EUR-Lex Access to European Union law
This document is an excerpt from the EUR-Lex website
Document 32014R1299
Commission Regulation (EU) No 1299/2014 of 18 November 2014 on the technical specifications for interoperability relating to the ‘infrastructure’ subsystem of the rail system in the European Union Text with EEA relevance
Commission Regulation (EU) No 1299/2014 of 18 November 2014 on the technical specifications for interoperability relating to the ‘infrastructure’ subsystem of the rail system in the European Union Text with EEA relevance
Commission Regulation (EU) No 1299/2014 of 18 November 2014 on the technical specifications for interoperability relating to the ‘infrastructure’ subsystem of the rail system in the European Union Text with EEA relevance
OJ L 356, 12.12.2014, p. 1–109
(BG, ES, CS, DA, DE, ET, EL, EN, FR, HR, IT, LV, LT, HU, MT, NL, PL, PT, RO, SK, SL, FI, SV)
In force: This act has been changed. Current consolidated version: 16/06/2019
12.12.2014 |
EN |
Official Journal of the European Union |
L 356/1 |
COMMISSION REGULATION (EU) No 1299/2014
of 18 November 2014
on the technical specifications for interoperability relating to the ‘infrastructure’ subsystem of the rail system in the European Union
(Text with EEA relevance)
THE EUROPEAN COMMISSION,
Having regard to the Treaty on the Functioning of the European Union,
Having regard to Directive 2008/57/EC of the European Parliament and of the Council of 17 June 2008 on the interoperability of the rail system within the Community (1), and in particular Article 6(1) thereof,
Whereas:
(1) |
Article 12 of Regulation (EC) No 881/2004 of the European Parliament and of the Council (2) requires the European Railway Agency (the Agency) to ensure that the technical specifications for interoperability (the TSIs) are adapted to technical progress, market trends and social requirements and to propose to the Commission the amendments to the TSIs which it considers necessary. |
(2) |
By Decision C(2010) 2576 of 29 April 2010, the Commission gave the Agency a mandate to develop and review the TSIs with a view to extending their scope to the whole rail system in the Union. Under the terms of that mandate, the Agency was requested to extend the scope of the TSI relating to the subsystem ‘infrastructure’, to the whole rail system in the Union. |
(3) |
On 21 December 2012, the Agency issued a recommendation on amendments to the TSI relating to the subsystem ‘infrastructure’ (ERA/REC/10-2012/INT). |
(4) |
In order to keep pace with technological progress and encourage modernisation, innovative solutions should be promoted and their implementation should, under certain conditions, be allowed. Where an innovative solution is proposed, the manufacturer or his authorised representative should state how it deviates from or how it complements to the relevant section of the TSI, and the innovative solution should be assessed by the Commission. If this assessment is positive, the Agency should devise the appropriate functional and interface specifications of the innovative solution and develop the relevant assessment methods. |
(5) |
The TSI infrastructure established by this Regulation does not deal with all essential requirements. In accordance with Article 5(6) of Directive 2008/57/EC, technical aspects which are not covered by it should be identified as ‘open points’ governed by national rules applicable in each Member State. |
(6) |
In accordance with Article 17(3) of Directive 2008/57/EC, Member States are to notify to the Commission and other Member States the conformity assessment and verification procedures to be used for the specific cases as well as the bodies responsible for carrying out these procedures. The same obligation should be provided as regards to open points. |
(7) |
Rail traffic currently operates under existing national, bilateral, multinational or international agreements. It is important that these agreements do not hinder current and future progress towards interoperability. The Member States should therefore notify such agreements to the Commission. |
(8) |
In accordance with Article 11(5) of Directive 2008/57/EC, the TSI on infrastructure should allow, for a limited period of time, for interoperability constituents to be incorporated into subsystems without certification if certain conditions are met. |
(9) |
Commission Decisions 2008/217/EC (3) and 2011/275/EU (4) should therefore be repealed. |
(10) |
In order to prevent unnecessary additional costs and administrative burden, Decisions 2008/217/EC and 2011/275/EU should continue to apply after their repeal to the subsystems and projects referred to in Article 9(1)(a) of Directive 2008/57/EC. |
(11) |
The measures provided for in this Regulation are in conformity with the opinion of the Committee established in accordance with Article 29(1) of Directive 2008/57/EC, |
HAS ADOPTED THIS REGULATION:
Article 1
Subject matter
The technical specification for interoperability (TSI) relating to the ‘infrastructure’ subsystem of the rail system in the entire European Union, as set out in the Annex, is hereby adopted.
Article 2
Scope
1. The TSI shall apply to all new, upgraded or renewed ‘infrastructure’ of the rail system in the European Union as defined in point 2.1 of Annex I to Directive 2008/57/EC.
2. Without prejudice to Articles 7 and 8 and point 7.2 of the Annex, the TSI shall apply to new railway lines in the European Union, which are placed in service from 1 January 2015.
3. The TSI shall not apply to existing infrastructure of the rail system in the European Union, which is already placed in service on all or part of the network of any Member State on 1 January 2015, except when it is subject to renewal or upgrading in accordance with Article 20 of Directive 2008/57/EC and Section 7.3 of the Annex.
4. The TSI shall apply to the following networks:
(a) |
the trans-European conventional rail system network as defined in Annex I, point 1.1 to Directive 2008/57/EC; |
(b) |
the trans-European high-speed rail system network (TEN) as defined in Annex I, point 2.1 to Directive 2008/57/EC; |
(c) |
other parts of the network of the rail system in the Union; |
and excludes the cases referred to in Article 1(3) of Directive 2008/57/EC.
5. The TSI shall apply to networks with the following nominal track gauges: 1 435 mm, 1 520 mm, 1 524 mm, 1 600 mm and 1 668 mm.
6. Metric gauge is excluded from the technical scope of this TSI.
7. The technical and geographical scope of this Regulation is set out in Sections 1.1 and 1.2 of the Annex.
Article 3
Open points
1. With regard to the issues classified as ‘open points’ set out in Appendix R of the TSI, the conditions to be complied with for verifying the interoperability pursuant to Article 17(2) of Directive 2008/57/EC shall be the national rules applicable in the Member State which authorises the placing in service of the subsystem covered by this Regulation.
2. Within six months of the entry into force of this Regulation, each Member State shall send to the other Member States and the Commission of the following information, unless such information has already been sent to them under Decisions 2008/217/EC or 2011/275/EU:
(a) |
the national rules referred to in paragraph 1; |
(b) |
the conformity assessment and verification procedures to be carried out to apply the national rules referred to in paragraph 1; |
(c) |
the bodies designated in accordance with Article 17(3) of Directive 2008/57/EC to carry out the conformity assessment and verification procedures with respect to the open points. |
Article 4
Specific cases
1. With regard to specific cases referred to in point 7.7 of the Annex to this Regulation, the conditions to be met for the verification of interoperability pursuant to Article 17(2) of Directive 2008/57/EC shall be the national rules applicable in the Member State which authorises the placing in service of the subsystem covered by this Regulation.
2. Within six months of the entry into force of this Regulation, each Member State shall notify to the other Member States and the Commission the following information:
(a) |
the national rules referred to in paragraph 1; |
(b) |
the conformity assessment and verification procedures to be carried out to apply the national rules referred to in paragraph 1; |
(c) |
the bodies designated in accordance with Article 17(3) of Directive 2008/57/EC to carry out the conformity assessment and verification procedures in the specific cases set out in point 7.7 of the Annex. |
Article 5
Notification of bilateral agreements
1. Member States shall notify the Commission, not later than 1 July 2015, any existing national, bilateral, multilateral or international agreements between Member States and railway undertaking(s), infrastructure managers or non-member countries which are required by the very specific or local nature of the intended rail service or which deliver significant levels of local or regional interoperability.
2. That obligation does not apply to agreements which have already been notified under Decision 2008/217/EC.
3. Member States shall forthwith notify to the Commission of any future agreements or amendments to existing agreements.
Article 6
Projects at an advanced stage of development
In accordance with Article 9(3) of Directive 2008/57/EC, each Member State shall communicate to the Commission within one year of the entry into force of this Regulation the list of projects being implemented within its territory and are at an advanced stage of development.
Article 7
‘EC’ certificate of verification
1. An ‘EC’ certificate of verification for a subsystem that contains interoperability constituents which do not have an ‘EC’ declaration of conformity or suitability for use, may be issued during a transitional period ending on 31 May 2021 provided that the requirements laid down in point 6.5 of the Annex are met.
2. The production, upgrade or renewal of the subsystem with use of the non-certified interoperability constituents shall be completed within the transitional period set out in paragraph 1, including its placing in service.
3. During the transitional period set out in paragraph 1:
(a) |
the reasons for non-certification of any interoperability constituents shall be properly identified by the notified body before granting the ‘EC’ certificate pursuant to Article 18 of Directive 2008/57/EC; |
(b) |
the national safety authorities, pursuant to Article 16(2)(c) of Directive 2004/49/EC of the European Parliament and of the Council (5), shall report on the use of non-certified interoperability constituents in the context of authorisation procedures in their annual report referred to in Article 18 of Directive 2004/49/EC. |
4. From 1 January 2016, newly produced interoperability constituents shall be covered by the EC declaration of conformity or suitability for use.
Article 8
Conformity assessment
1. The procedures for assessment of conformity, suitability for use and ‘EC’ verification set out in section 6 of the Annex shall be based on the modules established in Commission Decision 2010/713/EU (6).
2. The type or design examination certificate of interoperability constituents shall be valid for a seven year period. During that period, new constituents of the same type are permitted to be placed into service without a new conformity assessment.
3. Certificates referred to in paragraph 2 which have been issued according to the requirements of Decision 2011/275/EU [TSI INF CR] or Decision 2008/217/EC [TSI INF HS] remain valid, without a need for a new conformity assessment, until the expiry date originally established. In order to renew a certificate the design or type shall be re-assessed only against new or modified requirements set out in the Annex to this Regulation.
Article 9
Implementation
1. Section 7 of the Annex sets out the steps to be followed for the implementation of a fully interoperable infrastructure subsystem.
Without prejudice to Article 20 of Directive 2008/57/EC, Member States shall prepare a national implementation plan, describing their actions to comply with this TSI, in accordance with section 7 of the Annex. Member States shall send their national implementation plan to the other Member States and the Commission by 31 December 2015. Member States that have already sent their implementation plan do not have to send it again.
2. Pursuant to Article 20 of Directive 2008/57/EC, when a new authorisation is required and if the TSI is not fully applied, Member States shall notify the following information to the Commission:
(a) |
the reason why the TSI is not fully applied; |
(b) |
the technical characteristics applicable instead of the TSI; |
(c) |
the bodies responsible for applying the verification procedure referred to in Article 18 of the Directive 2008/57/EC. |
3. Member States shall send to the Commission a report on the implementation of Article 20 of Directive 2008/57/EC three years after 1 January 2015. This report shall be discussed in the Committee set up by Article 29 of Directive 2008/57/EC and, where appropriate, the TSI in the Annex shall be adapted.
Article 10
Innovative solutions
1. In order to keep pace with technological progress, innovative solutions may be required, which do not comply with the specifications set out in the Annex or for which the assessment methods set out in the Annex cannot be applied.
2. Innovative solutions may relate to the infrastructure subsystem, its parts and its interoperability constituents.
3. If an innovative solution is proposed, the manufacturer or his authorised representative established within the Union shall declare how it deviates from or complements to the relevant provisions of this TSI and submit the deviations to the Commission for analysis. The Commission may request the opinion of the Agency on the proposed innovative solution.
4. The Commission shall deliver an opinion on the proposed innovative solution. If this opinion is positive, the appropriate functional and interface specifications and the assessment method, which need to be included in the TSI in order to allow the use of this innovative solution, shall be developed and subsequently integrated in the TSI during the revision process pursuant to Article 6 of Directive 2008/57/EC. If the opinion is negative, the innovative solution proposed cannot be used.
5. Pending the review of the TSI, the positive opinion delivered by the Commission shall be considered as an acceptable means of compliance with the essential requirements of Directive 2008/57/EC and may be used for the assessment of the subsystem.
Article 11
Repeal
Decisions 2008/217/EC and 2011/275/EU are repealed with effect from 1 January 2015.
They shall however continue to apply to:
(a) |
subsystems authorised in accordance with those Decisions; |
(b) |
projects for new, renewed or upgraded subsystems which, at the date of publication of this Regulation, are at an advanced stage of development or are the subject of an on-going contract. |
Article 12
Entry into force
This Regulation shall enter into force on the twentieth day following that of its publication in the Official Journal of the European Union.
It shall apply from 1 January 2015. However, an authorisation for placing in service may be granted in accordance with the TSI as set out in the Annex to this Regulation before 1 January 2015.
This Regulation shall be binding in its entirety and directly applicable in all Member States.
Done at Brussels, 18 November 2014.
For the Commission
The President
Jean-Claude JUNCKER
(1) OJ L 191, 18.7.2008, p. 1.
(2) Regulation (EC) No 881/2004 of the European Parliament and of the Council of 29 April 2004 establishing a European Railway Agency (OJ L 164, 30.4.2004, p. 1).
(3) Commission Decision 2008/217/EC of 20 December 2007 concerning a TSI relating to the infrastructure sub-system of the trans-European high-speed rail system (OJ L 77, 19.3.2008, p. 1).
(4) Commission Decision 2011/275/EU of 26 April 2011 concerning a TSI relating to the infrastructure sub-system of the trans-European conventional rail system (OJ L 126, 14.5.2011, p. 53).
(5) Directive 2004/49/EC of the European Parliament and of the Council of 29 April 2004 on safety on the Community's railways and amending Council Directive 95/18/EC on the licensing of railway undertakings and Directive 2001/14/EC on the allocation of railway infrastructure capacity and the levying of charges for the use of railway infrastructure and safety certification (Railway Safety Directive) (OJ L 164, 30.4.2004, p. 44).
(6) Commission Decision 2010/713/EU of 9 November 2010 on modules for the procedures for assessment of conformity, suitability for use and EC verification to be used in the technical specifications for interoperability adopted under Directive 2008/57/EC of the European Parliament and of the Council (OJ L 319, 4.12.2010, p. 1.)
ANNEX
TABLE OF CONTENTS
1. |
Introduction | 11 |
1.1. |
Technical Scope | 11 |
1.2. |
Geographical Scope | 11 |
1.3. |
Content of this TSI | 11 |
2. |
Definition and scope of subsystem | 11 |
2.1. |
Definition of the infrastructure subsystem | 11 |
2.2. |
Interfaces of this TSI with other TSIs | 12 |
2.3. |
Interfaces of this TSI with the Persons with Reduced Mobility TSI | 12 |
2.4. |
Interfaces of this TSI with the Safety in Railway Tunnels TSI | 12 |
2.5. |
Relation to the safety management system | 12 |
3. |
Essential requirements | 12 |
4. |
Description of the infrastructure subsystem | 15 |
4.1. |
Introduction | 15 |
4.2. |
Functional and technical specifications of subsystem | 16 |
4.2.1. |
TSI Categories of Line | 16 |
4.2.2. |
Basic parameters characterising the infrastructure subsystem | 18 |
4.2.3. |
Line layout | 20 |
4.2.4. |
Track parameters | 22 |
4.2.5. |
Switches and crossings | 27 |
4.2.6. |
Track resistance to applied loads | 27 |
4.2.7. |
Structures resistance to traffic loads | 28 |
4.2.8. |
Immediate action limits on track geometry defects | 30 |
4.2.9. |
Platforms | 33 |
4.2.10. |
Health, safety and environment | 34 |
4.2.11. |
Provision for operation | 35 |
4.2.12. |
Fixed installations for servicing trains | 36 |
4.3. |
Functional and technical specification of the interfaces | 36 |
4.3.1. |
Interfaces with the rolling stock subsystem | 37 |
4.3.2. |
Interfaces with the energy subsystem | 39 |
4.3.3. |
Interfaces with the control command and signalling subsystem | 39 |
4.3.4. |
Interfaces with the operation and traffic management subsystem | 40 |
4.4. |
Operating rules | 40 |
4.5. |
Maintenance rules | 40 |
4.5.1. |
Maintenance file | 40 |
4.5.2. |
Maintenance plan | 41 |
4.6. |
Professional qualifications | 41 |
4.7. |
Health and safety conditions | 41 |
5. |
Interoperability constituents | 41 |
5.1. |
Basis on which interoperability constituents have been selected | 41 |
5.2. |
List of constituents | 41 |
5.3. |
Constituents performances and specifications | 41 |
5.3.1. |
The rail | 41 |
5.3.2. |
The rail fastening systems | 42 |
5.3.3. |
Track sleepers | 42 |
6. |
Assessment of conformity of interoperability constituents and EC verification of the subsystems | 42 |
6.1. |
Interoperability Constituents | 42 |
6.1.1. |
Conformity assessment procedures | 42 |
6.1.2. |
Application of modules | 43 |
6.1.3. |
Innovative solutions for interoperability constituents | 43 |
6.1.4. |
EC declaration of conformity for interoperability constituents | 43 |
6.1.5. |
Particular assessment procedures for interoperability constituents | 44 |
6.2. |
Infrastructure subsystem | 44 |
6.2.1. |
General provisions | 44 |
6.2.2. |
Application of modules | 45 |
6.2.3. |
Innovative solutions | 45 |
6.2.4. |
Particular assessment procedures for infrastructure subsystem | 45 |
6.2.5. |
Technical solutions giving presumption of conformity at design stage | 48 |
6.3. |
EC Verification when speed is used as a migration criterion | 49 |
6.4. |
Assessment of maintenance file | 49 |
6.5. |
Subsystems containing Interoperability constituents not holding an EC declaration | 49 |
6.5.1. |
Conditions | 49 |
6.5.2. |
Documentation | 50 |
6.5.3. |
Maintenance of the subsystems certified according to 6.5.1. | 50 |
6.6. |
Subsystem containing serviceable interoperability constituents that are suitable for reuse | 50 |
6.6.1. |
Conditions | 50 |
6.6.2. |
Documentation | 50 |
6.6.3. |
Use of serviceable interoperability constituents in maintenance | 51 |
7. |
Implementation of the infrastructure TSI | 51 |
7.1. |
Application of this TSI to railway lines | 51 |
7.2. |
Application of this TSI to new railway lines | 51 |
7.3. |
Application of this TSI to existing railway lines | 51 |
7.3.1. |
Upgrading of a line | 51 |
7.3.2. |
Renewal of a line | 52 |
7.3.3. |
Substitution in the framework of maintenance | 52 |
7.3.4. |
Existing lines that are not subject to a renewal or upgrading project | 52 |
7.4. |
Application of this TSI to existing platforms | 53 |
7.5. |
Speed as an implementation criterion | 53 |
7.6. |
Ascertain Compatibility of infrastructure and rolling stock after authorisation of rolling stock | 53 |
7.7. |
Specific cases | 53 |
7.7.1. |
Particular features on the Austrian network | 53 |
7.7.2. |
Particular features on the Belgian network | 54 |
7.7.3. |
Particular features on the Bulgarian network | 54 |
7.7.4. |
Particular features on the Danish network | 54 |
7.7.5. |
Particular features on the Estonian network | 54 |
7.7.6. |
Particular features on the Finnish network | 55 |
7.7.7. |
Particular features on the French network | 58 |
7.7.8. |
Particular features on the German network | 58 |
7.7.9. |
Particular features on the Hellenic network | 58 |
7.7.10. |
Particular features on the Italian network | 58 |
7.7.11. |
Particular features on the Latvian network | 59 |
7.7.12. |
Particular features on the Polish network | 60 |
7.7.13. |
Particular features on the Portuguese network | 62 |
7.7.14. |
Particular features on the Ireland network | 64 |
7.7.15. |
Particular features on the Spanish network | 65 |
7.7.16. |
Particular features on the Swedish network | 68 |
7.7.17. |
Particular features on the UK network for Great Britain | 68 |
7.7.18. |
Particular features on the UK network for Northern Ireland | 70 |
7.7.19. |
Particular features on the Slovak network | 70 |
Appendix A — |
Assessment of interoperability constituents | 75 |
Appendix B — |
Assessment of the infrastructure subsystem | 76 |
Appendix C — |
Technical characteristics of track design and switches and crossings design | 79 |
Appendix D — |
Conditions of use of track design and switches and crossings design | 81 |
Appendix E — |
Capability requirements for structures according to traffic code | 82 |
Appendix F — |
Capability requirements for structures according to traffic code in the United Kingdom of Great Britain and Northern Ireland | 84 |
Appendix G — |
Speed conversion to miles per hour for Ireland and the United Kingdom of Great Britain and Northern Ireland | 86 |
Appendix H — |
Structure gauge for the 1 520 mm track gauge system | 87 |
Appendix I — |
Reverse curves with radii in the range from 150 m up to 300 m | 89 |
Appendix J — |
Safety assurance over fixed obtuse crossings | 91 |
Appendix K — |
Basis of minimum requirements for structures for passenger coaches and multiple units | 95 |
Appendix L — |
Definition of EN line category a12 for traffic code P6 | 96 |
Appendix M — |
Specific case on the Estonian network | 97 |
Appendix N — |
Specific cases of the Hellenic network | 97 |
Appendix O — |
Specific case on the Ireland and United Kingdom of Northern Ireland networks | 97 |
Appendix P — |
Structure gauge for the lower parts for the 1 668 mm track gauge on the Spanish network | 98 |
Appendix Q — |
National technical rules for UK-GB Specific Cases | 100 |
Appendix R — |
List of open points | 101 |
Appendix S — |
Glossary | 102 |
Appendix T — |
List of referenced standards | 108 |
1. INTRODUCTION
1.1. Technical Scope
This TSI concerns the infrastructure subsystem and part of the maintenance subsystem of the Union rail system in accordance with Article 1 of Directive 2008/57/EC.
The infrastructure subsystem is defined in Annex II (2.1) to Directive 2008/57/EC.
The technical scope of this TSI is further defined in Article 2(1), 2(5) and 2(6) of this Regulation.
1.2. Geographical Scope
The geographical scope of this TSI is defined in Article 2(4) of this Regulation.
1.3. Content of this TSI
(1) |
In accordance with Article 5(3) of Directive 2008/57/EC, this TSI:
In accordance with Article 5(5) of the Directive 2008/57/EC, provisions for specific cases are indicated in section 7. |
(2) |
Requirements in this TSI are valid for all track gauge systems within the scope of this TSI, unless a paragraph refers to specific track gauge systems or to specific nominal track gauges. |
2. DEFINITION AND SCOPE OF SUBSYSTEM
2.1. Definition of the infrastructure subsystem
This TSI covers:
(a) |
the infrastructure structural subsystem |
(b) |
the part of the maintenance functional subsystem relating to the infrastructure subsystem (that is: washing plants for external cleaning of trains, water restocking, refuelling, fixed installations for toilet discharge and electrical shore supplies). |
The elements of the infrastructure subsystem are described in Annex II (2.1. Infrastructure) to Directive 2008/57/EC.
The scope of this TSI therefore includes the following aspects of the infrastructure subsystem:
(a) |
Line layout, |
(b) |
Track parameters, |
(c) |
Switches and crossings, |
(d) |
Track resistance to applied loads, |
(e) |
Structures resistance to traffic loads, |
(f) |
Immediate action limits on track geometry defects, |
(g) |
Platforms, |
(h) |
Health, safety and environment, |
(i) |
Provision for operation, |
(j) |
Fixed installations for servicing trains. |
Further details are set out in point 4.2.2 of this TSI.
2.2. Interfaces of this TSI with other TSIs
Point 4.3 of this TSI sets out the functional and technical specification of the interfaces with the following subsystems, as defined in the relevant TSIs:
(a) |
Rolling stock subsystem, |
(b) |
Energy subsystem, |
(c) |
Control command and signalling subsystem, |
(d) |
Traffic operation and management subsystem. |
Interfaces with the Persons with Reduced Mobility TSI (PRM TSI) are described in point 2.3 below.
Interfaces with the Safety in Railway Tunnels TSI (SRT TSI) are described in point 2.4 below.
2.3. Interfaces of this TSI with the Persons with Reduced Mobility TSI
All requirements relating to the infrastructure subsystem for the access of persons with reduced mobility to the railway system are set out in the Persons with Reduced Mobility TSI.
2.4. Interfaces of this TSI with the Safety in Railway Tunnels TSI
All requirements relating to the infrastructure subsystem for safety in railway tunnels are set out in the Safety in Railway Tunnels TSI.
2.5. Relation to the safety management system
Necessary processes to manage safety according to the requirements in the scope of this TSI, including interfaces to humans, organisations or other technical systems, shall be designed and implemented in the infrastructure manager's safety management system as required by Directive 2004/49/EC.
3. ESSENTIAL REQUIREMENTS
The following table indicates basic parameters of this TSI and their correspondence to the essential requirements as set out and numbered in Annex III to Directive 2008/57/EC.
Table 1
Basic Parameters of the infrastructure subsystem corresponding to the essential requirements
TSI point |
Title of TSI point |
Safety |
Reliability Availability |
Health |
Environmental protection |
Technical compatibility |
Accessibility |
4.2.3.1 |
Structure gauge |
1.1.1, 2.1.1 |
|
|
|
1.5 |
|
4.2.3.2 |
Distance between track centres |
1.1.1, 2.1.1 |
|
|
|
1.5 |
|
4.2.3.3 |
Maximum gradients |
1.1.1 |
|
|
|
1.5 |
|
4.2.3.4 |
Minimum radius of horizontal curve |
1.1.3 |
|
|
|
1.5 |
|
4.2.3.5 |
Minimum radius of vertical curve |
1.1.3 |
|
|
|
1.5 |
|
4.2.4.1 |
Nominal track gauge |
|
|
|
|
1.5 |
|
4.2.4.2 |
Cant |
1.1.1, 2.1.1 |
|
|
|
1.5 |
1.6.1 |
4.2.4.3 |
Cant deficiency |
1.1.1 |
|
|
|
1.5 |
|
4.2.4.4 |
Abrupt change of cant deficiency |
2.1.1 |
|
|
|
|
|
4.2.4.5 |
Equivalent conicity |
1.1.1, 1.1.2 |
|
|
|
1.5 |
|
4.2.4.6 |
Railhead profile for plain line |
1.1.1, 1.1.2 |
|
|
|
1.5 |
|
4.2.4.7 |
Rail inclination |
1.1.1, 1.1.2 |
|
|
|
1.5 |
|
4.2.5.1 |
Design geometry of switches and crossings |
1.1.1, 1.1.2, 1.1.3 |
|
|
|
1.5 |
|
4.2.5.2 |
Use of swing nose crossings |
1.1.2, 1.1.3 |
|
|
|
|
|
4.2.5.3 |
Maximum unguided length of fixed obtuse crossings |
1.1.1, 1.1.2 |
|
|
|
1.5 |
|
4.2.6.1 |
Track resistance to vertical loads |
1.1.1, 1.1.2, 1.1.3 |
|
|
|
1.5 |
|
4.2.6.2 |
Longitudinal track resistance |
1.1.1, 1.1.2, 1.1.3 |
|
|
|
1.5 |
|
4.2.6.3 |
Lateral track resistance |
1.1.1, 1.1.2, 1.1.3 |
|
|
|
1.5 |
|
4.2.7.1 |
Resistance of new bridges to traffic loads |
1.1.1, 1.1.3 |
|
|
|
1.5 |
|
4.2.7.2 |
Equivalent vertical loading for new earthworks and earth pressure effects imposed on new structures |
1.1.1, 1.1.3 |
|
|
|
1.5 |
|
4.2.7.3 |
Resistance of new structures over or adjacent to tracks |
1.1.1, 1.1.3 |
|
|
|
1.5 |
|
4.2.7.4 |
Resistance of existing bridges and earthworks to traffic loads |
1.1.1, 1.1.3 |
|
|
|
1.5 |
|
4.2.8.1 |
The immediate action limit for alignment |
1.1.1, 1.1.2 |
1.2 |
|
|
|
|
4.2.8.2 |
The immediate action limit for longitudinal level |
1.1.1, 1.1.2 |
1.2 |
|
|
|
|
4.2.8.3 |
The immediate action limit for track twist |
1.1.1, 1.1.2 |
1.2 |
|
|
|
|
4.2.8.4 |
The immediate action limit of track gauge as isolated defect |
1.1.1, 1.1.2 |
1.2 |
|
|
|
|
4.2.8.5 |
The immediate action limit for cant |
1.1.1, 1.1.2 |
1.2 |
|
|
|
|
4.2.8.6 |
The immediate action limit for switches and crossings |
1.1.1, 1.1.2 |
1.2 |
|
|
1.5 |
|
4.2.9.1 |
Usable length of platforms |
1.1.1, 2.1.1 |
|
|
|
1.5 |
|
4.2.9.2 |
Platform height |
1.1.1, 2.1.1 |
|
|
|
1.5 |
1.6.1 |
4.2.9.3 |
Platform offset |
1.1.1, 2.1.1 |
|
|
|
1.5 |
1.6.1 |
4.2.9.4 |
Track layout alongside platforms |
1.1.1, 2.1.1 |
|
|
|
1.5 |
1.6.1 |
4.2.10.1 |
Maximum pressure variations in tunnels |
1.1.1, 2.1.1 |
|
|
|
1.5 |
|
4.2.10.2 |
Effect of cross winds |
1.1.1, 2.1.1 |
1.2 |
|
|
1.5 |
|
4.2.10.3 |
Ballast pick-up |
1.1.1 |
1.2 |
|
|
1.5 |
|
4.2.11.1 |
Location markers |
1.1.1 |
1.2 |
|
|
|
|
4.2.11.2 |
Equivalent conicity in service |
1.1.1, 1.1.2 |
|
|
|
1.5 |
|
4.2.12.2 |
Toilet discharge |
1.1.5 |
1.2 |
1.3.1 |
|
1.5 |
|
4.2.12.3 |
Train external cleaning facilities |
|
1.2 |
|
|
1.5 |
|
4.2.12.4 |
Water restocking |
1.1.5 |
1.2 |
1.3.1 |
|
1.5 |
|
4.2.12.5 |
Refuelling |
1.1.5 |
1.2 |
1.3.1 |
|
1.5 |
|
4.2.12.6 |
Electric shore supply |
1.1.5 |
1.2 |
|
|
1.5 |
|
4.4 |
Operating rules |
|
1.2 |
|
|
|
|
4.5 |
Maintenance rules |
|
1.2 |
|
|
|
|
4.6 |
Professional qualifications |
1.1.5 |
1.2 |
|
|
|
|
4.7 |
Health and safety conditions |
1.1.5 |
1.2 |
1.3 |
1.4.1 |
|
|
4. DESCRIPTION OF THE INFRASTRUCTURE SUBSYSTEM
4.1. Introduction
(1) |
The Union rail system, to which Directive 2008/57/EC applies and of which the infrastructure and maintenance subsystems are parts, is an integrated system whose consistency needs to be verified. This consistency must be checked in particular with regard to the specifications of the infrastructure subsystem, its interfaces in relation to the other subsystems of the Union rail system in which it is integrated, as well as the operating and maintenance rules. |
(2) |
The limiting values set out in this TSI are not intended to be imposed as usual design values. However the design values must be within the limits set out in this TSI. |
(3) |
The functional and technical specifications of the subsystem and its interfaces, described in points 4.2 and 4.3, do not impose the use of specific technologies or technical solutions, except where this is strictly necessary for the interoperability of the Union rail system. |
(4) |
Innovative solutions for interoperability which do not fulfil the requirements specified in this TSI and/or which are not assessable as stated in this TSI require new specifications and/or new assessment methods. In order to allow technological innovation, these specifications and assessment methods shall be developed by the process for innovative solutions described in Article 10. |
(5) |
Where reference is made to EN standards, any variations called ‘national deviations’ in the EN do not apply, unless otherwise specified in this TSI. |
(6) |
Where line speeds are stated in [km/h] as a category or performance parameter in this TSI, it shall be allowed to translate the speed to equivalent [mph] as in Appendix G, for Ireland and for the United Kingdom of Great Britain and Northern Ireland networks. |
4.2. Functional and technical specifications of subsystem
4.2.1. TSI Categories of Line
(1) |
Annex I to Directive 2008/57/EC recognises that the Union rail network may be subdivided into different categories for the Trans-European conventional rail network (point 1.1), the Trans-European high-speed rail network (point 2.1) and the extension of the scope (point 4.1). In order to deliver interoperability cost-effectively this TSI defines performance levels for ‘TSI categories of line’. |
(2) |
These TSI categories of line shall be used for the classification of existing lines to define a target system so that the relevant performance parameters will be met. |
(3) |
The TSI category of line shall be a combination of traffic codes. For lines where only one type of traffic is carried (for example a freight only line), a single code can be used to describe the requirements; where mixed traffic runs the category will be described by one or more codes for passenger and freight. The combined traffic codes describe the envelope within which the desired mix of traffic can be accommodated. |
(4) |
For the purpose of TSI categorisation, lines are classified generically based on the type of traffic (traffic code) characterised by the following performance parameters:
The columns for ‘gauge’ and ‘axle load’ shall be treated as minimum requirements as they directly control the trains that may run. The columns for ‘line speed’, ‘usable length of platform’ and ‘train length’ are indicative of the range of values that are typically applied for different traffic types and they do not directly impose restrictions on the traffic that may run over the line. |
(5) |
The performance parameters listed in Table 2 and Table 3 are not intended to be used to directly ascertain the compatibility between rolling stock and infrastructure. |
(6) |
Information defining the relation between maximum axle load and maximum speed according to type of vehicle is given in Appendix E and Appendix F. |
(7) |
The performance levels for types of traffic are set out in Table 2 and Table 3 here-under. Table 2 Performance parameters for passenger traffic
Table 3 Performance parameters for freight traffic
|
(8) |
For structures, axle load by itself is not sufficient to define the requirements for infrastructure. Requirements are specified for new structures in point 4.2.7.1.1 and for existing structures in point 4.2.7.4. |
(9) |
Passenger hubs, freight hubs and connecting lines are included in the above traffic codes, as appropriate. |
(10) |
Article 5(7) of Directive 2008/57/EC states: ‘The TSIs shall not be an impediment to decisions by the Member States concerning the use of infrastructures for the movement of vehicles not covered by the TSIs.’ It is therefore allowed to design new and upgraded lines such that will also accommodate larger gauges, higher axle loads, greater speeds, greater usable length of platform and longer trains than those specified. |
(11) |
Without prejudice to Section 7.6 and point 4.2.7.1.2(3), when categorising a new line as P1, it shall be ensured that ‘Class I’ trains, according to the HS RST TSI (Commission Decision 2008/232/EC (1)), for a speed greater than 250 km/h, can run on that line up to the maximum speed. |
(12) |
It is permissible for specific locations on the line to be designed for any or all of the performance parameters line speed, usable length of platform and train length less than those set out in Table 2 and Table 3, where duly justified to meet geographical, urban or environmental constraints. |
4.2.2. Basic parameters characterising the infrastructure subsystem
4.2.2.1.
The Basic Parameters characterising the infrastructure subsystem, grouped according to the aspects listed in point 2.1, are:
A. |
Line layout:
|
B. |
Track parameters:
|
C. |
Switches and crossings
|
D. |
Track resistance to applied loads
|
E. |
Structures resistance to traffic loads
|
F. |
Immediate action limits on track geometry defects
|
G. |
Platforms
|
H. |
Health, safety and environment
|
I. |
Provision for operation
|
J. |
Fixed installations for servicing trains
|
K. |
Maintenance rules
|
4.2.2.2.
(1) |
These requirements are described in the following paragraphs, together with any particular conditions that may be allowed in each case for the basic parameters and interfaces concerned. |
(2) |
The values of basic parameters specified are only valid up to a maximum line speed of 350 km/h. |
(3) |
For Ireland and for the United Kingdom in respect of Northern Ireland network the values of basic parameters specified are only valid up to a maximum line speed of 165 km/h. |
(4) |
In case of multi-rail track, requirements of this TSI are to be applied separately to each pair of rails designed to be operated as separate track. |
(5) |
Requirements for lines representing specific cases are described under point 7.7. |
(6) |
A short section of track with devices to allow transition between different nominal track gauges is allowed. |
(7) |
Requirements are described for the subsystem under normal service conditions. Consequences, if any, of the execution of works, which may require temporary exceptions as far as the subsystem performance is concerned, are dealt with in point 4.4. |
(8) |
The performance levels of trains can be enhanced by adopting specific systems, such as vehicle body tilting. Special conditions are allowed for running such trains, provided they do not entail restrictions for other trains not equipped with such systems. |
4.2.3. Line layout
4.2.3.1.
(1) |
The upper part of the structure gauge shall be set on the basis of the gauges selected according to point 4.2.1. Those gauges are defined in Annex C and in Annex D, point D.4.8 of EN 15273-3:2013. |
(2) |
The lower part of the structure gauge shall be GI2 as defined in Annex C of EN 15273-3:2013. Where tracks are equipped with rail brakes, structure gauge GI1 as defined in Annex C of EN 15273-3:2013 shall apply for the lower part of the gauge. |
(3) |
Calculations of the structure gauge shall be done using the kinematic method in accordance with the requirements of sections 5, 7, 10 and the Annex C and Annex D, point D.4.8 of EN 15273-3:2013. |
(4) |
Instead of points (1) to (3), for the 1 520 mm track gauge system, all traffic codes selected according to point 4.2.1 are applied with the uniform structure gauge ‘S’ as defined in Appendix H to this TSI. |
(5) |
Instead of points (1) to (3), for the 1 600 mm track gauge system, all traffic codes selected according to point 4.2.1 are applied with the uniform structure gauge IRL1 as defined in Appendix O to this TSI. |
4.2.3.2.
(1) |
The distance between track centres shall be set on the basis of the gauges selected according to point 4.2.1. |
(2) |
The nominal horizontal distance between track centres for new lines shall be specified for the design and shall not be smaller than the values from the Table 4; it considers margins for aerodynamic effects. Table 4 Minimum nominal horizontal distance between track centres
|
(3) |
The distance between track centres shall at least satisfy the requirements for the limit installation distance between track centres, defined according section 9 of EN 15273-3:2013. |
(4) |
Instead of points (1) to (3), for the 1 520 mm track gauge system, the nominal horizontal distance between track centres shall be specified for the design and shall not be smaller than the values from the Table 5; it considers margins for aerodynamic effects. Table 5 Minimum nominal horizontal distance between track centres for the 1 520 mm track gauge system
|
(5) |
Instead of point (2), for the 1 668 mm track gauge system, the nominal horizontal distance between track centres for new lines shall be specified for the design and shall not be smaller than the values from the Table 6, it considers margins for aerodynamic effects. Table 6 Minimum nominal horizontal distance between track centres for the 1 668 mm track gauge system
|
(6) |
Instead of points (1) to (3), for the 1 600 mm track gauge system, the distance between track centres shall be set on the basis of the gauges selected according to point 4.2.1. The nominal horizontal distance between track centres shall be specified for the design and shall not be less than 3,57 m for gauge IRL1; it considers margins for aerodynamic effects. |
4.2.3.3.
(1) |
Gradients of tracks through passenger platforms of new lines shall not be more than 2,5 mm/m, where vehicles are intended to be regularly attached or detached. |
(2) |
Gradients of new stabling tracks intended for parking rolling stock shall not be more than 2,5 mm/m unless specific provision is made to prevent the rolling stock from running away. |
(3) |
Gradients as steep as 35 mm/m are allowed for main tracks on new P1 lines dedicated to passenger traffic at the design phase provided the following ‘envelope’ requirements are observed:
|
4.2.3.4.
The minimum design radius of horizontal curve shall be selected with regard to the local design speed of the curve.
(1) |
The minimum horizontal design curve radius for new lines shall not be less than 150 m. |
(2) |
Reverse curves (other those in marshalling yards where wagons are shunted individually) with radii in the range from 150 m up to 300 m for new lines shall be designed to prevent buffer locking. For straight intermediate track elements between the curves, Table 43 and Table 44 of Appendix I shall apply. For non-straight intermediate track elements, a detailed calculation shall be made in order to check the magnitude of the end throw differences. |
(3) |
Instead of point (2), for the 1 520 mm track gauge system, reverse curves with radii in the range from 150 m up to 250 m shall be designed with a section of straight track of at least 15 m between the curves. |
4.2.3.5.
(1) |
The radius of vertical curves (except for humps in marshalling yards) shall be at least 500 m on a crest or 900 m in a hollow. |
(2) |
For humps in marshalling yards the radius of vertical curves shall be at least 250 m on a crest or 300 m in a hollow. |
(3) |
Instead of point (1), for the 1 520 mm track gauge system the radius of vertical curves (except the marshalling yards) shall be at least 5 000 m both on a crest and in a hollow. |
(4) |
Instead of point (2), for the 1 520 mm track gauge system and for humps in marshalling yards the radius of vertical curves shall be at least 350 m on a crest and 250 m in a hollow. |
4.2.4. Track parameters
4.2.4.1.
(1) |
European standard nominal track gauge shall be 1 435 mm. |
(2) |
Instead of point (1), for the 1 520 mm track gauge system the nominal track gauge shall be 1 520 mm. |
(3) |
Instead of point (1), for the 1 668 mm track gauge system, the nominal track gauge shall be 1 668 mm. |
(4) |
Instead of point (1), for the 1 600 mm track gauge system the nominal track gauge shall be 1 600 mm. |
4.2.4.2.
(1) |
The design cant for lines shall be limited as defined in Table 7. Table 7 Design cant [mm]
|
(2) |
The design cant on tracks adjacent to station platforms where trains are intended to stop in normal service shall not exceed 110 mm. |
(3) |
New lines with mixed or freight traffic on curves with a radius less than 305 m and a cant transition steeper than 1 mm/m, the cant shall be restricted to the limit given by the following formula D ≤ (R – 50)/1,5 where D is the cant in mm and R is the radius in m. |
(4) |
Instead of points (1) to (3), for the 1 520 mm track gauge system the design cant shall not exceed 150 mm. |
(5) |
Instead of point (1), for the 1 668 mm track gauge system, the design cant shall not exceed 180 mm. |
(6) |
Instead of point (2), for the 1 668 mm track gauge system, the design cant on tracks adjacent to station platforms where trains are intended to stop in normal service shall not exceed 125 mm. |
(7) |
Instead of point (3), for the 1 668 mm track gauge system, for new lines with mixed or freight traffic on curves with a radius less than 250 m, the cant shall be restricted to the limit given by the following formula: D ≤ 0,9 * (R – 50) where D is the cant in mm and R is the radius in m. |
(8) |
Instead of point (1), for the 1 600 mm track gauge system the design cant shall not exceed 185 mm. |
4.2.4.3.
(1) |
The maximum values for cant deficiency are set out in Table 8. Table 8 Maximum cant deficiency [mm]
|
(2) |
It is permissible for trains specifically designed to travel with higher cant deficiency (for example multiple units with axle loads lower than set out in table 2; vehicles with special equipment for the negotiation of curves) to run with higher cant deficiency values, subject to a demonstration that this can be achieved safely. |
(3) |
Instead of point (1), for all types of rolling stock of the 1 520 mm track gauge system the cant deficiency shall not exceed 115 mm. This is valid for speeds up to 200 km/h. |
(4) |
Instead of point (1), for the 1 668 mm track gauge system, the maximum values for cant deficiency are set out in Table 9. Table 9 Maximum cant deficiency for the 1 668 mm track gauge system [mm]
|
4.2.4.4.
(1) |
The maximum values of abrupt change of cant deficiency shall be:
|
(2) |
Where v ≤ 40 km/h and cant deficiency ≤ 75 mm both before and after an abrupt change of curvature, the value of abrupt change of cant deficiency may be raised to 150 mm. |
(3) |
Instead of points (1) and (2), for the 1 520 mm track gauge system the maximum values of abrupt change of cant deficiency shall be:
|
(4) |
Instead of point (1), for the 1 668 mm track gauge system, the maximum design values of abrupt change of cant deficiency shall be:
|
Abrupt change of cant deficiency is not allowed for speeds of more than 230 km/h.
4.2.4.5.
(1) |
The limiting values for equivalent conicity quoted in Table 10 shall be calculated for the amplitude (y) of the wheelset's lateral displacement:
where TG is the track gauge and SR is the distance between the flange contact faces of the wheelset. |
(2) |
No assessment of equivalent conicity is required for switches and crossings. |
(3) |
Design values of track gauge, rail head profile and rail inclination for plain line shall be selected to ensure that the equivalent conicity limits set out in Table 10 are not exceeded. Table 10 Equivalent conicity design limit values
|
(4) |
The following wheelsets shall be modelled passing over the designed track conditions (simulated by calculation according to EN 15302:2008+A1:2010):
For SR1 and SR2 the following values apply:
|
(5) |
Instead of points (1) to (4), for the 1 520 mm track gauge system, no assessment of equivalent conicity is required. |
4.2.4.6.
(1) |
The railhead profile shall be selected from the range set out in Annex A of EN 13674-1:2011, Annex A of EN13674-4:2006+A1:2009 or shall be in accordance with as defined in point (2). |
(2) |
The design of railhead profiles for plain line shall comprise:
Figure 1 Railhead profile
|
(3) |
These requirements are not applicable to expansion devices. |
4.2.4.7.
4.2.4.7.1. Plain line
(1) |
The rail shall be inclined towards the centre of the track. |
(2) |
The rail inclination for a given route shall be selected from the range 1/20 to 1/40. |
(3) |
For sections of not more than 100 m between switches and crossings without inclination where the running speed is no more than 200 km/h, the laying of rails without inclination is allowed. |
4.2.4.7.2. Requirements for switches and crossings
(1) |
The rail shall be designed to be either vertical or inclined. |
(2) |
If the rail is inclined, the designed inclination shall be selected from the range 1/20 to 1/40. |
(3) |
The inclination can be given by the shape of the active part of the rail head profile. |
(4) |
Within switches and crossings where the running speed is more than 200 km/h and no more than 250 km/h, the laying of rails without inclination is allowed provided that it is limited to sections not exceeding 50 m. |
(5) |
For speeds of more than 250 km/h the rails shall be inclined. |
4.2.5. Switches and crossings
4.2.5.1.
Point 4.2.8.6 of this TSI defines immediate action limits for switches and crossings that are compatible with geometrical characteristics of wheelsets as defined in the rolling stock TSIs. It will be the task of the infrastructure manager to decide geometrical design values appropriate to its maintenance plan.
4.2.5.2.
For speeds higher than 250 km/h switches and crossings shall be equipped with swing-nose crossings.
4.2.5.3.
The design value of the maximum unguided length of fixed obtuse crossings shall be in accordance with the requirements set out in Appendix J to this TSI.
4.2.6. Track resistance to applied loads
4.2.6.1.
The track design, including switches and crossings, shall take into account at least the following forces:
(a) |
the axle load selected according to point 4.2.1; |
(b) |
maximum vertical wheel forces. Maximum wheel forces for defined test conditions are defined in EN 14363:2005 point 5.3.2.3. |
(c) |
vertical quasi-static wheel forces. Maximum quasi-static wheel forces for defined test conditions are defined in EN 14363:2005 points 5.3.2.3. |
4.2.6.2.
4.2.6.2.1. Design forces
The track, including switches and crossings, shall be designed to withstand longitudinal forces equivalent to the force arising from braking of 2,5 m/s2 for the performance parameters chosen in accordance with point 4.2.1.
4.2.6.2.2. Compatibility with braking systems
(1) |
The track, including switches and crossings, shall be designed to be compatible with the use of magnetic braking systems for emergency braking. |
(2) |
The requirements for the design of track, including switches and crossings, which are compatible with the use of eddy current braking systems are an open point. |
(3) |
For the 1 600 mm track gauge system it shall be allowed not to apply point (1). |
4.2.6.3.
The track design, including switches and crossings, shall take into account at least the following forces:
(a) |
lateral forces; Maximum lateral forces exerted by a wheel set on the track for defined test conditions are defined in EN 14363:2005 point 5.3.2.2. |
(b) |
quasi-static guiding forces; Maximum quasi-static guiding forces Yqst for defined radii and test conditions are defined in EN 14363:2005 point 5.3.2.3. |
4.2.7. Structures resistance to traffic loads
The requirements of EN 1991-2:2003/AC:2010 and Annex A2 to EN 1990:2002 issued as EN 1990:2002/A1:2005 specified in this section of the TSI are to be applied in accordance with the corresponding points in the national annexes to these standards if they exist.
4.2.7.1.
4.2.7.1.1. Vertical loads
(1) |
Structures shall be designed to support vertical loads in accordance with the following load models, defined in EN 1991-2:2003/AC:2010:
|
(2) |
The load models shall be multiplied by the factor alpha (a) as set out in EN 1991-2:2003/AC:2010 points 6.3.2 (3)P and 6.3.3 (5)P. |
(3) |
The value of factor alpha (a) shall be equal to or greater than the values set out in Table 11. Table 11 Factor alpha (a) for the design of new structures
|
4.2.7.1.2. Allowance for dynamic effects of vertical loads
(1) |
The load effects from the Load Model 71 and Load Model SW/0 shall be enhanced by the dynamic factor phi (Φ) as set out in EN 1991-2:2003/AC:2010 points 6.4.3 (1)P and 6.4.5.2 (2). |
(2) |
For bridges for speeds over 200 km/h where EN 1991-2:2003/AC:2010 paragraph 6.4.4 requires a dynamic analysis to be carried out the structure shall additionally be designed for HSLM defined in EN 1991-2:2003/AC:2010 paragraphs 6.4.6.1.1 (3) to (6) inclusive. |
(3) |
It is permissible to design new bridges such that they will also accommodate an individual passenger train with higher axle loads than covered by HSLM. The dynamic analysis shall be undertaken using the characteristic value of the loading from the individual train taken as the design mass under normal payload in accordance with Appendix K with an allowance for passengers in standing areas in accordance with Note 1 of Appendix K. |
4.2.7.1.3. Centrifugal forces
Where the track on a bridge is curved over the whole or part of the length of the bridge, the centrifugal force shall be taken into account in the design of structures as set out in EN 1991-2:2003/AC:2010 paragraphs 6.5.1 (2), (4)P and (7).
4.2.7.1.4. Nosing forces
The nosing force shall be taken into account in the design of structures as set out in EN 1991-2:2003/AC:2010 point 6.5.2.
4.2.7.1.5. Actions due to traction and braking (longitudinal loads)
Traction and braking forces shall be taken into account in the design of structures as set out in EN 1991-2:2003/AC:2010 paragraphs 6.5.3 (2)P, (4), (5), (6).and (7)P.
4.2.7.1.6. Design track twist due to rail traffic actions
The maximum total design track twist due to rail traffic actions shall not exceed the values set out in paragraph A2.4.4.2.2(3)P in Annex A2 to EN 1990:2002 issued as EN 1990:2002/A1:2005.
4.2.7.2.
(1) |
Earthworks shall be designed and earth pressure effects shall be specified taking into account the vertical loads produced by the Load Model 71, as set out in EN 1991-2:2003/AC:2010 paragraph 6.3.2(2). |
(2) |
The equivalent vertical loading shall be multiplied by the factor alpha (a) as set out in EN 1991-2:2003/AC:2010 paragraph 6.3.2 (3)P. The value of a shall be equal to or greater than the values set out in Table 11. |
4.2.7.3.
Aerodynamic actions from passing trains shall be taken into account as set out in EN 1991-2:2003/AC:2010 paragraphs 6.6.2 to 6.6.6 inclusive.
4.2.7.4.
(1) |
Bridges and earthworks shall be brought to a specified level of interoperability according to the TSI category of line as defined in point 4.2.1. |
(2) |
The minimum capability requirements for structures for each traffic code are given in Appendix E. The values represent the minimum target level that structures must be capable of for the line to be declared interoperable. |
(3) |
The following cases are relevant:
|
(4) |
For the United Kingdom of Great Britain and Northern Ireland networks, in paragraphs (2) and (3) above the EN line category may be replaced by Route Availability (RA) number (delivered in accordance with the national technical rule notified for this purpose) and consequently reference to Appendix E are replaced by reference to Appendix F. |
4.2.8. Immediate action limits on track geometry defects
4.2.8.1.
(1) |
The immediate action limits for isolated defects in alignment are set out in point 8.5 of EN 13848-5:2008+A1:2010. Isolated defects shall not exceed the limits of wavelength range D1 as set out in Table 6 of the EN Standard |
(2) |
The immediate action limits for isolated defects in alignment for speeds of more than 300 km/h are an open point. |
4.2.8.2.
(1) |
The immediate action limits for isolated defects in longitudinal level are set out in point 8.3 of EN 13848-5:2008+A1:2010. Isolated defects shall not exceed the limits of wavelength range D1 as set out in table 5 of the EN Standard |
(2) |
The immediate action limits for isolated defects in longitudinal level for speeds of more than 300 km/h are an open point. |
4.2.8.3.
(1) |
The immediate action limit for track twist as an isolated defect is given as a zero to peak value. Track twist is defined in EN 13848-1:2003+A1:2008 point 4.6. |
(2) |
The track twist limit is a function of the measurement base applied according to EN 13848-5:2008+A1:2010 point 8.6. |
(3) |
The infrastructure manager shall set out in the maintenance plan the base-length on which it will measure the track in order to check compliance with this requirement. The base-length of measurement shall include at least one base between 2 and 5 m. |
(4) |
Instead of points (1) and (2), for the 1 520 mm track gauge system the track twist, for a base length of 10 m, shall be not more than:
|
(5) |
Instead of point (3), for the 1 520 mm track gauge system the Infrastructure Manager shall set out in the maintenance plan the base-length on which it will measure the track in order to check compliance with this requirement. The base-length of measurement shall include at least one base of 10 m. |
(6) |
Instead of point (2), for the 1 668 mm track gauge system, the track twist limit is a function of the measurement base applied according to one of the following equations depending on the cant:
|
4.2.8.4.
(1) |
The immediate action limits of track gauge as an isolated defect are set out in Table 12. Table 12 Immediate action limits of track gauge
|
(2) |
Instead of point (1), for the 1 520 track gauge system the immediate action limits of track gauge as an isolated defect are set out in Table 13. Table 13 Immediate action limits of track gauge for 1 520 mm track gauge system
|
(3) |
Instead of point (1), for the 1 600 track gauge system the immediate action limits of track gauge as an isolated defect are:
|
4.2.8.5.
(1) |
The maximum cant allowed in service is 180 mm. |
(2) |
The maximum cant allowed in service is 190 mm for dedicated passenger traffic lines. |
(3) |
Instead of points (1) and (2), for the 1 520 mm track gauge system, the maximum cant allowed in service is 150 mm. |
(4) |
Instead of points (1) and (2), for the 1 600 mm track gauge system, the maximum cant allowed in service is 185 mm. |
(5) |
Instead of points (1) and (2), for the 1 668 mm track gauge system, the maximum cant allowed in service is 200 mm. |
4.2.8.6.
Figure 2
Point retraction in fixed common crossings
(1) |
The technical characteristics of switches and crossings shall comply with the following in-service values:
|
(2) |
All relevant requirements for switches and crossings are also applicable to other technical solutions using switch rails, for example side modifiers used in multi-rail track. |
(3) |
Instead of point (1), for the 1 520 mm track gauge system the technical characteristics of switches and crossings shall comply with the following in-service values:
|
(4) |
Instead of point (1), for the 1 600 mm track gauge system the technical characteristics of switches and crossings shall comply with the following in-service values:
|
4.2.9. Platforms
(1) |
The requirements of this point are only applicable to passenger platforms where trains are intended to stop in normal service. |
(2) |
For the requirements of this point it is permissible to design platforms required for the current service requirement provided provision is made for the reasonably foreseeable future service requirements. When specifying the interfaces with trains intended to stop at the platform, consideration shall be given to both the current service requirements and the reasonably foreseeable service requirements at least 10 years following the bringing into service of the platform. |
4.2.9.1.
The usable length of a platform shall be defined according to point 4.2.1.
4.2.9.2.
(1) |
The nominal platform height shall be 550 mm or 760 mm above the running surface for radii of 300 m or more. |
(2) |
For smaller radii the nominal platform height may be adjusted depending on the platform offset to minimise the stepping distance between the train and the platform. |
(3) |
For platforms where trains, which are outside the scope of the LOC&PAS TSI, are intended to stop, different provisions for the nominal platform height might apply. |
(4) |
Instead of points (1) and (2), for the 1 520 mm track gauge system the nominal platform height shall be 200 mm or 550 mm above the running surface. |
(5) |
Instead of points (1) and (2), for the 1 600 mm track gauge system the nominal platform height shall be 915 mm above the running surface. |
4.2.9.3.
(1) |
The distance between the track centre and the platform edge parallel to the running plane (bq), as defined in chapter 13 of EN 15273-3:2013, shall be set on the basis of the installation limit gauge (bqlim). The installation limit gauge shall be calculated on the basis of the gauge G1. |
(2) |
The platform shall be built close to the gauge within a maximum tolerance of 50 mm. The value for bq shall therefore respond to: bqlim ≤ bq ≤ bqlim + 50 mm. |
(3) |
Instead of points (1) and (2), for the 1 520 mm track gauge system the platform offset shall be:
|
(4) |
Instead of points (1) and (2), for the 1 600 mm track gauge system the platform offset shall be 1 560 mm. |
4.2.9.4.
(1) |
Track adjacent to the platforms for new lines shall preferably be straight, but shall nowhere have a radius of less than 300 m. |
(2) |
No values are specified for an existing track alongside new, renewed or upgraded platforms. |
4.2.10. Health, safety and environment
4.2.10.1.
(1) |
Any tunnel or underground structure intended to be operated at speeds greater than or equal to 200 km/h has to provide that maximum pressure variation, caused by the passage of a train running at the maximum allowed speed in the tunnel, do not exceed 10 kPa during the time taken for the train to pass through the tunnel. |
(2) |
Above requirement has to be fulfilled along the outside of any train complying with the Locomotives and Passenger TSI. |
4.2.10.2.
(1) |
A line is interoperable from the cross wind point of view if safety is ensured for a reference train running along that line under the most critical operational conditions. |
(2) |
The rules for proving conformity shall take into account the characteristic wind curves of the reference trains defined in the LOC&PAS TSI. |
(3) |
If safety cannot be achieved without mitigating measures, either due to the geographic situation or to other specific features of the line, the infrastructure manager shall take the necessary measures to maintain the safety, for example by:
|
(4) |
It shall be demonstrated that safety is achieved after measures taken. |
4.2.10.3.
(1) |
The aerodynamic interaction between rolling stock and infrastructure may cause the lifting and further blowing away of ballast stones from the track bed. |
(2) |
The requirements for the infrastructure subsystem aimed at mitigating the risk for ‘ballast pick up’ apply only to lines with maximum speed greater than or equal to 200 km/h. |
(3) |
The requirements of point (2) above are an open point. |
4.2.11. Provision for operation
4.2.11.1.
Location markers shall be provided at nominal intervals along the track of not more than 1 000 m.
4.2.11.2.
(1) |
If ride instability is reported, the railway undertaking and the infrastructure manager shall localise the section of the line in a joint investigation according paragraphs (2) and (3) hereafter. Note: This joint investigation is also specified in point 4.2.3.4.3.2 of TSI LOC & PAS for action on rolling stock. |
(2) |
The infrastructure manager shall measure the track gauge and the railhead profiles at the site in question at a distance of approximate 10 m. The mean equivalent conicity over 100 m shall be calculated by modelling with the wheelsets (a) – (d) mentioned in paragraph 4.2.4.5(4) of this TSI in order to check for compliance, for the purpose of the joint investigation, with the limit equivalent conicity for the track specified in Table 14. Table 14 Equivalent conicity in service limit values for the track (for the purpose of joint investigation)
|
(3) |
If the mean equivalent conicity over 100 m complies with the limit values in Table 14, a joint investigation by the railway undertaking and the infrastructure manager shall be undertaken to specify the reason for the instability. |
4.2.12. Fixed installations for servicing trains
4.2.12.1.
This point 4.2.12 sets out the infrastructure elements of the maintenance subsystem required for servicing trains.
4.2.12.2.
Fixed installations for toilet discharge shall be compatible with the characteristics of the retention toilet system specified in the rolling stock TSI.
4.2.12.3.
(1) |
Where a washing plant is provided it shall be able to clean the outer sides of single or double-deck trains between a height of:
|
(2) |
The washing plant shall be designed so that trains can be driven through it at any speed between 2 km/h and 5 km/h. |
4.2.12.4.
(1) |
Fixed equipment for water restocking shall be compatible with the characteristics of the water system specified in the rolling stock TSI. |
(2) |
Fixed equipment for drinking water supply on the interoperable network shall be supplied with drinking water meeting the requirements of Council Directive 98/83/EC (2). |
4.2.12.5.
Refuelling equipment shall be compatible with the characteristics of the fuel system specified in the rolling stock TSIs.
4.2.12.6.
Where provided, electrical shore supply shall be by means of one or more of the power supply systems specified in the rolling stock TSIs.
4.3. Functional and technical specification of the interfaces
From the standpoint of technical compatibility, the interfaces of the infrastructure subsystem with the other subsystems are like described in the following points.
4.3.1. Interfaces with the rolling stock subsystem
Table 15
Interfaces with the rolling stock subsystem, ‘Locomotives and Passenger Rolling Stock TSI’
Interface |
Reference Infrastructure TSI |
Reference Locomotives and Passenger Rolling Stock TSI |
||||||||||||||||||||||
Track gauge |
|
|
||||||||||||||||||||||
Gauge |
|
|
||||||||||||||||||||||
Axle load and axle spacing |
|
|
||||||||||||||||||||||
Running characteristics |
|
|
||||||||||||||||||||||
Ride stability |
|
|
||||||||||||||||||||||
Longitudinal actions |
|
|
||||||||||||||||||||||
Minimum horizontal curve radius |
|
Annex A, A.1 Buffers |
||||||||||||||||||||||
Running dynamic behaviour |
|
|
||||||||||||||||||||||
Maximum deceleration |
|
|
||||||||||||||||||||||
Aerodynamic effect |
|
|
||||||||||||||||||||||
Crosswind |
|
|
||||||||||||||||||||||
Installations for servicing trains |
|
|
Table 16
Interfaces with the rolling stock subsystem, ‘Freight Wagons TSI’
Interface |
Reference Infrastructure TSI |
Reference Conventional Rail Freight Wagons TSI |
||||||||||||
Track gauge |
|
|
||||||||||||
Gauge |
|
|
||||||||||||
Axle load and axle spacing |
|
|
||||||||||||
Running dynamic behaviour |
|
|
||||||||||||
Longitudinal actions |
|
|
||||||||||||
Minimum curve radius |
|
|
||||||||||||
Vertical curve |
|
|
||||||||||||
Crosswind |
|
|
4.3.2. Interfaces with the energy subsystem
Table 17
Interfaces with the energy subsystem
Interface |
Reference Infrastructure TSI |
Reference Energy TSI |
||||
Gauge |
|
|
4.3.3. Interfaces with the control command and signalling subsystem
Table 18
Interfaces with the control command and signalling subsystem
Interface |
Reference Infrastructure TSI |
Reference Control Command and Signalling TSI |
||||||||||
Structure gauge set for CCS installations. Visibility of track-side CCS objects. |
|
|
4.3.4. Interfaces with the operation and traffic management subsystem
Table 19
Interfaces with the operation and traffic management subsystem
Interface |
Reference Infrastructure TSI |
Reference Operation and Traffic Management TSI |
||||||
Ride stability |
|
|
||||||
Use of eddy current brakes |
|
|
||||||
Crosswinds |
|
|
||||||
Operating rules |
|
|
||||||
Staff competences |
|
|
4.4. Operating rules
(1) |
Operating rules are developed within the procedures described in the infrastructure manager's safety management system. These rules take into account the documentation related to operation which forms a part of the technical file as required in Article 18(3) and set out in Annex VI (point I.2.4) of Directive 2008/57/EC. |
(2) |
In certain situations involving pre-planned works, it may be necessary to temporarily suspend the specifications of the infrastructure subsystem and its interoperability constituents defined in sections 4 and 5 of this TSI. |
4.5. Maintenance rules
(1) |
Maintenance rules are developed within the procedures described in the infrastructure manager's safety management system. |
(2) |
The maintenance file shall be prepared before placing a line into service as the part of the technical file accompanying the declaration of verification |
(3) |
The maintenance plan shall be drawn up for the subsystem to ensure that the requirements set out in this TSI are maintained during its lifetime. |
4.5.1. Maintenance file
A maintenance file shall contain at least:
(a) |
a set of values for immediate action limits, |
(b) |
the measures taken (for example speed restriction, repair time) when prescribed limits are not met, |
related to track geometric quality and limits on isolated defects.
4.5.2. Maintenance plan
The infrastructure manager shall have a maintenance plan containing the items listed in point 4.5.1 together with at least the following items related to the same elements:
(a) |
a set of values for intervention limits and alert limits, |
(b) |
a statement about the methods, professional competences of staff and personal protective safety equipment necessary to be used, |
(c) |
the rules to be applied for the protection of people working on or near the track, |
(d) |
the means used to check that in-service values are respected. |
4.6. Professional qualifications
The professional qualifications of staff required for operation and maintenance of the infrastructure subsystem are not set out in this TSI but are described in the infrastructure manager's safety management system.
4.7. Health and safety conditions
(1) |
The health and safety conditions of staff required for the operation and maintenance of the infrastructure subsystem shall be compliant with the the relevant European and national legislation. |
(2) |
The issue is covered by the procedures described in the infrastructure manager's safety management system. |
5. INTEROPERABILITY CONSTITUENTS
5.1. Basis on which interoperability constituents have been selected
(1) |
The requirements of point 5.3 are based on a traditional design of ballasted track with Vignole (flat-bottom) rail on concrete or wooden sleepers and fastening providing resistance to longitudinal slip by bearing on the rail foot. |
(2) |
Components and subassemblies used for the construction of other designs of track are not considered to be interoperability constituents. |
5.2. List of constituents
(1) |
For the purposes of this technical specification for interoperability, only the following elements, whether individual components or subassemblies of the track are declared to be ‘interoperability constituents’:
|
(2) |
The following points describe the specifications applicable to each of these constituents. |
(3) |
Rails, fastenings and sleepers used for short length of track for specific purposes, for example in switches and crossings, at expansion devices, transition slabs and special structures, are not considered to be interoperability constituents. |
5.3. Constituents performances and specifications
5.3.1. The rail
The specifications of the ‘rail’ interoperability constituent concern the following parameters:
(a) |
railhead profile, |
(b) |
rail steel. |
5.3.1.1.
The rail head profile shall fulfil the requirements of point 4.2.4.6 ‘Railhead profile for plain line’.
5.3.1.2.
(1) |
The rail steel is relevant to the requirements of point 4.2.6 ‘Track resistance to applied loads’. |
(2) |
The rail steel shall meet the following requirements:
|
5.3.2. The rail fastening systems
(1) |
The rail fastening system is relevant to the requirements of point 4.2.6.1 for ‘Track resistance to vertical loads’, point 4.2.6.2 for ‘Longitudinal track resistance’ and point 4.2.6.3 for ‘Lateral track resistance’. |
(2) |
The rail fastening system shall comply in laboratory test conditions with the following requirements:
|
5.3.3. Track sleepers
(1) |
Track sleepers shall be designed such that when they are used with a specified rail and rail fastening system they will have properties that are consistent with the requirements of point 4.2.4.1 for ‘Nominal track gauge’, point 4.2.4.7 for ‘Rail inclination’ and point 4.2.6 for ‘Track resistance to applied loads’. |
(2) |
For the nominal track gauge system of 1 435 mm, the design track gauge for track sleepers shall be 1 437 mm. |
6. ASSESSMENT OF CONFORMITY OF INTEROPERABILITY CONSTITUENTS AND EC VERIFICATION OF THE SUBSYSTEMS
Modules for the procedures for assessment of conformity and suitability for use and EC verification are defined in Article 8 of this Regulation.
6.1. Interoperability Constituents
6.1.1. Conformity assessment procedures
(1) |
The conformity assessment procedure of interoperability constituents as defined in section 5 of this TSI shall be carried out by application of the relevant modules. |
(2) |
Serviceable interoperability constituents that are suitable for reuse are not subject to the conformity assessment procedures. |
6.1.2. Application of modules
(1) |
The following modules for conformity assessment of interoperability constituents are used:
|
(2) |
The modules for conformity assessment of interoperability constituents shall be chosen from those shown in Table 20. Table 20 Modules for conformity assessment to be applied for interoperability constitunents
|
(3) |
In the case of products placed on the market before the publication of relevant TSIs, the type is considered to have been approved and therefore EC type examination (module CB) is not necessary, provided that the manufacturer demonstrates that tests and verification of interoperability constituents have been considered successful for previous applications under comparable conditions and are in conformity with the requirements of this TSI. In this case these assessments shall remain valid in the new application. If it is not possible to demonstrate that the solution is positively proven in the past, the procedure for interoperability constituents placed on the EU market after publication of this TSI applies. |
(4) |
The conformity assessment of interoperability constituents shall cover the phases and characteristics as indicated in Table 36 of Appendix A to this TSI. |
6.1.3. Innovative solutions for interoperability constituents
If an innovative solution is proposed for an interoperability constituent, the procedure described in Article 10 shall apply.
6.1.4. EC declaration of conformity for interoperability constituents
6.1.4.1.
(1) |
Article 13(3) of Directive 2008/57/EC, states ‘Where the interoperability constituents are the subject of other Community Directives covering other aspects, the EC declaration of conformity or suitability for use shall, in such instances, state that the interoperability constituents also meet the requirements of those other Directives.’ |
(2) |
According to Annex IV (3) of Directive 2008/57/EC, the EC declaration of conformity shall be accompanied by the statement setting out the condition of use. |
6.1.4.2.
No statement setting out the conditions of use is required.
6.1.4.3.
The EC declaration of conformity shall be accompanied by statement setting out:
(a) |
the combination of rail, rail inclination, rail pad and type of sleepers with which the fastening system may be used |
(b) |
the maximum axle load the rail fastening system is designed to accommodate. |
6.1.4.4.
The EC declaration of conformity shall be accompanied by statement setting out:
(a) |
the combination of rail, rail inclination and type of rail fastening system with which the sleeper may be used, |
(b) |
the nominal and design track gauge, |
(c) |
the combinations of axle load and train speed the track sleeper is designed to accommodate. |
6.1.5. Particular assessment procedures for interoperability constituents
6.1.5.1.
Assessment of rail steel shall be done according to the following requirements:
(a) |
Rail hardness shall be tested for position RS according to EN 13674-1:2011 paragraph 9.1.8, measured using one specimen (control sample out of production). |
(b) |
Tensile strength shall be tested according to EN 13674-1:2011 paragraph 9.1.9, measured using one specimen (control sample out of production). |
(c) |
Fatigue test shall be done according to EN 13674-1:2011 paragraph 8.1 and paragraph 8.4. |
6.1.5.2.
(1) |
Until 31 May 2021 a design track gauge for track sleepers below 1 437 mm shall be allowed. |
(2) |
For polyvalent gauge and multiple gauge track sleepers it is allowed not to assess the design track gauge for the nominal track gauge of 1 435 mm. |
6.2. Infrastructure subsystem
6.2.1. General provisions
(1) |
At the request of the applicant, the notified body carries out the EC verification of the infrastructure subsystem in accordance with Article 18 of Directive 2008/57/EC and in accordance with the provisions of the relevant modules. |
(2) |
If the applicant demonstrates that tests or assessments of an infrastructure subsystem or parts of the subsystem are the same as have been successful for previous applications of a design, the notified body shall consider the results of these tests and assessments for the EC verification. |
(3) |
The EC verification of the infrastructure subsystem shall cover the phases and characteristics indicated in Table 37 in Appendix B to this TSI. |
(4) |
Performance parameters as set out in point 4.2.1 of this TSI are not subject to the EC verification of the subsystem. |
(5) |
Particular assessment procedures for specific basic parameters of infrastructure subsystem are set out in point 6.2.4. |
(6) |
The applicant shall draw up the EC declaration of verification for the infrastructure subsystem in accordance with Article 18 and Annex V of Directive 2008/57/EC. |
6.2.2. Application of modules
For the EC verification procedure of the infrastructure subsystem, the applicant may choose either:
(a) |
Module SG: EC verification based on unit verification, or |
(b) |
Module SH1: EC verification based on full quality management system plus design examination. |
6.2.2.1.
In the case where EC verification is most effectively undertaken by using information collected by the infrastructure manager, contracting entity or the main contractors involved (for example data obtained using track recording vehicle or other measuring devices), the notified body shall take this information into account to assess conformity.
6.2.2.2.
The SH1 module may be chosen only where the activities contributing to the proposed subsystem to be verified (design, manufacturing, assembling, installation) are subject to a quality management system for design, production, final product inspection and testing, approved and surveyed by a notified body.
6.2.3. Innovative solutions
If an innovative solution is proposed for the infrastructure subsystem, the procedure described in Article 10 shall apply.
6.2.4. Particular assessment procedures for infrastructure subsystem
6.2.4.1.
(1) |
Assessment of structure gauge as a design review shall be done against characteristic cross sections using the results of calculations made by infrastructure manager or the contracting entity on the basis of sections 5, 7, 10, Annex C and point D.4.8 of Annex D of EN 15273-3:2013. |
(2) |
Characteristic cross sections are:
|
(3) |
After assembly before putting into service clearances shall be verified at locations where the designed installation limit gauge is approached by less than 100 mm or the installation nominal gauge or uniform gauge is approached by less than 50 mm. |
(4) |
Instead of point (1), for the 1 520 mm track gauge system assessment of structure gauge as a design review is to be made against characteristic cross sections using the uniform structure gauge ‘S’ as defined in Appendix H to this TSI. |
(5) |
Instead of point (1), for the 1 600 mm track gauge system assessment of structure gauge as a design review is to be made against characteristic cross sections using the structure gauge ‘IRL1’ as defined in Appendix O to this TSI. |
6.2.4.2.
(1) |
A design review for assessment of the distance between track centres shall be done using the results of calculations made by the Infrastructure Manager or the contracting entity on the basis of chapter 9 of EN 15273-3:2013. The nominal distance between track centres shall be checked at the line layout where distances are given in parallel to the horizontal plane. The limit installation distance between track centres shall be checked with the radius and relevant cant. |
(2) |
After assembly before putting into service, distance between track centres shall be verified at critical locations where the limit installation distance between track centres as defined according chapter 9 of EN 15273-3:2013 is approached by less than 50 mm. |
(3) |
Instead of point (1), for the 1 520 mm track gauge system a design review for assessment of the distance between track centres is to be made using the results of calculations made by the infrastructure manager or the contracting entity. The nominal distance between track centres shall be checked at the line layout where distances are given in parallel to the horizontal plane. The limit installation distance between track centres shall be checked with the radius and relevant cant. |
(4) |
Instead of point (2), for the 1 520 mm track gauge system after assembly before putting into service, distance between track centres shall be verified at critical locations where the limit installation distance between track centres is approached by less than 50 mm. |
6.2.4.3.
(1) |
Assessment of the nominal track gauge at design review shall be done by checking the self-declaration of the applicant. |
(2) |
Assessment of the nominal track gauge at assembly before putting into service shall be done by checking the interoperability constituent sleeper's certificate. For non-certified interoperability constituents assessment of the nominal track gauge shall be done by checking the self-declaration of the applicant. |
6.2.4.4.
(1) |
At design review the curvature, cant, cant deficiency and abrupt change of cant deficiency shall be assessed against the local design speed. |
(2) |
Assessment of switches and crossings layout is not required. |
6.2.4.5.
Point 4.2.4.3(2) states that ‘It is permissible for trains specifically designed to travel with higher cant deficiency (for example multiple units with lower axle loads; vehicles with special equipment for the negotiation of curves) to run with higher cant deficiency values, subject to a demonstration that this can be achieved safely’. This demonstration is outside the scope of this TSI and thus not subject to a notified body verification of the infrastructure subsystem. The demonstration shall be undertaken by the RU, if necessary in cooperation with the IM.
6.2.4.6.
Assessment of design values for equivalent conicity shall be done using the results of calculations made by the infrastructure manager or the contracting entity on the basis of EN 15302:2008+A1:2010.
6.2.4.7.
(1) |
The design profile of new rails shall be checked against point 4.2.4.6. |
(2) |
Reused serviceable rails shall not be subject to the requirements for railhead profile as set out in point 4.2.4.6. |
6.2.4.8.
Assessment of switches and crossings related to points 4.2.5.1 to 4.2.5.3 shall be done by checking that a self-declaration of the infrastructure manager or contracting entity exists.
6.2.4.9.
(1) |
Assessment of new structures shall be done by checking the traffic loads and the track twist limit used for design against the minimum requirements of points 4.2.7.1 and 4.2.7.3. The notified body is not required to review the design nor carry out any calculations. When reviewing the value of factor alpha used in the design according to point 4.2.7.1 it is only necessary to check that the value of factor alpha satisfies Table 11. |
(2) |
Assessment of new earthworks and earth pressure effects shall be done by checking the vertical loads used for design according to requirements of point 4.2.7.2. When reviewing the value of factor alpha used in the design according to point 4.2.7.2 it is only necessary to check that the value of factor alpha satisfies Table 11. The notified body is not required to review the design nor carry out any calculations. |
6.2.4.10.
(1) |
Assessment of existing structures against the requirements of point 4.2.7.4(3) (b) and (c) shall be done by one of the following methods:
|
(2) |
It is not required to review the design nor carry out any calculations. |
(3) |
For existing structures assessment point 4.2.7.4(4) applies respectively. |
6.2.4.11.
(1) |
Assessment of the distance between the track centre and the platform edge as a design review shall be done using the results of calculations made by the Infrastructure Manager or the contracting entity on the basis of chapter 13 of EN 15273-3:2013. |
(2) |
After assembly before putting into service clearances shall be verified. The offset is checked at the ends of the platform and every 30 m in straight track and every 10 m in curved track. |
(3) |
Instead of point (1), for the 1 520 mm track gauge system assessment of the distance between the track centre and the platform edge as a design review shall be done against requirements of point 4.2.9.3. Point (2) applies accordingly. |
(4) |
Instead of point (1), for the 1 600 mm track gauge system assessment of the distance between the track centre and the platform edge as a design review shall be done against requirements of point 4.2.9.3(4). Point (2) applies accordingly. |
6.2.4.12.
(1) |
Assessment of maximum pressure variation in the tunnel (10 kPa criterion) shall be done using the results of numerical simulations according to chapters 4 and 6 of EN 14067-5:2006+A1:2010 made by the infrastructure manager or the contracting entity on the basis of all expected operational conditions with the trains complying with the Locomotives and Passengers TSI and intended to run at speeds greater than or equal to 200 km/h in the specific tunnel to be assessed. |
(2) |
The input parameters to be used are to be such that the reference characteristic pressure signature of the trains set out in the locomotives and passenger rolling stock TSI is fulfilled. |
(3) |
The reference cross section areas of the interoperable trains (constant along a train) to be considered is to be, independently to each motor or trailer vehicle:
The vehicle gauge to be considered shall be set on the basis of the gauges selected according to point 4.2.1. |
(4) |
The assessment may take into account construction features which reduce the pressure variation if any, as well as the tunnel length. |
(5) |
The pressure variations due to atmospheric or geographical conditions can be neglected. |
6.2.4.13.
This demonstration of the safety is outside the scope of this TSI and thus not subject to a notified body verification. The demonstration shall be undertaken by the infrastructure manager, if necessary in cooperation with the railway undertaking.
6.2.4.14.
Assessment of fixed installations for servicing trains is in the responsibility of the Member State concerned.
6.2.5. Technical solutions giving presumption of conformity at design stage
Presumption of conformity at design stage for technical solutions may be assessed prior and independent from a specific project.
6.2.5.1.
(1) |
The demonstration of conformity of the track to the requirements of point 4.2.6 may be done by reference to an existing track design which meets the operating conditions intended for the subsystem concerned. |
(2) |
A track design shall be defined by the technical characteristics as set out in Appendix C.1 to this TSI and by its operating conditions as set out in Appendix D.1 to this TSI. |
(3) |
A track design is considered to be existing, if both of the following conditions are met:
|
(4) |
The operating conditions for an existing track design refer to conditions which have been applied in normal operation. |
(5) |
The assessment to confirm an existing track design shall be performed by checking that the technical characteristics as set out in Appendix C.1 to this TSI and conditions of use as set out in Appendix D.1 to this TSI are specified and that the reference to the previous use of the track design is available. |
(6) |
When a previously assessed existing track design is used in a project, the notified body shall only assess that the conditions of use are respected. |
(7) |
For new track designs that are based on existing track designs, a new assessment can be performed by verifying the differences and evaluating their impact on the track resistance. This assessment may be supported for example by computer simulation or by laboratory or in situ testing. |
(8) |
A track design is considered to be new, if at least one of the technical characteristics set out in Appendix C to this TSI or one of conditions of use set out in Appendix D to this TSI is changed. |
6.2.5.2.
(1) |
The provisions as set out in point 6.2.5.1 are applicable for the assessment of track resistance for switches and crossings. Appendix C.2 sets out the technical characteristics of switches and crossings design and Appendix D.2 sets out the conditions of use of switches and crossings design. |
(2) |
Assessment of design geometry of switches and crossings shall be done according to point 6.2.4.8 of this TSI. |
(3) |
Assessment of maximum unguided length of fixed obtuse crossings shall be done according to point 6.2.4.8 of this TSI. |
6.3. EC Verification when speed is used as a migration criterion
(1) |
Point 7.5 allows a line to be put into service at a lower speed than the ultimate intended speed. This point sets out requirements for EC verification in this case. |
(2) |
Some limiting values set out in section 4 depend on the intended speed of the route. Conformity should be assessed at the intended ultimate speed; however it is permissible to assess speed dependant characteristics at the lower speed at the time of placing in service. |
(3) |
The conformity of the other characteristics for the intended speed of the route remains valid. |
(4) |
To declare the interoperability at this intended speed, it is only necessary to assess the conformity of the characteristics temporarily not respected, when they are brought up to the required level. |
6.4. Assessment of maintenance file
(1) |
Point 4.5 requires the infrastructure manager to have for each interoperable line a maintenance file for the infrastructure subsystem. |
(2) |
The notified body shall confirm that the maintenance file exists and contains the items listed in point 4.5.1. The notified body is not responsible for assessing the suitability of the detailed requirements set out in the maintenance file. |
(3) |
The notified body shall include a reference to the maintenance file required by point 4.5.1 of this TSI in the technical file referred to in Article 18(3) of Directive 2008/57/EC. |
6.5. Subsystems containing Interoperability constituents not holding an EC declaration
6.5.1. Conditions
(1) |
Until 31 May 2021, a notified body is allowed to issue an EC certificate of verification for a subsystem even if some of the interoperability constituents incorporated within the subsystem are not covered by the relevant EC declarations of conformity and/or suitability for use according to this TSI, if the following criteria are complied with:
|
(2) |
EC declarations of conformity and/or suitability for use shall not be drawn up for the interoperability constituents assessed in this manner. |
6.5.2. Documentation
(1) |
The EC certificate of verification of the subsystem shall indicate clearly which interoperability constituents have been assessed by the notified body as part of the subsystem verification. |
(2) |
The EC declaration of verification of the subsystem shall indicate clearly:
|
6.5.3. Maintenance of the subsystems certified according to 6.5.1.
(1) |
During and after the transition period and until the subsystem is upgraded or renewed (taking into account the decision of Member State on application of TSIs), the interoperability constituents which do not hold an EC Declaration of conformity and/or suitability for use and are of the same type are allowed to be used as maintenance related replacements (spare parts) for the subsystem, under the responsibility of the body responsible for maintenance. |
(2) |
In any case the body responsible for maintenance must ensure that the components for maintenance related replacements are suitable for their applications, are used within their area of use and enable interoperability to be achieved within the rail system while at the same time meeting the essential requirements. Such components must be traceable and certified in accordance with any national or international rule or any code of practice widely acknowledged in the railway domain. |
6.6. Subsystem containing serviceable interoperability constituents that are suitable for reuse
6.6.1. Conditions
(1) |
A notified body is allowed to issue an EC certificate of verification for a subsystem even if some of the interoperability constituents incorporated within the subsystem are serviceable interoperability constituents that are suitable for reuse, if the following criteria are complied with:
|
(2) |
EC declarations of conformity and/or suitability for use shall not be drawn up for the interoperability constituents assessed in this manner. |
6.6.2. Documentation
(1) |
The EC certificate of verification of the subsystem shall indicate clearly which interoperability constituents have been assessed by the notified body as part of the subsystem verification. |
(2) |
The EC declaration of verification of the subsystem shall indicate clearly:
|
6.6.3. Use of serviceable interoperability constituents in maintenance
(1) |
Serviceable interoperability constituents that are suitable for reuse are allowed to be used as maintenance related replacements (spare parts) for the subsystem, under the responsibility of the body responsible for maintenance. |
(2) |
In any case the body responsible for maintenance must ensure that the components for maintenance related replacements are suitable for their applications, are used within their area of use, and enable interoperability to be achieved within the rail system while at the same time meeting the essential requirements. Such components must be traceable and certified in accordance with any national or international rule, or any code of practice widely acknowledged in the railway domain. |
7. IMPLEMENTATION OF THE INFRASTRUCTURE TSI
Member States shall develop a national plan for the implementation of this TSI, considering the coherence of the entire rail system of the European Union. This plan shall include all projects subject to renewal and upgrade of infrastructure subsystems, in line with the details mentioned in points 7.1 to 7.7 here below.
7.1. Application of this TSI to railway lines
Sections 4 to 6 and any specific provisions in points 7.2 to 7.6 here below apply in full to the lines within the geographical scope of this TSI, which will be placed in service as interoperable lines after this TSI enters into force.
7.2. Application of this TSI to new railway lines
(1) |
For the purpose of this TSI a ‘new line’ means a line that creates a route where none currently exists. |
(2) |
The following situations, for example to increase speed or capacity, may be considered as an upgraded line rather than a new line:
|
7.3. Application of this TSI to existing railway lines
7.3.1. Upgrading of a line
(1) |
In accordance with Article 2(m) of Directive 2008/57/EC, ‘upgrading’ means any major modification work on a subsystem or part of a subsystem which improves the overall performance of the subsystem. |
(2) |
The infrastructure subsystem of a line is considered to be upgraded in the context of this TSI when at least the performance parameters axle load or gauge, as defined in point 4.2.1, are changed in order to meet the requirements of another traffic code. |
(3) |
For other TSI performance parameters, according to Article 20(1) of the Directive 2008/57/EC, Member States decide to what extent the TSI needs to be applied to the project. |
(4) |
Where Article 20(2) of Directive 2008/57/EC applies because the upgrading is subject of an authorisation of placing into service, Member States shall decide which requirements of the TSI must be applied. |
(5) |
Where article 20(2) of Directive 2008/57/EC does not apply because the upgrading is not subject of an authorisation of placing into service, compliance with this TSI is recommended. Where compliance is not possible to reach, the contracting entity shall inform the Member State of the reasons thereof. |
(6) |
For a project including elements not being TSI compliant, the procedures for the assessment of conformity and EC verification to be applied should be agreed with the Member State. |
7.3.2. Renewal of a line
(1) |
In accordance with Article 2(n) of Directive 2008/57/EC, ‘renewal’ means any major substitution work on a subsystem or part subsystem which does not change the overall performance of the subsystem. |
(2) |
For this purpose major substitution should be interpreted as a project undertaken to systematically replace elements of a line or a section of a line. Renewal differs from a substitution in the framework of maintenance, referred to in point 7.3.3 below, since it gives the opportunity to achieve a TSI compliant route. A renewal is the same case as upgrading, but without a change in performance parameters. |
(3) |
Where article 20(2) of Directive 2008/57/EC applies because the renewal is subject of an authorisation of placing into service, Member States shall decide which requirements of the TSI must be applied. |
(4) |
Where article 20(2) of Directive 2008/57/EC does not apply because the renewal is not subject of an authorisation of placing into service, the conformity with this TSI is recommended. Where compliance is not possible to reach, the contracting entity informs the Member State of the reasons thereof. |
(5) |
For a project including elements not being TSI compliant, the procedures for the assessment of conformity and EC verification to be applied should be agreed with the Member State. |
7.3.3. Substitution in the framework of maintenance
(1) |
Where the parts of a subsystem on a line are maintained, the formal verification and authorisation for placing into service is not required in accordance with this TSI. However, maintenance replacements should be, as far as it is reasonably practicable, undertaken in accordance with the requirements of this TSI. |
(2) |
The objective should be that maintenance replacements progressively contribute the development of an interoperable line. |
(3) |
In order to bring progressively an important part of the infrastructure subsystem in a process towards interoperability, the following group of basic parameters should be adapted together:
|
(4) |
In such cases, it is noted that each of the above elements taken separetly cannot ensure compliance of the whole subsystem. The conformity of a subsystem can only be stated when all the elements are compliant with the TSI. |
7.3.4. Existing lines that are not subject to a renewal or upgrading project
The demonstration of the level of compliance of existing lines with the basic parameters of the TSI is voluntary. The procedure for this demonstration shall be in accordance with Commission Recommendation 2014/881/EU of 18 November 2014 (3).
7.4. Application of this TSI to existing platforms
In case of upgrade or renewal of the infrastructure subsystem, the following conditions related to platform height governed by point 4.2.9.2 of this TSI, shall apply:
(a) |
It shall be allowed to apply other nominal platform heights for consistency with a particular upgrade or renewal programme of a line or a section of a line. |
(b) |
It shall be allowed to apply other nominal platform heights, if the work requires structural alterations to any load bearing element. |
7.5. Speed as an implementation criterion
(1) |
It is permissible to bring a line into service as an interoperable line at a lower speed than its intended ultimate line speed. However, when it is the case the line should not be constructed in a way that inhibits future adoption of the intended ultimate line speed. |
(2) |
For example the distance between track centres shall be suitable for the intended ultimate line speed but the cant will need to be appropriate to the speed at the time the line is brought into service. |
(3) |
Requirements for assessment of conformity in this case are set out in section 6.3. |
7.6. Ascertain Compatibility of infrastructure and rolling stock after authorisation of rolling stock
(1) |
Rolling stock complying with the rolling stock TSIs is not automatically compatible with all lines complying with this Infrastructure TSI. For example, a GC gauge vehicle is not compatible with a GB gauge tunnel. The process of ascertaining route compatibility to be followed shall be in accordance with Commission Recommendation on the authorisation for the placing in service of structural subsystems and vehicles under Directive 2008/57/EC (4). |
(2) |
The design of the TSI categories of line as defined in section 4 is generally compatible with the operation of vehicles categorised in accordance with EN 15528:2008+A1:2012 at up to the maximum speed as shown in Appendix E. However there may be a risk of excessive dynamic effects including resonance in certain bridges which may further impact the compatibility of vehicles and infrastructure. |
(3) |
Checks, based on specific operational scenarios agreed between the infrastructure manager and the railway undertaking, may be undertaken to demonstrate the compatibility of vehicles operating above the maximum speed shown in Appendix E. |
(4) |
As stated in point 4.2.1 of this TSI, it is permissible to design new and upgraded lines such that they will also accommodate larger gauges, higher axle loads, greater speeds, greater usable length of platform and longer trains than those specified. |
7.7. Specific cases
The following specific cases may be applied on particular networks. The specific cases are classified as:
(a) ‘P’ cases: permanent cases;
(b) ‘T’ cases: temporary cases, where it is recommended that the target system is reached by 2020 (an objective set out in Decision No 1692/96/EC of the European Parliament and Council (5)).
7.7.1. Particular features on the Austrian network
7.7.1.1.
P cases
For other parts of the Union rail network as set out in Article 2(4) of this Regulation, for renewal and upgrading, the nominal platform height of 380 mm above the running surface shall be allowed.
7.7.2. Particular features on the Belgian network
7.7.2.1.
P cases
For platform heights of 550 mm an 760 mm, the conventional value bq0 of platform offset shall be calculated according to the following formulas:
|
In curve with a radius 1 000 ≤ R ≤ ∞ (m) |
|
In curve with a radius R < 1 000 (m) |
7.7.3. Particular features on the Bulgarian network
7.7.3.1.
P cases
For upgraded or renewed platforms, the nominal platform height of 300 mm and 1 100 mm above the running surface shall be allowed.
7.7.3.2.
P cases
Instead of points 4.2.9.3(1) and 4.2.9.3(2), the platform offset shall be:
(a) |
1 650 mm for platforms with heights of 300 mm and |
(b) |
1 750 mm for platforms with height of 1 100 mm. |
7.7.4. Particular features on the Danish network
7.7.4.1.
P cases
For S-Tog services the nominal platform height of 920 mm above the running surface shall be allowed.
7.7.5. Particular features on the Estonian network
7.7.5.1.
P cases
Instead of point 4.2.4.1(2), for the 1 520 mm track gauge system the nominal track gauge shall be either 1 520 mm or 1 524 mm.
7.7.5.2.
P cases
For the 1 520 mm track gauge system, for lines with an axle load of 30 t, it shall be allowed to design structures to support vertical loads in accordance with the load model set out in Appendix M to this TSI.
7.7.5.3.
P cases
Instead of sub-point 4.2.8.6(3)(a), for the 1 520 mm track gauge system, the minimum value of bypass at the narrowest location between open switch rail and stock rail is 54 mm.
7.7.6. Particular features on the Finnish network
7.7.6.1.
P cases
Instead of gauges specified in the columns ‘Gauge’ in Table 2 and Table 3 of point 4.2.1(6), for the nominal track gauge of 1 524 mm, it shall be allowed to use gauge FIN1.
7.7.6.2.
P cases
(1) |
Instead of points 4.2.3.1(1) and 4.2.3.1(2), for the nominal track gauge of 1 524 mm, both the upper and lower part of the structure gauge shall be set on the basis of the gauge FIN1. Those gauges are defined in Annex D, section D4.4 of EN 15273-3:2013. |
(2) |
Instead of point 4.2.3.1(3), for the nominal track gauge of 1 524 mm, calculations of the structure gauge shall be done using the static method in accordance with the requirements of sections 5, 6, 10 and Annex D Section D.4.4 of EN 15273-3:2013. |
7.7.6.3.
P cases
(1) |
Instead of point 4.2.3.2(1), for the nominal track gauge of 1 524 mm, the distance between track centres shall be set on the basis of the gauge FIN1. |
(2) |
Instead of point 4.2.3.2(2), for the nominal track gauge of 1 524 mm, the nominal horizontal distance between track centres for new lines shall be specified for the design and shall not be smaller than the values mentioned in Table 21; it considers margins for aerodynamic effects. Table 21 Minimum nominal horizontal distance between track centres
|
(3) |
Instead of point 4.2.3.2(3), for the nominal track gauge of 1 524 mm, the distance between track centres shall at least satisfy the requirements for the limit installation distance between track centres, defined according Annex D, Section D4.4.5 of EN 15273-3:2013. |
7.7.6.4.
P cases
Instead of point 4.2.3.4(3), for the nominal track gauge of 1 524 mm, reverse curves (other than reverse curves in marshalling yards where wagons are shunted individually) with radii in the range from 150 m up to 275 m for new lines shall be designed in accordance with Table 22 to prevent buffer locking.
Table 22
Limits for the length of a straight intermediate element between two long circular curves in the opposite directions [m] (*4)
Alignment chain (*4) |
Limits for tracks for mixed traffic [m] |
R = 150 m — straight — R = 150 m |
16,9 |
R = 160 m — straight — R = 160 m |
15,0 |
R = 170 m — straight — R = 170 m |
13,5 |
R = 180 m — straight — R = 180 m |
12,2 |
R = 190 m — straight — R = 190 m |
11,1 |
R = 200 m — straight — R = 200 m |
10,00 |
R = 210 m — straight — R = 210 m |
9,1 |
R = 220 m — straight — R = 220 m |
8,2 |
R = 230 m — straight — R = 230 m |
7,3 |
R = 240 m — straight — R = 240 m |
6,4 |
R = 250 m — straight — R = 250 m |
5,4 |
R = 260 m — straight — R = 260 m |
4,1 |
R = 270 m — straight — R = 270 m |
2,0 |
R = 275 m — straight — R = 275 m |
0 |
7.7.6.5.
P cases
Instead of point 4.2.4.1(1), the nominal track gauge shall be 1 524 mm.
7.7.6.6.
P cases
(1) |
Instead of point 4.2.4.2(1), for the nominal track gauge of 1 524 mm, the design cant shall not exceed 180 mm for ballasted or non-ballasted track. |
(2) |
Instead of point 4.2.4.2(3), for the nominal track gauge of 1 524 mm, new lines with mixed or freight traffic on curves with a radius less than 320 m and a cant transition steeper than 1 mm/m, the cant shall be restricted to the limit given by the following formula D ≤ (R – 50) × 0,7 where D is the cant in mm and R is the radius in m. |
7.7.6.7.
P cases
In paragraph (1) of Appendix J, for the nominal track gauge of 1 524 mm: