30.12.2014 |
EN |
Official Journal of the European Union |
L 371/1 |
COMMISSION DELEGATED REGULATION (EU) No 1382/2014
of 22 October 2014
amending Council Regulation (EC) No 428/2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items
THE EUROPEAN COMMISSION,
Having regard to the Treaty on the Functioning of the European Union,
Having regard to Council Regulation (EC) No 428/2009 of 5 May 2009 setting up a Community regime for the control of exports, transfer, brokering and transit of dual-use items (1) and in particular Article 15(3) thereof,
Whereas:
(1) |
Regulation (EC) No 428/2009 requires dual-use items to be subject to effective control when they are exported from or transit through the Union, or are delivered to a third country as a result of brokering services provided by a broker resident or established in the Union. |
(2) |
Annex I to Regulation (EC) No 428/2009 establishes the common list of dual-use items that are subject to controls in the Union. Decisions on the items subject to controls are taken within the framework of the Australia Group, the Missile Technology Control Regime, the Nuclear Suppliers Group, the Wassenaar Arrangement and the Chemical Weapons Convention. |
(3) |
The list of dual-use items set out in Annex I to Regulation (EC) No 428/2009 needs to be updated regularly so as to ensure full compliance with international security obligations, to guarantee transparency, and to maintain the competitiveness of exporters. In order to facilitate references for export control authorities and operators, an updated and consolidated version of Annex I to Regulation (EC) No 428/2009 should be published. |
(4) |
Regulation (EC) No 428/2009 empowers the Commission to update the list of dual-use items set out in Annex I by means of delegated acts, in conformity with the relevant obligations and commitments, and any modifications thereto, that Member States have accepted as members of the international non-proliferation regimes and export control arrangements, or by ratification of relevant international treaties. |
(5) |
Regulation (EC) No 428/2009 should therefore be amended accordingly, |
HAS ADOPTED THIS REGULATION:
Article 1
Annex I to Regulation (EC) No 428/2009 is replaced by the text set out in the Annex to this Regulation.
Article 2
This Regulation shall enter into force on the day following that of its publication in the Official Journal of the European Union.
This Regulation shall be binding in its entirety and directly applicable in all Member States.
Done at Brussels, 22 October 2014.
For the Commission
The President
José Manuel BARROSO
(1) OJ L 134, 29.5.2009, p. 1.
ANNEX
‘ANNEX I
List referred to in Article 3 of this Regulation
LIST OF DUAL-USE ITEMS
This list implements internationally agreed dual-use controls including the Wassenaar Arrangement, the Missile Technology Control Regime (MTCR), the Nuclear Suppliers' Group (NSG), the Australia Group and the Chemical Weapons Convention (CWC).
CONTENTS
Notes
Acronyms and abbreviations
Definitions
Category 0 |
Nuclear materials, facilities and equipment |
Category 1 |
Special materials and related equipment |
Category 2 |
Materials processing |
Category 3 |
Electronics |
Category 4 |
Computers |
Category 5 |
Telecommunications and “information security” |
Category 6 |
Sensors and lasers |
Category 7 |
Navigation and avionics |
Category 8 |
Marine |
Category 9 |
Aerospace and propulsion |
GENERAL NOTES TO ANNEX I
1. |
For control of goods which are designed or modified for military use, see the relevant list(s) of controls on military goods maintained by individual Member States. References in this Annex that state “SEE ALSO MILITARY GOODS CONTROLS” refer to the same lists. |
2. |
The object of the controls contained in this Annex should not be defeated by the export of any non-controlled goods (including plant) containing one or more controlled components when the controlled component or components are the principal element of the goods and can feasibly be removed or used for other purposes. N.B.: In judging whether the controlled component or components are to be considered the principal element, it is necessary to weigh the factors of quantity, value and technological know-how involved and other special circumstances which might establish the controlled component or components as the principal element of the goods being procured. |
3. |
Goods specified in this Annex include both new and used goods. |
4. |
In some instances chemicals are listed by name and CAS number. The list applies to chemicals of the same structural formula (including hydrates) regardless of name or CAS number. CAS numbers are shown to assist in identifying a particular chemical or mixture, irrespective of nomenclature. CAS numbers cannot be used as unique identifiers because some forms of the listed chemical have different CAS numbers, and mixtures containing a listed chemical may also have different CAS numbers. |
NUCLEAR TECHNOLOGY NOTE (NTN)
(To be read in conjunction with section E of Category 0.)
The “technology” directly associated with any goods controlled in Category 0 is controlled according to the provisions of Category 0.
“Technology” for the “development”, “production” or “use” of goods under control remains under control even when applicable to non-controlled goods.
The approval of goods for export also authorizes the export to the same end-user of the minimum “technology” required for the installation, operation, maintenance and repair of the goods.
Controls on “technology” transfer do not apply to information “in the public domain” or to “basic scientific research”.
GENERAL TECHNOLOGY NOTE (GTN)
(To be read in conjunction with section E of Categories 1 to 9.)
The export of “technology” which is “required” for the “development”, “production” or “use” of goods controlled in Categories 1 to 9, is controlled according to the provisions of Categories 1 to 9.
“Technology”“required” for the “development”, “production” or “use” of goods under control remains under control even when applicable to non-controlled goods.
Controls do not apply to that “technology” which is the minimum necessary for the installation, operation, maintenance (checking) or repair of those goods which are not controlled or whose export has been authorised.
N.B.: This does not release such “technology” specified in 1E002.e., 1E002.f., 8E002.a. and 8E002.b.
Controls on “technology” transfer do not apply to information “in the public domain”, to “basic scientific research” or to the minimum necessary information for patent applications.
GENERAL SOFTWARE NOTE (GSN)
(This note overrides any control within section D of Categories 0 to 9.)
Categories 0 to 9 of this list do not control “software” which is any of the following:
a. |
Generally available to the public by being:
N.B.: Entry a. of the General Software Note does not release “software” specified in Category 5 — Part 2 (“Information Security”). |
b. |
“In the public domain”; or |
c. |
The minimum necessary “object code” for the installation, operation, maintenance (checking) or repair of those items whose export has been authorised. N.B.: Entry c. of the General Software Note does not release “software” specified in Category 5 — Part 2 (“Information Security”). |
EDITORIAL PRACTICES IN THE OFFICIAL JOURNAL OF THE EUROPEAN UNION
In accordance with the rules set out in paragraph 6.5 on page 108 of the Interinstitutional style guide (2011 edition), for texts in English published in the Official Journal of the European Union:
— |
a comma is used to separate whole number from decimals (e.g. 3,67 cm), |
— |
a space is used to indicate thousands in whole numbers (e.g. 100 000). |
The text reproduced in this annex follows the above-described practice.
ACRONYMS AND ABBREVIATIONS USED IN THIS ANNEX
An acronym or abbreviation, when used as a defined term, will be found in ‘Definitions of Terms used in this Annex’.
ACRONYM OR ABBREVIATION |
MEANING |
ABEC |
Annular Bearing Engineers Committee |
AGMA |
American Gear Manufacturers' Association |
AHRS |
attitude and heading reference systems |
AISI |
American Iron and Steel Institute |
ALU |
arithmetic logic unit |
ANSI |
American National Standards Institute |
ASTM |
the American Society for Testing and Materials |
ATC |
air traffic control |
AVLIS |
atomic vapour laser isotope separation |
CAD |
computer-aided-design |
CAS |
Chemical Abstracts Service |
CDU |
control and display unit |
CEP |
circular error probable |
CNTD |
controlled nucleation thermal deposition |
CRISLA |
chemical reaction by isotope selective laser activation |
CVD |
chemical vapour deposition |
CW |
chemical warfare |
CW (for lasers) |
continuous wave |
DME |
distance measuring equipment |
DS |
directionally solidified |
EB-PVD |
electron beam physical vapour deposition |
EBU |
European Broadcasting Union |
ECM |
electro-chemical machining |
ECR |
electron cyclotron resonance |
EDM |
electrical discharge machines |
EEPROMS |
electrically erasable programmable read only memory |
EIA |
Electronic Industries Association |
EMC |
electromagnetic compatibility |
ETSI |
European Telecommunications Standards Institute |
FFT |
Fast Fourier Transform |
GLONASS |
global navigation satellite system |
GPS |
global positioning system |
HBT |
hetero-bipolar transistors |
HDDR |
high density digital recording |
HEMT |
high electron mobility transistors |
ICAO |
International Civil Aviation Organisation |
IEC |
International Electro-technical Commission |
IEEE |
Institute of Electrical and Electronic Engineers |
IFOV |
instantaneous-field-of-view |
ILS |
instrument landing system |
IRIG |
inter-range instrumentation group |
ISA |
international standard atmosphere |
ISAR |
inverse synthetic aperture radar |
ISO |
International Organization for Standardization |
ITU |
International Telecommunication Union |
JIS |
Japanese Industrial Standard |
JT |
Joule-Thomson |
LIDAR |
light detection and ranging |
LRU |
line replaceable unit |
MAC |
message authentication code |
Mach |
ratio of speed of an object to speed of sound (after Ernst Mach) |
MLIS |
molecular laser isotopic separation |
MLS |
microwave landing systems |
MOCVD |
metal organic chemical vapour deposition |
MRI |
magnetic resonance imaging |
MTBF |
mean-time-between-failures |
Mtops |
million theoretical operations per second |
MTTF |
mean-time-to-failure |
NBC |
Nuclear, Biological and Chemical |
NDT |
non-destructive test |
PAR |
precision approach radar |
PIN |
personal identification number |
ppm |
parts per million |
PSD |
power spectral density |
QAM |
quadrature-amplitude-modulation |
RF |
radio frequency |
SACMA |
Suppliers of Advanced Composite Materials Association |
SAR |
synthetic aperture radar |
SC |
single crystal |
SLAR |
sidelooking airborne radar |
SMPTE |
Society of Motion Picture and Television Engineers |
SRA |
shop replaceable assembly |
SRAM |
static random access memory |
SRM |
SACMA Recommended Methods |
SSB |
single sideband |
SSR |
secondary surveillance radar |
TCSEC |
trusted computer system evaluation criteria |
TIR |
total indicated reading |
UV |
ultraviolet |
UTS |
ultimate tensile strength |
VOR |
very high frequency omni-directional range |
YAG |
yttrium/aluminium garnet |
DEFINITIONS OF TERMS USED IN THIS ANNEX
Definitions of terms between ‘single quotation marks’ are given in a Technical Note to the relevant item.
Definitions of terms between “double quotation marks” are as follows:
N.B.: Category references are given in brackets after the defined term.
“Accuracy” (2 6), usually measured in terms of inaccuracy, means the maximum deviation, positive or negative, of an indicated value from an accepted standard or true value.
“Active flight control systems” (7) are systems that function to prevent undesirable “aircraft” and missile motions or structural loads by autonomously processing outputs from multiple sensors and then providing necessary preventive commands to effect automatic control.
“Active pixel” (6 8) is a minimum (single) element of the solid state array which has a photoelectric transfer function when exposed to light (electromagnetic) radiation.
“Adapted for use in war” (1) means any modification or selection (such as altering purity, shelf life, virulence, dissemination characteristics, or resistance to UV radiation) designed to increase the effectiveness in producing casualties in humans or animals, degrading equipment or damaging crops or the environment.
“Adjusted Peak Performance” (4) is an adjusted peak rate at which “digital computers” perform 64-bit or larger floating point additions and multiplications, and is expressed in Weighted TeraFLOPS (WT) with units of 1012 adjusted floating point operations per second.
N.B.: See Category 4, Technical Note.
“Aircraft” (1 7 9) means a fixed wing, swivel wing, rotary wing (helicopter), tilt rotor or tilt-wing airborne vehicle.
N.B.: See also “civil aircraft”.
“Airship” (9) means a power-driven airborne vehicle that is kept buoyant by a body of gas (usually helium, formerly hydrogen) which is lighter than air.
“All compensations available” (2) means after all feasible measures available to the manufacturer to minimise all systematic positioning errors for the particular machine-tool model or measuring errors for the particular coordinate measuring machine are considered.
“Allocated by the ITU” (3 5) means the allocation of frequency bands according to the current edition of the ITU Radio Regulations for primary, permitted and secondary services.
N.B.: Additional and alternative allocations are not included.
“Angular position deviation” (2) means the maximum difference between angular position and the actual, very accurately measured angular position after the workpiece mount of the table has been turned out of its initial position
“Angle random walk” (7) means the angular error build up with time that is due to white noise in angular rate. (IEEE STD 528-2001)
“APP” (4) is equivalent to “Adjusted Peak Performance”.
“Asymmetric algorithm” (5) means a cryptographic algorithm using different, mathematically-related keys for encryption and decryption.
N.B.: A common use of “asymmetric algorithms” is key management.
“Automatic target tracking” (6) means a processing technique that automatically determines and provides as output an extrapolated value of the most probable position of the target in real time.
“Average output power” (6) means the total “laser” output energy, in joules, divided by the period over which a series of consecutive pulses is emitted, in seconds. For a series of uniformly spaced pulses it is equal to the total “laser” output energy in a single pulse, in joules, multiplied by the pulse frequency of the “laser”, in Hertz.
“Basic gate propagation delay time” (3) means the propagation delay time value corresponding to the basic gate used in a “monolithic integrated circuit”. For a ‘family’ of “monolithic integrated circuits”, this may be specified either as the propagation delay time per typical gate within the given ‘family’ or as the typical propagation delay time per gate within the given ‘family’.
N.B. 1: “Basic gate propagation delay time” is not to be confused with the input/output delay time of a complex “monolithic integrated circuit”.
N.B. 2: ‘Family’ consists of all integrated circuits to which all of the following are applied as their manufacturing methodology and specifications except their respective functions:
a. |
The common hardware and software architecture; |
b. |
The common design and process technology; and |
c. |
The common basic characteristics. |
“Basic scientific research” (GTN NTN) means experimental or theoretical work undertaken principally to acquire new knowledge of the fundamental principles of phenomena or observable facts, not primarily directed towards a specific practical aim or objective.
“Bias” (accelerometer) (7) means the average over a specified time of accelerometer output, measured at specified operating conditions, that has no correlation with input acceleration or rotation. “Bias” is expressed in g or in metres per second squared (g or m/s2). (IEEE Std 528-2001) (Micro g equals 1 × 10-6 g).
“Bias” (gyro) (7) means the average over a specified time of gyro output measured at specified operating conditions that has no correlation with input rotation or acceleration. “Bias” is typically expressed in degrees per hour (deg/hr). (IEEE Std 528-2001).
“Camming” (2) means axial displacement in one revolution of the main spindle measured in a plane perpendicular to the spindle faceplate, at a point next to the circumference of the spindle faceplate (Reference: ISO 230/1 1986, paragraph 5.63).
“Carbon fibre preforms” (1) means an ordered arrangement of uncoated or coated fibres intended to constitute a framework of a part before the “matrix” is introduced to form a “composite”.
“CEP” (circle of equal probability) (7) is a measure of accuracy; the radius of the circle centred at the target, at a specific range, in which 50 % of the payloads impact.
“Chemical laser” (6) means a “laser” in which the excited species is produced by the output energy from a chemical reaction.
“Chemical mixture” (1) means a solid, liquid or gaseous product made up of two or more components which do not react together under the conditions under which the mixture is stored.
“Circulation-controlled anti-torque or circulation controlled direction control systems” (7) are systems that use air blown over aerodynamic surfaces to increase or control the forces generated by the surfaces.
“Civil aircraft” (1 3 4 7) means those “aircraft” listed by designation in published airworthiness certification lists by the civil aviation authorities to fly commercial civil internal and external routes or for legitimate civil, private or business use.
N.B.: See also “aircraft”.
“Commingled” (1) means filament to filament blending of thermoplastic fibres and reinforcement fibres in order to produce a fibre reinforcement “matrix” mix in total fibre form.
“Comminution” (1) means a process to reduce a material to particles by crushing or grinding.
“Communications channel controller” (4) means the physical interface which controls the flow of synchronous or asynchronous digital information. It is an assembly that can be integrated into computer or telecommunications equipment to provide communications access.
“Compensation systems” (6) consist of the primary scalar sensor, one or more reference sensors (e.g., vector magnetometers) together with software that permit reduction of rigid body rotation noise of the platform.
“Composite” (1 2 6 8 9) means a “matrix” and an additional phase or additional phases consisting of particles, whiskers, fibres or any combination thereof, present for a specific purpose or purposes.
“Compound rotary table” (2) means a table allowing the workpiece to rotate and tilt about two non-parallel axes, which can be coordinated simultaneously for “contouring control”.
“III/V compounds” (3 6) means polycrystalline or binary or complex monocrystalline products consisting of elements of groups IIIA and VA of Mendeleyev's periodic classification table (e.g., gallium arsenide, gallium-aluminium arsenide, indium phosphide).
“Contouring control” (2) means two or more “numerically controlled” motions operating in accordance with instructions that specify the next required position and the required feed rates to that position. These feed rates are varied in relation to each other so that a desired contour is generated (ref. ISO/DIS 2806 - 1980).
“Critical temperature” (1 3 5) (sometimes referred to as the transition temperature) of a specific “superconductive” material means the temperature at which the material loses all resistance to the flow of direct electrical current.
“Cryptographic activation” (5) means any technique that activates or enables cryptographic capability, via a secure mechanism that is implemented by the manufacturer of the item and is uniquely bound to the item or customer for which the cryptographic capability is being activated or enabled (e.g., a serial number-based licence key or an authentication instrument such as a digitally signed certificate).
Technical Note:
“Cryptographic activation” techniques and mechanisms may be implemented as hardware, “software” or “technology”.
“Cryptography” (5) means the discipline which embodies principles, means and methods for the transformation of data in order to hide its information content, prevent its undetected modification or prevent its unauthorized use. “Cryptography” is limited to the transformation of information using one or more ‘secret parameters’ (e.g., crypto variables) or associated key management.
Note: “Cryptography” does not include “fixed” data compression or coding techniques.
Technical Note:
‘Secret parameter’: a constant or key kept from the knowledge of others or shared only within a group.
“CW laser” (6) means a “laser” that produces a nominally constant output energy for greater than 0,25 seconds.
“Data-Based Referenced Navigation” (“DBRN”) (7) Systems means systems which use various sources of previously measured geo-mapping data integrated to provide accurate navigation information under dynamic conditions. Data sources include bathymetric maps, stellar maps, gravity maps, magnetic maps or 3-D digital terrain maps.
“Deformable mirrors” (6) (also known as adaptive optic mirrors) means mirrors having:
a. |
A single continuous optical reflecting surface which is dynamically deformed by the application of individual torques or forces to compensate for distortions in the optical waveform incident upon the mirror; or |
b. |
Multiple optical reflecting elements that can be individually and dynamically repositioned by the application of torques or forces to compensate for distortions in the optical waveform incident upon the mirror. |
“Depleted uranium” (0) means uranium depleted in the isotope 235 below that occurring in nature.
“Development” (GTN NTN All) is related to all phases prior to serial production, such as: design, design research, design analyses, design concepts, assembly and testing of prototypes, pilot production schemes, design data, process of transforming design data into a product, configuration design, integration design, layouts.
“Diffusion bonding” (1 2 9) means a solid state joining of at least two separate pieces of metals into a single piece with a joint strength equivalent to that of the weakest material, wherein the principal mechanism is interdiffusion of atoms across the interface.
“Digital computer” (4 5) means equipment which can, in the form of one or more discrete variables, perform all of the following:
a. |
Accept data; |
b. |
Store data or instructions in fixed or alterable (writable) storage devices; |
c. |
Process data by means of a stored sequence of instructions which is modifiable; and |
d. |
Provide output of data. |
N.B.: Modifications of a stored sequence of instructions include replacement of fixed storage devices, but not a physical change in wiring or interconnections.
“Digital transfer rate” (def) means the total bit rate of the information that is directly transferred on any type of medium.
N.B.: See also “total digital transfer rate”.
“Direct-acting hydraulic pressing” (2) means a deformation process which uses a fluid-filled flexible bladder in direct contact with the workpiece.
“Drift rate” (gyro) (7) means the component of gyro output that is functionally independent of input rotation. It is expressed as an angular rate. (IEEE STD 528-2001).
“Effective gramme” (0 1) of “special fissile material” means:
a. |
For plutonium isotopes and uranium-233, the isotope weight in grammes; |
b. |
For uranium enriched 1 per cent or greater in the isotope uranium-235, the element weight in grammes multiplied by the square of its enrichment expressed as a decimal weight fraction; |
c. |
For uranium enriched below 1 per cent in the isotope uranium-235, the element weight in grammes multiplied by 0,0001; |
“Electronic assembly” (2 3 4 5) means a number of electronic components (i.e., ‘circuit elements’, ‘discrete components’, integrated circuits, etc.) connected together to perform (a) specific function(s), replaceable as an entity and normally capable of being disassembled.
N.B. 1: ‘Circuit element’: a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc.
N.B. 2: ‘Discrete component’: a separately packaged ‘circuit element’ with its own external connections.
“Electronically steerable phased array antenna” (5 6) means an antenna which forms a beam by means of phase coupling, i.e., the beam direction is controlled by the complex excitation coefficients of the radiating elements and the direction of that beam can be varied in azimuth or in elevation, or both, by application, both in transmission and reception, of an electrical signal.
“Energetic materials” (1) means substances or mixtures that react chemically to release energy required for their intended application. “Explosives”, “pyrotechnics” and “propellants” are subclasses of energetic materials.
“End-effectors” (2) means grippers, ‘active tooling units’ and any other tooling that is attached to the baseplate on the end of a “robot” manipulator arm.
N.B.: ‘Active tooling unit’ means a device for applying motive power, process energy or sensing to the workpiece.
“Equivalent Density” (6) means the mass of an optic per unit optical area projected onto the optical surface.
“Explosives” (1) means solid, liquid or gaseous substances or mixtures of substances which, in their application as primary, booster, or main charges in warheads, demolition and other applications, are required to detonate.
“FADEC Systems” (7 9) means Full Authority Digital Engine Control Systems – A digital electronic control system for a gas turbine engine that is able to autonomously control the engine throughout its whole operating range from demanded engine start until demanded engine shut-down, in both normal and fault conditions.
“Fibrous or filamentary materials” (0 1 8) include:
a. |
Continuous “monofilaments”; |
b. |
Continuous “yarns” and “rovings”; |
c. |
“Tapes”, fabrics, random mats and braids; |
d. |
Chopped fibres, staple fibres and coherent fibre blankets; |
e. |
Whiskers, either monocrystalline or polycrystalline, of any length; |
f. |
Aromatic polyamide pulp. |
“Film type integrated circuit” (3) means an array of ‘circuit elements’ and metallic interconnections formed by deposition of a thick or thin film on an insulating “substrate”.
N.B.: ‘Circuit element’ is a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc.
“Fixed” (5) means that the coding or compression algorithm cannot accept externally supplied parameters (e.g., cryptographic or key variables) and cannot be modified by the user.
“Flight control optical sensor array” (7) is a network of distributed optical sensors, using “laser” beams, to provide real-time flight control data for on-board processing.
“Flight path optimisation” (7) is a procedure that minimizes deviations from a four-dimensional (space and time) desired trajectory based on maximizing performance or effectiveness for mission tasks.
“Focal plane array” (6 8) means a linear or two-dimensional planar layer, or combination of planar layers, of individual detector elements, with or without readout electronics, which work in the focal plane.
N.B.: This is not intended to include a stack of single detector elements or any two, three or four element detectors provided time delay and integration is not performed within the element.
“Fractional bandwidth” (3 5) means the “instantaneous bandwidth” divided by the centre frequency, expressed as a percentage.
“Frequency hopping” (5) means a form of “spread spectrum” in which the transmission frequency of a single communication channel is made to change by a random or pseudo-random sequence of discrete steps.
“Frequency mask trigger” (3) for “signal analysers” is a mechanism where the trigger function is able to select a frequency range to be triggered on as a subset of the acquisition bandwidth while ignoring other signals that may also be present within the same acquisition bandwidth. A “frequency mask trigger” may contain more than one independent set of limits.
“Frequency switching time” (3) means the time (i.e., delay) taken by a signal when switched from an initial specified output frequency, to arrive at or within ± 0,05 % of a final specified output frequency. Items having a specified frequency range of less than ± 0,05 % around their centre frequency are defined to be incapable of frequency switching.
“Frequency synthesiser” (3) means any kind of frequency source, regardless of the actual technique used, providing a multiplicity of simultaneous or alternative output frequencies, from one or more outputs, controlled by, derived from or disciplined by a lesser number of standard (or master) frequencies.
“Fuel cell” (8) is an electrochemical device that converts chemical energy directly into Direct Current (DC) electricity by consuming fuel from an external source.
“Fusible” (1) means capable of being cross-linked or polymerized further (cured) by the use of heat, radiation, catalysts, etc., or that can be melted without pyrolysis (charring).
“Gas Atomisation” (1) means a process to reduce a molten stream of metal alloy to droplets of 500 micrometre diameter or less by a high pressure gas stream.
“Geographically dispersed” (6) is where each location is distant from any other more than 1 500 m in any direction. Mobile sensors are always considered “geographically dispersed”.
“Guidance set” (7) means systems that integrate the process of measuring and computing a vehicles position and velocity (i.e. navigation) with that of computing and sending commands to the vehicles flight control systems to correct the trajectory.
“Hot isostatic densification” (2) means the process of pressurising a casting at temperatures exceeding 375 K (102 °C) in a closed cavity through various media (gas, liquid, solid particles, etc.) to create equal force in all directions to reduce or eliminate internal voids in the casting.
“Hybrid integrated circuit” (3) means any combination of integrated circuit(s), or integrated circuit with ‘circuit elements’ or ‘discrete components’ connected together to perform (a) specific function(s), and having all of the following characteristics:
a. |
Containing at least one unencapsulated device; |
b. |
Connected together using typical IC production methods; |
c. |
Replaceable as an entity; and |
d. |
Not normally capable of being disassembled. |
N.B. 1: ‘Circuit element’: a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc.
N.B. 2: ‘Discrete component’: a separately packaged ‘circuit element’ with its own external connections.
“Image enhancement” (4) means the processing of externally derived information-bearing images by algorithms such as time compression, filtering, extraction, selection, correlation, convolution or transformations between domains (e.g., fast Fourier transform or Walsh transform). This does not include algorithms using only linear or rotational transformation of a single image, such as translation, feature extraction, registration or false coloration.
“Immunotoxin” (1) is a conjugate of one cell specific monoclonal antibody and a “toxin” or “sub-unit of toxin”, that selectively affects diseased cells.
“In the public domain” (GTN NTN GSN), as it applies herein, means “technology” or “software” which has been made available without restrictions upon its further dissemination (copyright restrictions do not remove “technology” or “software” from being “in the public domain”).
“Information security” (4 5) is all the means and functions ensuring the accessibility, confidentiality or integrity of information or communications, excluding the means and functions intended to safeguard against malfunctions. This includes “cryptography”, “cryptographic activation”, ‘cryptanalysis’, protection against compromising emanations and computer security.
N.B.: ‘Cryptanalysis’: analysis of a cryptographic system or its inputs and outputs to derive confidential variables or sensitive data, including clear text.
“Instantaneous bandwidth” (3 5 7) means the bandwidth over which output power remains constant within 3 dB without adjustment of other operating parameters.
“Instrumented range” (6) means the specified unambiguous display range of a radar.
“Insulation” (9) is applied to the components of a rocket motor, i.e. the case, nozzle, inlets, case closures, and includes cured or semi-cured compounded rubber sheet stock containing an insulating or refractory material. It may also be incorporated as stress relief boots or flaps.
“Interior lining” (9) is suited for the bond interface between the solid propellant and the case or insulating liner. Usually a liquid polymer based dispersion of refractory or insulating materials, e.g. carbon filled hydroxyl terminated polybutadiene (HTPB) or other polymer with added curing agents sprayed or screeded over a case interior.
“Intrinsic Magnetic Gradiometer” (6) is a single magnetic field gradient sensing element and associated electronics the output of which is a measure of magnetic field gradient.
N.B.: See also “magnetic gradiometer”.
“Intrusion software” (4) means “software” specially designed or modified to avoid detection by ‘monitoring tools’, or to defeat ‘protective countermeasures’, of a computer or network-capable device, and performing any of the following:
a. |
The extraction of data or information, from a computer or network-capable device, or the modification of system or user data; or |
b. |
The modification of the standard execution path of a program or process in order to allow the execution of externally provided instructions. |
Notes:
1. |
“Intrusion software” does not include any of the following:
|
2. |
Network-capable devices include mobile devices and smart meters. |
Technical Notes:
1. |
‘Monitoring tools’: “software” or hardware devices, that monitor system behaviours or processes running on a device. This includes antivirus (AV) products, end point security products, Personal Security Products (PSP), Intrusion Detection Systems (IDS), Intrusion Prevention Systems (IPS) or firewalls. |
2. |
‘Protective countermeasures’: techniques designed to ensure the safe execution of code, such as Data Execution Prevention (DEP), Address Space Layout Randomisation (ASLR) or sandboxing. |
“Isolated live cultures” (1) includes live cultures in dormant form and in dried preparations.
“Isostatic presses” (2) mean equipment capable of pressurising a closed cavity through various media (gas, liquid, solid particles, etc.) to create equal pressure in all directions within the cavity upon a workpiece or material.
“Laser” (0 2 3 5 6 7 8 9) is an assembly of components which produce both spatially and temporally coherent light that is amplified by stimulated emission of radiation.
N.B.: See also: |
“Chemical laser”; “Super High Power Laser”; “Transfer laser”. |
“Lighter-than-air vehicles” (9) means balloons and airships that rely on hot air or other lighter-than-air gases such as helium or hydrogen for their lift.
“Linearity” (2) (usually measured in terms of non-linearity) means the maximum deviation of the actual characteristic (average of upscale and downscale readings), positive or negative, from a straight line so positioned as to equalise and minimise the maximum deviations.
“Local area network” (4 5) is a data communication system having all of the following characteristics:
a. |
Allows an arbitrary number of independent ‘data devices’ to communicate directly with each other; and |
b. |
Is confined to a geographical area of moderate size (e.g., office building, plant, campus, warehouse). |
N.B.: ‘Data device’ means equipment capable of transmitting or receiving sequences of digital information.
“Magnetic Gradiometers” (6) are instruments designed to detect the spatial variation of magnetic fields from sources external to the instrument. They consist of multiple “magnetometers” and associated electronics the output of which is a measure of magnetic field gradient.
N.B.: See also “intrinsic magnetic gradiometer”.
“Magnetometers” (6) are instruments designed to detect magnetic fields from sources external to the instrument. They consist of a single magnetic field sensing element and associated electronics the output of which is a measure of the magnetic field.
“Main storage” (4) means the primary storage for data or instructions for rapid access by a central processing unit. It consists of the internal storage of a “digital computer” and any hierarchical extension thereto, such as cache storage or non-sequentially accessed extended storage.
“Materials resistant to corrosion by UF6” (0) include copper, copper alloys, stainless steel, aluminium, aluminium oxide, aluminium alloys, nickel or alloys containing 60 % or more nickel by weight and fluorinated hydrocarbon polymers.
“Matrix” (1 2 8 9) means a substantially continuous phase that fills the space between particles, whiskers or fibres.
“Measurement uncertainty” (2) is the characteristic parameter which specifies in what range around the output value the correct value of the measurable variable lies with a confidence level of 95 %. It includes the uncorrected systematic deviations, the uncorrected backlash and the random deviations (ref. ISO 10360-2).
“Mechanical Alloying” (1) means an alloying process resulting from the bonding, fracturing and rebonding of elemental and master alloy powders by mechanical impact. Non-metallic particles may be incorporated in the alloy by addition of the appropriate powders.
“Melt Extraction” (1) means a process to ‘solidify rapidly’ and extract a ribbon-like alloy product by the insertion of a short segment of a rotating chilled block into a bath of a molten metal alloy.
N.B.: ‘Solidify rapidly’: solidification of molten material at cooling rates exceeding 1 000 K/s.
“Melt Spinning” (1) means a process to ‘solidify rapidly’ a molten metal stream impinging upon a rotating chilled block, forming a flake, ribbon or rod-like product.
N.B.: ‘Solidify rapidly’: solidification of molten material at cooling rates exceeding 1 000 K/s.
“Microcomputer microcircuit” (3) means a “monolithic integrated circuit” or “multichip integrated circuit” containing an arithmetic logic unit (ALU) capable of executing general purpose instructions from an internal storage, on data contained in the internal storage.
N.B.: The internal storage may be augmented by an external storage.
“Microprocessor microcircuit” (3) means a “monolithic integrated circuit” or “multichip integrated circuit” containing an arithmetic logic unit (ALU) capable of executing a series of general purpose instructions from an external storage.
N.B. 1: The “microprocessor microcircuit” normally does not contain integral user-accessible storage, although storage present on-the-chip may be used in performing its logic function.
N.B. 2: This includes chip sets which are designed to operate together to provide the function of a “microprocessor microcircuit”.
“Microorganisms” (1 2) means bacteria, viruses, mycoplasms, rickettsiae, chlamydiae or fungi, whether natural, enhanced or modified, either in the form of “isolated live cultures” or as material including living material which has been deliberately inoculated or contaminated with such cultures.
“Missiles” (1 3 6 7 9) means complete rocket systems and unmanned aerial vehicle systems, capable of delivering at least 500 kg payload to a range of at least 300 km.
“Monofilament” (1) or filament is the smallest increment of fibre, usually several micrometres in diameter.
“Monolithic integrated circuit” (3) means a combination of passive or active ‘circuit elements’ or both which:
a. |
Are formed by means of diffusion processes, implantation processes or deposition processes in or on a single semiconducting piece of material, a so-called ‘chip’; |
b. |
Can be considered as indivisibly associated; and |
c. |
Perform the function(s) of a circuit. |
N.B.: ‘Circuit element’ is a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc.
“Monospectral imaging sensors” (6) are capable of acquisition of imaging data from one discrete spectral band.
“Multichip integrated circuit” (3) means two or more “monolithic integrated circuits” bonded to a common “substrate”.
“Multispectral imaging sensors” (6) are capable of simultaneous or serial acquisition of imaging data from two or more discrete spectral bands. Sensors having more than twenty discrete spectral bands are sometimes referred to as hyperspectral imaging sensors.
“Natural uranium” (0) means uranium containing the mixtures of isotopes occurring in nature.
“Network access controller” (4) means a physical interface to a distributed switching network. It uses a common medium which operates throughout at the same “digital transfer rate” using arbitration (e.g., token or carrier sense) for transmission. Independently from any other, it selects data packets or data groups (e.g., IEEE 802) addressed to it. It is an assembly that can be integrated into computer or telecommunications equipment to provide communications access.
“Neural computer” (4) means a computational device designed or modified to mimic the behaviour of a neuron or a collection of neurons, i.e., a computational device which is distinguished by its hardware capability to modulate the weights and numbers of the interconnections of a multiplicity of computational components based on previous data.
“Nuclear reactor” (0) means a complete reactor capable of operation so as to maintain a controlled self-sustaining fission chain reaction. A “nuclear reactor” includes all the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the components which normally contain, come into direct contact with or control the primary coolant of the reactor core.
“Numerical control” (2) means the automatic control of a process performed by a device that makes use of numeric data usually introduced as the operation is in progress (ref. ISO 2382).
“Object code” (GSN) means an equipment executable form of a convenient expression of one or more processes (“source code” (source language)) which has been compiled by programming system.
“Optical amplification” (5), in optical communications, means an amplification technique that introduces a gain of optical signals that have been generated by a separate optical source, without conversion to electrical signals, i.e., using semiconductor optical amplifiers, optical fibre luminescent amplifiers.
“Optical computer” (4) means a computer designed or modified to use light to represent data and whose computational logic elements are based on directly coupled optical devices.
“Optical integrated circuit” (3) means a “monolithic integrated circuit” or a “hybrid integrated circuit”, containing one or more parts designed to function as a photosensor or photoemitter or to perform (an) optical or (an) electro-optical function(s).
“Optical switching” (5) means the routing of or switching of signals in optical form without conversion to electrical signals.
“Overall current density” (3) means the total number of ampere-turns in the coil (i.e., the sum of the number of turns multiplied by the maximum current carried by each turn) divided by the total cross-section of the coil (comprising the superconducting filaments, the metallic matrix in which the superconducting filaments are embedded, the encapsulating material, any cooling channels, etc.).
“Participating state” (7 9) is a state participating in the Wassenaar Arrangement. (See www.wassenaar.org)
“Peak power” (6) means the highest power attained in the “pulse duration”.
“Personal area network” (5) means a data communication system having all of the following characteristics:
a. |
Allows an arbitrary number of independent or interconnected ‘data devices’ to communicate directly with each other; and |
b. |
Is confined to the communication between devices within the immediate vicinity of an individual person or device controller (e.g., single room, office, or automobile, and their nearby surrounding spaces). |
Technical Note:
‘Data device’ means equipment capable of transmitting or receiving sequences of digital information.
“Power management” (7) means changing the transmitted power of the altimeter signal so that received power at the “aircraft” altitude is always at the minimum necessary to determine the altitude.
“Previously separated” (0 1) means the application of any process intended to increase the concentration of the controlled isotope.
“Primary flight control” (7) means an “aircraft” stability or manoeuvering control using force/moment generators, i.e., aerodynamic control surfaces or propulsive thrust vectoring.
“Principal element” (4), as it applies in Category 4, is a “principal element” when its replacement value is more than 35 % of the total value of the system of which it is an element. Element value is the price paid for the element by the manufacturer of the system, or by the system integrator. Total value is the normal international selling price to unrelated parties at the point of manufacture or consolidation of shipment.
“Production” (GTN NTN All) means all production phases, such as: construction, production engineering, manufacture, integration, assembly (mounting), inspection, testing, quality assurance.
“Production equipment” (1 7 9) means tooling, templates, jigs, mandrels, moulds, dies, fixtures, alignment mechanisms, test equipment, other machinery and components therefor, limited to those specially designed or modified for “development” or for one or more phases of “production”.
“Production facilities” (7 9) means “production equipment” and specially designed software therefor integrated into installations for “development” or for one or more phases of “production”.
“Programme” (2 6) means a sequence of instructions to carry out a process in, or convertible into, a form executable by an electronic computer.
“Pulse compression” (6) means the coding and processing of a radar signal pulse of long time duration to one of short time duration, while maintaining the benefits of high pulse energy.
“Pulse duration” (6) is the duration of a “laser” pulse and means the time between the half-power points on the leading edge and trailing edge of an individual pulse.
“Pulsed laser” (6) means a “laser” having a “pulse duration” that is less than or equal to 0,25 seconds.
“Quantum cryptography” (5) means a family of techniques for the establishment of shared key for “cryptography” by measuring the quantum-mechanical properties of a physical system (including those physical properties explicitly governed by quantum optics, quantum field theory or quantum electrodynamics).
“Radar frequency agility” (6) means any technique which changes, in a pseudo-random sequence, the carrier frequency of a pulsed radar transmitter between pulses or between groups of pulses by an amount equal to or larger than the pulse bandwidth.
“Radar spread spectrum” (6) means any modulation technique for spreading energy originating from a signal with a relatively narrow frequency band, over a much wider band of frequencies, by using random or pseudo-random coding.
“Radiant sensitivity” (6) is Radiant sensitivity (mA/W) = 0,807 × (wavelength in nm) × Quantum Efficiency (QE).
Technical Note:
QE is usually expressed as a percentage; however, for the purposes of this formula QE is expressed as a decimal number less than one, e.g., 78 % is 0,78.
“Real-time bandwidth” (3) for “signal analysers” is the widest frequency range for which the analyser can continuously transform time-domain data entirely into frequency-domain results, using a Fourier or other discrete time transformation that processes every incoming time point without gaps or windowing effects that causes a reduction of measured amplitude of more than 3 dB below the actual signal amplitude, while outputting or displaying the transformed data.
“Real time processing” (2 6 7) means the processing of data by a computer system providing a required level of service, as a function of available resources, within a guaranteed response time, regardless of the load of the system, when stimulated by an external event.
“Repeatability” (7) means the closeness of agreement among repeated measurements of the same variable under the same operating conditions when changes in conditions or non-operating periods occur between measurements. (Reference: IEEE STD 528-2001 (one sigma standard deviation))
“Required” (GTN 1-9), as applied to “technology”, refers to only that portion of “technology” which is peculiarly responsible for achieving or extending the controlled performance levels, characteristics or functions. Such “required”“technology” may be shared by different goods.
“Resolution” (2) means the least increment of a measuring device; on digital instruments, the least significant bit (ref. ANSI B-89.1.12).
“Riot control agent” (1) means substances which, under the expected conditions of use for riot control purposes, produce rapidly in humans sensory irritation or disabling physical effects which disappear within a short time following termination of exposure.
Technical Note:
Tear gases are a subset of “riot control agents”.
“Robot” (2 8) means a manipulation mechanism, which may be of the continuous path or of the point-to-point variety, may use sensors, and has all the following characteristics:
a. |
Is multifunctional; |
b. |
Is capable of positioning or orienting material, parts, tools or special devices through variable movements in three dimensional space; |
c. |
Incorporates three or more closed or open loop servo-devices which may include stepping motors; and |
d. |
Has “user accessible programmability” by means of teach/playback method or by means of an electronic computer which may be a programmable logic controller, i.e., without mechanical intervention. |
N.B.: The above definition does not include the following devices:
1. |
Manipulation mechanisms which are only manually/teleoperator controllable; |
2. |
Fixed sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The programme is mechanically limited by fixed stops, such as pins or cams. The sequence of motions and the selection of paths or angles are not variable or changeable by mechanical, electronic or electrical means; |
3. |
Mechanically controlled variable sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The programme is mechanically limited by fixed, but adjustable stops, such as pins or cams. The sequence of motions and the selection of paths or angles are variable within the fixed programme pattern. Variations or modifications of the programme pattern (e.g., changes of pins or exchanges of cams) in one or more motion axes are accomplished only through mechanical operations; |
4. |
Non-servo-controlled variable sequence manipulation mechanisms which are automated moving devices, operating according to mechanically fixed programmed motions. The programme is variable but the sequence proceeds only by the binary signal from mechanically fixed electrical binary devices or adjustable stops; |
5. |
Stacker cranes defined as Cartesian coordinate manipulator systems manufactured as an integral part of a vertical array of storage bins and designed to access the contents of those bins for storage or retrieval. |
“Rotary atomisation” (1) means a process to reduce a stream or pool of molten metal to droplets to a diameter of 500 micrometre or less by centrifugal force.
“Roving” (1) is a bundle (typically 12-120) of approximately parallel ‘strands’.
N.B.: ‘Strand’ is a bundle of “monofilaments” (typically over 200) arranged approximately parallel.
“Run-out” (2) (out-of-true running) means radial displacement in one revolution of the main spindle measured in a plane perpendicular to the spindle axis at a point on the external or internal revolving surface to be tested (Reference: ISO 230/1 1986, paragraph 5.61).
“Scale factor” (gyro or accelerometer) (7) means the ratio of change in output to a change in the input intended to be measured. Scale factor is generally evaluated as the slope of the straight line that can be fitted by the method of least squares to input-output data obtained by varying the input cyclically over the input range.
“Settling time” (3) means the time required for the output to come within one-half bit of the final value when switching between any two levels of the converter.
“SHPL” is equivalent to “super high power laser”.
“Signal analysers” (3) means apparatus capable of measuring and displaying basic properties of the single-frequency components of multi-frequency signals.
“Signal processing” (3 4 5 6) means the processing of externally derived information-bearing signals by algorithms such as time compression, filtering, extraction, selection, correlation, convolution or transformations between domains (e.g., fast Fourier transform or Walsh transform).
“Software” (GSN All) means a collection of one or more “programmes” or ‘microprogrammes’ fixed in any tangible medium of expression.
N.B.: ‘Microprogramme’ means a sequence of elementary instructions, maintained in a special storage, the execution of which is initiated by the introduction of its reference instruction into an instruction register.
“Source code” (or source language) (6 7 9) is a convenient expression of one or more processes which may be turned by a programming system into equipment executable form (“object code” (or object language)).
“Spacecraft” (7 9) means active and passive satellites and space probes.
“Space-qualified” (3 6 7) means designed, manufactured or qualified through successful testing, for operation at altitudes greater than 100 km above the surface of the Earth.
N.B.: A determination that a specific item is “Space-qualified” by virtue of testing does not mean that other items in the same production run or model series are “Space-qualified” if not individually tested.
“Special fissile material” (0) means plutonium-239, uranium-233, “uranium enriched in the isotopes 235 or 233”, and any material containing the foregoing.
“Specific modulus” (0 1 9) is Young's modulus in pascals, equivalent to N/m2 divided by specific weight in N/m3, measured at a temperature of (296 ± 2) K ((23 ± 2) °C) and a relative humidity of (50 ± 5) %.
“Specific tensile strength” (0 1 9) is ultimate tensile strength in pascals, equivalent to N/m2 divided by specific weight in N/m3, measured at a temperature of (296 ± 2) K ((23 ± 2) °C) and a relative humidity of (50 ± 5) %.
“Spinning mass gyros” (7) means gyros which use a continually rotating mass to sense angular motion.
“Splat Quenching” (1) means a process to ‘solidify rapidly’ a molten metal stream impinging upon a chilled block, forming a flake-like product.
N.B.: ‘Solidify rapidly’ solidification of molten material at cooling rates exceeding 1 000 K/s.
“Spread spectrum” (5) means the technique whereby energy in a relatively narrow-band communication channel is spread over a much wider energy spectrum.
“Spread spectrum” radar (6) - see “Radar spread spectrum”
“Stability” (7) means the standard deviation (1 sigma) of the variation of a particular parameter from its calibrated value measured under stable temperature conditions. This can be expressed as a function of time.
“States (not) Party to the Chemical Weapon Convention” (1) are those states for which the Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical Weapons has (not) entered into force. (See www.opcw.org)
“Substrate” (3) means a sheet of base material with or without an interconnection pattern and on which or within which ‘discrete components’ or integrated circuits or both can be located.
N.B. 1: ‘Discrete component’: a separately packaged ‘circuit element’ with its own external connections.
N.B. 2: ‘Circuit element’: a single active or passive functional part of an electronic circuit, such as one diode, one transistor, one resistor, one capacitor, etc.
“Substrate blanks” (3 6) means monolithic compounds with dimensions suitable for the production of optical elements such as mirrors or optical windows.
“Sub-unit of toxin” (1) is a structurally and functionally discrete component of a whole “toxin”.
“Superalloys” (2 9) means nickel-, cobalt- or iron-base alloys having strengths superior to any alloys in the AISI 300 series at temperatures over 922 K (649 °C) under severe environmental and operating conditions.
“Superconductive” (1 3 5 6 8) means materials, i.e., metals, alloys or compounds, which can lose all electrical resistance, i.e., which can attain infinite electrical conductivity and carry very large electrical currents without Joule heating.
N.B.: The “superconductive” state of a material is individually characterised by a “critical temperature”, a critical magnetic field, which is a function of temperature, and a critical current density which is, however, a function of both magnetic field and temperature.
“Super High Power Laser” (“SHPL”) (6) means a “laser” capable of delivering (the total or any portion of) the output energy exceeding 1 kJ within 50 ms or having an average or CW power exceeding 20 kW.
“Superplastic forming” (1 2) means a deformation process using heat for metals that are normally characterised by low values of elongation (less than 20 %) at the breaking point as determined at room temperature by conventional tensile strength testing, in order to achieve elongations during processing which are at least 2 times those values.
“Symmetric algorithm” (5) means a cryptographic algorithm using an identical key for both encryption and decryption.
N.B.: A common use of “symmetric algorithms” is confidentiality of data.
“System tracks” (6) means processed, correlated (fusion of radar target data to flight plan position) and updated aircraft flight position report available to the Air Traffic Control centre controllers.
“Systolic array computer” (4) means a computer where the flow and modification of the data is dynamically controllable at the logic gate level by the user.
“Tape” (1) is a material constructed of interlaced or unidirectional “monofilaments”, ‘strands’, “rovings”, “tows”, or “yarns”, etc., usually pre-impregnated with resin.
N.B.: ‘Strand’ is a bundle of “monofilaments” (typically over 200) arranged approximately parallel.
“Technology” (GTN NTN All) means specific information necessary for the “development”, “production” or “use” of goods. This information takes the form of ‘technical data’ or ‘technical assistance’.
N.B. 1: ‘Technical assistance’ may take forms such as instructions, skills, training, working knowledge and consulting services and may involve the transfer of ‘technical data’.
N.B. 2: ‘Technical data’ may take forms such as blueprints, plans, diagrams, models, formulae, tables, engineering designs and specifications, manuals and instructions written or recorded on other media or devices such as disk, tape, read-only memories.
“Three dimensional integrated circuit” (3) means a collection of semiconductor die, integrated together, and having vias passing completely through at least one die to establish interconnections between die.
“Tilting spindle” (2) means a tool-holding spindle which alters, during the machining process, the angular position of its centre line with respect to any other axis.
“Time constant” (6) is the time taken from the application of a light stimulus for the current increment to reach a value of 1-1/e times the final value (i.e., 63 % of the final value).
“Tip shroud” (9) means a stationary ring component (solid or segmented) attached to the inner surface of the engine turbine casing or a feature at the outer tip of the turbine blade, which primarily provides a gas seal between the stationary and rotating components.
“Total control of flight” (7) means an automated control of “aircraft” state variables and flight path to meet mission objectives responding to real time changes in data regarding objectives, hazards or other “aircraft”.
“Total digital transfer rate” (5) means the number of bits, including line coding, overhead and so forth per unit time passing between corresponding equipment in a digital transmission system.
N.B.: See also “digital transfer rate”.
“Tow” (1) is a bundle of “monofilaments”, usually approximately parallel.
“Toxins” (1 2) means toxins in the form of deliberately isolated preparations or mixtures, no matter how produced, other than toxins present as contaminants of other materials such as pathological specimens, crops, foodstuffs or seed stocks of “microorganisms”.
“Transfer laser” (6) means a “laser” in which the lasing species is excited through the transfer of energy by collision of a non-lasing atom or molecule with a lasing atom or molecule species.
“Tunable” (6) means the ability of a “laser” to produce a continuous output at all wavelengths over a range of several “laser” transitions. A line selectable “laser” produces discrete wavelengths within one “laser” transition and is not considered “tunable”.
“Unmanned Aerial Vehicle” (“UAV”) (9) means any aircraft capable of initiating flight and sustaining controlled flight and navigation without any human presence on board.
“Uranium enriched in the isotopes 235 or 233” (0) means uranium containing the isotopes 235 or 233, or both, in an amount such that the abundance ratio of the sum of these isotopes to the isotope 238 is more than the ratio of the isotope 235 to the isotope 238 occurring in nature (isotopic ratio 0,71 per cent).
“Use” (GTN NTN All) means operation, installation (including on-site installation), maintenance (checking), repair, overhaul and refurbishing.
“User accessible programmability” (6) means the facility allowing a user to insert, modify or replace “programmes” by means other than:
a. |
A physical change in wiring or interconnections; or |
b. |
The setting of function controls including entry of parameters. |
“Vaccine” (1) is a medicinal product in a pharmaceutical formulation licensed by, or having marketing or clinical trial authorisation from, the regulatory authorities of either the country of manufacture or of use, which is intended to stimulate a protective immunological response in humans or animals in order to prevent disease in those to whom or to which it is administered.
“Vacuum Atomisation” (1) means a process to reduce a molten stream of metal to droplets of a diameter of 500 micrometre or less by the rapid evolution of a dissolved gas upon exposure to a vacuum.
“Variable geometry airfoils” (7) means the use of trailing edge flaps or tabs, or leading edge slats or pivoted nose droop, the position of which can be controlled in flight.
“Yarn” (1) is a bundle of twisted ‘strands’.
N.B.: ‘Strand’ is a bundle of “monofilaments” (typically over 200) arranged approximately parallel.
CATEGORY 0 — NUCLEAR MATERIALS, FACILITIES, AND EQUIPMENT
0A Systems, Equipment and Components
0A001 |
“Nuclear reactors” and specially designed or prepared equipment and components therefor, as follows:
|
0B Test, Inspection and Production Equipment
0B001 |
Plant for the separation of isotopes of “natural uranium”, “depleted uranium” and “special fissile materials”, and specially designed or prepared equipment and components therefor, as follows:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0B002 |
Specially designed or prepared auxiliary systems, equipment and components as follows, for isotope separation plant specified in 0B001, made of or protected by “materials resistant to corrosion by UF6”:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0B003 |
Plant for the conversion of uranium and equipment specially designed or prepared therefor, as follows:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0B004 |
Plant for the production or concentration of heavy water, deuterium and deuterium compounds and specially designed or prepared equipment and components therefor, as follows:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0B005 |
Plant specially designed for the fabrication of “nuclear reactor” fuel elements and specially designed or prepared equipment therefor. Technical Note: A plant for the fabrication of “nuclear reactor” fuel elements includes equipment which:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0B006 |
Plant for the reprocessing of irradiated “nuclear reactor” fuel elements, and specially designed or prepared equipment and components therefor. Note: 0B006 includes:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
0B007 |
Plant for the conversion of plutonium and equipment specially designed or prepared therefor, as follows:
|
0C Materials
0C001 |
“Natural uranium” or “depleted uranium” or thorium in the form of metal, alloy, chemical compound or concentrate and any other material containing one or more of the foregoing; Note: 0C001 does not control the following:
|
||||||||||||||||
0C002 |
“Special fissile materials” Note: 0C002 does not control four “effective grammes” or less when contained in a sensing component in instruments. |
||||||||||||||||
0C003 |
Deuterium, heavy water (deuterium oxide) and other compounds of deuterium, and mixtures and solutions containing deuterium, in which the isotopic ratio of deuterium to hydrogen exceeds 1:5 000. |
||||||||||||||||
0C004 |
Graphite having a purity level better than 5 parts per million ‘boron equivalent’ and with a density greater than 1,50 g/cm3 for use in a “nuclear reactor”, in quantities exceeding 1 kg. N.B.: SEE ALSO 1C107 Note 1: For the purpose of export control, the competent authorities of the Member State in which the exporter is established will determine whether or not the exports of graphite meeting the above specifications are for “nuclear reactor” use. Note 2: In 0C004, ‘boron equivalent’ (BE) is defined as the sum of BEz for impurities (excluding BEcarbon since carbon is not considered an impurity) including boron, where: BEZ (ppm) = CF × concentration of element Z in ppm;
and σB and σZ are the thermal neutron capture cross sections (in barns) for naturally occurring boron and element Z respectively; and AB and AZ are the atomic masses of naturally occurring boron and element Z respectively. |
||||||||||||||||
0C005 |
Specially prepared compounds or powders for the manufacture of gaseous diffusion barriers, resistant to corrosion by UF6 (e.g. nickel or alloy containing 60 weight per cent or more nickel, aluminium oxide and fully fluorinated hydrocarbon polymers), having a purity of 99,9 % by weight or more and a particle size less than 10 μm measured by American Society for Testing and Materials (ASTM) B330 standard and a high degree of particle size uniformity. |
0D Software
0D001 |
“Software” specially designed or modified for the “development”, “production” or “use” of goods specified in this Category. |
0E Technology
0E001 |
“Technology” according to the Nuclear Technology Note for the “development”, “production” or “use” of goods specified in this Category. |
CATEGORY 1 — SPECIAL MATERIALS AND RELATED EQUIPMENT
1A Systems, Equipment and Components
1A001 |
Components made from fluorinated compounds, as follows:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1A002 |
“Composite” structures or laminates, having any of the following: N.B.: SEE ALSO 1A202, 9A010 and 9A110
Note 1: 1A002 does not control composite structures or laminates made from epoxy resin impregnated carbon “fibrous or filamentary materials” for the repair of “civil aircraft” structures or laminates, having all of the following:
Note 2: 1A002 does not control semi-finished items, specially designed for purely civilian applications as follows:
Note 3: 1A002.b.1. does not control semi-finished items containing a maximum of two dimensions of interwoven filaments and specially designed for applications as follows:
Note 4: 1A002 does not control finished items specially designed for a specific application. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1A003 |
Manufactures of non-“fusible” aromatic polyimides in film, sheet, tape or ribbon form having any of the following:
Note: 1A003 does not control manufactures when coated or laminated with copper and designed for the production of electronic printed circuit boards. N.B.: For “fusible” aromatic polyimides in any form, see 1C008.a.3. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1A004 |
Protective and detection equipment and components not specially designed for military use, as follows: N.B.: SEE ALSO MILITARY GOODS CONTROLS, 2B351 AND 2B352.
1A004
Technical Notes:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1A005 |
Body armour and components therefor, as follows: N.B.: SEE ALSO MILITARY GOODS CONTROLS.
N.B.: For “fibrous or filamentary materials” used in the manufacture of body armour, see 1C010. Note 1: 1A005 does not control body armour when accompanying its user for the user's own personal protection. Note 2: 1A005 does not control body armour designed to provide frontal protection only from both fragment and blast from non-military explosive devices. Note 3: 1A005 does not control body armour designed to provide protection only from knife, spike, needle or blunt trauma. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1A006 |
Equipment, specially designed or modified for the disposal of improvised explosive devices, as follows, and specially designed components and accessories therefor: N.B.: SEE ALSO MILITARY GOODS CONTROLS.
Note: 1A006 does not control equipment when accompanying its operator. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1A007 |
Equipment and devices, specially designed to initiate charges and devices containing “energetic materials”, by electrical means, as follows: N.B.: SEE ALSO MILITARY GOODS CONTROLS, 3A229 AND 3A232.
Technical Notes:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1A008 |
Charges, devices and components, as follows:
Technical Note: ‘Shaped charges’ are explosive charges shaped to focus the effects of the explosive blast. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1A102 |
Resaturated pyrolized carbon-carbon components designed for space launch vehicles specified in 9A004 or sounding rockets specified in 9A104. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1A202 |
Composite structures, other than those specified in 1A002, in the form of tubes and having both of the following characteristics: N.B.: SEE ALSO 9A010 AND 9A110.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1A225 |
Platinized catalysts specially designed or prepared for promoting the hydrogen isotope exchange reaction between hydrogen and water for the recovery of tritium from heavy water or for the production of heavy water. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1A226 |
Specialized packings which may be used in separating heavy water from ordinary water, having both of the following characteristics:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1A227 |
High-density (lead glass or other) radiation shielding windows, having all of the following characteristics, and specially designed frames therefor:
Technical Note: In 1A227 the term ‘cold area’ means the viewing area of the window exposed to the lowest level of radiation in the design application. |
1B Test, Inspection and Production Equipment
1B001 |
Equipment for the production or inspection of “composite” structures or laminates specified in 1A002 or “fibrous or filamentary materials” specified in 1C010, as follows, and specially designed components and accessories therefor: N.B.: SEE ALSO 1B101 AND 1B201.
Technical Note:
|
||||||||||||||||||||||||||||||
1B002 |
Equipment for producing metal alloys, metal alloy powder or alloyed materials, specially designed to avoid contamination and specially designed for use in one of the processes specified in 1C002.c.2. N.B.: SEE ALSO 1B102. |
||||||||||||||||||||||||||||||
1B003 |
Tools, dies, moulds or fixtures, for “superplastic forming” or “diffusion bonding” titanium, aluminium or their alloys, specially designed for the manufacture of any of the following:
|
||||||||||||||||||||||||||||||
1B101 |
Equipment, other than that specified in 1B001, for the “production” of structural composites as follows; and specially designed components and accessories therefor: N.B.: SEE ALSO 1B201. Note: Components and accessories specified in 1B101 include moulds, mandrels, dies, fixtures and tooling for the preform pressing, curing, casting, sintering or bonding of composite structures, laminates and manufactures thereof.
|
||||||||||||||||||||||||||||||
1B102 |
Metal powder “production equipment”, other than that specified in 1B002, and components as follows: N.B.: SEE ALSO 1B115.b.
|
||||||||||||||||||||||||||||||
1B115 |
Equipment, other than that specified in 1B002 or 1B102, for the production of propellant and propellant constituents, as follows, and specially designed components therefor:
Note 1: For equipment specially designed for the production of military goods, see the Military Goods Controls. Note 2: 1B115 does not control equipment for the “production”, handling and acceptance testing of boron carbide. |
||||||||||||||||||||||||||||||
1B116 |
Specially designed nozzles for producing pyrolitically derived materials formed on a mould, mandrel or other substrate from precursor gases which decompose in the 1 573 K (1 300 °C) to 3 173 K (2 900 °C) temperature range at pressures of 130 Pa to 20 kPa. |
||||||||||||||||||||||||||||||
1B117 |
Batch mixers with provision for mixing under vacuum in the range of zero to 13,326 kPa and with temperature control capability of the mixing chamber and having all of the following, and specially designed components therefor:
|
||||||||||||||||||||||||||||||
1B118 |
Continuous mixers with provision for mixing under vacuum in the range of zero to 13,326 kPa and with a temperature control capability of the mixing chamber having any of the following, and specially designed components therefor:
|
||||||||||||||||||||||||||||||
1B119 |
Fluid energy mills usable for grinding or milling substances specified in 1C011.a., 1C011.b., 1C111 or in the Military Goods Controls, and specially designed components therefor. |
||||||||||||||||||||||||||||||
1B201 |
Filament winding machines, other than those specified in 1B001 or 1B101, and related equipment, as follows:
|
||||||||||||||||||||||||||||||
1B225 |
Electrolytic cells for fluorine production with an output capacity greater than 250 g of fluorine per hour. |
||||||||||||||||||||||||||||||
1B226 |
Electromagnetic isotope separators designed for, or equipped with, single or multiple ion sources capable of providing a total ion beam current of 50 mA or greater. Note: 1B226 includes separators:
|
||||||||||||||||||||||||||||||
1B228 |
Hydrogen-cryogenic distillation columns having all of the following characteristics:
Technical Note: In 1B228 ‘effective length’ means the active height of packing material in a packed-type column, or the active height of internal contactor plates in a plate-type column. |
||||||||||||||||||||||||||||||
1B229 |
Water-hydrogen sulphide exchange tray columns and ‘internal contactors’, as follows: N.B.: For columns which are specially designed or prepared for the production of heavy water see 0B004.
|
||||||||||||||||||||||||||||||
1B230 |
Pumps capable of circulating solutions of concentrated or dilute potassium amide catalyst in liquid ammonia (KNH2/NH3), having all of the following characteristics:
|
||||||||||||||||||||||||||||||
1B231 |
Tritium facilities or plants, and equipment therefor, as follows:
|
||||||||||||||||||||||||||||||
1B232 |
Turboexpanders or turboexpander-compressor sets having both of the following characteristics:
|
||||||||||||||||||||||||||||||
1B233 |
Lithium isotope separation facilities or plants, and systems and equipment therefor, as follows:
|
||||||||||||||||||||||||||||||
1B234 |
High explosive containment vessels, chambers, containers and other similar containment devices designed for the testing of high explosives or explosive devices and having both of the following characteristics: N.B.: SEE ALSO MILITARY GOODS CONTROLS.
|
1C Materials
Technical Note:
Metals and alloys:
Unless provision to the contrary is made, the words ‘metals’ and ‘alloys’ in 1C001 to 1C012 cover crude and semi-fabricated forms, as follows:
Crude forms:
Anodes, balls, bars (including notched bars and wire bars), billets, blocks, blooms, brickets, cakes, cathodes, crystals, cubes, dice, grains, granules, ingots, lumps, pellets, pigs, powder, rondelles, shot, slabs, slugs, sponge, sticks;
Semi-fabricated forms (whether or not coated, plated, drilled or punched):
a. |
Wrought or worked materials fabricated by rolling, drawing, extruding, forging, impact extruding, pressing, graining, atomising, and grinding, i.e.: angles, channels, circles, discs, dust, flakes, foils and leaf, forging, plate, powder, pressings and stampings, ribbons, rings, rods (including bare welding rods, wire rods, and rolled wire), sections, shapes, sheets, strip, pipe and tubes (including tube rounds, squares, and hollows), drawn or extruded wire; |
b. |
Cast material produced by casting in sand, die, metal, plaster or other types of moulds, including high pressure castings, sintered forms, and forms made by powder metallurgy. |
The object of the control should not be defeated by the export of non-listed forms alleged to be finished products but representing in reality crude forms or semi-fabricated forms.
1C001 |
Materials specially designed for use as absorbers of electromagnetic waves, or intrinsically conductive polymers, as follows: N.B.: SEE ALSO 1C101.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C002 |
Metal alloys, metal alloy powder and alloyed materials, as follows: N.B.: SEE ALSO 1C202. Note: 1C002 does not control metal alloys, metal alloy powder and alloyed materials for coating substrates. Technical Notes:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C003 |
Magnetic metals, of all types and of whatever form, having any of the following:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C004 |
Uranium titanium alloys or tungsten alloys with a “matrix” based on iron, nickel or copper, having all of the following:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C005 |
“Superconductive”“composite” conductors in lengths exceeding 100 m or with a mass exceeding 100 g, as follows:
Technical Note: For the purpose of 1C005 ‘filaments’ may be in wire, cylinder, film, tape or ribbon form. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C006 |
Fluids and lubricating materials, as follows:
Technical Note: For the purpose of 1C006:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C007 |
Ceramic base materials, non-“composite” ceramic materials, ceramic-“matrix”, “composite” materials and precursor materials, as follows: N.B.: SEE ALSO 1C107.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C008 |
Non-fluorinated polymeric substances as follows:
Technical Note:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C009 |
Unprocessed fluorinated compounds as follows:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C010 |
“Fibrous or filamentary materials”, as follows: N.B.: SEE ALSO 1C210 AND 9C110.
Technical Notes:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C011 |
Metals and compounds, as follows: N.B.: SEE ALSO MILITARY GOODS CONTROLS and 1C111.
N.B.: See also Military Goods Controls for metal powders mixed with other substances to form a mixture formulated for military purposes. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C012 |
Materials as follows: Technical Note: These materials are typically used for nuclear heat sources.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C101 |
Materials and devices for reduced observables such as radar reflectivity, ultraviolet/infrared signatures and acoustic signatures, other than those specified in 1C001, usable in ‘missiles’, “missile” subsystems or unmanned aerial vehicles specified in 9A012. Note 1: 1C101 includes:
Note 2: 1C101 does not include coatings when specially used for the thermal control of satellites. Technical Note: In 1C101 ‘missile’ means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C102 |
Resaturated pyrolized carbon-carbon materials designed for space launch vehicles specified in 9A004 or sounding rockets specified in 9A104. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C107 |
Graphite and ceramic materials, other than those specified in 1C007, as follows:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C111 |
Propellants and constituent chemicals for propellants, other than those specified in 1C011, as follows:
Note: For propellants and constituent chemicals for propellants not specified in 1C111, see the Military Goods Controls. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C116 |
Maraging steels, useable in ‘missiles’, having all of the following: N.B.: SEE ALSO 1C216.
Technical Note 1: Maraging steels are iron alloy:
Technical Note 2: In 1C116 ‘missile’ means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C117 |
Materials for the fabrication of ‘missiles’ components as follows:
Technical Note: In 1C117 ‘missile’ means complete rocket systems and unmanned aerial vehicle systems capable of a range exceeding 300 km. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C118 |
Titanium-stabilised duplex stainless steel (Ti-DSS) having all of the following:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C202 |
Alloys, other than those specified in 1C002.b.3. or .b.4., as follows:
Technical Note: The phrase alloys ‘capable of’ encompasses alloys before or after heat treatment. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C210 |
‘Fibrous or filamentary materials’ or prepregs, other than those specified in 1C010.a., b. or e., as follows:
Note: In 1C210, ‘fibrous or filamentary materials’ is restricted to continuous “monofilaments”, “yarns”, “rovings”, “tows” or “tapes”. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C216 |
Maraging steel, other than that specified in 1C116, ‘capable of’ an ultimate tensile strength of 1 950 MPa or more, at 293 K (20 °C). Note: 1C216 does not control forms in which all linear dimensions are 75 mm or less. Technical Note: The phrase maraging steel ‘capable of’ encompasses maraging steel before or after heat treatment. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C225 |
Boron enriched in the boron-10 (10B) isotope to greater than its natural isotopic abundance, as follows: elemental boron, compounds, mixtures containing boron, manufactures thereof, waste or scrap of any of the foregoing. Note: In 1C225 mixtures containing boron include boron loaded materials. Technical Note: The natural isotopic abundance of boron-10 is approximately 18,5 weight per cent (20 atom per cent). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C226 |
Tungsten, tungsten carbide, and alloys containing more than 90 % tungsten by weight, other than that specified by 1C117, having both of the following characteristics:
Note: 1C226 does not control manufactures specially designed as weights or gamma-ray collimators. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C227 |
Calcium having both of the following characteristics:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C228 |
Magnesium having both of the following characteristics:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C229 |
Bismuth having both of the following characteristics:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C230 |
Beryllium metal, alloys containing more than 50 % beryllium by weight, beryllium compounds, manufactures thereof, and waste or scrap of any of the foregoing, other than that specified in the Military Goods Controls. N.B.: SEE ALSO MILITARY GOODS CONTROLS. Note: 1C230 does not control the following:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C231 |
Hafnium metal, alloys containing more than 60 % hafnium by weight, hafnium compounds containing more than 60 % hafnium by weight, manufactures thereof, and waste or scrap of any of the foregoing. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C232 |
Helium-3 (3He), mixtures containing helium-3, and products or devices containing any of the foregoing. Note: 1C232 does not control a product or device containing less than 1 g of helium-3. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C233 |
Lithium enriched in the lithium-6 (6Li) isotope to greater than its natural isotopic abundance, and products or devices containing enriched lithium, as follows: elemental lithium, alloys, compounds, mixtures containing lithium, manufactures thereof, waste or scrap of any of the foregoing. Note: 1C233 does not control thermoluminescent dosimeters. Technical Note: The natural isotopic abundance of lithium-6 is approximately 6,5 weight per cent (7,5 atom per cent). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C234 |
Zirconium with a hafnium content of less than 1 part hafnium to 500 parts zirconium by weight, as follows: metal, alloys containing more than 50 % zirconium by weight, compounds, manufactures thereof, waste or scrap of any of the foregoing, other than those specified in 0A001.f. Note: 1C234 does not control zirconium in the form of foil having a thickness of 0,10 mm or less. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C235 |
Tritium, tritium compounds, mixtures containing tritium in which the ratio of tritium to hydrogen atoms exceeds 1 part in 1 000, and products or devices containing any of the foregoing. Note: 1C235 does not control a product or device containing less than 1,48 × 103 GBq (40 Ci) of tritium. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C236 |
‘Radionuclides’ appropriate for making neutron sources based on alpha-n reaction, other than those specified in 0C001 and 1C012.a., in the following forms:
Note: 1C236 does not control a product or device containing less than 3,7 GBq (100 millicuries) of activity. Technical Note: In 1C236 ‘radionuclides’ are any of the following:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C237 |
Radium-226 (226Ra), radium-226 alloys, radium-226 compounds, mixtures containing radium-226, manufactures therof, and products or devices containing any of the foregoing. Note: 1C237 does not control the following:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C238 |
Chlorine trifluoride (ClF3). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C239 |
High explosives, other than those specified in the Military Goods Controls, or substances or mixtures containing more than 2 % by weight thereof, with a crystal density greater than 1,8 g/cm3 and having a detonation velocity greater than 8 000 m/s. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C240 |
Nickel powder and porous nickel metal, other than those specified in 0C005, as follows:
Note: 1C240 does not control the following:
Technical Note: 1C240.b. refers to porous metal formed by compacting and sintering the materials in 1C240.a. to form a metal material with fine pores interconnected throughout the structure. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C241 |
Rhenium, and alloys containing 90 % by weight or more rhenium; and alloys of rhenium and tungsten containing 90 % by weight or more of any combination of rhenium and tungsten, having both of the following characteristics:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1C350 |
Chemicals, which may be used as precursors for toxic chemical agents, as follows, and “chemical mixtures” containing one or more thereof: N.B.: SEE ALSO MILITARY GOODS CONTROLS AND 1C450.
|