metal to droplets of a diameter of 500 micrometre or less by the rapid evolution of a dissolved gas upon exposure to a vacuum.

“Variable geometry airfoils” (7) means the use of trailing edge flaps or tabs, or leading edge slats or pivoted nose droop, the position of which can be controlled in flight.

“Yarn” (1) is a bundle of twisted ‘strands’.

N.B.: ‘Strand’ is a bundle of “monofilaments” (typically over 200) arranged approximately parallel.

CATEGORY 0 — NUCLEAR MATERIALS, FACILITIES, AND EQUIPMENT

0A   Systems, Equipment and Components

0A001

“Nuclear reactors” and specially designed or prepared equipment and components therefor, as follows:

a.

“Nuclear reactors”;

b.

Metal vessels, or major shop-fabricated parts therefor, including the reactor vessel head for a reactor pressure vessel, specially designed or prepared to contain the core of a “nuclear reactor”;

c.

Manipulative equipment specially designed or prepared for inserting or removing fuel in a “nuclear reactor”;

d.

Control rods specially designed or prepared for the control of the fission process in a “nuclear reactor”, support or suspension structures therefor, rod drive mechanisms and rod guide tubes;

e.

Pressure tubes specially designed or prepared to contain both fuel elements and the primary coolant in a “nuclear reactor”;

f.

Zirconium metal tubes or zirconium alloy tubes (or assembles of tubes) specially designed or prepared for use as fuel cladding in a “nuclear reactor”, and in quantities exceeding 10 kg;

N.B.: For zirconium pressure tubes see 0A001.e. and for calandria tubes see 0A001.h.

g.

Coolant pumps or circulators specially designed or prepared for circulating the primary coolant of “nuclear reactors”;

h.

‘Nuclear reactor internals’ specially designed or prepared for use in a “nuclear reactor”, including support columns for the core, fuel channels, calandria tubes, thermal shields, baffles, core grid plates, and diffuser plates;

Technical Note:

In 0A001.h. ‘nuclear reactor internals’ means any major structure within a reactor vessel which has one or more functions such as supporting the core, maintaining fuel alignment, directing primary coolant flow, providing radiation shields for the reactor vessel, and guiding in-core instrumentation.

i.

Heat exchangers as follows:

1.

Steam generators specially designed or prepared for the primary, or intermediate, coolant circuit of a “nuclear reactor”;

2.

Other heat exchangers specially designed or prepared for use in the primary coolant circuit of a “nuclear reactor”;

Note: 0A001.i. does not control heat exchangers for the supporting systems of the reactor, e.g., the emergency cooling system or the decay heat cooling system.

j.

Neutron detectors specially designed or prepared for determining neutron flux levels within the core of a “nuclear reactor”;

k.

‘External thermal shields’ specially designed or prepared for use in a “nuclear reactor” for the reduction of heat loss and also for the containment vessel protection.

Technical Note:

In 0A001.k. ‘external thermal shields’ means major structures placed over the reactor vessel which reduce heat loss from the reactor and reduce temperature within the containment vessel.

0B   Test, Inspection and Production Equipment

0B001

Plant for the separation of isotopes of “natural uranium”, “depleted uranium” and “special fissile materials”, and specially designed or prepared equipment and components therefor, as follows:

a.

Plant specially designed for separating isotopes of “natural uranium”, “depleted uranium”, and “special fissile materials”, as follows:

1.

Gas centrifuge separation plant;

2.

Gaseous diffusion separation plant;

3.

Aerodynamic separation plant;

4.

Chemical exchange separation plant;

5.

Ion-exchange separation plant;

6.

Atomic vapour “laser” isotope separation (AVLIS) plant;

7.

Molecular “laser” isotope separation (MLIS) plant;

8.

Plasma separation plant;

9.

Electro magnetic separation plant;

b.

Gas centrifuges and assemblies and components, specially designed or prepared for gas centrifuge separation process, as follows:

Technical Note:

In 0B001.b. ‘high strength-to-density ratio material’ means any of the following:

1.

Maraging steel capable of an ultimate tensile strength of 1,95 GPa or more;

2.

Aluminium alloys capable of an ultimate tensile strength of 0,46 GPa or more; or

3.

“Fibrous or filamentary materials” with a “specific modulus” of more than 3,18 × 106 m and a “specific tensile strength” greater than 7,62 × 104 m;

1.

Gas centrifuges;

2.

Complete rotor assemblies;

3.

Rotor tube cylinders with a wall thickness of 12 mm or less, a diameter of between 75 mm and 650 mm, made from ‘high strength-to-density ratio materials’;

4.

Rings or bellows with a wall thickness of 3 mm or less and a diameter of between 75 mm and 650 mm and designed to give local support to a rotor tube or to join a number together, made from ‘high strength-to-density ratio materials’;

5.

Baffles of between 75 mm and 650 mm diameter for mounting inside a rotor tube, made from ‘high strength-to-density ratio materials’.

6.

Top or bottom caps of between 75 mm and 650 mm diameter to fit the ends of a rotor tube, made from ‘high strength-to-density ratio materials’;

7.

Magnetic suspension bearings as follows:

a.

Bearing assemblies consisting of an annular magnet suspended within a housing made of or protected by “materials resistant to corrosion by UF6” containing a damping medium and having the magnet coupling with a pole piece or second magnet fitted to the top cap of the rotor;

b.

Active magnetic bearings specially designed or prepared for use with gas centrifuges.

8.

Specially prepared bearings comprising a pivot-cup assembly mounted on a damper;

9.

Molecular pumps comprised of cylinders having internally machined or extruded helical grooves and internally machined bores;

10.

Ring-shaped motor stators for multiphase AC hysteresis (or reluctance) motors for synchronous operation within a vacuum at a frequency of 600 Hz or more and a power of 40 VA or more;

11.

Centrifuge housing/recipients to contain the rotor tube assembly of a gas centrifuge, consisting of a rigid cylinder of wall thickness up to 30 mm with precision machined ends that are parallel to each other and perpendicular to the cylinder’s longitudinal axis to within 0,05 degrees or less;

12.

Scoops consisting of specially designed or prepared tubes for the extraction of UF6 gas from within the rotor tube by a Pitot tube action and capable of being fixed to the central gas extraction system;

13.

Frequency changers (converters or inverters) specially designed or prepared to supply motor stators for gas centrifuge enrichment, having all of the following characteristics, and specially designed components therefor:

a.

A multiphase frequency output of 600 Hz or greater; and

b.

High stability (with frequency control better than 0,2 %);

14.

Shut-off and control valves as follows:

a.

Shut-off valves specially designed or prepared to act on the feed, product or tails UF6 gaseous streams of an individual gas centrifuge;

b.

Bellows-sealed valves, shut-off or control, made of or protected by “materials resistant to corrosion by UF6”, with an inside diameter of 10 mm to 160 mm, specially designed or prepared for use in main or auxiliary systems of gas centrifuge enrichment plants;

c.

Equipment and components, specially designed or prepared for gaseous diffusion separation process, as follows:

1.

Gaseous diffusion barriers made of porous metallic, polymer or ceramic “materials resistant to corrosion by UF6” with a pore size of 10 to 100 nm, a thickness of 5 mm or less, and, for tubular forms, a diameter of 25 mm or less;

2.

Gaseous diffuser housings made of or protected by “materials resistant to corrosion by UF6”;

3.

Compressors or gas blowers with a suction volume capacity of 1 m3/min or more of UF6, discharge pressure up to 500 kPa and having a pressure ratio of 10:1 or less, and made of or protected by “materials resistant to corrosion by UF6”;

4.

Rotary shaft seals for compressors or blowers specified in 0B001.c.3. and designed for a buffer gas in-leakage rate of less than 1 000 cm3/min.;

5.

Heat exchangers made of or protected by “materials resistant to corrosion by UF6”, and designed for a leakage pressure rate of less than 10 Pa per hour under a pressure differential of 100 kPa;

6.

Bellows-sealed valves, manual or automated, shut-off or control, made of or protected by “materials resistant to corrosion by UF6”;

d.

Equipment and components, specially designed or prepared for aerodynamic separation process, as follows:

1.

Separation nozzles consisting of slit-shaped, curved channels having a radius of curvature less than 1 mm, resistant to corrosion by UF6, and having a knife-edge contained within the nozzle which separates the gas flowing through the nozzle into two streams;

2.

Cylindrical or conical tubes, (vortex tubes), made of or protected by “materials resistant to corrosion by UF6” and with one or more tangential inlets;

3.

Compressors or gas blowers made of or protected by “materials resistant to corrosion by UF6”, and rotary shaft seals therefor;

4.

Heat exchangers made of or protected by “materials resistant to corrosion by UF6”;

5.

Separation element housings, made of or protected by “materials resistant to corrosion by UF6” to contain vortex tubes or separation nozzles;

6.

Bellows-sealed valves, manual or automated, shut-off or control, made of or protected by “materials resistant to corrosion by UF6”, with a diameter of 40 mm or more;

7.

Process systems for separating UF6 from carrier gas (hydrogen or helium) to 1 ppm UF6 content or less, including:

a.

Cryogenic heat exchangers and cryoseparators capable of temperatures of 153 K (– 120 °C) or less;

b.

Cryogenic refrigeration units capable of temperatures of 153 K (– 120 °C) or less;

c.

Separation nozzle or vortex tube units for the separation of UF6 from carrier gas;

d.

UF6 cold traps capable of freezing out UF6;

e.

Equipment and components, specially designed or prepared for chemical exchange separation process, as follows:

1.

Fast-exchange liquid-liquid pulse columns with stage residence time of 30 seconds or less and resistant to concentrated hydrochloric acid (e.g. made of or protected by suitable plastic materials such as fluorinated hydrocarbon polymers or glass);

2.

Fast-exchange liquid-liquid centrifugal contactors with stage residence time of 30 seconds or less and resistant to concentrated hydrochloric acid (e.g. made of or protected by suitable plastic materials such as fluorinated hydrocarbon polymers or glass);

3.

Electrochemical reduction cells resistant to concentrated hydrochloric acid solutions, for reduction of uranium from one valence state to another;

4.

Electrochemical reduction cells feed equipment to take U+4 from the organic stream and, for those parts in contact with the process stream, made of or protected by suitable materials (e.g. glass, fluorocarbon polymers, polyphenyl sulphate, polyether sulfone and resin-impregnated graphite);

5.

Feed preparation systems for producing high purity uranium chloride solution consisting of dissolution, solvent extraction and/or ion exchange equipment for purification and electrolytic cells for reducing the uranium U+6 or U+4 to U+3;

6.

Uranium oxidation systems for oxidation of U+3 to U+4;

f.

Equipment and components, specially designed or prepared for ion-exchange separation process, as follows:

1.

Fast reacting ion-exchange resins, pellicular or porous macro-reticulated resins in which the active chemical exchange groups are limited to a coating on the surface of an inactive porous support structure, and other composite structures in any suitable form, including particles or fibres, with diameters of 0,2 mm or less, resistant to concentrated hydrochloric acid and designed to have an exchange rate half-time of less than 10 seconds and capable of operating at temperatures in the range of 373 K (100 °C) to 473 K (200 °C);

2.

Ion exchange columns (cylindrical) with a diameter greater than 1 000 mm, made of or protected by materials resistant to concentrated hydrochloric acid (e.g. titanium or fluorocarbon plastics) and capable of operating at temperatures in the range of 373 K (100 °C) to 473 K (200 °C) and pressures above 0,7 MPa;

3.

Ion exchange reflux systems (chemical or electrochemical oxidation or reduction systems) for regeneration of the chemical reducing or oxidizing agents used in ion exchange enrichment cascades;

g.

Equipment and components, specially designed or prepared for atomic vapour based methods, as follows:

1.

Uranium metal vaporization systems designed to achieve a delivered power of 1 kW or more on the target for use in laser enrichment;

2.

Liquid or vapour uranium metal handling systems specially designed or prepared for handling molten uranium, molten uranium alloys or uranium metal vapour for use in laser enrichment, and specially designed components therefor;

N.B.: SEE ALSO 2A225.

3.

Product and tails collector assemblies for uranium metal in liquid or solid form, made of or protected by materials resistant to the heat and corrosion of uranium metal vapour or liquid, such as yttria-coated graphite or tantalum;

4.

Separator module housings (cylindrical or rectangular vessels) for containing the uranium metal vapour source, the electron beam gun and the product and tails collectors;

5.

“Lasers” or “laser” systems specially designed or prepared for the separation of uranium isotopes with a spectrum frequency stabilisation for operation over extended periods of time;

N.B.: SEE ALSO 6A005 AND 6A205.

h.

Equipment and components, specially designed or prepared for molecular based methods or laser systems, as follows:

1.

Supersonic expansion nozzles for cooling mixtures of UF6 and carrier gas to 150 K (– 123 °C) or less and made from “materials resistant to corrosion by UF6”;

2.

Product or tails collector components or devices specially designed or prepared for collecting uranium material or uranium tails material following illumination with laser light, made of “materials resistant to corrosion by UF6”;

3.

Compressors made of or protected by “materials resistant to corrosion by UF6”, and rotary shaft seals therefor;

4.

Equipment for fluorinating UF5 (solid) to UF6 (gas);

5.

Process systems for separating UF6 from carrier gas (e.g. nitrogen, argon or other gas) including:

a.

Cryogenic heat exchangers and cryoseparators capable of temperatures of 153 K (– 120 °C) or less;

b.

Cryogenic refrigeration units capable of temperatures of 153 K (– 120 °C) or less;

c.

UF6 cold traps capable of freezing out UF6;

6.

“Lasers” or “laser” systems specially designed or prepared for the separation of uranium isotopes with a spectrum frequency stabilisation for operation over extended periods of time;

N.B.: SEE ALSO 6A005 AND 6A205.

i.

Equipment and components, specially designed or prepared for plasma separation process, as follows:

1.

Microwave power sources and antennae for producing or accelerating ions, with an output frequency greater than 30 GHz and mean power output greater than 50 kW;

2.

Radio frequency ion excitation coils for frequencies of more than 100 kHz and capable of handling more than 40 kW mean power;

3.

Uranium plasma generation systems;

4.

Not used;

5.

Product and tails collector assemblies for uranium metal in solid form, made of or protected by materials resistant to the heat and corrosion of uranium vapour such as yttria-coated graphite or tantalum;

6.

Separator module housings (cylindrical) for containing the uranium plasma source, radio-frequency drive coil and the product and tails collectors and made of a suitable non-magnetic material (e.g. stainless steel);

j.

Equipment and components, specially designed or prepared for electromagnetic separation process, as follows:

1.

Ion sources, single or multiple, consisting of a vapour source, ioniser, and beam accelerator made of suitable non-magnetic materials (e.g. graphite, stainless steel, or copper) and capable of providing a total ion beam current of 50 mA or greater;

2.

Ion collector plates for collection of enriched or depleted uranium ion beams, consisting of two or more slits and pockets and made of suitable non-magnetic materials (e.g. graphite or stainless steel);

3.

Vacuum housings for uranium electromagnetic separators made of non-magnetic materials (e.g. stainless steel) and designed to operate at pressures of 0,1 Pa or lower;

4.

Magnet pole pieces with a diameter greater than 2 m;

5.

High voltage power supplies for ion sources, having all of the following characteristics:

a.

Capable of continuous operation;

b.

Output voltage of 20 000 V or greater;

c.

Output current of 1 A or greater; and

d.

Voltage regulation of better than 0,01 % over a period of 8 hours;

N.B.: SEE ALSO 3A227.

6.

Magnet power supplies (high power, direct current) having all of the following characteristics:

a.

Capable of continuous operation with a current output of 500 A or greater at a voltage of 100 V or greater; and

b.

Current or voltage regulation better than 0,01 % over a period of 8 hours.

N.B.: SEE ALSO 3A226.

0B002

Specially designed or prepared auxiliary systems, equipment and components as follows, for isotope separation plant specified in 0B001, made of or protected by “materials resistant to corrosion by UF6”:

a.

Feed autoclaves, ovens or systems used for passing UF6 to the enrichment process;

b.

Desublimers or cold traps, used to remove UF6 from the enrichment process for subsequent transfer upon heating;

c.

Product and tails stations for transferring UF6 into containers;

d.

Liquefaction or solidification stations used to remove UF6 from the enrichment process by compressing, cooling and converting UF6 to a liquid or solid form;

e.

Piping systems and header systems specially designed or prepared for handling UF6 within gaseous diffusion, centrifuge or aerodynamic cascades;

f.

Vacuum systems and pumps as follows:

1.

Vacuum manifolds, vacuum headers or vacuum pumps having a suction capacity of 5 m3/minute or more;

2.

Vacuum pumps specially designed for use in UF6 bearing atmospheres made of, or protected by, “materials resistant to corrosion by UF6”; or

3.

Vacuum systems consisting of vacuum manifolds, vacuum headers and vacuum pumps, and designed for service in UF6-bearing atmospheres;

g.

UF6 mass spectrometers/ion sources capable of taking on-line samples from UF6 gas streams and having all of the following:

1.

Capable of measuring ions of 320 atomic mass units or greater and having a resolution of better than 1 part in 320;

2.

Ion sources constructed of or protected by nickel, nickel-copper alloys with a nickel content of 60 % or more by weight, or nickel-chrome alloys;

3.

Electron bombardment ionisation sources; and

4.

Having a collector system suitable for isotopic analysis.

0B003

Plant for the conversion of uranium and equipment specially designed or prepared therefor, as follows:

a.

Systems for the conversion of uranium ore concentrates to UO3;

b.

Systems for the conversion of UO3 to UF6;

c.

Systems for the conversion of UO3 to UO2;

d.

Systems for the conversion of UO2 to UF4;

e.

Systems for the conversion of UF4 to UF6;

f.

Systems for the conversion of UF4 to uranium metal;

g.

Systems for the conversion of UF6 to UO2;

h.

Systems for the conversion of UF6 to UF4;

i.

Systems for the conversion of UO2 to UCl4.

0B004

Plant for the production or concentration of heavy water, deuterium and deuterium compounds and specially designed or prepared equipment and components therefor, as follows:

a.

Plant for the production of heavy water, deuterium or deuterium compounds, as follows:

1.

Water-hydrogen sulphide exchange plants;

2.

Ammonia-hydrogen exchange plants;

b.

Equipment and components, as follows:

1.

Water-hydrogen sulphide exchange towers with diameters of 1,5 m or more, capable of operating at pressures greater than or equal to 2 MPa;

2.

Single stage, low head (i.e. 0,2 MPa) centrifugal blowers or compressors for hydrogen sulphide gas circulation (i.e. gas containing more than 70 % H2S) with a throughput capacity greater than or equal to 56 m3/second when operating at pressures greater than or equal to 1,8 MPa suction and having seals designed for wet H2S service;

3.

Ammonia-hydrogen exchange towers greater than or equal to 35 m in height with diameters of 1,5 m to 2,5 m capable of operating at pressures greater than 15 MPa;

4.

Tower internals, including stage contactors, and stage pumps, including those which are submersible, for heavy water production utilizing the ammonia-hydrogen exchange process;

5.

Ammonia crackers with operating pressures greater than or equal to 3 MPa for heavy water production utilizing the ammonia-hydrogen exchange process;

6.

Infrared absorption analysers capable of on-line hydrogen/deuterium ratio analysis where deuterium concentrations are equal to or greater than 90 %;

7.

Catalytic burners for the conversion of enriched deuterium gas into heavy water utilizing the ammonia-hydrogen exchange process;

8.

Complete heavy water upgrade systems, or columns therefor, for the upgrade of heavy water to reactor-grade deuterium concentration;

9.

Ammonia synthesis converters or synthesis units specially designed or prepared for heavy water production utilizing the ammonia-hydrogen exchange process.

0B005

Plant specially designed for the fabrication of “nuclear reactor” fuel elements and specially designed or prepared equipment therefor.

Technical Note:

A plant for the fabrication of “nuclear reactor” fuel elements includes equipment which:

1.

Normally comes into direct contact with or directly processes or controls the production flow of nuclear materials;

2.

Seals the nuclear materials within the cladding;

3.

Checks the integrity of the cladding or the seal;

4.

Checks the finish treatment of the sealed fuel; or

5.

Is used for assembling reactor elements.

0B006

Plant for the reprocessing of irradiated “nuclear reactor” fuel elements, and specially designed or prepared equipment and components therefor.

Note: 0B006 includes:

a.

Plant for the reprocessing of irradiated “nuclear reactor” fuel elements including equipment and components which normally come into direct contact with and directly control the irradiated fuel and the major nuclear material and fission product processing streams;

b.

Fuel element chopping or shredding machines, i.e. remotely operated equipment to cut, chop or shear irradiated “nuclear reactor” fuel assemblies, bundles or rods;

c.

Dissolvers, critically safe tanks (e.g. small diameter, annular or slab tanks) specially designed or prepared for the dissolution of irradiated “nuclear reactor” fuel, which are capable of withstanding hot, highly corrosive liquids, and which can be remotely loaded and maintained;

d.

Solvent extractors, such as packed or pulsed columns, mixer settlers or centrifugal contractors, resistant to the corrosive effects of nitric acid and specially designed or prepared for use in a plant for the reprocessing of irradiated “natural uranium”, “depleted uranium” or “special fissile materials”;

e.

Holding or storage vessels specially designed to be critically safe and resistant to the corrosive effects of nitric acid;

Technical Note:

Holding or storage vessels may have the following features:

1.

Walls or internal structures with a boron equivalent (calculated for all constituent elements as defined in the note to 0C004) of at least two per cent;

2.

A maximum diameter of 175 mm for cylindrical vessels; or

3.

A maximum width of 75 mm for either a slab or annular vessel.

f.

Neutron measurement systems specially designed or prepared for integration and use with automated process control systems in a plant for the reprocessing of irradiated “natural uranium”, “depleted uranium” or “special fissile materials”.

0B007

Plant for the conversion of plutonium and equipment specially designed or prepared therefor, as follows:

a.

Systems for the conversion of plutonium nitrate to oxide;

b.

Systems for plutonium metal production.

0C   Materials

0C001

“Natural uranium” or “depleted uranium” or thorium in the form of metal, alloy, chemical compound or concentrate and any other material containing one or more of the foregoing;

Note: 0C001 does not control the following:

a.

Four grammes or less of “natural uranium” or “depleted uranium” when contained in a sensing component in instruments;

b.

“Depleted uranium” specially fabricated for the following civil non-nuclear applications:

1.

Shielding;

2.

Packaging;

3.

Ballasts having a mass not greater than 100 kg;

4.

Counter-weights having a mass not greater than 100 kg;

c.

Alloys containing less than 5 % thorium;

d.

Ceramic products containing thorium, which have been manufactured for non-nuclear use.

0C002

“Special fissile materials”

Note: 0C002 does not control four “effective grammes” or less when contained in a sensing component in instruments.

0C003

Deuterium, heavy water (deuterium oxide) and other compounds of deuterium, and mixtures and solutions containing deuterium, in which the isotopic ratio of deuterium to hydrogen exceeds 1:5 000.

0C004

Graphite having a purity level better than 5 parts per million ‘boron equivalent’ and with a density greater than 1,50 g/cm3 for use in a “nuclear reactor”, in quantities exceeding 1 kg.

N.B.: SEE ALSO 1C107

Note 1: For the purpose of export control, the competent authorities of the Member State in which the exporter is established will determine whether or not the exports of graphite meeting the above specifications are for “nuclear reactor” use.

Note 2: In 0C004, ‘boron equivalent’ (BE) is defined as the sum of BEz for impurities (excluding BEcarbon since carbon is not considered an impurity) including boron, where:

BEZ (ppm) = CF × concentration of element Z in ppm;

Formula

and σB and σZ are the thermal neutron capture cross sections (in barns) for naturally occurring boron and element Z respectively; and AB and AZ are the atomic masses of naturally occurring boron and element Z respectively.

0C005

Specially prepared compounds or powders for the manufacture of gaseous diffusion barriers, resistant to corrosion by UF6 (e.g. nickel or alloy containing 60 weight per cent or more nickel, aluminium oxide and fully fluorinated hydrocarbon polymers), having a purity of 99,9 % by weight or more and a particle size less than 10 μm measured by American Society for Testing and Materials (ASTM) B330 standard and a high degree of particle size uniformity.

0D   Software

0D001

“Software” specially designed or modified for the “development”, “production” or “use” of goods specified in this Category.

0E   Technology

0E001

“Technology” according to the Nuclear Technology Note for the “development”, “production” or “use” of goods specified in this Category.

CATEGORY 1 — SPECIAL MATERIALS AND RELATED EQUIPMENT

1A   Systems, Equipment and Components

1A001

Components made from fluorinated compounds, as follows:

a.

Seals, gaskets, sealants or fuel bladders, specially designed for “aircraft” or aerospace use, made from more than 50 % by weight of any of the materials specified in 1C009.b. or 1C009.c.;

b.

Piezoelectric polymers and copolymers, made from vinylidene fluoride (CAS 75-38-7) materials, specified in 1C009.a., having all of the following:

1.

In sheet or film form; and

2.

With a thickness exceeding 200 μm;

c.

Seals, gaskets, valve seats, bladders or diaphragms, having all of the following:

1.

Made from fluoroelastomers containing at least one vinylether group as a constitutional unit; and

2.

Specially designed for “aircraft”, aerospace or ‘missile’ use.

Note: In 1A001.c., ‘missile’ means complete rocket systems and unmanned aerial vehicle systems.

1A002

“Composite” structures or laminates, having any of the following:

N.B.: SEE ALSO 1A202, 9A010 and 9A110

a.

Consisting of an organic “matrix” and materials specified in 1C010.c., 1C010.d. or 1C010.e.; or

b.

Consisting of a metal or carbon “matrix”, and any of the following:

1.

Carbon “fibrous or filamentary materials” having all of the following:

a.

A “specific modulus” exceeding 10,15 × 106 m; and

b.

A “specific tensile strength” exceeding 17,7 × 104 m; or

2.

Materials specified in 1C010.c.

Note 1: 1A002 does not control composite structures or laminates made from epoxy resin impregnated carbon “fibrous or filamentary materials” for the repair of “civil aircraft” structures or laminates, having all of the following:

a.

An area not exceeding 1 m2;

b.

A length not exceeding 2,5 m; and

c.

A width exceeding 15 mm.

Note 2: 1A002 does not control semi-finished items, specially designed for purely civilian applications as follows:

a.

Sporting goods;

b.

Automotive industry;

c.

Machine tool industry;

d.

Medical applications.

Note 3: 1A002.b.1. does not control semi-finished items containing a maximum of two dimensions of interwoven filaments and specially designed for applications as follows:

a.

Metal heat-treatment furnaces for tempering metals;

b.

Silicon boule production equipment.

Note 4: 1A002 does not control finished items specially designed for a specific application.

1A003

Manufactures of non-“fusible” aromatic polyimides in film, sheet, tape or ribbon form having any of the following:

a.

A thickness exceeding 0,254 mm; or

b.

Coated or laminated with carbon, graphite, metals or magnetic substances.

Note: 1A003 does not control manufactures when coated or laminated with copper and designed for the production of electronic printed circuit boards.

N.B.: For “fusible” aromatic polyimides in any form, see 1C008.a.3.

1A004

Protective and detection equipment and components not specially designed for military use, as follows:

N.B.: SEE ALSO MILITARY GOODS CONTROLS, 2B351 AND 2B352.

a.

Full face masks, filter canisters and decontamination equipment therefor, designed or modified for defence against any of the following, and specially designed components therefor:

Note: 1A004.a. includes Powered Air Purifying Respirators (PAPR) that are designed or modified for defence against agents or materials, listed in 1A004.a.

Technical Note:

For the purposes of 1A004.a.:

1.

Full face masks are also known as gas masks.

2.

Filter canisters include filter cartridges.

1.

Biological agents “adapted for use in war”;

2.

Radioactive materials “adapted for use in war”;

3.

Chemical warfare (CW) agents; or

4.

“Riot control agents”, including:

a.

α-Bromobenzeneacetonitrile, (Bromobenzyl cyanide) (CA) (CAS 5798-79-8);

b.

[(2-chlorophenyl) methylene] propanedinitrile, (o-Chlorobenzylidenemalononitrile) (CS) (CAS 2698-41-1);

c.

2-Chloro-1-phenylethanone, Phenylacyl chloride (ω-chloroacetophenone) (CN) (CAS 532-27-4);

d.

Dibenz-(b,f)-1,4-oxazephine (CR) (CAS 257-07-8);

e.

10-Chloro-5,10-dihydrophenarsazine, (Phenarsazine chloride), (Adamsite), (DM) (CAS 578-94-9);

f.

N-Nonanoylmorpholine, (MPA) (CAS 5299-64-9);

b.

Protective suits, gloves and shoes, specially designed or modified for defence against any of the following:

1.

Biological agents “adapted for use in war”;

2.

Radioactive materials “adapted for use in war”; or

3.

Chemical warfare (CW) agents;

c.

Detection systems, specially designed or modified for detection or identification of any of the following, and specially designed components therefor:

1.

Biological agents “adapted for use in war”;

2.

Radioactive materials “adapted for use in war”; or

3.

Chemical warfare (CW) agents.

d.

Electronic equipment designed for automatically detecting or identifying the presence of “explosives” residues and utilising ‘trace detection’ techniques (e.g., surface acoustic wave, ion mobility spectrometry, differential mobility spectrometry, mass spectrometry).

Technical Note:

‘Trace detection’ is defined as the capability to detect less than 1 ppm vapour, or 1 mg solid or liquid.

Note 1: 1A004.d. does not control equipment specially designed for laboratory use.

Note 2: 1A004.d. does not control non-contact walk-through security portals.

1A004
Note: 1A004 does not control:

a.

Personal radiation monitoring dosimeters;

b.

Occupational health or safety equipment limited by design or function to protect against hazards specific to residential safety or civil industries, including:

1.

mining;

2.

quarrying;

3.

agriculture;

4.

pharmaceutical;

5.

medical;

6.

veterinary;

7.

environmental;

8.

waste management;

9.

food industry.

Technical Notes:

1.

1A004 includes equipment and components that have been identified, successfully tested to national standards or otherwise proven effective, for the detection of or defence against radioactive materials “adapted for use in war”, biological agents “adapted for use in war”, chemical warfare agents, ‘simulants’ or “riot control agents”, even if such equipment or components are used in civil industries such as mining, quarrying, agriculture, pharmaceuticals, medical, veterinary, environmental, waste management, or the food industry.

2.

‘Simulant’ is a substance or material that is used in place of toxic agent (chemical or biological) in training, research, testing or evaluation.

1A005

Body armour and components therefor, as follows:

N.B.: SEE ALSO MILITARY GOODS CONTROLS.

a.

Soft body armour not manufactured to military standards or specifications, or to their equivalents, and specially designed components therefor;

b.

Hard body armour plates providing ballistic protection equal to or less than level IIIA (NIJ 0101.06, July 2008) or national equivalents.

N.B.: For “fibrous or filamentary materials” used in the manufacture of body armour, see 1C010.

Note 1: 1A005 does not control body armour when accompanying its user for the user's own personal protection.

Note 2: 1A005 does not control body armour designed to provide frontal protection only from both fragment and blast from non-military explosive devices.

Note 3: 1A005 does not control body armour designed to provide protection only from knife, spike, needle or blunt trauma.

1A006

Equipment, specially designed or modified for the disposal of improvised explosive devices, as follows, and specially designed components and accessories therefor:

N.B.: SEE ALSO MILITARY GOODS CONTROLS.

a.

Remotely operated vehicles;

b.

‘Disruptors’.

Technical Note:

‘Disruptors’ are devices specially designed for the purpose of preventing the operation of an explosive device by projecting a liquid, solid or frangible projectile.

Note: 1A006 does not control equipment when accompanying its operator.

1A007

Equipment and devices, specially designed to initiate charges and devices containing “energetic materials”, by electrical means, as follows:

N.B.: SEE ALSO MILITARY GOODS CONTROLS, 3A229 AND 3A232.

a.

Explosive detonator firing sets designed to drive explosive detonators specified in 1A007.b.;

b.

Electrically driven explosive detonators as follows:

1.

Exploding bridge (EB);

2.

Exploding bridge wire (EBW);

3.

Slapper;

4.

Exploding foil initiators (EFI).

Technical Notes:

1.

The word initiator or igniter is sometimes used in place of the word detonator.

2.

For the purpose of 1A007.b. the detonators of concern all utilise a small electrical conductor (bridge, bridge wire, or foil) that explosively vaporises when a fast, high-current electrical pulse is passed through it. In non-slapper types, the exploding conductor starts a chemical detonation in a contacting high explosive material such as PETN (pentaerythritoltetranitrate). In slapper detonators, the explosive vaporization of the electrical conductor drives a flyer or slapper across a gap, and the impact of the slapper on an explosive starts a chemical detonation. The slapper in some designs is driven by magnetic force. The term exploding foil detonator may refer to either an EB or a slapper-type detonator.

1A008

Charges, devices and components, as follows:

a.

‘Shaped charges’ having all of the following:

1.

Net Explosive Quantity (NEQ) greater than 90 g; and

2.

Outer casing diameter equal to or greater than 75 mm;

b.

Linear shaped cutting charges having all of the following, and specially designed components therefor:

1.

An explosive load greater than 40 g/m; and

2.

A width of 10 mm or more;

c.

Detonating cord with explosive core load greater than 64 g/m;

d.

Cutters, other than those specified in 1A008.b., and severing tools, having a Net Explosive Quantity (NEQ) greater than 3,5 kg.

Technical Note:

‘Shaped charges’ are explosive charges shaped to focus the effects of the explosive blast.

1A102

Resaturated pyrolized carbon-carbon components designed for space launch vehicles specified in 9A004 or sounding rockets specified in 9A104.

1A202

Composite structures, other than those specified in 1A002, in the form of tubes and having both of the following characteristics:

N.B.: SEE ALSO 9A010 AND 9A110.

a.

An inside diameter of between 75 mm and 400 mm; and

b.

Made with any of the “fibrous or filamentary materials” specified in 1C010.a. or b. or 1C210.a. or with carbon prepreg materials specified in 1C210.c.

1A225

Platinized catalysts specially designed or prepared for promoting the hydrogen isotope exchange reaction between hydrogen and water for the recovery of tritium from heavy water or for the production of heavy water.

1A226

Specialized packings which may be used in separating heavy water from ordinary water, having both of the following characteristics:

a.

Made of phosphor bronze mesh chemically treated to improve wettability; and

b.

Designed to be used in vacuum distillation towers.

1A227

High-density (lead glass or other) radiation shielding windows, having all of the following characteristics, and specially designed frames therefor:

a.

A ‘cold area’ greater than 0,09 m2;

b.

A density greater than 3 g/cm3; and

c.

A thickness of 100 m or greater.

Technical Note:

In 1A227 the term ‘cold area’ means the viewing area of the window exposed to the lowest level of radiation in the design application.

1B   Test, Inspection and Production Equipment

1B001

Equipment for the production or inspection of “composite” structures or laminates specified in 1A002 or “fibrous or filamentary materials” specified in 1C010, as follows, and specially designed components and accessories therefor:

N.B.: SEE ALSO 1B101 AND 1B201.

a.

Filament winding machines, of which the motions for positioning, wrapping and winding fibres are coordinated and programmed in three or more ‘primary servo positioning’ axes, specially designed for the manufacture of “composite” structures or laminates, from “fibrous or filamentary materials”;

b.

‘Tape-laying machines’, of which the motions for positioning and laying tape are coordinated and programmed in five or more ‘primary servo positioning’ axes, specially designed for the manufacture of “composite” airframe or ‘missile’ structures;

Note: In 1B001.b. ‘missile’ means complete rocket systems and unmanned aerial vehicle systems.

Technical Note:

For the purposes of 1B001.b., ‘tape-laying machines’ have the ability to lay one or more ‘filament bands’ limited to widths greater than 25 mm and less than or equal to 305 mm, and to cut and restart individual ‘filament band’ courses during the laying process.

c.

Multidirectional, multidimensional weaving machines or interlacing machines, including adapters and modification kits, specially designed or modified for weaving, interlacing or braiding fibres, for “composite” structures;

Technical Note:

For the purposes of 1B001.c., the technique of interlacing includes knitting.

d.

Equipment specially designed or adapted for the production of reinforcement fibres, as follows:

1.

Equipment for converting polymeric fibres (such as polyacrylonitrile, rayon, pitch or polycarbosilane) into carbon fibres or silicon carbide fibres, including special equipment to strain the fibre during heating;

2.

Equipment for the chemical vapour deposition of elements or compounds, on heated filamentary substrates, to manufacture silicon carbide fibres;

3.

Equipment for the wet-spinning of refractory ceramics (such as aluminium oxide);

4.

Equipment for converting aluminium containing precursor fibres into alumina fibres by heat treatment;

e.

Equipment for producing prepregs specified in 1C010.e. by the hot melt method;

f.

Non-destructive inspection equipment specially designed for “composite” materials, as follows:

1.

X-ray tomography systems for three dimensional defect inspection;

2.

Numerically controlled ultrasonic testing machines of which the motions for positioning transmitters or receivers are simultaneously coordinated and programmed in four or more axes to follow the three dimensional contours of the component under inspection;

g.

‘Tow-placement machines’, of which the motions for positioning and laying tows are coordinated and programmed in two or more ‘primary servo positioning’ axes, specially designed for the manufacture of “composite” airframe or ‘missile’ structures.

Technical Note:

For the purposes of 1B001.g., ‘tow-placement machines’ have the ability to place one or more ‘filament bands’ having widths less than or equal to 25 mm, and to cut and restart individual ‘filament band’ courses during the placement process.

Technical Note:

1.

For the purpose of 1B001, ‘primary servo positioning’ axes control, under computer program direction, the position of the end effector (i.e., head) in space relative to the work piece at the correct orientation and direction to achieve the desired process.

2.

For the purposes of 1B001., a ‘filament band’ is a single continuous width of fully or partially resin-impregnated tape, tow or fibre.

1B002

Equipment for producing metal alloys, metal alloy powder or alloyed materials, specially designed to avoid contamination and specially designed for use in one of the processes specified in 1C002.c.2.

N.B.: SEE ALSO 1B102.

1B003

Tools, dies, moulds or fixtures, for “superplastic forming” or “diffusion bonding” titanium, aluminium or their alloys, specially designed for the manufacture of any of the following:

a.

Airframe or aerospace structures;

b.

“Aircraft” or aerospace engines; or

c.

Specially designed components for structures specified in 1B003.a. or for engines specified in 1B003.b.

1B101

Equipment, other than that specified in 1B001, for the “production” of structural composites as follows; and specially designed components and accessories therefor:

N.B.: SEE ALSO 1B201.

Note: Components and accessories specified in 1B101 include moulds, mandrels, dies, fixtures and tooling for the preform pressing, curing, casting, sintering or bonding of composite structures, laminates and manufactures thereof.

a.

Filament winding machines or fibre placement machines, of which the motions for positioning, wrapping and winding fibres can be coordinated and programmed in three or more axes, designed to fabricate composite structures or laminates from fibrous or filamentary materials, and coordinating and programming controls;

b.

Tape-laying machines of which the motions for positioning and laying tape and sheets can be coordinated and programmed in two or more axes, designed for the manufacture of composite airframe and “missile” structures;

c.

Equipment designed or modified for the “production” of “fibrous or filamentary materials” as follows:

1.

Equipment for converting polymeric fibres (such as polyacrylonitrile, rayon or polycarbosilane) including special provision to strain the fibre during heating;

2.

Equipment for the vapour deposition of elements or compounds on heated filament substrates;

3.

Equipment for the wet-spinning of refractory ceramics (such as aluminium oxide);

d.

Equipment designed or modified for special fibre surface treatment or for producing prepregs and preforms specified in entry 9C110.

Note: 1B101.d. includes rollers, tension stretchers, coating equipment, cutting equipment and clicker dies.

1B102

Metal powder “production equipment”, other than that specified in 1B002, and components as follows:

N.B.: SEE ALSO 1B115.b.

a.

Metal powder “production equipment” usable for the “production”, in a controlled environment, of spherical, spheroidal or atomised materials specified in 1C011.a., 1C011.b., 1C111.a.1., 1C111.a.2. or in the Military Goods Controls.

b.

Specially designed components for “production equipment” specified in 1B002 or 1B102.a.

Note: 1B102 includes:

a.

Plasma generators (high frequency arc-jet) usable for obtaining sputtered or spherical metallic powders with organization of the process in an argon-water environment;

b.

Electroburst equipment usable for obtaining sputtered or spherical metallic powders with organization of the process in an argon-water environment;

c.

Equipment usable for the “production” of spherical aluminium powders by powdering a melt in an inert medium (e.g. nitrogen).

1B115

Equipment, other than that specified in 1B002 or 1B102, for the production of propellant and propellant constituents, as follows, and specially designed components therefor:

a.

“Production equipment” for the “production”, handling or acceptance testing of liquid propellants or propellant constituents specified in 1C011.a., 1C011.b., 1C111 or in the Military Goods Controls;

b.

“Production equipment” for the “production”, handling, mixing, curing, casting, pressing, machining, extruding or acceptance testing of solid propellants or propellant constituents specified in 1C011.a., 1C011.b., 1C111 or in the Military Goods Controls.

Note: 1B115.b. does not control batch mixers, continuous mixers or fluid energy mills. For the control of batch mixers, continuous mixers and fluid energy mills see 1B117, 1B118 and 1B119.

Note 1: For equipment specially designed for the production of military goods, see the Military Goods Controls.

Note 2: 1B115 does not control equipment for the “production”, handling and acceptance testing of boron carbide.

1B116

Specially designed nozzles for producing pyrolitically derived materials formed on a mould, mandrel or other substrate from precursor gases which decompose in the 1 573 K (1 300 °C) to 3 173 K (2 900 °C) temperature range at pressures of 130 Pa to 20 kPa.

1B117

Batch mixers with provision for mixing under vacuum in the range of zero to 13,326 kPa and with temperature control capability of the mixing chamber and having all of the following, and specially designed components therefor:

a.

A total volumetric capacity of 110 litres or more; and

b.

At least one ‘mixing/kneading shaft’ mounted off centre.

Note: In 1B117.b. the term ‘mixing/kneading shaft’ does not refer to deagglomerators or knife-spindles.

1B118

Continuous mixers with provision for mixing under vacuum in the range of zero to 13,326 kPa and with a temperature control capability of the mixing chamber having any of the following, and specially designed components therefor:

a.

Two or more mixing/kneading shafts; or

b.

A single rotating shaft which oscillates and having kneading teeth/pins on the shaft as well as inside the casing of the mixing chamber.

1B119

Fluid energy mills usable for grinding or milling substances specified in 1C011.a., 1C011.b., 1C111 or in the Military Goods Controls, and specially designed components therefor.

1B201

Filament winding machines, other than those specified in 1B001 or 1B101, and related equipment, as follows:

a.

Filament winding machines having all of the following characteristics:

1.

Having motions for positioning, wrapping, and winding fibres coordinated and programmed in two or more axes;

2.

Specially designed to fabricate composite structures or laminates from “fibrous or filamentary materials”; and

3.

Capable of winding cylindrical tubes with an internal diameter between 75 and 650 mm and lengths of 300 mm or greater;

b.

Coordinating and programming controls for the filament winding machines specified in 1B201.a.;

c.

Precision mandrels for the filament winding machines specified in 1B201.a.

1B225

Electrolytic cells for fluorine production with an output capacity greater than 250 g of fluorine per hour.

1B226

Electromagnetic isotope separators designed for, or equipped with, single or multiple ion sources capable of providing a total ion beam current of 50 mA or greater.

Note: 1B226 includes separators:

a.

Capable of enriching stable isotopes;

b.

With the ion sources and collectors both in the magnetic field and those configurations in which they are external to the field.

1B228

Hydrogen-cryogenic distillation columns having all of the following characteristics:

a.

Designed for operation with internal temperatures of 35 K (– 238 °C) or less;

b.

Designed for operation at an internal pressure of 0,5 to 5 MPa;

c.

Constructed of either:

1.

Stainless steel of the 300 series with low sulphur content and with an austenitic ASTM (or equivalent standard) grain size number of 5 or greater; or

2.

Equivalent materials which are both cryogenic and H2-compatible; and

d.

With internal diameters of 30 cm or greater and ‘effective lengths’ of 4 m or greater.

Technical Note:

In 1B228 ‘effective length’ means the active height of packing material in a packed-type column, or the active height of internal contactor plates in a plate-type column.

1B229

Water-hydrogen sulphide exchange tray columns and ‘internal contactors’, as follows:

N.B.: For columns which are specially designed or prepared for the production of heavy water see 0B004.

a.

Water-hydrogen sulphide exchange tray columns, having all of the following characteristics:

1.

Can operate at pressures of 2 MPa or greater;

2.

Constructed of carbon steel having an austenitic ASTM (or equivalent standard) grain size number of 5 or greater; and

3.

With a diameter of 1,8 m or greater;

b.

‘Internal contactors’ for the water-hydrogen sulphide exchange tray columns specified in 1B229.a.

Technical Note:

‘Internal contactors’ of the columns are segmented trays which have an effective assembled diameter of 1,8 m or greater, are designed to facilitate countercurrent contacting and are constructed of stainless steels with a carbon content of 0,03 % or less. These may be sieve trays, valve trays, bubble cap trays, or turbogrid trays.

1B230

Pumps capable of circulating solutions of concentrated or dilute potassium amide catalyst in liquid ammonia (KNH2/NH3), having all of the following characteristics:

a.

Airtight (i.e., hermetically sealed);

b.

A capacity greater than 8,5 m3/h; and

c.

Either of the following characteristics:

1.

For concentrated potassium amide solutions (1 % or greater), an operating pressure of 1,5 to 60 MPa; or

2.

For dilute potassium amide solutions (less than 1 %), an operating pressure of 20 to 60 MPa.

1B231

Tritium facilities or plants, and equipment therefor, as follows:

a.

Facilities or plants for the production, recovery, extraction, concentration, or handling of tritium;

b.

Equipment for tritium facilities or plants, as follows:

1.

Hydrogen or helium refrigeration units capable of cooling to 23 K (– 250 °C) or less, with heat removal capacity greater than 150 W;

2.

Hydrogen isotope storage or purification systems using metal hydrides as the storage or purification medium.

1B232

Turboexpanders or turboexpander-compressor sets having both of the following characteristics:

a.

Designed for operation with an outlet temperature of 35 K (– 238 °C) or less; and

b.

Designed for a throughput of hydrogen gas of 1 000 kg/h or greater.

1B233

Lithium isotope separation facilities or plants, and systems and equipment therefor, as follows:

a.

Facilities or plants for the separation of lithium isotopes;

b.

Equipment for the separation of lithium isotopes based on the lithium-mercury amalgam process, as follows:

1.

Packed liquid-liquid exchange columns specially designed for lithium amalgams;

2.

Mercury or lithium amalgam pumps;

3.

Lithium amalgam electrolysis cells;

4.

Evaporators for concentrated lithium hydroxide solution;

c.

Ion exchange systems specially designed for lithium isotope separation, and specially designed components therefor;

d.

Chemical exchange systems (employing crown ethers, cryptands, or lariat ethers), specially designed for lithium isotope separation, and specially designed components therefor.

1B234

High explosive containment vessels, chambers, containers and other similar containment devices designed for the testing of high explosives or explosive devices and having both of the following characteristics:

N.B.: SEE ALSO MILITARY GOODS CONTROLS.

a.

Designed to fully contain an explosion equivalent to 2 kg of TNT or greater; and

b.

Having design elements or features enabling real time or delayed transfer of diagnostic or measurement information.

1C   Materials

Technical Note:

Metals and alloys:

Unless provision to the contrary is made, the words ‘metals’ and ‘alloys’ in 1C001 to 1C012 cover crude and semi-fabricated forms, as follows:

Crude forms:

Anodes, balls, bars (including notched bars and wire bars), billets, blocks, blooms, brickets, cakes, cathodes, crystals, cubes, dice, grains, granules, ingots, lumps, pellets, pigs, powder, rondelles, shot, slabs, slugs, sponge, sticks;

Semi-fabricated forms (whether or not coated, plated, drilled or punched):

a.

Wrought or worked materials fabricated by rolling, drawing, extruding, forging, impact extruding, pressing, graining, atomising, and grinding, i.e.: angles, channels, circles, discs, dust, flakes, foils and leaf, forging, plate, powder, pressings and stampings, ribbons, rings, rods (including bare welding rods, wire rods, and rolled wire), sections, shapes, sheets, strip, pipe and tubes (including tube rounds, squares, and hollows), drawn or extruded wire;

b.

Cast material produced by casting in sand, die, metal, plaster or other types of moulds, including high pressure castings, sintered forms, and forms made by powder metallurgy.

The object of the control should not be defeated by the export of non-listed forms alleged to be finished products but representing in reality crude forms or semi-fabricated forms.

1C001

Materials specially designed for use as absorbers of electromagnetic waves, or intrinsically conductive polymers, as follows:

N.B.: SEE ALSO 1C101.

a.

Materials for absorbing frequencies exceeding 2 × 108 Hz but less than 3 × 1012 Hz;

Note 1: 1C001.a. does not control:

a.

Hair type absorbers, constructed of natural or synthetic fibres, with non-magnetic loading to provide absorption;

b.

Absorbers having no magnetic loss and whose incident surface is non-planar in shape, including pyramids, cones, wedges and convoluted surfaces;

c.

Planar absorbers, having all of the following:

1.

Made from any of the following:

a.

Plastic foam materials (flexible or non-flexible) with carbon-loading, or organic materials, including binders, providing more than 5 % echo compared with metal over a bandwidth exceeding ± 15 % of the centre frequency of the incident energy, and not capable of withstanding temperatures exceeding 450 K (177 °C); or

b.

Ceramic materials providing more than 20 % echo compared with metal over a bandwidth exceeding ± 15 % of the centre frequency of the incident energy, and not capable of withstanding temperatures exceeding 800 K (527 °C);

Technical Note:

Absorption test samples for 1C001.a. Note: 1.c.1. should be a square at least 5 wavelengths of the centre frequency on a side and positioned in the far field of the radiating element.

2.

Tensile strength less than 7 × 106 N/m2; and

3.

Compressive strength less than 14 × 106 N/m2;

d.

Planar absorbers made of sintered ferrite, having all of the following:

1.

A specific gravity exceeding 4,4; and

2.

A maximum operating temperature of 548 K (275 °C).

Note 2: Nothing in Note 1 to 1C001.a. releases magnetic materials to provide absorption when contained in paint.

b.

Materials for absorbing frequencies exceeding 1,5 × 1014 Hz but less than 3,7 × 1014 Hz and not transparent to visible light;

Note: 1C001.b. does not control materials, specially designed or formulated for any of the following applications:

a.

Laser marking of polymers; or

b.

Laser welding of polymers.

c.

Intrinsically conductive polymeric materials with a ‘bulk electrical conductivity’ exceeding 10 000 S/m (Siemens per metre) or a ‘sheet (surface) resistivity’ of less than 100 ohms/square, based on any of the following polymers:

1.

Polyaniline;

2.

Polypyrrole;

3.

Polythiophene;

4.

Poly phenylene-vinylene; or

5.

Poly thienylene-vinylene.

Note: 1C001.c. does not control materials in a liquid form.

Technical Note:

‘Bulk electrical conductivity’ and ‘sheet (surface) resistivity’ should be determined using ASTM D-257 or national equivalents.

1C002

Metal alloys, metal alloy powder and alloyed materials, as follows:

N.B.: SEE ALSO 1C202.

Note: 1C002 does not control metal alloys, metal alloy powder and alloyed materials for coating substrates.

Technical Notes:

1.

The metal alloys in 1C002 are those containing a higher percentage by weight of the stated metal than of any other element.

2.

‘Stress-rupture life’ should be measured in accordance with ASTM standard E-139 or national equivalents.

3.

‘Low cycle fatigue life’ should be measured in accordance with ASTM Standard E-606 ‘Recommended Practice for Constant-Amplitude Low-Cycle Fatigue Testing’ or national equivalents. Testing should be axial with an average stress ratio equal to 1 and a stress-concentration factor (Kt) equal to 1. The average stress is defined as maximum stress minus minimum stress divided by maximum stress.

a.

Aluminides, as follows:

1.

Nickel aluminides containing a minimum of 15 % by weight aluminium, a maximum of 38 % by weight aluminium and at least one additional alloying element;

2.

Titanium aluminides containing 10 % by weight or more aluminium and at least one additional alloying element;

b.

Metal alloys, as follows, made from the powder or particulate material specified in 1C002.c.:

1.

Nickel alloys having any of the following:

a.

A ‘stress-rupture life’ of 10 000 hours or longer at 923 K (650 °C) at a stress of 676 MPa; or

b.

A ‘low cycle fatigue life’ of 10 000 cycles or more at 823 K (550 °C) at a maximum stress of 1 095 MPa;

2.

Niobium alloys having any of the following:

a.

A ‘stress-rupture life’ of 10 000 hours or longer at 1 073 K (800 °C) at a stress of 400 MPa; or

b.

A ‘low cycle fatigue life’ of 10 000 cycles or more at 973 K (700 °C) at a maximum stress of 700 MPa;

3.

Titanium alloys having any of the following:

a.

A ‘stress-rupture life’ of 10 000 hours or longer at 723 K (450 °C) at a stress of 200 MPa; or

b.

A ‘low cycle fatigue life’ of 10 000 cycles or more at 723 K (450 °C) at a maximum stress of 400 MPa;

4.

Aluminium alloys having any of the following:

a.

A tensile strength of 240 MPa or more at 473 K (200 °C); or

b.

A tensile strength of 415 MPa or more at 298 K (25 °C);

5.

Magnesium alloys having all of the following:

a.

A tensile strength of 345 MPa or more; and

b.

A corrosion rate of less than 1 mm/year in 3 % sodium chloride aqueous solution measured in accordance with ASTM standard G-31 or national equivalents;

c.

Metal alloy powder or particulate material, having all of the following:

1.

Made from any of the following composition systems:

Technical Note:

X in the following equals one or more alloying elements.

a.

Nickel alloys (Ni-Al-X, Ni-X-Al) qualified for turbine engine parts or components, i.e. with less than 3 non-metallic particles (introduced during the manufacturing process) larger than 100 μm in 109 alloy particles;

b.

Niobium alloys (Nb-Al-X or Nb-X-Al, Nb-Si-X or Nb-X-Si, Nb-Ti-X or Nb-X-Ti);

c.

Titanium alloys (Ti-Al-X or Ti-X-Al);

d.

Aluminium alloys (Al-Mg-X or Al-X-Mg, Al-Zn-X or Al-X-Zn, Al-Fe-X or Al-X-Fe); or

e.

Magnesium alloys (Mg-Al-X or Mg-X-Al);

2.

Made in a controlled environment by any of the following processes:

a.

“Vacuum atomisation”;

b.

“Gas atomisation”;

c.

“Rotary atomisation”;

d.

“Splat quenching”;

e.

“Melt spinning” and “comminution”;

f.

“Melt extraction” and “comminution”; or

g.

“Mechanical alloying”; and

3.

Capable of forming materials specified in 1C002.a. or 1C002.b.;

d.

Alloyed materials having all of the following:

1.

Made from any of the composition systems specified in 1C002.c.1.;

2.

In the form of uncomminuted flakes, ribbons or thin rods; and

3.

Produced in a controlled environment by any of the following:

a.

“Splat quenching”;

b.

“Melt spinning”; or

c.

“Melt extraction”.

1C003

Magnetic metals, of all types and of whatever form, having any of the following:

a.

Initial relative permeability of 120 000 or more and a thickness of 0,05 mm or less;

Technical Note:

Measurement of initial relative permeability must be performed on fully annealed materials.

b.

Magnetostrictive alloys having any of the following:

1.

A saturation magnetostriction of more than 5 × 10-4; or

2.

A magnetomechanical coupling factor (k) of more than 0,8; or

c.

Amorphous or ‘nanocrystalline’ alloy strips, having all of the following:

1.

A composition having a minimum of 75 % by weight of iron, cobalt or nickel;

2.

A saturation magnetic induction (Bs) of 1,6 T or more; and

3.

Any of the following:

a.

A strip thickness of 0,02 mm or less; or

b.

An electrical resistivity of 2 × 10-4 ohm cm or more.

Technical Note:

‘Nanocrystalline’ materials in 1C003.c. are those materials having a crystal grain size of 50 nm or less, as determined by X-ray diffraction.

1C004

Uranium titanium alloys or tungsten alloys with a “matrix” based on iron, nickel or copper, having all of the following:

a.

A density exceeding 17,5 g/cm3;

b.

An elastic limit exceeding 880 MPa;

c.

An ultimate tensile strength exceeding 1 270 MPa; and

d.

An elongation exceeding 8 %.

1C005

“Superconductive”“composite” conductors in lengths exceeding 100 m or with a mass exceeding 100 g, as follows:

a.

“Superconductive”“composite” conductors containing one or more niobium-titanium ‘filaments’, having all of the following:

1.

Embedded in a “matrix” other than a copper or copper-based mixed “matrix”; and

2.

Having a cross-section area less than 0,28 × 10-4 mm2 (6 μm in diameter for circular ‘filaments’);

b.

“Superconductive”“composite” conductors consisting of one or more “superconductive”‘filaments’ other than niobium-titanium, having all of the following:

1.

A “critical temperature” at zero magnetic induction exceeding 9,85 K (- 263,31 °C); and

2.

Remaining in the “superconductive” state at a temperature of 4,2 K (- 268,96 °C) when exposed to a magnetic field oriented in any direction perpendicular to the longitudinal axis of conductor and corresponding to a magnetic induction of 12 T with critical current density exceeding 1 750 A/mm2 on overall cross-section of the conductor;

c.

“Superconductive”“composite” conductors consisting of one or more “superconductive”‘filaments’ which remain “superconductive” above 115 K (- 158,16 °C).

Technical Note:

For the purpose of 1C005 ‘filaments’ may be in wire, cylinder, film, tape or ribbon form.

1C006

Fluids and lubricating materials, as follows:

a.

Hydraulic fluids containing, as their principal ingredients, any of the following:

1.

Synthetic ‘silahydrocarbon oils’ having all of the following:

Technical Note:

For the purpose of 1C006.a.1., ‘silahydrocarbon oils’ contain exclusively silicon, hydrogen and carbon.

a.

A ‘flash point’ exceeding 477 K (204 °C);

b.

A ‘pour point’ at 239 K (– 34 °C) or less;

c.

A ‘viscosity index’ of 75 or more; and

d.

A ‘thermal stability’ at 616 K (343 °C); or

2.

‘Chlorofluorocarbons’ having all of the following:

Technical Note:

For the purpose of 1C006.a.2., ‘chlorofluorocarbons’ contain exclusively carbon, fluorine and chlorine.

a.

No ‘flash point’;

b.

An ‘autogenous ignition temperature’ exceeding 977 K (704 °C);

c.

A ‘pour point’ at 219 K (– 54 °C) or less;

d.

A ‘viscosity index’ of 80 or more; and

e.

A boiling point at 473 K (200 °C) or higher;

b.

Lubricating materials containing, as their principal ingredients, any of the following:

1.

Phenylene or alkylphenylene ethers or thio-ethers, or their mixtures, containing more than two ether or thio-ether functions or mixtures thereof; or

2.

Fluorinated silicone fluids with a kinematic viscosity of less than 5 000 mm2/s (5 000 centistokes) measured at 298 K (25 °C);

c.

Damping or flotation fluids having all of the following:

1.

Purity exceeding 99,8 %;

2.

Containing less than 25 particles of 200 μm or larger in size per 100 ml; and

3.

Made from at least 85 % of any of the following:

a.

Dibromotetrafluoroethane (CAS 25497-30-7, 124-73-2, 27336-23-8);

b.

Polychlorotrifluoroethylene (oily and waxy modifications only); or

c.

Polybromotrifluoroethylene;

d.

Fluorocarbon electronic cooling fluids having all of the following:

1.

Containing 85 % by weight or more of any of the following, or mixtures thereof:

a.

Monomeric forms of perfluoropolyalkylether-triazines or perfluoroaliphatic-ethers;

b.

Perfluoroalkylamines;

c.

Perfluorocycloalkanes; or

d.

Perfluoroalkanes;

2.

Density at 298 K (25 °C) of 1,5 g/ml or more;

3.

In a liquid state at 273 K (0 °C); and

4.

Containing 60 % or more by weight of fluorine.

Note: 1C006.d. does not control materials specified and packaged as medical products.

Technical Note:

For the purpose of 1C006:

1.

‘Flash point’ is determined using the Cleveland Open Cup Method described in ASTM D-92 or national equivalents;

2.

‘Pour point’ is determined using the method described in ASTM D-97 or national equivalents;

3.

‘Viscosity index’ is determined using the method described in ASTM D-2270 or national equivalents;

4.

‘Thermal stability’ is determined by the following test procedure or national equivalents:

Twenty ml of the fluid under test is placed in a 46 ml type 317 stainless steel chamber containing one each of 12,5 mm (nominal) diameter balls of M-10 tool steel, 52100 steel and naval bronze (60 % Cu, 39 % Zn, 0,75 % Sn); The chamber is purged with nitrogen, sealed at atmospheric pressure and the temperature raised to and maintained at 644 ± 6 K (371 ± 6 °C) for six hours; The specimen will be considered thermally stable if, on completion of the above procedure, all of the following conditions are met:

a.

The loss in weight of each ball is less than 10 mg/mm2 of ball surface;

b.

The change in original viscosity as determined at 311 K (38 °C) is less than 25 %; and

c.

The total acid or base number is less than 0,40;

5.

‘Autogenous ignition’ temperature is determined using the method described in ASTM E-659 or national equivalents.

1C007

Ceramic base materials, non-“composite” ceramic materials, ceramic-“matrix”, “composite” materials and precursor materials, as follows:

N.B.: SEE ALSO 1C107.

a.

Base materials of single or complex borides of titanium, having total metallic impurities, excluding intentional additions, of less than 5 000 ppm, an average particle size equal to or less than 5 μm and no more than 10 % of the particles larger than 10 μm;

b.

Non-“composite” ceramic materials in crude or semi-fabricated form, composed of borides of titanium with a density of 98 % or more of the theoretical density;

Note: 1C007.b. does not control abrasives.

c.

Ceramic-ceramic “composite” materials with a glass or oxide-“matrix” and reinforced with fibres having all of the following:

1.

Made from any of the following materials:

a.

Si-N;

b.

Si-C;

c.

Si-Al-O-N; or

d.

Si-O-N; and

2.

Having a “specific tensile strength” exceeding 12,7 × 103 m;

d.

Ceramic-ceramic “composite” materials, with or without a continuous metallic phase, incorporating particles, whiskers or fibres, where carbides or nitrides of silicon, zirconium or boron form the “matrix”;

e.

Precursor materials (i.e., special purpose polymeric or metallo-organic materials) for producing any phase or phases of the materials specified in 1C007.c., as follows:

1.

Polydiorganosilanes (for producing silicon carbide);

2.

Polysilazanes (for producing silicon nitride);

3.

Polycarbosilazanes (for producing ceramics with silicon, carbon and nitrogen components);

f.

Ceramic-ceramic “composite” materials with an oxide or glass “matrix” reinforced with continuous fibres from any of the following systems:

1.

Al2O3 (CAS 1344-28-1); or

2.

Si-C-N.

Note: 1C007.f. does not control “composites” containing fibres from these systems with a fibre tensile strength of less than 700 MPa at 1 273 K (1 000 °C) or fibre tensile creep resistance of more than 1 % creep strain at 100 MPa load and 1 273 K (1 000 °C) for 100 hours.

1C008

Non-fluorinated polymeric substances as follows:

a.

Imides, as follows:

1.

Bismaleimides;

2.

Aromatic polyamide-imides (PAI) having a ‘glass transition temperature (Tg)’ exceeding 563 K (290 °C);

3.

Aromatic polyimides having a ‘glass transition temperature (Tg)’ exceeding 505 K (232 °C);

4.

Aromatic polyetherimides having a ‘glass transition temperature (Tg)’ exceeding 563 K (290 °C);

Note: 1C008.a. controls substances in liquid or solid “fusible” form, including resin, powder, pellet, film, sheet, tape or ribbon.

N.B.: For non-“fusible” aromatic polyimides in film, sheet, tape or ribbon form, see 1A003.

b.

Thermoplastic liquid crystal copolymers having a heat distortion temperature exceeding 523 K (250 °C) measured according to ISO 75-2 (2004), method A or national equivalents, with a load of 1,80 N/mm2 and composed of:

1.

Any of the following compounds:

a.

Phenylene, biphenylene or naphthalene; or

b.

Methyl, tertiary-butyl or phenyl substituted phenylene, biphenylene or naphthalene; and

2.

Any of the following acids:

a.

Terephthalic acid (CAS 100-21-0);

b.

6-hydroxy-2 naphthoic acid (CAS 16712-64-4); or

c.

4-hydroxybenzoic acid (CAS 99-96-7);

c.

Not used;

d.

Polyarylene ketones;

e.

Polyarylene sulphides, where the arylene group is biphenylene, triphenylene or combinations thereof;

f.

Polybiphenylenethersulphone having a ‘glass transition temperature (Tg)’ exceeding 563 K (290 °C).

Technical Note:

1.

The ‘glass transition temperature (Tg)’ for 1C008.a.2. thermoplastic materials and 1C008.a.4. materials is determined using the method described in ISO 11357-2 (1999) or national equivalents

2.

The ‘glass transition temperature (Tg)’ for 1C008.a.2. thermosetting materials and 1C008.a.3. materials is determined using the 3-point bend method described in ASTM D 7028-07 or equivalent national standard. The test is to be performed using a dry test specimen which has attained a minimum of 90 % degree of cure as specified by ASTM E 2160-04 or equivalent national standard, and was cured using the combination of standard- and post-cure processes that yield the highest Tg.

1C009

Unprocessed fluorinated compounds as follows:

a.

Copolymers of vinylidene fluoride having 75 % or more beta crystalline structure without stretching;

b.

Fluorinated polyimides containing 10 % by weight or more of combined fluorine;

c.

Fluorinated phosphazene elastomers containing 30 % by weight or more of combined fluorine.

1C010

“Fibrous or filamentary materials”, as follows:

N.B.: SEE ALSO 1C210 AND 9C110.

a.

Organic “fibrous or filamentary materials”, having all of the following:

1.

“Specific modulus” exceeding 12,7 × 106 m; and

2.

“Specific tensile strength” exceeding 23,5 × 104 m;

Note: 1C010.a. does not control polyethylene.

b.

Carbon “fibrous or filamentary materials”, having all of the following:

1.

“Specific modulus” exceeding 14,65 × 106 m; and

2.

“Specific tensile strength” exceeding 26,82 × 104 m;

Note: 1C010.b. does not control:

a.

“Fibrous or filamentary materials”, for the repair of “civil aircraft” structures or laminates, having all of the following:

1.

An area not exceeding 1 m2;

2.

A length not exceeding 2,5 m; and

3.

A width exceeding 15 mm.

b.

Mechanically chopped, milled or cut carbon “fibrous or filamentary materials”25,0 mm or less in length.

c.

Inorganic “fibrous or filamentary materials”, having all of the following:

1.

“Specific modulus” exceeding 2,54 × 106 m; and

2.

Melting, softening, decomposition or sublimation point exceeding 1 922 K (1 649 °C) in an inert environment;

Note: 1C010.c. does not control:

a.

Discontinuous, multiphase, polycrystalline alumina fibres in chopped fibre or random mat form, containing 3 % by weight or more silica, with a “specific modulus” of less than 10 × 106 m;

b.

Molybdenum and molybdenum alloy fibres;

c.

Boron fibres;

d.

Discontinuous ceramic fibres with a melting, softening, decomposition or sublimation point lower than 2 043 K (1 770 °C) in an inert environment.

Technical Notes:

1.

For the purpose of calculating “specific tensile strength”, “specific modulus” or specific weight of “fibrous or filamentary materials” in 1C010.a., 1C010.b. or 1C010.c., the tensile strength and modulus should be determined by using Method A described in ISO 10618 (2004) or national equivalents.

2.

Assessing the “specific tensile strength”, “specific modulus” or specific weight of non-unidirectional “fibrous or filamentary materials” (e.g., fabrics, random mats or braids) in 1C010. is to be based on the mechanical properties of the constituent unidirectional monofilaments (e.g., monofilaments, yarns, rovings or tows) prior to processing into the non-unidirectional “fibrous or filamentary materials”.

d.

“Fibrous or filamentary materials”, having any of the following:

1.

Composed of any of the following:

a.

Polyetherimides specified in 1C008.a.; or

b.

Materials specified in 1C008.b. to 1C008.f.; or

2.

Composed of materials specified in 1C010.d.1.a. or 1C010.d.1.b. and “commingled” with other fibres specified in 1C010.a., 1C010.b. or 1C010.c.;

e.

Fully or partially resin-impregnated or pitch-impregnated “fibrous or filamentary materials” (prepregs), metal or carbon-coated “fibrous or filamentary materials” (preforms) or “carbon fibre preforms”, having all of the following:

1.

Having any of the following:

a.

Inorganic “fibrous or filamentary materials” specified in 1C010.c.; or

b.

Organic or carbon “fibrous or filamentary materials”, having all of the following:

1.

“Specific modulus” exceeding 10,15 × 106 m; and

2.

“Specific tensile strength” exceeding 17,7 × 104 m; and

2.

Having any of the following:

a.

Resin or pitch, specified in 1C008 or 1C009.b.;

b.

‘Dynamic Mechanical Analysis glass transition temperature (DMA Tg)’ equal to or exceeding 453 K (180 °C) and having a phenolic resin; or

c.

‘Dynamic Mechanical Analysis glass transition temperature (DMA Tg)’ equal to or exceeding 505 K (232 °C) and having a resin or pitch, not specified in 1C008 or 1C009.b., and not being a phenolic resin;

Note 1: Metal or carbon-coated “fibrous or filamentary materials” (performs) or “carbon fibre performs”, not impregnated with resin or pitch, are specified by “fibrous or filamentary materials” in 1C010.a., 1C010.b. or 1C010.c.

Note 2: 1C010.e. does not control:

a.

Epoxy resin “matrix” impregnated carbon “fibrous or filamentary materials” (prepregs) for the repair of “civil aircraft” structures or laminates, having all the following;

1.

An area not exceeding 1 m2;

2.

A length not exceeding 2,5 m; and

3.

A width exceeding 15 mm.

b.

Fully or partially resin-impregnated or pitch-impregnated mechanically chopped, milled or cut carbon “fibrous or filamentary materials”25,0 mm or less in length when using a resin or pitch other than those specified by 1C008 or 1C009.b.

Technical Note:

The ‘Dynamic Mechanical Analysis glass transition temperature (DMA Tg)’ for materials specified by 1C010.e. is determined using the method described in ASTM D 7028-07, or equivalent national standard, on a dry test specimen. In the case of thermoset materials, degree of cure of a dry test specimen shall be a minimum of 90 % as defined by ASTM E 2160-04 or equivalent national standard.

1C011

Metals and compounds, as follows:

N.B.: SEE ALSO MILITARY GOODS CONTROLS and 1C111.

a.

Metals in particle sizes of less than 60 μm whether spherical, atomised, spheroidal, flaked or ground, manufactured from material consisting of 99 % or more of zirconium, magnesium and alloys thereof;

1C011 a.
Technical Note:

The natural content of hafnium in the zirconium (typically 2 % to 7 %) is counted with the zirconium.

Note: The metals or alloys specified in 1C011.a. are controlled whether or not the metals or alloys are encapsulated in aluminium, magnesium, zirconium or beryllium.

b.

Boron or boron alloys, with a particle size of 60 μm or less, as follows:

1.

Boron with a purity of 85 % by weight or more;

2.

Boron alloys with a boron content of 85 % by weight or more;

Note: The metals or alloys specified in 1C011.b. are controlled whether or not the metals or alloys are encapsulated in aluminium, magnesium, zirconium or beryllium.

c.

Guanidine nitrate (CAS 506-93-4);

d.

Nitroguanidine (NQ) (CAS 556-88-7).

N.B.: See also Military Goods Controls for metal powders mixed with other substances to form a mixture formulated for military purposes.

1C012

Materials as follows:

Technical Note:

These materials are typically used for nuclear heat sources.

a.

Plutonium in any form with a plutonium isotopic assay of plutonium-238 of more than 50 % by weight;

Note: 1C012.a. does not control:

a.

Shipments with a plutonium content of 1 g or less;

b.

Shipments of 3 “effective grammes” or less when contained in a sensing component in instruments.

b.

“Previously separated” neptunium-237 in any form.

Note: 1C012.b. does not control shipments with a neptunium-237 content of 1 g or less.

1C101

Materials and devices for reduced observables such as radar reflectivity, ultraviolet/infrared signatures and acoustic signatures, other than those specified in 1C001, usable in ‘missiles’, “missile” subsystems or unmanned aerial vehicles specified in 9A012.

Note 1: 1C101 includes:

a.

Structural materials and coatings specially designed for reduced radar reflectivity;

b.

Coatings, including paints, specially designed for reduced or tailored reflectivity or emissivity in the microwave, infrared or ultraviolet regions of the electromagnetic spectrum.

Note 2: 1C101 does not include coatings when specially used for the thermal control of satellites.

Technical Note:

In 1C101 ‘missile’ means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km.

1C102

Resaturated pyrolized carbon-carbon materials designed for space launch vehicles specified in 9A004 or sounding rockets specified in 9A104.

1C107

Graphite and ceramic materials, other than those specified in 1C007, as follows:

a.

Fine grain graphites with a bulk density of 1,72 g/cm3 or greater, measured at 288 K (15 °C), and having a grain size of 100 μm or less, usable for rocket nozzles and re-entry vehicle nose tips, which can be machined to any of the following products:

1.

Cylinders having a diameter of 120 mm or greater and a length of 50 mm or greater;

2.

Tubes having an inner diameter of 65 mm or greater and a wall thickness of 25 mm or greater and a length of 50 mm or greater; or

3.

Blocks having a size of 120 mm × 120 mm × 50 mm or greater;

N.B.: See also 0C004

b.

Pyrolytic or fibrous reinforced graphites, usable for rocket nozzles and reentry vehicle nose tips usable in “missiles”, space launch vehicles specified in 9A004 or sounding rockets specified in 9A104;

N.B.: See also 0C004

c.

Ceramic composite materials (dielectric constant less than 6 at any frequency from 100 MHz to 100 GHz) for use in radomes usable in “missiles”, space launch vehicles specified in 9A004 or sounding rockets specified in 9A104;

d.

Bulk machinable silicon-carbide reinforced unfired ceramic, usable for nose tips usable in “missiles”, space launch vehicles specified in 9A004 or sounding rockets specified in 9A104;

e.

Reinforced silicon-carbide ceramic composites, usable for nose tips, reentry vehicles and nozzle flaps usable in “missiles”, space launch vehicles specified in 9A004 or sounding rockets specified in 9A104.

1C111

Propellants and constituent chemicals for propellants, other than those specified in 1C011, as follows:

a.

Propulsive substances:

1.

Spherical or spheroidal aluminium powder, other than that specified in the Military Goods Controls, in particle size of less than 200 μm and an aluminium content of 97 % by weight or more, if at least 10 % of the total weight is made up of particles of less than 63 μm, according to ISO 2591:1988 or national equivalents;

Technical Note:

A particle size of 63 μm (ISO R-565) corresponds to 250 mesh (Tyler) or 230 mesh (ASTM standard E-11).

2.

Metal powders, other than that specified in the Military Goods Controls, as follows:

a.

Metal powders of zirconium, beryllium or magnesium, or alloys of these metals, if at least 90 % of the total particles by particle volume or weight are made up of particles of less than 60 μm (determined by measurement techniques such as using a sieve, laser diffraction or optical scanning), whether spherical, atomized, spheroidal, flaked or ground, consisting 97 % by weight or more of any of the following:

1.

Zirconium;

2.

Beryllium; or

3.

Magnesium;

Technical Note:

The natural content of hafnium in the zirconium (typically 2 % to 7 %) is counted with the zirconium.

b.

Metal powders of either boron or boron alloys with a boron content of 85 % or more by weight, if at least 90 % of the total particles by particle volume or weight are made up of particles of less than 60 μm (determined by measurement techniques such as using a sieve, laser diffraction or optical scanning), whether spherical, atomised, spheroidal, flaked or ground;

Note: 1C111a.2.a. and 1C111a.2.b. controls powder mixtures with a multimodal particle distribution (e.g. mixtures of different grain sizes) if one or more modes are controlled.

3.

Oxidiser substances usable in liquid propellant rocket engines as follows:

a.

Dinitrogen trioxide (CAS 10544-73-7);

b.

Nitrogen dioxide (CAS 10102-44-0)/dinitrogen tetroxide (CAS 10544-72-6);

c.

Dinitrogen pentoxide (CAS 10102-03-1);

d.

Mixed Oxides of Nitrogen (MON);

Technical Note:

Mixed Oxides of Nitrogen (MON) are solutions of Nitric Oxide (NO) in Dinitrogen Tetroxide/Nitrogen Dioxide (N2O4/NO2) that can be used in missile systems. There are a range of compositions that can be denoted as MONi or MONij, where i and j are integers representing the percentage of Nitric Oxide in the mixture (e.g., MON3 contains 3 % Nitric Oxide, MON25 25 % Nitric Oxide. An upper limit is MON40, 40 % by weight).

e.

SEE MILITARY GOODS CONTROLS for Inhibited Red Fuming Nitric Acid (IRFNA);

f.

SEE MILITARY GOODS CONTROLS AND 1C238 for compounds composed of fluorine and one or more of other halogens, oxygen or nitrogen.

4.

Hydrazine derivatives as follows:

N.B.: SEE ALSO MILITARY GOODS CONTROLS.

a.

Trimethylhydrazine (CAS 1741-01-1);

b.

Tetramethylhydrazine (CAS 6415-12-9);

c.

N,N diallylhydrazine;

d.

Allylhydrazine (CAS 7422-78-8);

e.

Ethylene dihydrazine;

f.

Monomethylhydrazine dinitrate;

g.

Unsymmetrical dimethylhydrazine nitrate;

h.

Hydrazinium azide (CAS 14546-44-2);

i.

Dimethylhydrazinium azide;

j.

Hydrazinium dinitrate;

k.

Diimido oxalic acid dihydrazine (CAS 3457-37-2);

l.

2-hydroxyethylhydrazine nitrate (HEHN);

m.

See Military Goods Controls for Hydrazinium perchlorate;

n.

Hydrazinium diperchlorate (CAS 13812-39-0);

o.

Methylhydrazine nitrate (MHN);

p.

Diethylhydrazine nitrate (DEHN);

q.

3,6-dihydrazino tetrazine nitrate (1,4-dihydrazine nitrate) (DHTN);

5.

High energy density materials, other than that specified in the Military Goods Controls, usable in ‘missiles’ or unmanned aerial vehicles specified in 9A012;

a.

Mixed fuel that incorporate both solid and liquid fuels, such as boron slurry, having a mass-based energy density of 40 × 106 J/kg or greater;

b.

Other high energy density fuels and fuel additives (e.g., cubane, ionic solutions, JP-10) having a volume-based energy density of 37,5 × 109 J/m3 or greater, measured at 20 °C and one atmosphere (101,325 kPa) pressure;

Note: 1C111.a.5.b. does not control fossil refined fuels and biofuels produced from vegetables, including fuels for engines certified for use in civil aviation, unless specially formulated for ‘missiles’ or unmanned aerial vehicles specified in 9A012.

Technical Note:

In 1C111.a.5. ‘missile’ means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km.

b.

Polymeric substances:

1.

Carboxy-terminated polybutadiene (including carboxyl-terminated polybutadiene) (CTPB);

2.

Hydroxy-terminated polybutadiene (included hydroxyl-terminated polybutadiene) (HTPB), other than that specified in the Military Goods Controls;

3.

Polybutadiene-acrylic acid (PBAA);

4.

Polybutadiene-acrylic acid-acrylonitrile (PBAN);

5.

Polytetrahydrofuran polyethylene glycol (TPEG);

Technical Note:

Polytetrahydrofuran polyethylene glycol (TPEG) is a block co-polymer of poly 1,4-Butanediol and polyethylene glycol (PEG).

c.

Other propellant additives and agents:

1.

SEE MILITARY GOODS CONTROLS FOR Carboranes, decaboranes, pentaboranes and derivatives thereof;

2.

Triethylene glycol dinitrate (TEGDN) (CAS 111-22-8);

3.

2-Nitrodiphenylamine (CAS 119-75-5);

4.

Trimethylolethane trinitrate (TMETN) (CAS 3032-55-1);

5.

Diethylene glycol dinitrate (DEGDN) (CAS 693-21-0);

6.

Ferrocene derivatives as follows:

a.

See Military Goods Controls for catocene;

b.

Ethyl ferrocene (CAS 1273-89-8);

c.

Propyl ferrocene;

d.

See Military Goods Controls for n-butyl ferrocene;

e.

Pentyl ferrocene (CAS 1274-00-6);

f.

Dicyclopentyl ferrocene;

g.

Dicyclohexyl ferrocene;

h.

Diethyl ferrocene (CAS 1273-97-8);

i.

Dipropyl ferrocene;

j.

Dibutyl ferrocene (CAS 1274-08-4);

k.

Dihexyl ferrocene (CAS 93894-59-8);

l.

Acetyl ferrocene (CAS 1271-55-2)/1,1'-diacetyl ferrocene (CAS 1273-94-5);

m.

See Military Goods Controls for ferrocene Carboxylic acids;

n.

See Military Goods Controls for butacene;

o.

Other ferrocene derivatives usable as rocket propellant burning rate modifiers, other than those specified in the Military Goods Controls.

Note: 1C111.c.6.o. does not control ferrocene derivatives that contain a six carbon aromatic functional group attached to the ferrocene molecule.

7.

4,5 diazidomethyl-2-methyl-1,2,3-triazole (iso- DAMTR), other than that specified in the Military Goods Controls.

Note: For propellants and constituent chemicals for propellants not specified in 1C111, see the Military Goods Controls.

1C116

Maraging steels, useable in ‘missiles’, having all of the following:

N.B.: SEE ALSO 1C216.

a.

Having an ultimate tensile strength, measured at 293 K (20 °C), equal to or greater than:

1.

0,9 GPa in the solution annealed stage; or

2.

1,5 GPa in the precipitation hardened stage; and

b.

Any of the following forms:

1.

Sheet, plate or tubing with a wall or plate thickness equal to or less than 5,0 mm;

2.

Tubular forms with a wall thickness equal to or less than 50 mm and having an inner diameter equal to or greater than 270 mm.

Technical Note 1:

Maraging steels are iron alloy:

1.

Generally characterised by high nickel, very low carbon content and the use of substitutional elements or precipitates to produce strengthening and age-hardening of the alloy; and

2.

Subjected to heat treatment cycles to facilitate the martensitic transformation process (solution annealed stage) and subsequently age hardened (precipitation hardened stage).

Technical Note 2:

In 1C116 ‘missile’ means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km.

1C117

Materials for the fabrication of ‘missiles’ components as follows:

a.

Tungsten and alloys in particulate form with a tungsten content of 97 % by weight or more and a particle size of 50 × 10-6 m (50 μm) or less;

b.

Molybdenum and alloys in particulate form with a molybdenum content of 97 % by weight or more and a particle size of 50 × 10-6 m (50 μm) or less;

c.

Tungsten materials in solid form having all of the following:

1.

Any of the following material compositions:

a.

Tungsten and alloys containing 97 % by weight or more of tungsten;

b.

Copper infiltrated tungsten containing 80 % by weight or more of tungsten; or

c.

Silver infiltrated tungsten containing 80 % by weight ot more of tungsten; and

2.

Able to be machined to any of the following products:

a.

Cylinders having a diameter of 120 mm or greater and a length of 50 mm or greater;

b.

Tubes having an inner diameter of 65 mm or greater and a wall thickness of 25 mm or greater and a length of 50 mm or greater; or

c.

Blocks having a size of 120 mm by 120 mm by 50 mm or greater.

Technical Note:

In 1C117 ‘missile’ means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km.

1C118

Titanium-stabilised duplex stainless steel (Ti-DSS) having all of the following:

a.

Having all of the following characteristics:

1.

Containing 17,0 - 23,0 weight percent chromium and 4,5 - 7,0 weight percent nickel;

2.

Having a titanium content of greater than 0,10 weight percent; and

3.

A ferritic-austenitic microstructure (also referred to as a two-phase microstructure) of which at least 10 percent is austenite by volume (according to ASTM E-1181-87 or national equivalents); and

b.

Having any of the following forms:

1.

Ingots or bars having a size of 100 mm or more in each dimension;

2.

Sheets having a width of 600 mm or more and a thickness of 3 mm or less; or

3.

Tubes having an outer diameter of 600 mm or more and a wall thickness of 3 mm or less.

1C202

Alloys, other than those specified in 1C002.b.3. or .b.4., as follows:

a.

Aluminium alloys having both of the following characteristics:

1.

‘Capable of’ an ultimate tensile strength of 460 MPa or more at 293 K (20 °C); and

2.

In the form of tubes or cylindrical solid forms (including forgings) with an outside diameter of more than 75 mm;

b.

Titanium alloys having both of the following characteristics:

1.

‘Capable of’ an ultimate tensile strength of 900 MPa or more at 293 K (20 °C); and

2.

In the form of tubes or cylindrical solid forms (including forgings) with an outside diameter of more than 75 mm.

Technical Note:

The phrase alloys ‘capable of’ encompasses alloys before or after heat treatment.

1C210

‘Fibrous or filamentary materials’ or prepregs, other than those specified in 1C010.a., b. or e., as follows:

a.

Carbon or aramid ‘fibrous or filamentary materials’ having either of the following characteristics:

1.

A “specific modulus” of 12,7 × 106 m or greater; or

2.

A “specific tensile strength” of 23,5 × 104 m or greater;

Note: 1C210.a. does not control aramid ‘fibrous or filamentary materials’ having 0,25 % by weight or more of an ester based fibre surface modifier;

b.

Glass ‘fibrous or filamentary materials’ having both of the following characteristics:

1.

A “specific modulus” of 3,18 × 106 m or greater; and

2.

A “specific tensile strength” of 7,62 × 104 m or greater;

c.

Thermoset resin impregnated continuous “yarns”, “rovings”, “tows” or “tapes” with a width of 15 mm or less (prepregs), made from carbon or glass ‘fibrous or filamentary materials’ specified in 1C210.a. or b.

Technical Note:

The resin forms the matrix of the composite.

Note: In 1C210, ‘fibrous or filamentary materials’ is restricted to continuous “monofilaments”, “yarns”, “rovings”, “tows” or “tapes”.

1C216

Maraging steel, other than that specified in 1C116, ‘capable of’ an ultimate tensile strength of 1 950 MPa or more, at 293 K (20 °C).

Note: 1C216 does not control forms in which all linear dimensions are 75 mm or less.

Technical Note:

The phrase maraging steel ‘capable of’ encompasses maraging steel before or after heat treatment.

1C225

Boron enriched in the boron-10 (10B) isotope to greater than its natural isotopic abundance, as follows: elemental boron, compounds, mixtures containing boron, manufactures thereof, waste or scrap of any of the foregoing.

Note: In 1C225 mixtures containing boron include boron loaded materials.

Technical Note:

The natural isotopic abundance of boron-10 is approximately 18,5 weight per cent (20 atom per cent).

1C226

Tungsten, tungsten carbide, and alloys containing more than 90 % tungsten by weight, other than that specified by 1C117, having both of the following characteristics:

a.

In forms with a hollow cylindrical symmetry (including cylinder segments) with an inside diameter between 100 mm and 300 mm; and

b.

A mass greater than 20 kg.

Note: 1C226 does not control manufactures specially designed as weights or gamma-ray collimators.

1C227

Calcium having both of the following characteristics:

a.

Containing less than 1 000 parts per million by weight of metallic impurities other than magnesium; and

b.

Containing less than 10 parts per million by weight of boron.

1C228

Magnesium having both of the following characteristics:

a.

Containing less than 200 parts per million by weight of metallic impurities other than calcium; and

b.

Containing less than 10 parts per million by weight of boron.

1C229

Bismuth having both of the following characteristics:

a.

A purity of 99,99 % or greater by weight; and

b.

Containing less than 10 ppm (parts per million) by weight of silver.

1C230

Beryllium metal, alloys containing more than 50 % beryllium by weight, beryllium compounds, manufactures thereof, and waste or scrap of any of the foregoing, other than that specified in the Military Goods Controls.

N.B.: SEE ALSO MILITARY GOODS CONTROLS.

Note: 1C230 does not control the following:

a.

Metal windows for X-ray machines, or for bore-hole logging devices;

b.

Oxide shapes in fabricated or semi-fabricated forms specially designed for electronic component parts or as substrates for electronic circuits;

c.

Beryl (silicate of beryllium and aluminium) in the form of emeralds or aquamarines.

1C231

Hafnium metal, alloys containing more than 60 % hafnium by weight, hafnium compounds containing more than 60 % hafnium by weight, manufactures thereof, and waste or scrap of any of the foregoing.

1C232

Helium-3 (3He), mixtures containing helium-3, and products or devices containing any of the foregoing.

Note: 1C232 does not control a product or device containing less than 1 g of helium-3.

1C233

Lithium enriched in the lithium-6 (6Li) isotope to greater than its natural isotopic abundance, and products or devices containing enriched lithium, as follows: elemental lithium, alloys, compounds, mixtures containing lithium, manufactures thereof, waste or scrap of any of the foregoing.

Note: 1C233 does not control thermoluminescent dosimeters.

Technical Note:

The natural isotopic abundance of lithium-6 is approximately 6,5 weight per cent (7,5 atom per cent).

1C234

Zirconium with a hafnium content of less than 1 part hafnium to 500 parts zirconium by weight, as follows: metal, alloys containing more than 50 % zirconium by weight, compounds, manufactures thereof, waste or scrap of any of the foregoing, other than those specified in 0A001.f.

Note: 1C234 does not control zirconium in the form of foil having a thickness of 0,10 mm or less.

1C235

Tritium, tritium compounds, mixtures containing tritium in which the ratio of tritium to hydrogen atoms exceeds 1 part in 1 000, and products or devices containing any of the foregoing.

Note: 1C235 does not control a product or device containing less than 1,48 × 103 GBq (40 Ci) of tritium.

1C236

‘Radionuclides’ appropriate for making neutron sources based on alpha-n reaction, other than those specified in 0C001 and 1C012.a., in the following forms:

a.

Elemental;

b.

Compounds having a total activity of 37 GBq/kg (1 Ci/kg) or greater;

c.

Mixtures having a total activity of 37 GBq/kg (1 Ci/kg) or greater;

d.

Products or devices containing any of the foregoing.

Note: 1C236 does not control a product or device containing less than 3,7 GBq (100 millicuries) of activity.

Technical Note:

In 1C236 ‘radionuclides’ are any of the following:

Actinium-225 (Ac-225)

Actinium-227 (Ac-227)

Californium-253 (Cf-253)

Curium-240 (Cm-240)

Curium-241 (Cm-241)

Curium-242 (Cm-242)

Curium-243 (Cm-243)

Curium-244 (Cm-244)

Einsteinium-253 (Es-253)

Einsteinium-254 (Es-254)

Gadolinium-148 (Gd-148)

Plutonium-236 (Pu-236)

Plutonium-238 (Pu-238)

Polonium-208 (Po-208)

Polonium-209 (Po-209)

Polonium-210 (Po-210)

Radium-223 (Ra-223)

Thorium-227 (Th-227)

Thorium-228 (Th-228)

Uranium-230 (U-230)

Uranium-232 (U-232)

1C237

Radium-226 (226Ra), radium-226 alloys, radium-226 compounds, mixtures containing radium-226, manufactures therof, and products or devices containing any of the foregoing.

Note: 1C237 does not control the following:

a.

Medical applicators;

b.

A product or device containing less than 0,37 GBq (10 millicuries) of radium-226.

1C238

Chlorine trifluoride (ClF3).

1C239

High explosives, other than those specified in the Military Goods Controls, or substances or mixtures containing more than 2 % by weight thereof, with a crystal density greater than 1,8 g/cm3 and having a detonation velocity greater than 8 000 m/s.

1C240

Nickel powder and porous nickel metal, other than those specified in 0C005, as follows:

a.

Nickel powder having both of the following characteristics:

1.

A nickel purity content of 99,0 % or greater by weight; and

2.

A mean particle size of less than 10 μm measured by American Society for Testing and Materials (ASTM) B330 standard;

b.

Porous nickel metal produced from materials specified in 1C240.a.

Note: 1C240 does not control the following:

a.

Filamentary nickel powders;

b.

Single porous nickel sheets with an area of 1 000 cm2 per sheet or less.

Technical Note:

1C240.b. refers to porous metal formed by compacting and sintering the materials in 1C240.a. to form a metal material with fine pores interconnected throughout the structure.

1C241

Rhenium, and alloys containing 90 % by weight or more rhenium; and alloys of rhenium and tungsten containing 90 % by weight or more of any combination of rhenium and tungsten, having both of the following characteristics:

a.

In forms with a hollow cylindrical symmetry (including cylinder segments) with an inside diameter between 100 and 300 mm; and

b.

A mass greater than 20 kg.

1C350

Chemicals, which may be used as precursors for toxic chemical agents, as follows, and “chemical mixtures” containing one or more thereof:

N.B.: SEE ALSO MILITARY GOODS CONTROLS AND 1C450.

1.

Thiodiglycol (111-48-8);

2.

Phosphorus oxychloride (10025-87-3);

3.

Dimethyl methylphosphonate (756-79-6);

4.

SEE MILITARY GOODS CONTROLS for Methyl phosphonyl difluoride (676-99-3);

5.

Methyl phosphonyl dichloride (676-97-1);

6.

Dimethyl phosphite (DMP) (868-85-9);

7.

Phosphorus trichloride (7719-12-2);

8.

Trimethyl phosphite (TMP) (121-45-9);

9.

Thionyl chloride (7719-09-7);

10.

3-Hydroxy-1-methylpiperidine (3554-74-3);

11.

N,N-Diisopropyl-(beta)-aminoethyl chloride (96-79-7);

12.

N,N-Diisopropyl-(beta)-aminoethane thiol (5842-07-9);

13.

3-Quinuclidinol (1619-34-7);

14.

Potassium fluoride (7789-23-3);

15.

2-Chloroethanol (107-07-3);

16.

Dimethylamine (124-40-3);

17.

Diethyl ethylphosphonate (78-38-6);

18.

Diethyl-N,N-dimethylphosphoramidate (2404-03-7);

19.

Diethyl phosphite (762-04-9);

20.

Dimethylamine hydrochloride (506-59-2);

21.

Ethyl phosphinyl dichloride (1498-40-4);