51997PC0627

Forslag til Europa-Parlamentets og Rådets direktiv om ændring af Rådets direktiv 88/77/EØF om indbyrdes tilnærmelse af medlemsstaternes lovgivning om foranstaltninger mod emission af forurenende luftarter og partikler fra dieselmotorer til fremdrift af køretøjer /* KOM/97/0627 endelig udg. - COD 97/0350 /*

EF-Tidende nr. C 173 af 08/06/1998 s. 0001


Forslag til Europa-Parlamentets og Rådets direktiv om ændring af Rådets direktiv 88/77/EØF om indbyrdes tilnærmelse af medlemsstaternes lovgivning om foranstaltninger mod emission af forurenende luftarter og partikler fra dieselmotorer til fremdrift af køretøjer (98/C 173/01) (EØS-relevant tekst) COM(97) 627 endelig udg. - 97/0350(COD)

(forelagt af Kommissionen den 23. marts 1998)

EUROPA-PARLAMENTET OG RÅDET FOR DEN EUROPÆISKE UNION HAR -

under henvisning til traktaten om oprettelse af Det Europæiske Fællesskab, særlig artikel 100 A,

under henvisning til forslag fra Kommissionen,

under henvisning til udtalelse fra Det Økonomiske og Sociale Udvalg,

i henhold til fremgangsmåden i artikel 189 B i traktaten, og

ud fra følgende betragtninger:

Ifølge første handlingsprogram for De Europæiske Fællesskaber på miljøområdet (1), som blev godkendt ved Rådets deklaration af 22. november 1973, skal der tages hensyn til de seneste videnskabelige fremskridt i forbindelse med bekæmpelse af luftforurening fra motorkøretøjers udstødningsgas, og allerede vedtagne direktiver skal ændres i overensstemmelse hermed; ifølge femte handlingsprogram, hvis generelle indhold blev godkendt af Rådet og repræsentanterne for medlemsstaternes regeringer, forsamlet i Rådet, i deres resolution af 1. februar 1993 (2), skal der gøres en ekstra indsats for væsentligt at formindske den nuværende emission af forurenende stoffer fra motorkøretøjer;

det er almindeligt erkendt, at udviklingen på transportområdet inden for Fællesskabet har medført en voldsom belastning af miljøet; det har vist sig, at en række af de officielle prognoser for den stigende trafiktæthed ligger under de faktiske tal; der må derfor pålægges samtlige motorkøretøjer strenge emissionsnormer;

ved Rådets direktiv 88/77/EØF (3), senest ændret ved Europa-Parlamentets og Rådets direktiv 96/1/EF (4), blev der fastsat grænseværdier for emissionen af carbonmonoxid, uforbrændte carbonhydrider og nitrogenoxider fra dieselmotorer til fremdrift af motorkøretøjer, som er baseret på en prøvningsprocedure, der er repræsentativ for de pågældende køretøjers kørselsforhold i Europa; direktivet blev først ændret ved direktiv 91/542/EØF (5) i to etaper, hvoraf den første (1992 1993) faldt sammen med det tidspunkt, hvor nye europæiske emissionskrav til personbiler trådte i kraft; anden etape (1995 1996) gav den europæiske bilindustri en indikation af den mere langsigtede målsætning ved at fastsætte grænseværdier, som bygger på den forventede ydeevne af teknologi, der endnu var under udvikling, hvorved industrien fik et stykke tid til at færdigudvikle den nævnte teknologi; ifølge direktiv 88/77/EØF, som ændret ved direktiv 96/1/EF, skal den grænseværdi, der er fastsat for partikler i direktiv 91/542/EØF, gælde fra 1999 for små dieselmotorer med slagvolumen mindre end 0,7 dm3 pr. cylinder og et omdrejningstal ved mærkeeffekten på mere end 3 000 min-1; det er dog teknisk velbegrundet at opretholde forskelle i kravene til partikelemissioner for sådanne små hurtiggående dieselmotorer efter 1999;

ifølge artikel 5, stk. 3, i direktiv 91/542/EØF skal Kommissionen inden udgangen af 1996 aflægge beretning for Rådet om de tekniske fremskridt, der er gjort for så vidt angår revision af grænseværdierne for forurenende emissioner, eventuelt ledsaget af en revision af prøvningsproceduren; de nye grænseværdier finder ikke anvendelse inden den 1. oktober 1999 for nye standardtypegodkendelser;

for at imødekomme bestemmelserne i artikel 4 i Europa-Parlamentets og Rådets direktiv 94/12/EF (6) vedtog Kommissionen i meddelelse fra Kommissionen til Europa-Parlamentet og Rådet et europæisk program vedrørende luftkvalitet, vejtrafikemissioner, brændstof og motorteknologi (auto/oil-programmet) (7); en analyse af omkostninger og virkninger under auto/oil-programmet har vist, at der kræves yderligere forbedring af dieselmotorteknologien til tunge køretøjer, hvis luftkvalitetsmålene skal nås i 2010, hvilket er beskrevet i Kommissionens meddelelse om auto/oil-programmet;

stramningen af kravene til nye dieselmotorer i direktiv 88/77/EØF indgår i en global fællesskabsstrategi, som også omfatter en revision af kravene til lette erhvervskøretøjer og personbiler efter år 2000, forbedring af motorbrændstoffernes kvalitet og en mere nøjagtig vurdering af den faktiske emission fra køretøjer i brug;

direktiv 88/77/EØF er et af særdirektiverne under den EF-typegodkendelsesprocedure, der er fastlagt ved Rådets direktiv 70/156/EØF om tilnærmelse af medlemsstaternes lovgivning om godkendelse af motordrevne køretøjer og påhængskøretøjer dertil (8), senest ændret ved Europa-Parlamentets og Rådets direktiv 97/27/EF (9), i overensstemmelse med proportionalitetsprincippet i traktatens artikel 3 B går de i nærværende direktiv fastsatte foranstaltninger ikke ud over, hvad der er nødvendigt for at reducere de forurenende emissioner;

i auto/oil-programmet blev en nedsættelse af emissionsgrænseværdierne fra år 2000 på 30 % for NOx og 30 % for partikler anset som afgørende for, at der kan opnås en tilfredsstillende luftkvalitet på mellemlang sigt; nedsættelser på 30 % for kulbrinter i alt og 30 % for carbonmonoxid vil tilsvarende bidrage til luftkvaliteten på mellemlang sigt; en nedsættelse på 30 % af røgtætheden i forhold til den, der måles på motorer i dag, vil supplere Rådets direktiv 72/306/EØF (10), senest ændret ved Kommissionens direktiv 97/20/EF (11), og medvirke til at mindske mængden af partikler; i nedsættelserne er der taget højde for indflydelsen fra en ny testcyklus, som er mere repræsentativ for det faktiske kørselsmønster for køretøjer i brug;

egendiagnosesystemer (OBD) til tunge køretøjer er endnu ikke fuldt udviklede, men bør indføres fra 2005, så eventuelle fejl i de køretøjskomponenter og -systemer, der er kritiske for dets emission, hurtigt kan konstateres, og så det ved hjælp af bedre eftersyn og vedligehold bliver muligt at opretholde køretøjernes oprindelige emissionspræstationer i betydeligt højere grad;

der bør indføres nye testcyklusser for emission af luftarter og partikler og for røgtæthed, hvilket giver mulighed for en mere repræsentativ evaluering af dieselmotorers emissionspræstationer ved prøvning under forhold, der ligger tættere på køretøjernes brug i praksis; der bør indføres en ny testcyklus for konventionelle dieselmotorer og dieselmotorer med katalysator; der bør indføres en ny kombineret testprocedure (med to cyklusser) for dieselmotorer med avancerede emissionsbegrænsende systemer og for gasdrevne motorer;

medlemsstaterne bør have mulighed for gennem afgiftsbegunstigelser at fremme indførelse af køretøjer, der opfylder de skærpede krav, der indføres ved nærværende direktiv;

det er påkrævet at fastslå, at der fra 2005 påregnes yderligere betydelige nedsættelser af emissionsgrænseværdierne, som tager udgangspunkt i Kommissionens andet auto/oil-program, for dermed at tilskynde til at fortsætte med at udvikle køretøjer med det mest avancerede forureningsbegrænsende udstyr; hvis der ikke sker væsentlige fremskridt henimod en testprocedure, der er harmoniseret på verdensplan, bør emissionsgrænseværdierne for dieselmotorer fra 2005 bygge på den kombinerede testprocedure (med to cyklusser);

resultaterne af igangværende forskning i partiklers egenskaber bør tages i betragtning, når der udarbejdes fællesskabslovgivning om emissioner fra motorkøretøjer;

Kommissionen bør senest den 31. december 1999 aflægge rapport om udviklingen inden for emissionsbegrænsende udstyr til tunge dieselkøretøjer og sammenhængen med brændstofkvaliteten; Kommissionen bør også aflægge rapport om udviklingen inden for specifikke miljøvenlige emissionsgrænseværdier for motorer, der som brændstof benytter f.eks. flydende gas (LPG) og naturgas (NG);

emissionsgrænseværdierne for 2005 og den tilhørende testprocedure bør bekræftes ved et direktiv fra Europa-Parlamentet og Rådet, som bygger på et forslag, som Kommissionen fremsætter senest 31. december 1999;

direktiv 88/77/EØF bør følgelig ændres -

UDSTEDT FØLGENDE DIREKTIV:

Artikel 1

I direktiv 88/77/EØF foretages følgende ændringer:

1) Titlen affattes således:

»Rådets direktiv 88/77/EØF af 3. december 1987 om foranstaltninger mod emission af forurenende luftarter og partikler fra dieselmotorer til fremdrift af køretøjer og emission af forurenende luftarter fra køretøjsmotorer med styret tænding, som benytter naturgas eller flydende gas som brændstof«.

2) Artikel 1 affattes således:

»Artikel 1

I dette direktiv forstås ved:

- »køretøj«, et køretøj som defineret i bilag II, del A, til direktiv 70/156/EØF, som drives af en diesel- eller gasmotor, dog ikke køretøjer i klasse M1

- »diesel- eller gasmotor«, den fremdrivningsenhed til et køretøj, som kan typegodkendes som separat teknisk enhed som defineret i artikel 2 i direktiv 70/156/EØF«.

3) Bilagene affattes som angivet i bilaget til nærværende direktiv.

Artikel 2

1) Fra den 1. oktober 1999 kan medlemsstaterne ikke af grunde, der vedrører motorens emission af forurenende luftarter og partikler eller udstødningens røgtæthed:

- nægte EF-typegodkendelse, udstedelse af det dokument, der er omhandlet i artikel 10 i direktiv 70/156/EØF, som ændret ved direktiv 87/403/EØF (12), eller national typegodkendelse af en type køretøj, der drives af en diesel- eller gasmotor, eller

- forbyde registrering, salg, ibrugtagning eller anvendelse af sådanne fabriksnye køretøjer, eller

- nægte EF-typegodkendelse eller national typegodkendelse af en diesel- eller gasmotortype, eller

- forbyde salg eller anvendelse af fabriksnye diesel- eller gasmotorer

hvis de relevante krav i bilagene til direktiv 88/77/EØF som ændret ved nærværende direktiv er opfyldt.

2) Fra den 1. oktober 2000:

- kan medlemsstaterne ikke meddele EF-typegodkendelse eller udstede det dokument, der er omhandlet i artikel 10 i direktiv 70/156/EØF, som ændret ved direktiv 87/403/EØF

- skal medlemsstaterne nægte national typegodkendelse

af en type diesel- eller gasmotor og af en type køretøj, der drives af en diesel- eller gasmotor, hvis motorens emission af forurenende luftarter og partikler og udstødningens røgtæthed ikke ligger inden for grænseværdierne i tabellerne i punkt 6.2.1 i bilag I til direktiv 88/77/EØF som ændret ved dette direktiv.

3) Fra den 1. oktober 2001 skal medlemsstaterne:

- anse typeattester, der ledsager fabriksnye køretøjer eller fabriksnye motorer som omhandlet i direktiv 70/156/EØF, for ugyldige til det i samme direktivs artikel 7, stk. 1, nævnte formål

- nægte registrering, salg, ibrugtagning og anvendelse af fabriksnye køretøjer, der drives af en diesel- eller gasmotor, og salg og ibrugtagning af fabriksnye diesel- og gasmotorer

hvis motorens emission af forurenende luftarter og partikler og udstødningens røgtæthed ikke ligger inden for grænseværdierne i tabellerne i punkt 6.2.1 i bilag I til direktiv 88/77/EØF som ændret ved dette direktiv.

Artikel 3

Medlemsstaterne kan kun indrømme afgiftsbegunstigelser for motorkøretøjer, der opfylder bestemmelserne i direktiv 88/77/EØF som ændret ved nærværende direktiv. Afgiftsbegunstigelser skal opfylde såvel traktatens bestemmelser som følgende betingelser:

- De skal gælde for alle fabriksnye køretøjer, der udbydes til salg på markedet i medlemsstaten, og som tidligere end krævet opfylder de obligatoriske krav i række A i tabel 1 og 2 i punkt 6.2.1 i bilag I til direktiv 88/77/EØF som ændret ved nærværende direktiv.

- De skal ophøre fra det tidspunkt, hvor emissionskravene i artikel 2, stk. 3, bliver obligatoriske for fabriksnye køretøjer.

- For hver type motorkøretøj skal de beløbsmæssigt være lavere end ekstraomkostningerne til det tekniske udstyr til overholdelse af værdierne i artikel 2, stk. 3, og monteringen heraf i køretøjet.

Kommissionen skal underrettes om planer om indførelse eller ændring af afgiftsbegunstigelserne i første afsnit i så god tid, at den kan fremsætte sine bemærkninger dertil.

Artikel 4

Senest 12 måneder efter nærværende direktivs ikrafttræden, dog senest 31. december 1999, forelægger Kommissionen et forslag om yderligere stramning af emissionskravene til de køretøjer og motorer, der er omfattet af direktivet, for Europa-Parlamentet og Rådet.

I forslaget skal følgende indgå:

- revisionsprogrammet i artikel 3 i direktiv . . . og artikel 9 i direktiv . . . .

- udviklingen inden for emissionsbegrænsende teknologi til diesel- og gasmotorer, herunder dens sammenhæng med brændstofkvaliteten

- udarbejdelse af en testcyklus for typegodkendelsesprøvning, som er harmoniseret på verdensplan

- egendiagnosesystemer (OBD) til højtydende motorer

- relevante holdbarhedsbestemmelser.

Forslaget skal tilstræbe en betydelig nedsættelse af forurenende emissioner fra de køretøjer og motorer, der er omfattet af direktivet. De lavere grænseværdier gælder tidligst fra 1. oktober 2005 for nye typegodkendelser.

Artikel 5

1) Medlemsstaterne sætter de nødvendige love og administrative bestemmelser i kraft for at efterkomme dette direktiv senest 1. januar 1999. De underretter straks Kommissionen herom.

Når medlemsstaterne vedtager disse love og administrative bestemmelser, skal de indeholde en henvisning til dette direktiv, eller de skal ved offentliggørelsen ledsages af en sådan henvisning. De nærmere regler for denne henvisning fastsættes af medlemsstaterne.

2. Medlemsstaterne meddeler Kommissionen teksten til de vigtigste nationale retsforskrifter, som de udsteder på det område, der er omfattet af dette direktiv.

Artikel 6

Dette direktiv træder i kraft på tyvendedagen efter offentliggørelsen i De Europæiske Fællesskabers Tidende.

Artikel 7

Dette direktiv er rettet til medlemsstaterne.

(1) EFT C 112 af 20.12.1973, s. 1.

(2) EFT C 138 af 17.5.1993, s. 1.

(3) EFT L 36 af 9.2.1988, s. 33.

(4) EFT L 40 af 17.2.1996, s. 1.

(5) EFT L 295 af 25.10.1991, s. 1.

(6) EFT L 100 af 19.4.1994, s. 42.

(7) KOM(96) 248 endelig udg. af 18.6.1996.

(8) EFT L 42 af 23.2.1970, s. 1.

(9) EFT L 233 af 2.5.1997, s. 1.

(10) EFT L 190 af 20.8.1972, s. 1.

(11) EFT L 125 af 16.5.1997, s. 21.

(12) EFT L 220 af 8.8.1987, s. 44.

BILAG I

OMRÅDE, DEFINITIONER OG FORKORTELSER, ANSØGNING OM EF-TYPEGODKENDELSE, SPECIFIKATIONER, PRØVNING OG PRODUKTIONENS OVERENSSTEMMELSE

1. OMRÅDE

Dette direktiv finder anvendelse på forurenende luftarter og partikler fra alle motorkøretøjer, som er udstyret med motor med kompressionstænding, på forurenende luftarter fra alle motorer, som har styret tænding og anvender naturgas eller LPG som brændstof, samt på de i artikel 1 beskrevne motorer med kompressionstænding og styret tænding, bortset fra de køretøjer af klasse N1, N2 og M2, for hvilke der er meddelt typegodkendelse i henhold til direktiv 70/220/EØF (1), senest ændret ved direktiv 96/44/EF (2).

2. DEFINITIONER OG FORKORTELSER

I dette direktiv forstås ved:

2.1. testcyklus, en sekvens af testpunkter, der hver er karakteriseret ved en bestemt hastighed og et bestemt drejningsmoment, som motoren skal overholde henholdsvis i stationær funktionsmåde (ESC-test) og i ikke-stationær funktionsmåde (ETC- og ELR-test);

2.2. godkendelse af en motor (motorfamilie), godkendelse af en motor (motortype) hvad angår størrelsen af emissionen af forurenende luftarter og partikler;

2.3. dieselmotor, en motor, som fungerer efter kompressionstændingsprincippet;

gasmotor, en motor, som anvender naturgas eller LPG som brændstof;

2.4. motortype, en kategori af motorer, som ikke afviger indbyrdes med hensyn til de væsentlige motorspecifikationer, der er beskrevet i bilag II til dette direktiv;

2.5. motorfamilie, en af fabrikanten foretaget gruppering af motorer, som gennem deres konstruktion, således som den er defineret i bilag II, tillæg 2 til dette direktiv, forventes at have ensartede egenskaber hvad angår emissioner fra udstødningen; alle medlemmer af motorfamilien skal opfylde de pågældende emissionsgrænseværdier;

2.6. stammotor, en motor, der er udvalgt af en motorfamilie på en sådan måde, at dens emissionsegenskaber er repræsentative for den pågældende motorfamilie;

2.7. forurenende luftarter, carbonmonoxid, cabonhydrider (for hvilke der antages et kul:brint forhold svarende til bruttoformlen C1H1,85 for diesel, CH2,525 for LPG og CH2,93 for NG (NMHC)), methan (idet der antages et kul:brint forhold på CH4 for NG) og nitrogenoxider, idet sidstnævnte udtrykkes som nitrogendioxidækvivalenter (NO2);

forurenende partikler, materiale, der er indsamlet på et nærmere angivet filtermateriale efter fortynding af udstødningsgassen med ren, filtreret luft, således at temperaturen ikke er over 325 K (52 °C);

2.8. røg, partikler, som føres med i udstødningsstrømmen fra en dieselmotor, og som absorberer, reflekterer eller bryder lys;

2.9. nettoeffekt, effekten i kW EF målt i prøvebænk på enden af krumtapakslen eller hvad der svarer til denne, i henhold til EF-metoden for måling af effekten af forbrændingsmotorer til køretøjer som fastlagt i direktiv 80/1269/EØF (3), senest ændret ved direktiv 89/491/EØF (4);

2.10. angiven maksimaleffekt (Pmax), den maksimale effekt i kW EF (nettoeffekt), som angivet af fabrikanten i ansøgningen om typegodkendelse;

2.11. % belastning, den brøkdel af det maksimale drejningsmoment, der er til rådighed ved en given motorhastighed;

2.12. ESC-test, en testcyklus bestående af 13 stationære testforløb, der skal gennemløbes i henhold til punkt 6.2 i dette bilag;

2.13. ELR-test, en testcyklus bestående af en sekvens af belastningstrin med konstant motorhastighed, der skal gennemløbes i henhold til punkt 6.2 i dette bilag;

2.14. ETC-test, en testcyklus bestående af 1 800 ikke-stationære sekvenser, som sekund for sekund går over i hinanden og gennemløbes i henhold til punkt 6.2 i dette bilag;

2.15. motorens arbejdshastighedsområde, det motorhastighedsområde, der er det oftest anvendte mellem lav og høj hastighed som fastlagt i bilag III til dette direktiv;

2.16. lav hastighed (nlo), den laveste motorhastighed, hvor motoren yder 50 % af den angivne maksimaleffekt;

2.17. høj hastighed (nhi), den højeste motorhastighed, hvor motoren yder 70 % af den angivne maksimaleffekt;

2.18. motorhastighed A, B og C, de testhastigheder i motorens arbejdshastighedsområde, som skal anvendes til ESC-test og ELR-test som fastlagt i bilag III, tillæg 1 til dette direktiv;

2.19. kontrolområde, området med motorhastighed mellem A og C og belastning mellem 25 og 100 procent;

2.20. referencehastighed (nref), den 100 procents hastighedsværdi, som anvendes til denormalisering af de relative hastighedsværdier i ETC-testen som angivet i bilag III, tillæg 2 til dette direktiv;

2.21. opacimeter, et instrument, der er konstrueret til at måle røgpartiklers røgtæthed (opacitet) ved lysekstinktionsprincippet;

2.22. naturgasområde, et af områderne H eller L som defineret i Europæisk standard EN 437, dateret november 1993;

2.23. selvtilpasningsevne, en motors evne til at holde luft/brændstofforholdet konstant;

2.24. rekalibrering, en finjustering af en naturgasdrevet motor med det formål at give den samme præstationer (effekt, brændstofforbrug) i et andet naturgasområde;

2.25. Wobbe-indeks (nedre Wl, eller øvre Wu), forholdet mellem den ækvivalente brændværdi af en gas pr. enhedsvolumen og kvadratroden af dens relative massefylde ved samme referencebetingelser:

W = Hgas × √ñair/ñ gas

2.26. ë-forskydningsfaktor (Së), et udtryk, som beskriver motorstyringssystemets nødvendige fleksibilitet med hensyn til en ændring af luftoverskudskoefficienten ë, hvis motoren drives med en gas af anden sammensætning end ren methan (vedrørende beregningen af Së, se bilag VII).

Figur 1 Detaljeret beskrivelse af testcykluserne

>REFERENCE TIL EN GRAFIK>

2.27. Symboler og forkortelser

2.27.1. >TABELPOSITION>

2.27.2. >TABELPOSITION>

2.27.3. >TABELPOSITION>

3. ANSØGNING OM EF-TYPEGODKENDELSE

3.1. Ansøgning om EF-typegodkendelse af en motortype eller motorfamilie som separat teknisk enhed

3.1.1. Ansøgning om godkendelse af en motortype eller motorfamilie, hvad angår emissionen af forurenende luftarter og partikler for dieselmotorer og hvad angår emissionen af forurenende luftarter for gasmotorer, skal indgives af motorens fabrikant eller af en godkendt repræsentant.

3.1.2. Ansøgningen skal indgives sammen med følgende dokumenter, der vedlægges i tre eksemplarer, og skal indeholde følgende oplysninger:

3.1.2.1. en beskrivelse af motortypen eller, i givet fald, af motorfamilien, med angivelse af alle de i bilag II til dette direktiv anførte oplysninger, som er i overensstemmelse med kravene i artikel 9a i direktiv 70/156/EØF.

3.1.3. En motor, som er i overensstemmelse med specifikationerne for den i bilag II beskrevne »motortype« eller »stammotor«, skal stilles til rådighed for den tekniske tjeneste, der er ansvarlig for de i punkt 6 beskrevne tests.

3.2. Ansøgning om EF-typegodkendelse af en køretøjstype med hensyn til dennes motor

3.2.1. Ansøgning om godkendelse af et køretøj hvad angår emissionen af forurenende luftarter og partikler for dieselmotorer og hvad angår emissionen af forurenende luftarter for gasmotorer, indgives af køretøjets fabrikant eller en godkendt repræsentant.

3.2.2. Ansøgningen ledsages af nedennævnte dokumenter i tre eksemplarer og af følgende oplysninger:

3.2.2.1. en beskrivelse af køretøjstypen og af motorrelaterede køretøjsdele samt, i givet fald, af motortypen eller motorfamilien, med angivelse af de i bilag II til dette direktiv anførte oplysninger, samt den krævede dokumentation i henhold til artikel 3 i direktiv 70/156/EØF.

3.3. Ansøgning om EF-typegodkendelse af en køretøjstype med en godkendt motor

3.3.1. Ansøgning om godkendelse af et køretøj hvad angår emissionen af forurenende luftarter og partikler fra køretøjets godkendte dieselmotor eller -motorfamilie og hvad angår emissionen af forurenende luftarter fra køretøjets godkendte gasmotor eller -motorfamilie skal indgives af køretøjets fabrikant eller en godkendt repræsentant.

3.3.2. Ansøgningen skal indgives sammen med følgende dokumenter, der vedlægges i tre eksemplarer, og skal indeholde følgende oplysninger:

3.3.2.1. en beskrivelse af køretøjstypen og af motorrelaterede køretøjsdele, med angivelse af alle oplysninger anført i bilag II til dette direktiv, for så vidt de er relevante, og en kopi af attesten for EF-typegodkendelsesattesten som separat teknisk enhed (bilag VI) for den motor eller motorfamilie, som er monteret i køretøjstypen, samt den krævede dokumentation i henhold til artikel 3 i direktiv 70/156/EØF.

4. EF-TYPEGODKENDELSE

4.1. Meddelelse af brændstofuafhængig EF-typegodkendelse

Brændstofuafhængig EF-typegodkendelse meddeles under følgende forudsætninger:

4.1.1. For dieselbrændstof opfylder stammotoren kravene i dette direktiv vedrørende det i bilag IV angivne referencebrændstof.

4.1.2. For naturgas skal stammotorens evne til at tilpasse sig til enhver brændstofsammensætning, som kan optræde på markedet, være godtgjort. For naturgas er der sædvanligvis to typer brændstof med henholdsvis høj brændværdi (H-gas) og lav brændværdi (L-gas), men med betydelig spredning inden for begge områder; de afviger betydeligt i deres energiindhold, udtrykt ved Wobbe-indeks og ë-forskydningsfaktor (Së). Formler til beregning af Wobbe-indeks og Së) er givet i punkt 2.25. og 2.26. Referencebrændstoffets sammensætning afspejler variationerne i disse parametre.

Stammotoren skal opfylde kravene i dette direktiv vedrørende referencebrændstofferne G20 og G25 som foreskrevet i bilag IV, uden at der foretages rejustering af brændstofsystemet mellem de to tests. Dog tillades én tilpasningskørsel gennem én ETC-cyklus uden måling efter skift af brændstof. Før testning skal motoren tilkøres efter den procedure, som er givet i punkt 3. af tillæg 2 til bilag III.

4.1.3. For motorer, som drives af naturgas og er selvtilpassende dels til H-gasområdet, dels til L-gasområdet, og som kan omstilles mellem H-området og L-området ved hjælp af en kontakt, skal stammotoren afprøves i begge omskifterens positioner på de to relevante referencebrændstoffer som foreskrevet i bilag IV for hvert område. Som brændstof anvendes G20 (brændstof 1) og G23 (brændstof 2) for H-gasområdet, G23 (brændstof 1) og G25 (brændstof 2) for L-gasområdet. Stammotoren skal i begge omskifterens positioner opfylde kravene i dette direktiv uden omstilling af brændstofsystemet mellem de to tests. Efter skift af brændstof tillades dog én tilpasningskørsel gennem én ETC-cyklus uden måling. Før testning skal stammotoren tilkøres efter den procedure, som er givet i punkt 3 af tillæg 2 til bilag III.

4.1.3.1. På fabrikantens begæring kan motoren afprøves på et tredje brændstof (brændstof 3), hvis ë-forskydningsfaktoren (Së) ligger mellem værdierne for brændstofferne G20 og G25, f.eks. når brændstof 3 er et brændstof af handelskvalitet. Resultaterne af denne test kan danne grundlag for vurderingen af produktionens overensstemmelse.

4.1.3.2. For hvert forurenende stof bestemmes emissionsforholder »r« som følger:

r = >NUM>emissionsresultat på referencebrændstof 2

>DEN>emissionsresultat på referencebrændstof 1

eller

ra = >NUM>emissionsresultat på referencebrændstof 2

>DEN>emissionsresultat på referencebrændstof 3

og,

rb = >NUM>emissionsresultat på referencebrændstof 1

>DEN>emissionsresultat på referencebrændstof 3

4.1.4. For LPG skal stammotorens evne til at tilpasse sig til enhver brændstofsammensætning, som man kan komme ud for på markedet, være godtgjort. For LPG forekommer variationer i C3/C4-sammensætningen. Disse variationer afspejler sig i referencebrændstofferne. Stammotoren skal opfylde emissionskravene på referencebrændstof A og B som foreskrevet i bilag IV, uden at der foretages rejustering af brændstofsystemet mellem de to tests. Dog tillades en tilpasningskørsel gennem én ETC-cyklus uden måling efter skift af brændstof. Før testning skal motoren tilkøres efter den procedure, som er givet i punkt 3 af tillæg 2 til bilag III.

4.1.4.1. For hvert forurenende stof bestemmes emissionsforholdet »r« som følger:

r = >NUM>emissionsresultat på referencebrændstof 2

>DEN>emissionsresultat på referencebrændstof 1

4.2. Meddelelse af en brændstofbegrænset EF-typegodkendelse

På det nuværende tekniske udviklingsstade er det endnu ikke muligt at gøre »leanburn« (magert forbrændende) naturgasmotorer selvtilpassende. Sådanne motorer har imidlertid fordele med hensyn til virkningsgrad og CO2-emission. En bruger, som har en garanteret forsyning med brændstof af ensartet sammensætning, kan satse på en »leanburn«-motor. En sådan motor kan tænkes at blive omfattet af en brændstofbegrænset godkendelse. Af hensyn til den internationale harmonisering er international godkendelse af en sådan motor ønskelig. Brændstofbegrænsede varianter skal da være identiske, bortset fra indholdet i databasen i brændstofsystemets elektroniske styreenhed samt de dele af brændstofsystemet (såsom indsprøjtningsdyser), som nødvendigvis må tilpasses efter brændstofgennemstrømningen.

Brændstofbegrænset EF-typegodkendelse vil være underkastet følgende krav:

4.2.1. Godkendelse hvad angår emissionen fra udstødningen, af en motor, som kører på naturgas og er indstillet til at køre på gas i enten H-området eller L-området.

Stammotoren afprøves på de to relevante referencebrændstoffer som foreskrevet i bilag VI for det pågældende område. Brændstofferne er G20 (brændstof 1) og G23 (brændstof 2) for H-gasområdet, G23 (brændstof 1) og G25 (brændstof 2) for L-gasområdet. Stammotoren skal opfylde emissionskravene uden omstilling af brændstofsystemet mellem de to tests. Efter skift af brændstof tillades dog én tilpasningskørsel gennem én ETC-cyklus uden måling. Før testning skal motoren tilkøres efter den procedure, som foreskrives i punkt 3 af tillæg 2 til bilag III.

4.2.1.1. På fabrikantens begæring kan motoren afprøves på et tredje brændstof (brændstof 3), såfremt ë-forskydningsfaktoren (Së) ligger mellem værdierne for brændstofferne G20 og G23, henholdsvis mellem G23 og G25, f.eks. når brændstof 3 er et brændstof af handelskvalitet. Resultaterne af denne test kan danne grundlag for vurderingen af produktionens overensstemmelse.

4.2.1.2. For hvert forurenende stof bestemmes emissionsforholdet »r« som følger:

r = >NUM>emissionsresultat på referencebrændstof 2

>DEN>emissionsresultat på referencebrændstof 1

eller

ra = >NUM>emissionsresultat på referencebrændstof 2

>DEN>emissionsresultat på referencebrændstof 3

og,

rb = >NUM>emissionsresultat på referencebrændstof 1

>DEN>emissionsresultat på referencebrændstof 3

4.2.1.3. Motoren skal ved levering til kunden være forsynet med en mærkat (se punkt 5.1.5), som angiver, hvilket gasområde motoren er godkendt til.

4.2.2. Godkendelse, hvad angår emissionen fra udstødningen, af en motor, som kører på naturgas eller LPG og er indstillet til at køre på brændstof af en bestemt sammensætning

4.2.2.1. Stammotoren skal opfylde emissionskravene på referencebrændstofferne G20 og G25 for naturgas hhv. referencebrændstofferne A og B for LPG som foreskrevet i bilag IV. Mellem testene er finindstilling af brændstofsystemet tilladt. Denne finindstilling består i rekalibrering af brændstofsystemets database uden ændring hverken af den grundlæggende reguleringsstrategi eller grundlæggende struktur af databasen. Eventuel nødvendig udskiftning af dele, som direkte vedrører brændstofgennemstrømningen (såsom indsprøjtningsdyser), er tilladt. Motoren skal yde samme effekt på begge brændstoffer.

4.2.2.2. Hvis fabrikanten ønsker det, kan motoren afprøves på referencebrændstofferne G20 og G23, hhv. G23 og G25, i hvilket tilfælde typegodkendelsen kun er gyldig for gasser i henholdsvis H-området og L-området.

4.2.2.3. Motoren skal ved leveringen til kunden være forsynet med en mærkat (se punkt 5.1.5.) med angivelse af den brændstofsammensætning, som motoren er kalibreret til.

4.3. Godkendelse af et medlem af en motorfamilie hvad angår emissioner fra udstødningen

4.3.1. Bortset fra det i punkt 4.3.2. omhandlede tilfælde skal godkendelsen af en stammotor uden yderligere prøvning udvides til at gælde alle medlemmer af motorfamilien, gældende for enhver brændstofsammensætning inden for det område, stammotoren er godkendt til (for de i punkt 4.2.2. beskrevne motorer) hhv. samme brændstofområde (for motorerne beskrevet enten i punkt 4.1. eller 4.2.), som stammotoren er godkendt til.

4.3.2. Sekundær testmotor

Såfremt den typegodkendende myndighed finder, at den indgivne ansøgning om typegodkendelse af en motor eller af et køretøj hvad angår motoren med hensyn til den valgte stammotor ikke fuldt ud repræsenterer den motorfamilie, som er defineret i bilag I, tillæg 1, kan den godkendende myndighed vælge en alternativ og om nødvendigt en ekstra referencetestmotor.

4.4. Typegodkendelsesattest

Der skal udstedes et certifikat i overensstemmelse med den i bilag VI foreskrevne model for godkendelserne omhandle i punkt 3.1., 3.2. og 3.3.

5. MÆRKNING AF MOTOR

5.1. En motor, der er godkendt som teknisk enhed, skal være forsynet med:

5.1.1. motorfabrikantens fabriks- eller handelsmærke;

5.1.2. fabrikantens handelsbeskrivelse;

5.1.3. EF-typegodkendelsesnummeret med foranstillede kendingsbogstaver på den stat, der har meddelt EF-typegodkendelse (5);

5.1.4. for NG-motorer, et af følgende mærker, der anbringes efter EF-typegodkendelsesnummeret:

- H for motorer, der er godkendt og kalibreret for gasser i H-serien;

- L for motorer, der er godkendt og kalibreret for gasser i L-serien;

- HL for motorer, der er godkendt og kalibreret for gasser i både H-serien og L-serien;

- Ht for motorer, som er godkendt og kalibreret for en bestemt gassammensætning i H-området af gasser og kan omstilles til en anden nærmere bestemt gas i H-området ved finjustering af motorens brændstofsystem;

- Lt for motorer, som er godkendt og kalibreret for en bestemt gassammensætning i L-området og kan omstilles til en anden nærmere bestemt gas i L-området ved finjustering af motorens brændstofsystem;

- HLt for motorer, som er godkendt og kalibreret for en bestemt gassammensætning i enten H- eller L-området og kan omstilles til en anden nærmere bestemt gas i enten H- eller L-området ved finjustering af motorens brændstofsystem.

5.1.5. Mærkning

For NG- og LPG-drevne motorer med brændstofbegrænset typegodkendelse finder følgende mærker anvendelse:

5.1.5.1. Indhold

Der skal gives følgende oplysninger:

I det i punkt 4.2.1.2. omhandlede tilfælde skal mærkets ordlyd være »MÅ KUN ANVENDES MED NATURGAS I H-OMRÅDET«. I givet fald erstattes »H« af »L«.

I det i punkt 4.2.2.3. omhandlede tilfælde skal mærkets ordlyd være »MÅ KUN ANVENDES MED NATURGAS AF SPECIFIKATION . . . . .« eller i givet fald »MÅ KUN ANVENDES MED LPG AF SPECIFIKATION . . . .«. Alle oplysninger i de(n) pågældende tabel(ler) i bilag VI skal gives med de enkeltbestanddele og grænser, som angives af motorens fabrikant.

Bogstaverne og tallene skal være mindst 4 mm høje.

5.1.5.2. Egenskaber

Mærkaterne skal være holdbare i hele motorens levetid. De skal være let læselige, og bogstaver og tal skal være uudslettelige. Deres fastgørelse skal være holdbar i hele motorens levetid, og de må ikke kunne fjernes uden at de ødelægges eller gøres ulæselige.

5.1.5.3. Anbringelse

Mærkaterne skal være fastgjort til en motordel, som er nødvendig for motorens normale funktion og sædvanligvis ikke kræver udskiftning i hele motorens levetid. Endvidere skal sådanne mærkater være anbragt således, at de er let læselige for en gennemsnitsbruger, efter at motoren er blevet forsynet med alt motorudstyr nødvendigt for motorens funktion.

5.2. Ved EF-typegodkendelse af en køretøjstype hvad angår dennes motor, skal de i punkt 5.1.5 foreskrevne mærker endvidere være anbragt tæt på brændstofpåfyldningsåbningen.

5.3. Ved EF-typegodkendelse af en køretøjstype med godkendt motor skal de i punkt 5.1.5. foreskrevne mærker endvidere være anbragt tæt på brændstofpåfyldningsåbningen.

6. FORSKRIFTER OG TESTS

6.1. I almindelighed

Alle dele, der kan have indflydelse på emissionen af forurenende luftarter og partikler, skal være udformet, konstrueret og anbragt på en sådan måde, at motoren under normale driftsforhold opfylder forskrifterne i dette direktiv.

6.2. Forskrifter vedrørende emission af forurenende luftarter, partikler og røg

Emissionerne bestemmes på grundlag af ESC- og ELR-tests for konventionelle dieselmotorer, herunder motorer udstyret med elektronisk brændstofindsprøjtning, udstødningsgasrecirkulation og/eller oxidationskatalysator. Dieselmotorer med avancerede systemer til efterbehandling af udstødningsgassen, herunder DENOX-katalysatorer og/eller partikelfilter, skal desuden underkastes ETC-test. For gasmotorer bestemmes emissionen af forurenende luftarter i ETC-testen, medens der ikke er noget krav om prøvning for partikelemission. Prøvningsmetoder for ESC- og ELR-test er beskrevet i bilag III, tillæg 1, medens prøvningsmetode for ETC-test er beskrevet i bilag III, tillæg 2 og 3.

Emissionerne af forurenende gasser, i givet fald partikler og røg fra den motor, der fremstilles til prøvning, måles ved de metoder, der er beskrevet i bilag III, tillæg 4. I bilag V beskrives de anbefalede analysesystemer for forurenende gasser, anbefalede partikelprøvetagningssystemer samt det anbefalede system til røgtæthedsmåling. For NG-drevne gasmotorer skal methanemissionen angives, men er ikke underkastet nogen grænse.

Andre systemer eller analysatorer kan godkendes af den tekniske tjeneste, hvis de findes at give ækvivalente resultater for den pågældende prøvningscyklus. Fastlæggelsen af systemernes ækvivalens skal ske på grundlag af en korrelationsundersøgelse af 7 par (eller flere) stikprøver af det betragtede system og et af referencesystemerne i dette direktiv. Til partikelemissioner anerkendes kun fuldstrømsfortyndingssystemet som referencesystem. Med »resultater« menes de specifikke emissionsværdier målt under testcyklusen. Korrelationsundersøgelsen, der udføres på samme laboratorium og prøvningscelle og på samme motor, bør fortrinsvis finde sted sideløbende. Som kriterium for ækvivalens anvendes ± 5 % overensstemmelse mellem gennemsnittene af stikprøveparrene. Med henblik på indførelse af et nyt system i direktivet baseres vurderingen af dets ækvivalens på beregninger af repeterbarhed og reproducerbarhed som beskrevet i ISO 5725.

6.2.1. Grænseværdier

Dieselmotorer

Den specifikke masse af carbonmonoxid, carbonhydrider, nitrogenoxider, partikler som bestemt ved ESC-prøven samt røgtæthed som bestemt ved ELR-prøven må ikke være over værdierne i tabel 1.

>TABELPOSITION>

Diesel- og gasmotorer

For dieselmotorer, som yderligere testes med ETC-test, samt særligt for gasmotorer, må den specifikke masse af carbonmonoxid, af carbonhydrider bortset fra methan, af methan (hvor dette er relevant), af nitrogenoxider og af partikler (hvor relevant) ikke overskride værdierne i tabel 2.

>TABELPOSITION>

6.2.2. Måling af carbonhydrider for diesel- og gasdrevne motorer

6.2.2.1. En fabrikant kan vælge at måle massen af carbonhydrider i ETC-testen i stedet for at måle massen af carbonhydrider bortset fra methan. I så tilfælde er grænsen for massen af carbonhydrider den samme som vist i tabel 2 for massen af carbonhydrider bortset fra methan.

6.2.3. Særlige krav til dieselmotorer

6.2.3.1. Den specifikke masse af kvælstofoxider, målt på tilfældige kontrolpunkter i kontrolområdet af ESC-testen, må højst være 10 % over værdierne beregnet ved interpolation mellem de tilstødende testforløb.

6.2.3.2. Røgtætheden ved den tilfældige testhastighed i ELR-prøven må højst være 20 procent over højeste værdier ved de to tilstødende testhastigheder, dog højst 5 % over grænseværdien.

7. MONTERING PÅ KØRETØJET

7.1. Motorens montering på køretøjet skal opfylde følgende specifikationer, sammenholdt med motorens typegodkendelse:

7.1.1. motorens indsugningsvakuum må ikke overstige det, der er angivet for den typegodkendte motor i bilag VI;

7.1.2. motorens udstødningsmodtryk må ikke være større end det, der er foreskrevet for den typegodkendte motor i bilag VI;

7.1.3. udstødningssystemets volumen må ikke afvige mere end 40 % fra det, der er foreskrevet for den typegodkendte motor i bilag VI;

7.1.4. den effekt, der optages af hjælpeudstyr til drift af motoren, må ikke være større end den, der er foreskrevet for den typegodkendte motor i bilag VI.

8. MOTORFAMILIE

8.1. Parametre, der er bestemmende for motorfamilien

Motorfamilien, således som den er bestemt af motorens fabrikant, kan defineres ved de grundlæggende specifikationer, der skal være fælles for motorerne i familien. I nogle tilfælde kan der være vekselvirkning mellem parametrene indbyrdes. Disse virkninger må ligeledes tages i betragtning, således at det sikres, at kun motorer med tilsvarende egenskaber med hensyn til emissioner fra udstødningen indgår i samme motorfamilie.

For at motorerne kan betragtes som tilhørende samme motorfamilie skal de have følgende grundlæggende parametre tilfælles:

8.1.1. Funktionsprincip

- totakts

- firtakts

8.1.2. Kølemiddel

- luft

- vand

- olie

8.1.3. Antal cylindre (kun for gasmotorer og motorer med efterbehandlingsanordning).

(Motorer med færre cylindre end stammotoren kan anses for hørende til samme motorfamilie, forudsat at brændstofsystemet doserer brændstofmængden til hver enkelt cylinder).

8.1.4. De enkelte cylindres slagvolumen:

- den samlede afvigelse mellem motorerne må ikke være over 15 %.

8.1.5. Luftindtag:

- naturlig indsugning

- trykladet.

8.1.6. Forbrændingskammerets type/konstruktion:

- forkammer

- hvirvelstrømskammer

- åbent kammer.

8.1.7. Ventiler og porte - arrangement, størrelse og antal:

- topstykke

- cylindervæg

- krumtaphus.

8.1.8. Brændstofindsprøjtningssystem (dieselmotorer):

- pumpe-ledning-indsprøjtningsdyse

- fødepumpe

- fordelerpumpe

- enkeltelement

- enhedsdyse.

8.1.9. Brændstofsystem (gasmotorer):

- blandeenhed

- gastilførsel (singlepoint, multipoint)

- væsketilførsel (singlepoint, multipoint).

8.1.10. Tændingssystem (gasmotorer).

8.1.11. Forskellige systemer:

- udstødningsrecirkulation

- vandindsprøjtning/emulsion

- luftindblæsning

- ladeluftkølesystem.

8.1.12. Efterbehandling af udstødningen:

- 3-vejskatalysator

- oxidationskatalysator

- reduktionskatalysator

- termisk reaktor

- partikelfilter.

8.2. Valg af stammotor

8.2.1. Dieselmotorer

Stammotoren til motorfamilien vælges primært efter kriteriet højeste brændstofforbrug pr. takt ved den angivne hastighed, som svarer til største drejningsmoment. Såfremt dette primære kriterium opfyldes af to eller flere motorer, vælges stammotoren efter det sekundære kriterium højeste brændstofforbrug pr. takt ved mærkehastigheden. Under visse omstændigheder kan de godkendende myndigheder afgøre, at motorfamiliens værst tænkelige forureningsgrad bedst kan karakteriseres ved afprøvning af endnu en motor. De godkendende myndigheder kan således udvælge endnu en motor til afprøvning, baseret på egenskaber, der tilsiger, at denne kan tænkes at have det højeste emissionsniveau blandt motorerne i den pågældende familie.

Såfremt nogle motorer i motorfamilien har andre variable egenskaber, der kan tænkes at være af betydning for emissionerne fra udstødningen, skal også disse egenskaber fastlægges og tages i betragtning ved valg af stammotor.

8.2.2. Gasmotorer

Stammotoren til familien skal vælges med største slagvolumen som det primære kriterium. Er to eller flere motorer fælles om at opfylde dette primære kriterium, skal stammotoren vælges efter følgende sekundære kriterier i nævnte rækkefølge:

- højeste brændstofforbrug pr. takt ved den hastighed, som svarer til den angivne mærkeeffekt;

- mest avancerede tændingsindstilling;

- laveste recirkulationsforhold for udstødningen;

- ingen luftpumpe eller laveste faktiske luftpumpeydelse.

Under visse omstændigheder kan de godkendende myndigheder afgøre, at den værst tænkelige emission i motorfamilien bedst kan karakteriseres ved at endnu en motor afprøves. De godkendende myndigheder kan således vælge endnu en motor til prøvning på grundlag af egenskaber, som tilsiger, at den kan have det højeste emissionsniveau inden for motorfamilien.

9. PRODUKTIONENS OVERENSSTEMMELSE

9.1. Der skal træffes foranstaltninger til sikring af produktionens overensstemmelse i henhold til direktiv 70/156/EØF, artikel 10. Produktionens overensstemmelse kontrolleres på grundlag af beskrivelsen i typegodkendelsesattesterne opstillet i bilag VI til dette direktiv.

Finder myndighederne producentens revisionsprocedure utilfredsstillende, finder bestemmelserne i direktiv 70/156/EØF, bilag X, punkt 2.4.2. og 2.4.3. anvendelse.

9.1.1. Hvis der skal foretages måling af emissionen af forurenende stoffer, og motorens typegodkendelse har været genstand for en eller flere udvidelser, skal prøvningen ske på de(n) motor(er), som er beskrevet i informationspakken svarende til den pågældende udvidelse.

9.1.1.1. Overensstemmelse af en motor, som underkastes forureningsprøvning:

Efter at ansøgning vedrørende motoren er indgivet til myndighederne må fabrikanten ikke foretage nogen justering af de udvalgte motorer.

9.1.1.1.1. Tre motorer udtages af serien på tilfældig måde og underkastes prøven omhandlet i punkt 6.2. Grænseværdierne er angivet i punkt 6.2.1. i dette bilag.

9.1.1.1.2. Prøverne udføres i henhold til tillæg 1 til dette bilag, når den ansvarlige myndighed er tilfreds med den af fabrikanten oplyste standardafvigelse i produktionen, i overensstemmelse med bilag X til direktiv 70/156/EØF, som finder anvendelse på motordrevne køretøjer og påhængskøretøjer dertil.

Prøverne udføres i henhold til tillæg 2 til dette bilag, når den ansvarlige myndighed ikke er tilfreds med den af fabrikanten oplyste standardafvigelse i produktionen, i overensstemmelse med bilag X til direktiv 70/156/EØF, som finder anvendelse på motordrevne køretøjer og påhængskøretøjer dertil.

På fabrikantens begæring kan prøverne udføres i henhold til tillæg 3 til dette bilag.

9.1.1.1.3. På grundlag af test af motoren ved stikprøvetagning anses produktionen af en serie at være overensstemmende, når der er nået afgørelsen godkendt for alle de forurenende stoffer, og for uoverensstemmende, når der er nået afgørelsen forkastet for ét forurenende stof, i henhold til de testkriterier, der finder anvendelse i det pågældende tillæg.

Når afgørelsen godkendt er nået for ét forurenende stof, må denne afgørelse ikke ændres ved nogen supplerende prøve, som udføres med henblik på en afgørelse for de øvrige forurenende stoffers vedkommende.

Hvis der ikke nås afgørelsen godkendt for samtlige forurenende stoffer, og der ikke foreligger nogen afgørelse om uoverensstemmelse for ét forurenende stof, foretages test af endnu en motor (se fig. 2).

Nås ingen afgørelse, kan fabrikanten til hver en tid beslutte at standse afprøvningen. I så tilfælde registreres dette som en afgørelse om ikke-beståelse.

9.1.1.2. Prøverne udføres på nyproducerede motorer. Gasdrevne motorer tilkøres efter proceduren foreskrevet i punkt 3. af tillæg 2 til bilag III.

9.1.1.2.1. På fabrikantens begæring kan prøverne dog udføres på diesel- eller gasmotorer, som er tilkørt længere end angivet i punkt 9.1.1.2., dog højst 100 timer. I dette tilfælde foretages tilkørslen af fabrikanten, som forpligter sig til ikke at foretage nogen justering af disse motorer.

9.1.1.2.2. Når fabrikanten anmoder om at foretage tilkørsel i overensstemmelse med punkt 9.1.1.2.1., kan dette ske på:

- alle de motorer, som afprøves,

eller

- den første afprøvede motor, idet der bestemmes en forskydningskoefficient på følgende måde:

- de forurenende emissioner måles ved nul og ved »x« timer på den først afprøvede motor,

- forskydningskoefficienten for emissionen i tidsrummet mellem nul og »x« timer beregnes for hvert forurenende stof:

>NUM>Emissioner ved »x« timer

>DEN>Emissioner ved nul timer

koefficienten kan være mindre end én.

De efterfølgende testmotorer underkastes ikke tilkørselsproceduren, men deres emissioner ved nul timer vil blive ændret med forskydningskoefficienten.

I dette tilfælde skal følgende værdier anvendes:

- værdierne ved »x« timer for den første motor,

- værdierne ved nul timer, ganget med forskydningskoefficienten, for de øvrige motorer.

9.1.1.2.3. For diesel- og LPG-drevne motorer kan alle disse prøver udføres med brændstof af handelskvalitet. På fabrikantens begæring kan dog anvendes det i bilag IV beskrevne referencebrændstof. Dette indebærer tests som beskrevet i punkt 4 i dette tillæg med mindst to af referencebrændstofferne for hver gasmotor.

9.1.1.2.4. For NG-drevne motorer kan alle disse tests foretages med brændstof af handelskvalitet på følgende måde:

- for H-mærkede motorer med brændstof inden for H-området;

- for L-mærkede motorer med brændstof inden for L-området;

- for HL-mærkede motorer med brændstof inden for H- eller L-området.

På fabrikantens begæring kan dog anvendes de i bilag IV beskrevne referencebrændstoffer. Dette indebærer tests som beskrevet i punkt 4. i dette tillæg med mindst to af referencebrændstofferne for hver gasmotor.

9.1.1.2.5. Ved eventuel tvist som følge af manglende overensstemmelse af gasdrevne motorer ved brug af brændstof af handelskvalitet skal prøvning udføres med et referencebrændstof, som stammotoren er blevet testet på, eller med det eventuelle supplerende brændstof 3, som er omhandlet i punkt 4.1.3.1. og 4.2.1.1., og som stammotoren kan have været afprøvet på. Resultatet skal derefter omregnes ved hjælp af de pågældende faktorer »r«, »ra« eller »rb« som beskrevet i punkt 4.1.3.2., 4.1.4.1. og 4.2.1.2. Hvis r, ra eller rb er mindre end én, skal der ikke foretages nogen korrektion. De målte resultater og de beregnede resultater skal godtgøre, at motoren overholder grænseværdierne med alle de pågældende brændstoffer (brændstof 1, 2 og, i givet fald, brændstof 3).

9.1.1.2.6. Test for produktionens overensstemmelse af en gasdrevet motor, som er udformet med henblik på at køre på ét brændstof af bestemt sammensætning, skal foretages på det brændstof, som motoren er kalibreret for.

Figur 2 Diagram over prøvning af produktionens overensstemmelse

>REFERENCE TIL EN GRAFIK>

Tillæg 1

FREMGANGSMÅDE VED KONTROL AF PRODUKTIONENS OVERENSSTEMMELSE NÅR STANDARDAFVIGELSEN ER TILFREDSSTILLENDE

1. I dette tillæg beskrives den fremgangsmåde, der skal anvendes til kontrol af produktionens overensstemmelse hvad angår emission af forurenende stoffer, når standardafvigelsen i fabrikantens produktion er tilfredsstillende.

2. Med en mindste stikprøvestørrelse på tre motorer indstilles prøvetagningsproceduren således, at sandsynligheden for, at en produktionsbatch holder prøven, når 40 % af motorerne er defekte, er 0,95 (producentens risiko = 5 %), medens sandsynligheden for, at en batch bliver godkendt med 65 % af motorerne defekte, er 0,10 (forbrugerens risiko = 10 %).)

3. Følgende procedure anvendes for hvert af de forurenende stoffer, der er angivet i punkt 6.2.1. i bilag I (se fig. 2):

Idet:

L = den naturlige logaritme til grænseværdien for det forurenende stof;

xi = den naturlige logaritme til måleværdien for den i'te motor i stikprøven;

s = et estimat for produktionens standardafvigelse (efter uddragelse af den naturlige logaritme til måleværdierne);

n = det aktuelle stikprøveantal.

4. For hver stikprøve beregnes summen af standardafvigelserne fra grænseværdien ved hjælp af følgende formel:

>START GRAFIK>

1

S

n Ói = 1(L xi)>SLUT GRAFIK>

5. Hvorefter:

- er det statistiske testresultat større end godkendelsesgrænsen for den pågældende stikprøvestørrelse angivet i tabel 3, er resultatet for det pågældende forurenende stof godkendt;

- hvis det statistiske testresultat er mindre end forkastelsesgrænsen for den pågældende stikprøvestørrelse angivet i tabel 3, er resultatet for det pågældende forurenende stof forkastet;

- ellers afprøves én yderligere motor i henhold til punkt 9.1.1.1. i bilag I, og beregningen foretages for den derved med én forøgede stikprøvestørrelse.

>TABELPOSITION>

Tillæg 2

FREMGANGSMÅDE VED KONTROL AF PRODUKTIONENS OVERENSSTEMMELSE NÅR STANDARDAFVIGELSEN ER UTILFREDSSTILLENDE ELLER IKKE FORELIGGER

1. I dette tillæg beskrives den fremgangsmåde, der skal anvendes til kontrol af produktionens overensstemmelse hvad angår emission af forurenende stoffer, når standardafvigelsen af fabrikantens produktion enten ikke er tilfredsstillende eller ikke foreligger.

2. Med en mindste stikprøvestørrelse på tre motorer indstilles prøvetagningsproceduren således, at sandsynligheden for, at en produktionsbatch holder prøven, når 40 % af motorerne er defekte, er 0,95 (producentens risiko = 5 %), medens sandsynligheden for, at en batch godkendes med 65 % af motorerne defekte, er 0,10 (forbrugerens risiko = 10 %).

3. Værdierne af de forurenende stoffer angivet i punkt 6.2.1. i bilag I regnes for at være logaritmisk normalfordelte og skal transformeres ved uddragelse af den naturlige logaritme til værdierne. Lad m0 og m være henholdsvis mindste og største stikprøvestørrelse (m0 = 3 og m = 32) og lad n være det aktuelle stikprøveantal.

4. Idet den naturlige logaritme til værdierne målt i serien er x1, x2, ..., xi og L er den naturlige logaritme til grænseværdien for det forurenende stof, defineres

di = xi - L

og

>START GRAFIK>

dn = 1 n Óni = 1di>SLUT GRAFIK>

>START GRAFIK>

Vn2 = 1 n Óni = 1(di d-n)2>SLUT GRAFIK>

5. Tabel 4 angiver værdierne af tallene svarende til afgørelsen godkendt (An) og forkastet (Bn) og de tilhørende aktuelle stikprøveantal. Det statistiske testresultat er forholdet >START GRAFIK>

dn>

SLUT GRAFIK>

/Vn, som benyttes til afgørelse af, om serien er godkendt eller ikke, på følgende måde:

For m0 ≤ n < m:

- serien godkendt, hvis >START GRAFIK>

dn>SLUT GRAFIK>

/Vn ≤ An

- serien forkastet, hvis >START GRAFIK>

dn>SLUT GRAFIK>

/Vn ≥ Bn

- foretag endnu en måling, hvis An < >START GRAFIK>

dn>SLUT GRAFIK>

/Vn < Bn.

6. Bemærkninger

Følgende rekursionsformel er nyttig til beregning af på hinanden følgende værdier af det statistiske testresultat:

>START GRAFIK>

dn = (1 - 1 n) dn - 1 + 1 n dn>SLUT GRAFIK>

>START GRAFIK>

Vn2 = (1 - 1 n) Vn - 12 + (dn - dn)2 n - 1>SLUT GRAFIK>

>START GRAFIK>

(n = 2, 3, ...; d1 = d1; V1 = 0)>SLUT GRAFIK>

>TABELPOSITION>

Tillæg 3 FREMGANGSMÅDE VED KONTROL AF PRODUKTIONENS OVERENSSTEMMELSE PÅ FABRIKANTENS BEGÆRING

1. I dette tillæg beskrives fremgangsmåden, når produktionens overensstemmelse på fabrikantens begæring kontrolleres hvad angår emission af forurenende stoffer.

2. Med en mindste stikprøvestørrelse på tre motorer indstilles prøvetagningsproceduren således, at sandsynligheden for, at en produktionsbatch holder prøven, når 30 % af motorerne er defekte, er 0,90 (producentens risiko = 10 %), medens sandsynligheden for, at en batch bliver godkendt med 65 % af motorerne defekte, er 0,10 (forbrugerens risiko = 10 %).

3. Følgende fremgangsmåde anvendes for hvert af de forurenende stoffer angivet i punkt 6.2.1.

Idet:

L er grænseværdien for det forurenende stof;

xi er måleværdien for den i'te motor i stikprøven;

n = det aktuelle stikprøveantal.

4. For den pågældende stikprøve beregnes det statistiske testresultat, der kvantificerer antallet af ikke overensstemmende motorer, dvs. xi > L:

5. Hvorefter:

- hvis det statistiske resultat er mindre end eller lig med godkendelsesgrænsen for den pågældende stikprøvestørrelse i tabel 5, nås afgørelsen godkendt for det pågældende forurenende stof;

- er det statistiske resultat større end eller lig med forkastelsesgrænsen for den pågældende stikprøvestørrelse angivet i tabel 5, nås afgørelsen forkastet for det pågældende stof;

- ellers afprøves én yderligere motor i henhold til punkt 9.1.1.1. i bilag I, og beregningen foretages for den derved med én forøgede stikprøvestørrelse.

I tabel 5 beregnes godkendelsesgrænse og forkastelsesgrænse efter ISO 8422/1991.

>TABELPOSITION>

(1) EFT L 76 af 6.4.1970, s. 1.

(2) EFT L 210 af 20.8.1996, s. 25.

(3) EFT L 375 af 31.12.1980, s. 46.

(4) EFT L 238 af 15.8.1989, s. 43.

(5) 1 = Tyskland, 2 = Frankrig, 3 = Italien, 4 = Nederlandene, 5 = Sverige, 6 = Belgien, 9 = Spanien, 11 = Det Forenede Kongerige, 12 = Østrig, 13 = Luxembourg, 16 = Norge, 17 = Finland, 18 = Danmark, 21 = Portugal, 23 = Grækenland, FL = Liechtenstein, IS = Island, IRL = Irland

BILAG II

>START GRAFIK>

OPLYSNINGSSKEMA NR. . . .

I HENHOLD TIL BILAG I AF RÅDETS DIREKTIV 70/156/EØF OM EF-TYPEGODKENDELSE

og om

foranstaltninger mod emission af forurenende luftarter og partikler fra dieselmotorer til fremdrift af køretøjer, og emission af forurenende luftarter fra motorer med styret tænding, drevet af naturgas eller LPG, til fremdrift af køretøjer

(Direktiv 88/77/EØF, senest ændret ved direktiv .../.../EF)

Køretøjstype / stammotor / motortype (1): .

0. ALMINDELIGE OPLYSNINGER

0.1. Fabriksmærke (firmabetegnelse): .

0.2. Type og handelsbetegnelse(r) (eventuelt noteres forskellige udførelser): .

0.3. Typeidentifikationsmærker som markeret på køretøjet: .

0.4. Køretøjets klasse (hvis relevant): .

0.5. Motorkategori: diesel / NG-drevet / LPG-drevet: .

0.6. Fabrikantens navn og adresse: .

0.7. Anbringelsessted for fabrikationsplader og påskrifter, samt fastgørelsesmåde: .

0.8. For komponenter og separate tekniske enheder, EF-godkendelsesmærkets anbringelsessted og fastgørelsesmåde: .

0.9. Adresse(r) på samlefabrik(ker) .

1. TILLÆG

1.1. Hovedspecifikationer for (stam)motoren og oplysninger om prøvningens udførelse.

1.2. Hovedspecifikationer for motorfamilien

1.3. Hovedspecifikationer for motortypen inden for familien

2. Specifikationer for motorrelaterede køretøjsdele (hvis relevant)

3. Fotografier og / eller tegninger af stammotoren / motortypen og, hvis relevant, af motorrummet.

4. Fortegnelse over eventuelle yderligere bilag.

Dato, journalnummer

(1) Det ikke gældende overstreges.>SLUT GRAFIK>

Tillæg 1

>START GRAFIK>

HOVEDSPECIFIKATIONER FOR (STAM)MOTOREN OG OPLYSNINGER OM PRØVNINGENS UDFØRELSE (1)

1. Beskrivelse af motoren

1.1. Fabrikant: .

1.2. Fabrikantens motorkode: .

1.3. Arbejdsmåde: firtakts/totakts (2)

1.4. Cylinderantal, cylinderarrangement: .

1.4.1. Boring: . mm

1.4.2. Slaglængde: . mm

1.4.3. Tændingsrækkefølge: .

1.5. Motorens slagvolumen: . cm³

1.6. Volumenkompressionsforhold (3): .

1.7. Tegning(er) af forbrændingskammer og stempeltop: .

1.8. Mindste tværsnitsareal af indsugnings- og udstødningsporte: . cm²

1.9. Tomgangshastighed: . min-1

1.10. Maksimal nettoeffekt: .kW ved . min-1

1.11. Maksimal tilladt motorhastighed: . min-1

1.12. Maksimalt nettodrejningsmoment: .Nm ved . min-1

1.13. Forbrændingssystem: kompressionstænding/styret tænding (2) .

1.14. Brændstof: Diesel/LPG/NG-H/NG-L/NG-HL (2)

1.15. Kølesystem

1.15.1. Væskekøling

1.15.1.1. Væskens art: .

1.15.1.2. Cirkulationspumpe(r): ja/nej (2)

1.15.1.3. Karakteristika eller fabrikat(er) og type(r) (hvis relevant): .

1.15.1.4. Udvekslingsforhold af drev (hvis relevant): .

1.15.2. Luftkøling

1.15.2.1. Blæser: ja/nej (2)

1.15.2.2. Karakteristika eller fabrikat(er) og type(r) (hvis relevant): .

1.15.2.3. Udvekslingsforhold af drev (hvis relevant): .

1.16. Tilladt temperatur ifølge fabrikanten

1.16.1. Væskekøling: maksimal temperatur ved fraløb: . K

1.16.2. Luftkøling: Referencepunkt: .

Maksimal temperatur ved referencepunkt: . K

(1) For ikke-konventionelle motorer og systemer skal oplysninger ækvivalente med de her givne fremlægges af fabrikanten.(2) Det ikke gældende overstreges.(3) Tolerance angives.1.16.3. Maksimal lufttemperatur ved afgang fra ladeluftkøler (i givet fald):

. K

1.16.4. Maksimal udstødningstemperatur i det punkt af udstødningsrøret (-rørene), der støder op til de(n) yderste flange(r) af udstødningsmanifold(er) eller turbolader(e):

. K

1.16.5. Brændstoftemperatur: minimum .K, maksimum . K

for dieselmotorer ved indsprøjtningspumpens indgang, for gasmotorer ved trykregulatorens sluttrin

1.16.6. Smøremiddeltemperatur: minimum .K, maksimum . kPa

1.17. Tryklader: ja/nej (1)

1.17.1. Fabrikat: .

1.17.2. Type: .

1.17.3. Beskrivelse af systemet (f.eks. maksimalt ladetryk, ladetrykventil, hvis relevant):

1.17.4. Ladeluftkøling: ja/nej (1)

1.18. Indsugningssystem

Største tilladte indsugningsvakuum ved mærkehastighed og 100 % belastning som angivet i direktiv 80/1269/EØF (2), senest ændret ved direktiv 89/491/EØF (3), og under de deri angivne driftsbetingelser . kPa

1.19. Udstødningssystem

Største tilladte udstødningsmodtryk ved mærkehastighed og ved 100 % belastning som angivet i direktiv 80/1269/EØF (2), senest ændret ved direktiv 89/491/EØF (3), og ved de deri angivne driftsbetingelser . kPa

Udstødningssystemets volumen: . cm³

2. Forureningsbegrænsende foranstaltninger

2.1. Anordning til recirkulation af krumtaphusgasser (beskrivelse og tegninger): .

2.2. Supplerende forureningsbegrænsende anordninger (hvis sådanne forefindes og ikke er omfattet af en anden rubrik): .

2.2.1. Katalysator: ja/nej (1)

2.2.1.1. Mærke(r): .

2.2.1.2. Type(r): .

2.2.1.3. Antal katalysatorer og katalysatorelementer: .

2.2.1.4. Katalysatorens (katalysatorernes) dimensioner, form og volumen: .

2.2.1.5. Katalytisk virkning: .

2.2.1.6. Samlet mængde ædelmetaller: .

(1) Det ikke gældende overstreges.(2) EFT nr. L 375 af 31.12.1980, s. 46.(3) EFT nr. L 238 af 15.8.1989, s. 43.2.2.1.7. Relativ koncentration: .

2.2.1.8. Bærer (struktur og materiale): .

2.2.1.9. Celletæthed: .

2.2.1.10. Katalysatorbeholdertype: .

2.2.1.11. Katalysatorens (katalysatorernes) placering (sted og referenceafstand i udstødningssystemet): .

2.2.2. Lambda-sonde: ja/nej (1)

2.2.2.1. Fabrikat(er): .

2.2.2.2. Type: .

2.2.2.3. Placering: .

2.2.3. Lufttilførsel: ja/nej (1)

2.2.3.1. Type (pulserende luft, luftpumpe, o. lign.): .

2.2.4. Recirkulation af udstødningsgas: ja/nej (1)

2.2.4.1. Karakteristika (flowhastighed osv.): .

2.2.5. Partikelfilter: ja/nej (1)

2.2.5.1. Partikelfilterets dimensioner, form og kapacitet: .

2.2.5.2. Partikelfilterets type og konstruktion: .

2.2.5.3. Placering (referenceafstand i udstødningssystemet) .

2.2.5.4. Regeneringsmetode eller -system, beskrivelse og/eller tegning: .

2.2.6. Andre systemer: ja/nej (1)

2.2.6.1. Beskrivelse og funktionsmåde: .

3. Brændstoftilførsel

3.1. Dieselmotorer

3.1.1. Fødepumpe

Tryk (2): .kPa eller karakteristikdiagram (2): .

3.1.2. Indsprøjtningssystem

3.1.2.1. Pumpe

3.1.2.1.1. Fabrikat(er): .

3.1.2.1.2. Type(r): .

3.1.2.1.3. Brændstoftilførsel (2): .......... mm³ pr. takt ved en motorhastighed på .......... o./min ved største indsprøjtningsmængde, eller karakteristikdiagram (1) (2): .

Anvendt metode: på motor/i prøvebænk (1).

Har motoren ladetrykregulering, angives karakteristisk brændstofmængde og ladetryk afhængigt af motorhastigheden.

3.1.2.1.4. Indsprøjtningsforstilling

3.1.2.1.4.1. Kurve over indsprøjtningsforstilling (2): .

3.1.2.1.4.2. Statisk indsprøjtningsindstilling: .

3.1.2.2. Indsprøjtningsrør

3.1.2.2.1. Længde: . mm

3.1.2.2.2. Indvendig diameter: . mm

3.1.2.3. Indsprøjtningsdyse(r)

(1) Det ikke gældende overstreges.(2) Tolerance angives.3.1.2.3.1. Fabrikat(er): .

3.1.2.3.2. Type(r): .

3.1.2.3.3. Åbningstryk: .kPa (2) eller karakteristikdiagram (1) (2): .

3.1.2.4. Regulator

3.1.2.4.1. Fabrikat(er): .

3.1.2.4.2. Type(r): .

3.1.2.4.3. Afskæringspunkt under fuld belastning: . o./min.

3.1.2.4.4. Største hastighed ubelastet: . o./min.

3.1.2.4.5. Tomgangshastighed: . o./min.

3.1.3. Koldstartsystem

3.1.3.1. Fabrikat(er): .

3.1.3.2. Type(r): .

3.1.3.3. Beskrivelse: .

3.1.3.4. Hjælpestartanordning

3.1.3.4.1. Fabrikat: .

3.1.3.4.2. Type: .

3.2. Gasdrevne motorer (3)

3.2.1. Brændstof: Naturgas/LPG (1)

3.2.2. Trykregulator(er) eller fordamper/trykregulator(er) (1)

3.2.2.1. Fabrikat(er): .

3.2.2.2. Type(r): .

3.2.2.3. Antal trykreduktionstrin: .

3.2.2.4. Tryk i sluttrinnet: minimum .kPa, maksimum . kPa

3.2.2.5. Antal hovedindstillingspunkter: .

3.2.2.6. Antal tomgangsindstillingspunkter: .

3.2.2.7. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.3. Brændstofsystem: blandeenhed/gastilførsel/væsketilførsel/direkte tilførsel (1)

3.2.3.1. Regulering af blandingen: .

3.2.3.2. Systembeskrivelse og/eller diagram og tegninger: .

3.2.3.3. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.4. Blandingsenhed

3.2.4.1. Nummer: .

3.2.4.2. Fabrikat(er): .

3.2.4.3. Type(r): .

3.2.4.4. Placering: .

3.2.4.5. Indstillingsmuligheder: .

(1) Det ikke gældende overstreges.(2) Tolerance angives.(3) For systemer med andet arrangement gives tilsvarende oplysninger (til punkt 3.2).3.2.4.6. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.5. Tilførsel i indsugningsmanifold

3.2.5.1. Tilførsel: single point/multipoint (1)

3.2.5.2. Tilførsel: kontinuert/tidsstyret simultan/tidsstyret sekventiel (1)

3.2.5.3. Tilførselsudstyr

3.2.5.3.1. Fabrikat(er): .

3.2.5.3.2. Typ(er): .

3.2.5.3.3. Indstillingsmuligheder: .

3.2.5.3.4. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.5.4. Fødepumpe (hvis relevant):

3.2.5.4.1. Fabrikat(er): .

3.2.5.4.2. Typ(er): .

3.2.5.4.3. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.5.5. Tilførselsdyser

3.2.5.5.1. Fabrikat(er): .

3.2.5.5.2. Typ(er): .

3.2.5.5.3. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.6. Direkte tilførsel

3.2.6.1. Tilførselspumpe/trykregulator (1)

3.2.6.1.1. Fabrikat(er): .

3.2.6.1.2. Typ(er): .

3.2.6.1.3. Indstilling: .

3.2.6.1.4. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.6.2. Tilførselsdyser

3.2.6.2.1. Fabrikat(er): .

3.2.6.2.2. Typ(er): .

3.2.6.2.3. Åbningstryk eller karakteristikdiagram (1) (2): .

3.2.6.2.4. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.7. Elektronisk styreenhed

3.2.7.1. Fabrikat(er): .

3.2.7.2. Typ(er): .

3.2.7.3. Indstillingsmuligheder: .

3.2.8. NG-brændstofspecifikt udstyr

3.2.8.1. Variant 1

(kun ved godkendelse af motorer til flere nærmere bestemte brændstofsammensætninger)

3.2.8.1.1. Brændstoffets sammensætning:

methan (CH4): basis: .......... mol % min.: .......... mol % maks: .......... mol %

ethan (C2H6): basis: .......... mol % min.: .......... mol % maks: .......... mol %

propan (C3H8): basis: .......... mol % min.: .......... mol % maks: .......... mol %

(1) Det ikke gældende overstreges.(2) Tolerance angives.butan (C4H10): basis: .......... mol % min.: .......... mol % maks: .......... mol %

C5/C5+: basis: .......... mol % min.: .......... mol % maks: .......... mol %

oxigen (O2): basis: .......... mol % min.: .......... mol % maks: .......... mol %

inaktive (N2, He mv.): basis: .......... mol % min.: .......... mol % maks: .......... mol %

3.2.8.1.2. Tilførselsdyse(r)

3.2.8.1.2.1. Fabrikat(er): .

3.2.8.1.2.2. Typ(er): .

3.2.8.1.3. Andre (i givet fald)

3.2.8.2. Variant 2

(kun ved godkendelse af flere nærmere bestemte brændstofsammensætninger)

4. Ventilindstilling

4.1. Største ventilløft, åbnings- og lukkevinkler angivet i forhold til dødpunkterne, eller tilsvarende data: .

4.2. Reference- og/eller indstillingsspillerum (1): .

5. Tændingssystem (kun motorer med gnisttænding)

5.1. Tændingssystemets type: fælles tændspole og tændrør/separat tændspole og tændrør/tændspole på tændrør/andet (angives) (1)

5.2. Tændingens styreenhed

5.2.1. Fabrikat(er): .

5.2.2. Typ(er): .

5.3. Tændingens forstillingskurve/forstillingsdiagram (1) (2): .

5.4. Tændingsindstilling (2): ................. grader før top ved en hastighed på . o./min.

og et absolut indsugningsmanifoldtryk på. kPa

5.5. Tændrør

5.5.1. Fabrikat(er): .

5.5.2. Typ(er): .

5.5.3. Gnistgab: . mm

5.6. Tændspole(r)

5.6.1. Fabrikat(er): .

5.6.2. Typ(er): .

6. Motordrevet udstyr

Ved indlevering til prøvning skal motoren være monteret med det hjælpeudstyr, der er nødvendigt til motorens funktion (f.eks. ventilator, vandpumpe mv.), som angivet i direktiv 80/1269/EØF (3) senest ændret ved direktiv 89/491/EØF (4) bilag I, punkt 5.1.1., og ved de deri angivne driftsbetingelser.

(1) Det ikke gældende overstreges.(2) Tolerance angives.(3) EFT nr. L 375 af 31.12.1980, s. 46.(4) EFT nr. L 238 af 15.8.1989, s. 43.6.1. Hjælpeudstyr, som skal være monteret ved prøven

Hvis montering af motorudstyret på prøvebænk ikke er mulig eller hensigtsmæssig, skal den af udstyret optagne effekt bestemmes og trækkes fra den målte motoreffekt i hele det område, der omfattes af testcyklusen (-cykluserne).

6.2. Hjælpeudstyr, som skal være afmonteret ved prøven

Hjælpeudstyr, som udelukkende er nødvendigt til køretøjets funktion (således luftkompressor, air condition anlæg mv.) skal afmonteres ved prøven. Er afmontering af hjælpeudstyret ikke mulig, skal den af udstyret optagne effekt bestemmes og lægges til den målte motoreffekt i hele det område, der omfattes af testcyklusen (-cykluserne).

7. Supplerende oplysninger om prøvningsbetingelserne

7.1. Anvendt smøremiddel

7.1.1. Fabrikat: .

7.1.2. Type: .

(Angiv olieprocent i blandingen, hvis brændstoffet iblandes smøremidlet): .

7.2. Eventuelt motordrevet udstyr Den af hjælpeudstyret optagne effekt behøver kun bestemmes:

- hvis hjælpeudstyr, som er nødvendigt for motorens funktion, ikke er monteret på motoren, og/eller

- hvis der på motoren er monteret hjælpeudstyr, som ikke er nødvendigt for motorens funktion.

7.2.1. Liste og angivelse af detaljer til identifikation: .

7.2.2. Optagen effekt ved forskellige angivne motorhastigheder:

UdstyrOptagen effekt ved forskellige motorhastighederTomgangLav motorhastighedHøj motorhastighedMotorhastighed A (1)Motorhastighed B (1)Motorhastighed C (1)Referencehastighed (2)P(a)

Hjælpeudstyr, som er nødvendigt for motorens funktion (trækkes fra den målte motoreffekt)

Se punkt 5.1.

P(b)

Hjælpeudstyr, som ikke er nødvendigt for motorens funktion (lægges til den målte motoreffekt)

Se afsnit 6.2.

(1) ESC-test.

(2) Kun ETC-test.

8. Motorydelse

8.1. Motorhastigheder (1)

Lav motorhastighed (nlo): . o./min.

Høj motorhastighed (nhi): . o./min.

ved ESC- og ELR-testcykluser

Tomgang: . o./min.

Hastighed A: . o./min.

Hastighed B: . o./min.

Hastighed C: . o./min.

ved ETC-testcyklus

Referencehastighed: . o./min.

8.2. Motoreffekt (målt efter bestemmelserne i direktiv 80/1269/EØF (2) senest ændret ved direktiv 89/491/EØF (3)] i kW

MotorhastighedTomgangHastighed A (1)Hastighed B (1)Hastighed C (1)Referencehastighed (2)P(m)

Effekt, målt i prøvebænk

P(a)

Effekt optaget af det hjælpeudstyr, som skal være monteret ved prøven (punkt 6.1.)

- hvis monteret

- hvis ikke monteret00000

P(b)

Effekt optaget af det hjælpeudstyr, som skal være afmonteret ved prøven (punkt 6.2.)

- hvis monteret

- hvis ikke monteret00000

P(n)

Motoreffekt, netto

= P(m) - P(a) + P(b)

(1) ESC-test.

(2) Kun ETC-test.

8.3. Dynamometerindstilling (kW)

Indstillingen af dynamometeret til ESC- og ELR-tests og til referencecyklusen i ETC-testen skal baseres på nettoeffekten P(n) omhandlet i punkt 8.2. Det anbefales, at motoren monteres i prøvestanden i nettotilstand. I så fald er P(m) og P(n) identiske. Hvis det er umuligt eller uhensigtsmæssigt at køre motoren ved nettobetingelser, skal dynamometerindstillingen korrigeres til nettotilstand ved hjælp af ovennævnte formel.

(1) Angiv tolerance, som skal være inden for ± 3 % af de af fabrikanten angivne værdier.(1) EFT nr. L 375 af 31.12.1980, s. 46.(2) EFT nr. L 238 af 15.8.1989, s. 43.8.3.1. ESC- og ELR-tests

Dynamometerindstillingen beregnes efter formlen i bilag III, tillæg 1, punkt 1.2.

Belastning, i %MotorhastighedTomgangHastighed AHastighed BHastighed C10-25-50-75-100-8.3.2. ETC-test

Finder afprøvning af motoren ikke sted under nettobetingelser, skal korrektionsformel til omregning af den effekt eller det arbejde under prøvningscyklusen, som er målt i henhold til bilag III, tillæg 2, punkt 2, til nettoeffekt eller nettoarbejde under cyklusen, forelægges af motorfabrikanten for hele arbejdsområdet i cyklusen, og skal være godkendt af den tekniske tjeneste.>SLUT GRAFIK>

Tillæg 2

>START GRAFIK>

HOVEDSPECIFIKATIONER FOR MOTORFAMILIEN

1. Fælles parametre

1.1. Funktionsprincip: .

1.2. Kølemiddel: .

1.3. Cylinderantal (1): .

1.4. De enkelte cylindres slagvolumen: .

1.5. Luftindtagstype: .

1.6. Forbrændingskammerets type/konstruktion: .

1.7. Ventiler og porte - arrangement, størrelse og antal: .

1.8. Brændstofsystem: .

1.9. Tændingssystem (gasmotorer): .

1.10. Forskelligt udstyr:

- ladeluftkølesystem (1): .

- udstødningsrecirculation (1): .

- vandinjektion/-emulsion (1): .

- luftindblæsning (1): .

1.11. Efterbehandling af udstødningsgassen (1): .

Bevis på identisk (eller, for stammotoren, laveste) systemkapacitet pr. afgiven brændstofmængde pr. takt i henhold til nummer (numre) i diagram: .

2. Fortegnelse over motorfamilien

2.1. Dieselmotorfamiliens betegnelse: .

2.1.1. Specifikation af motorerne i denne familie:

Stammotor

Motortype

Cylinderantal

Mærkehastighed (o./min.)

Afgiven brændstofmængde pr. takt (mm³)

Mærkenettoeffekt (kW)

Omdrejningstal ved maksimalt drejningsmoment o./min.

Afgiven brændstofmængde pr. takt (mm³)

Maksimalt drejningsmoment (Nm)

Laveste tomgangshastighed (o./min.)

Slagvolumen

(i % af stammotorens)

100

(1) Hvis et punkt ikke er relevant, angives dette med n.a.2.2. Gasmotorfamiliens betegnelse: .

2.2.1. Specifikation af motorerne i denne familie: .

Stammotor

Motortype

Cylinderantal

Mærkehastighed (o./min.)

Brændstofmængde pr. takt (mg)

Mærkenettoeffekt (kW)

Hastighed v. maksimalt drejningsmoment (o.min.)

Brændstofmængder pr. takt (mm³)

Maksimalt drejningsmoment (Nm)

Lav tomgangshastighed (o./min.)

Slagvolumen

(i % af stammotors)

100

Tændingsindstilling

Udstødningsrecirkulationsstrøm

Luftpumpe ja/nej

Faktisk luftpumpestrøm>SLUT GRAFIK>

Tillæg 3

>START GRAFIK>

HOVEDSPECIFIKATIONER FOR MOTORTYPEN I DEN PÅGÆLDENDE FAMILIE (1)

1. Beskrivelse af motoren

1.1. Fabrikant: .

1.2. Fabrikantens motorkode: .

1.3. Funktionsprincip: firtakts/totakts (2)

1.4. Cylinderantal, cylinderarrangement: .

1.4.1. Boring: . mm

1.4.2. Slaglængde: . mm

1.4.3. Tændingsrækkefølge: .

1.5. Motorens slagvolumen: . cm³

1.6. Volumenkompressionsforhold (3) .

1.7. Tegning(er) af forbrændingskammer og stempeltop: .

1.8. Mindste tværsnitsareal af indsugnings- og udstødningsporte: . cm²

1.9. Tomgangshastighed: . o./min.

1.10. Maksimal nettoeffekt: .kW ved . o./min.

1.11. Maksimal tilladt motorhastighed: . o./min.

1.12. Maksimalt nettodrejningsmoment: .Nm ved . o./min.

1.13. Forbrændingssystem: kompressionstænding/styret tænding (2) .

1.14. Brændstof: Diesel/LPG/NG-H/NG-L/NG-HL (2) .

1.15. Kølesystem

1.15.1. Væskekøling

1.15.1.1. Væskens art: .

1.15.1.2. Cirkulationspumpe(r) ja/nej (2)

1.15.1.3. Karakteristika eller fabrikat(er) og type(r) (hvis relevant): .

1.15.1.4. Udvekslingsforhold af drev (hvis relevant): .

1.15.2. Luftkøling

1.15.2.1. Blæser: ja/nej (2)

1.15.2.2. Karakteristika eller fabrikat(er) og type(r) (hvis relevant): .

1.15.2.3. Udvekslingsforhold af drev (hvis relevant): .

1.16. Tilladt temperatur ifølge fabrikanten

1.16.1. Væskekøling: maksimal temperatur ved fraløb: . K

1.16.2. Luftkøling: Referencepunkt: .

(1) Oplysningerne skal gives for hver motor i familien.(2) Det ikke gældende overstreges.(3) Tolerance angives.Maksimal temperatur ved referencepunkt: . K

1.16.3. Maksimal lufttemperatur ved afgang fra ladeluftkøler (hvis relevant):: . K

1.16.4. Maksimal temperatur af udstødningen ved det punkt af udstødningsrøret, som støder op til de(n) yderste flange(r) af udstødningsmanifold(er) eller turbolader(e): . K

1.16.5. Brændstoftemperatur: minimum .K, maksimum . Kfor dieselmotorer ved indsprøjtningspumpens indgang, for NG-drevne gasmotorer ved trykregulatorens sluttrin

1.16.6. Brændstoftryk: minimum .kPa, maksimum . kPa

ved trykregulatorens sluttrin, kun NG-drevne gasmotorer

1.16.7. Smøremiddeltemperatur: minimum .K, maksimum . K

1.17. Tryklader: ja/nej (1)

1.17.1. Fabrikat: .

1.17.2. Type: .

1.17.3. Beskrivelse af systemet (f.eks. maksimalt ladetryk, ladetrykventil, hvis relevant): .

1.17.4. Ladeluftkøling: ja/nej (1)

1.18. Indsugningssystem

Største tilladte indsugningsundertryk ved motorens mærkehastighed og ved 100 % belastning som angivet i direktiv 80/1269/EØF (2), senest ændret ved direktiv 89/491/EØF (3), og ved de deri angivne driftsbetingelser:

. kPa

1.19. Udstødningssystem

Største tilladte udstødningsmodtryk ved motorens mærkehastighed og ved 100 % belastning som angivet i direktiv 80/1269/EØF (2), senest ændret ved direktiv 89/491/EØF (3) og ved de deri angivne driftsbetingelser:

. kPa

Udstødningssystemets volumen: . cm³

2. Forureningsbegrænsende foranstaltninger

2.1. Anordning til recirkulation af krumtaphusgasser (beskrivelse og tegninger): .

2.2. Supplerende forureningsbegrænsende anordninger (hvis sådanne forefindes og ikke er omfattet af en anden rubrik):

2.2.1. Katalysator: ja/nej (1)

2.2.1.1. Antal katalysatorer og katalysatorelementer:: .

2.2.1.2. Katalysatorens (katalysatorernes) dimensioner, form og volumen: .

2.2.1.3. Katalytisk virkning: .

2.2.1.4. Samlet mængde ædelmetaller: .

2.2.1.5. Relativ koncentration: .

2.2.1.6. Bærer (struktur og materiale): .

2.2.1.7. Celletæthed: .

(1) Det ikke gældende overstreges.(2) EFT L 375 af 31.12.1980, s. 46.(3) EFT L 238 af 15.8.1989, s. 43.2.2.1.8. Katalysatorbeholdertype: .

2.2.1.9. Katalysatorens (katalysatorernes) placering (sted og referenceafstand i udstødningssystemet): .

2.2.2. Lambda-sonde: ja/nej (1)

2.2.2.1. Type: .

2.2.3. Lufttilførsel: ja/nej (1)

2.2.3.1. Type (pulserende luft, luftpumpe, mv.): .

2.2.4. Recirkulation af udstødningsgas: ja/nej (1)

2.2.4.1. Karakteristika (flowhastighed osv.): .

2.2.5. Partikelfilter: ja/nej (1)

2.2.5.1. Partikelfilterets dimensioner, form og kapacitet: .

2.2.5.2. Partikelfilterets type og konstruktion: .

2.2.5.3. Placering (referenceafstand i udstødningssystemet): .

2.2.5.4. Regeneringsmetode eller -system, beskrivelse og/eller tegning: .

2.2.6. Andre systemer: ja/nej (1)

2.2.6.1. Beskrivelse og funktionsmåde: .

3. Brændstoftilførsel

3.1. Dieselmotorer

3.1.1. Fødepumpe

Tryk (2): . kPa, eller karakteristikdiagram (2): .

3.1.2. Indsprøjtningssystem

3.1.2.1. Pumpe

3.1.2.1.1. Fabrikat(er): .

3.1.2.1.2. Type(r): .

3.1.2.1.3. Brændstoftilførsel (2): ...... mm³ pr. takt ved en motorhastighed på ...... o./min. ved største indsprøjtningsmængde, eller karakteristikdiagram (1) (2): .

Anvendt metode: på motor/i prøvebænk (1)

Har motoren ladetrykregulering, angives karakteristisk brændstofmængde og ladetryk afhængigt af motorhastigheden.

3.1.2.1.4. Indsprøjtningsforstilling: .

3.1.2.1.4.1. Kurve over indsprøjtningsforstilling (2): .

3.1.2.1.4.2. Statisk indsprøjtningsforstilling (2): .

3.1.2.2. Indsprøjtningsrør

3.1.2.2.1. Længde: . mm

3.1.2.2.2. Indvendig diameter: . mm

3.1.2.3. Indsprøjtningsdyse(r)

3.1.2.3.1. Fabrikat(er): .

3.1.2.3.2. Type(r): .

3.1.2.3.3. Åbningstryk (2) . kPa, eller karakteristikdiagram (1) (2) .

(1) Det ikke gældende overstreges.(2) Tolerance angives.3.1.2.4. Regulator

3.1.2.4.1. Fabrikat(er): .

3.1.2.4.2. Type(r): .

3.1.2.4.3. Afskæringspunkt under fuld belastning: . o./min.

3.1.2.4.4. Største hastighed, ubelastet: . o./min.

3.1.2.4.5. Tomgangshastighed: . o./min.

3.1.3. Koldstartsystem

3.1.3.1. Fabrikat(er): .

3.1.3.2. Type(r): .

3.1.3.3. Beskrivelse: .

3.1.3.4. Hjælpestartanordning

3.1.3.4.1. Fabrikat: .

3.1.3.4.2. Type: .

3.2. Gasdrevne motorer (1): .

3.2.1. Brændstof: NG/LPG (2)

3.2.2. Trykregulator(er) eller fordamper/trykregulator(er) (2)

3.2.2.1. Fabrikat(er): .

3.2.2.1. Type(r): .

3.2.2.3. Antal trykreduktionstrin:: .

3.2.2.4. Tryk i sluttrinnet: minimum . kPa, maksimum . kPa

3.2.2.5. Antal hovedindstillingspunkter: .

3.2.2.6. Antal tomgangsindstillingspunkter: .

3.2.2.7. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.3. Brændstofsystem: blandeenhed/gastilførsel/væsketilførsel/direkte tilførsel (2)

3.2.3.1. Blandingsregulering: .

3.2.3.2. Systembeskrivelser og/eller diagram og tegninger: .

3.2.3.3. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.4. Blandeenhed

3.2.4.1. Nummer: .

3.2.4.2. Fabrikat(er): .

3.2.4.4. Type(r): .

3.2.4.4. Placering: .

3.2.4.5. Indstillingsmuligheder: .

3.2.4.6. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.5. Tilførsel til indsugningsmanifold

3.2.5.1. Tilførsel: single point/multipoint (2):

3.2.5.2. Tilførsel: kontinuert/tidsstyret simultan/tidsstyret sekventiel (2)

3.2.5.3. Tilførselsudstyr

(1) For systemer med andet arrangement gives tilsvarende oplysninger (til punkt 3.2).(2) Det ikke gældende overstreges.3.2.5.3.1. Fabrikat(er): .

3.2.5.3.2. Typ(er): .

3.2.5.3.3. Indstillingsmuligheder: .

3.2.5.3.4. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.5.4. Fødepumpe (hvis relevant)

3.2.5.4.1. Fabrikat(er): .

3.2.5.4.2. Typ(er): .

3.2.5.4.3. Attesteringsnummer i henhold til direktiv . . . /. . . /EF:

3.2.5.5. Tilførselsdyser

3.2.5.5.1. Fabrikat(er): .

3.2.5.5.2. Typ(er): .

3.2.5.5.3. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.6. Direkte tilførsel

3.2.6.1. Tilførselspumpe/trykregulator (1)

3.2.6.1.1. Fabrikat(er): .

3.2.6.1.2. Typ(er): .

3.2.6.1.3. Indstilling af tilførselstidspunkt: .

3.2.6.1.4. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.6.2. Tilførselsdyser

3.2.6.2.1. Fabrikat(er): .

3.2.6.2.2. Typ(er): .

3.2.6.2.3. Åbningstryk eller karakteristikdiagram (2) .

3.2.6.2.4. Attesteringsnummer i henhold til direktiv . . . /. . . /EF: .

3.2.7. Elektronisk styreenhed

3.2.7.1. Fabrikat(er): .

3.2.7.2. Typ(er): .

3.2.7.3. Indstillingsmuligheder: .

3.2.8. NG-brændstofspecifikt udstyr

3.2.8.1. Variant 1

(kun ved godkendelse af motorer til flere nærmere bestemte brændstofsammensætninger):

3.2.8.1.1. Brændstoffets sammensætning:

methan (CH4): basis: ........ mol % min. ........ mol % maks. ........ mol %

ethan (C2H6): basis: ........ mol % min. ........ mol % maks. ........ mol %

propan (C3H8): basis: ........ mol % min. ........ mol % maks. ........ mol %

butan (C4H10): basis: ........ mol % min. ........ mol % maks. ........ mol %

C5/C5+: basis: ........ mol % min. ........ mol % maks. ........ mol %

oxygen (O2): basis: ........ mol % min. ........ mol % maks. ........ mol %

inaktive (N2, He, mv.): basis: ........ mol % min. ........ mol % maks. ........ mol %

(1) Det ikke gældende overstreges.(2) Tolerance angives.3.2.8.1.2. Tilførselsdyse(r)

3.2.8.1.2.1. Fabrikat(er): .

3.2.8.1.2.2. Typ(er): .

3.2.8.1.3. Andet (i givet fald)

3.2.8.2. Variant 2

(kun ved godkendelse af flere nærmere bestemte brændstofsammensætninger).

4. Ventilindstilling

4.1. Største ventilløft, åbnings- og lukkevinkler angivet i forhold til dødpunkterne, eller tilsvarende data: .

4.2. Reference- og/eller indstillingsspillerum (1): .

5. Tændingssystem (kun motorer med gnisttænding)

5.1. Tændingssystemets type: fælles tændspole og tændrør/separat tændspole og tændrør/tændspole på tændrør/andet (angives) (1)

5.2. Tændingens styreenhed

5.2.1. Fabrikat(er): .

5.2.2. Typ(er): .

5.3. Tændingens forstillingskurve / forstillingsdiagram (1) (2): .

5.4. Tændingsindstilling (2): . grader før top ved en hastighed på .................... o./min. og et absolut indsugningsmanifoldtryk . kPa

5.5. Tændrør

5.5.1. Fabrikat(er): .

5.5.2. Typ(er): .

5.5.3. Gnistgab: . mm

5.6. Tændspole(r)

5.6.1. Fabbrikat(er): .

5.6.2. Typ(er): .

(1) Det ikke gældende overstreges.(2) Tolerance angives.>SLUT GRAFIK>

Tillæg 4

>START GRAFIK>

SPECIFIKATIONER FOR MOTORRELATEREDE KØRETØJSDELE

1. Vakuum i indsugningssystem ved motorens mærkehastighed og 100 % belastning:

. kPa

2. Udstødningsmodtryk ved motorens mærkehastighed og 100 % belastning:

. kPa

3. Udstødningssystemets volumen: . cm³

4. Effekt optaget af motorudstyr, som er nødvendigt for motorens funktion, således som dette er angivet i direktiv 80/1269/EØF (1), senest ændret ved direktiv 89/491/EØF (2), bilag I, punkt 5.1.1., og under de deri angivne driftsomstændigheder.

UdstyrOptagen effekt, i kW, ved forskellige motorhastigheder

TomgangLav hastighedHøj hastighedHastighed A (1)Hastighed B (1)Hastighed C (1)Ref.- hastighed (2)P(a)Hjælpeudstyr, som er nødvendigt for motorens funktion (trækkes fra den målte motoreffekt)Se punkt 6.1(1) ESC-test.

(2) Kun ETC-test.

(1) EFT L 375 af 31.12.1980, s. 46.(2) EFT L 238 af 15.8.1989, s. 43.>SLUT GRAFIK>

BILAG III

PRØVNINGSFORSKRIFTER

1. INDLEDNING

1.1. I dette bilag beskrives metoderne til bestemmelse af emissionen af forurenende luftarter, partikler og røg fra de afprøvede motorer. Der beskrives tre testcykluser, som finder anvendelse i henhold til bestemmelserne i bilag I, punkt 6.2.:

- ELR-testcyklusen, der består af 13 stationære testforløb med konstant hastighed;

- ESC-testcyklusen, der består af en række ikke-stationære belastningstrin ved forskellige omdrejningstal, som indgår som del af én testprocedure og gennemføres sideløbende;

- ETC-testcyklusen, som består af en række ikke-stationære forløb, der sekund for sekund går over i hinanden.

1.2. Ved prøvningen skal motoren være anbragt i prøvebænk, der er tilsluttet et dynamometer.

1.3. Måleprincip

I motorens udstødning måles indholdet af gasformige komponenter (carbonmonoxid, total mængde carbonhydrider kun for dieselmotorer (kun ved ESC-test), andre carbonhydrider end methan for diesel- og gasmotorer (kun i ETC-test), methan for gasmotorer (kun i ETC-test), samt nitrogenoxider), partikler (kun dieselmotorer) og røg (kun dieselmotorer ved ELR-test). Desuden anvendes carbondioxid ofte som sporgas til bestemmelse af fortyndingsforholdet i delstrøms- og fuldstrømsfortyndingssystemer. God teknisk skik tilsiger rutinemæssig brug af carbondioxid-bestemmelse som et udmærket redskab til at opdage måleproblemer under prøvningen.

1.3.1. ESC-Test

Under en foreskreven sekvens af kørebetingelser med varm motor skal mængderne af ovennævnte emissioner fra udstødningen måles kontinuerligt ved udtagning af en prøve af den ufortyndede udstødningsgas. Testcyklusen består af en række hastigheds- og effektforløb, som dækker dieselmotorers typiske arbejdsområde. Under hver af disse sekvenser bestemmes koncentrationen af hver forurenende gas, udstødningens strømningshastighed og den afgivne effekt, og de målte værdier vægtes. Partikelprøven fortyndes med konditioneret omgivende luft. Der tages én prøve gennem hele testproceduren, som opsamles på passende filtre. For hvert forurenede stof beregnes den emitterede mængde i gram pr. kilowatt-time som beskrevet i tillæg 1 til dette bilag. Desuden skal der måles NOx i tre testpunkter inden for det det kontrolområde, der vælges af den tekniske tjeneste (1), og de målte værdier sammenholdes med værdierne beregnet af de arbejdsmåder af prøvningscyklusen, der omfatter de valgte testpunkter. NOx-kontrolmålingerne sikrer, at motorens forureningsbegrænsning er effektiv inden for motorens typiske arbejdsområde.

1.3.2. ELR-test

Ved en påbudt belastningsresponsprøve bestemmes røgtætheden af den varme motor med opacimeter. Prøven består i, at motoren ved konstant hastighed udsættes for en belastning fra 10 % til 100 % ved tre forskellige motorhastigheder. Derudover gennemløbes et fjerde belastningstrin, valgt af den tekniske tjeneste (2), og den heri målte værdi sammenholdes med værdierne fra de foregående belastningstrin. Værdien svarende til spidsen af røgtæthedskurven beregnes ved hjælp af en algoritme til gennemsnitsberegning som beskrevet i tillæg 1 til dette bilag.

1.3.3. ETC-test

Under en foreskreven cyklus med varm motor og glidende overgang mellem driftsomstændigheder, som nøje bygger på vejtypespecifikke køremønstre for kraftige motorer i lastbiler og busser, måles tallene for ovennævnte forurenende stoffer efter fortynding af den samlede udstødningsgas med konditioneret omgivende luft. Ved hjælp af værdierne for motordrejningsmoment og -omdrejningstal registreret af dynamometeret integreres effekten med hensyn til tiden gennem testcyklusen. Resultatet er det arbejde, motoren har udført i testcyklusen. Koncentrationen af hver forurenende luftart bestemmes gennem hele cyklusen ved integration af signalet fra analysatoren eller ved indsamling i prøvesæk (kun CO). For partikler indsamles en proportional prøve på passende filtre. Strømningshastigheden af den fortyndede udstødningsgas bestemmes gennem hele cyklusen med henblik på beregning af masseemissionen af hvert forurenende stof. Sammen med det af motoren udførte arbejde benyttes masseemissionen af hvert forurenende stof til beregning af den emitterede mængde i gram pr. kilowatt-time som beskrevet i tillæg 2 til dette bilag.

2. PRØVNINGSBETINGELSER

2.1. Prøvningsbetingelser for motoren

2.1.1. Den absolutte temperatur Ta (Ta) af motorens indsugningsluft måles ved motorens luftindtag i Kelvin, det tørre atmosfæretryk (ps), måles i kPa, og parameteren F bestemmes efter følgende anvisninger:

(a) For motorer med naturlig indsugning og mekanisk trykladning:

F = (

>NUM>99

>DEN>ps

) * (

>NUM>Ta

>DEN>298

)0,7

For trykladede motorer med eller uden køling af motorens indgangsluft:

F = (

>NUM>99

>DEN>ps

)0,7* (

>NUM>Ta

>DEN>298

)1,5

(b) For trykladede motorer med eller uden køling af motorens indgangsluft:

F = (

>NUM>99

>DEN>ps

)1,2* (

>NUM>Ta

>DEN>298

)0,6

2.1.2. Prøvningens gyldighed

For at prøvningen kan anses for gyldig, skal det for parameteren F gælde:

0,96 ≤ F ≤ 1,06.

2.2. Motorer med ladeluftkøling

Ladelufttemperaturen registreres og må ved motorhastigheden svarende til motorens mærkeeffekt og fuld belastning højst afvige ± 5 K fra den maksimale ladelufttemperatur angivet i bilag II, tillæg 1, punkt 1.16.3. Kølemidlets temperatur skal være mindst 293 K (20 °C).

Anvendes testsystem eller udvendig blæser, må ladelufttemperaturen ved motorhastigheden svarende til motorens mærkeeffekt og fuld belastning højst afvige ± 5 K fra den maksimale ladelufttemperatur angivet i bilag II, tillæg 1, punkt 1.16.3. Den indstilling af ladeluftkøleren, som anvendes for at opfylde ovennævnte betingelser, skal anvendes gennem hele testcyklusen.

2.3. Motorens luftindtag

Det anvendte luftindtag skal have en indsnævring, der højst afviger ± 300 Pa fra motorens øvre grænse ved den hastighed, som svarer til den angivne maksimaleffekt og fuld belastning.

2.4. Motorens udstødningssystem

Den anvendte udstødningssystem skal have et udstødningsmodtryk, som højst afviger ± 650 Pa fra motorens øvre grænse ved den hastighed, som svarer til den angivne maksimaleffekt og fuld belastning, og et volumen, som højst afviger ± 40 % fra det af fabrikanten angivne. Der kan anvendes et testsystem, forudsat at dette svarer til motorens faktiske driftsbetingelser. Udstødningssystemet skal opfylde kravene til udtagning af prøver af udstødningsgas som angivet i bilag III, tillæg 4, punkt 3.4. og i bilag V, punkt 2.2.1., EP samt punkt 2.3.1., EP.

Har motoren anordning til efterbehandling af udstødningsgassen, skal udstødningsrøret have samme diameter som det, der anvendes mindst fire rørdiametre oven for indgangen til den udvidelse, som indeholder efterbehandlingsenheden. Afstanden fra udstødningsmanifoldflange eller turboladerudgang til efterbehandlingsenheden skal være den samme som i den udformning, som er opstillet af fabrikanten eller inden for de afstandsspecifikationer, han har angivet. Udstødningens modtryk eller indsnævring skal overholde samme kriterier som ovenfor angivet og kan være indstillet ved hjælp af en ventil. Efterbehandlingsenheden kan være afmonteret under forprøver og under registrering af motorens data og kan erstattes med en tilsvarende beholder med inaktiv katalysatorbærer.

2.5. Kølesystem

Kølesystemets kapacitet skal være tilstrækkelig til at holde motorens driftstemperatur på den af fabrikanten angivne normalværdi.

2.6. Smøreolie

Specifikationer for den ved prøvningen anvendte smøreolie skal registreres og angives sammen med prøvningsresultaterne som angivet i bilag II, tillæg 1, punkt 7.1.

2.7. Brændstof

Der skal anvendes det i bilag IV specificerede referencebrændstof.

Brændstoftemperatur og målepunkt skal af fabrikanten angives inden for de grænserne i bilag II, tillæg 1, punkt 1.16.5. Brændstoftemperaturen må ikke være under 306 K (33 °C). Holder brændstoffet ikke den angivne temperatur, skal temperaturen være 311 K ± 5 K (38 °C ± 5 °C) ved brændstoftilførslens indgang.

2.8. Prøvning af systemer til efterbehandling af udstødningsgassen

Er motoren forsynet med anordning til efterbehandling af udstødningen, skal de under testcykluserne målte emissioner være repræsentative for emissionerne i marken. Lader dette sig ikke opnå ved en enkelt testcyklus (f. eks. for partikelfiltre med periodisk regenerering), skal der gennemføres flere testcykluser og testresultaterne udlignes og/eller vægtes. Den nøjagtige fremgangsmåde aftales mellem motorfabrikanten og den tekniske tjeneste og skal være baseret på et velbegrundet teknisk skøn.

Tillæg 1

ESC- OG ELR-TESTCYKLUSER

1. INDSTILLING AF MOTOR OG DYNAMOMETER

1.1. Bestemmelse af motorhastighed A, B og C

Motorhastighed A, B og C angives af fabrikanten i henhold til følgende forskrifter:

Den høje hastighed nhi bestemmes ved beregning af 70 % mærkenettoeffekten P(n), således som bestemt i bilag II, tillæg 1, punkt 7.2. Det højeste motoromdrejningstal på effektkurven, hvor denne effekt indtræder, defineres som nhi.

Det lave motoromdrejningstal nlo bestemmes ved beregning af 50 % mærkenettoeffekten P(n), således som bestemt i bilag II, tillæg 1, punkt 7.2. Det laveste motoromdrejningstal på effektkurven, hvor denne effekt indtræder, defineres som nlo.

Motorhastighed A, B og C bestemmes på følgende måde:

Hastighed A = nlo + 25 % (nhi - nlo)

Hastighed B = nlo + 50 % (nhi -nlo)

Hastighed C = nlo + 75 % (nhi -nlo)

Motorhastighed A, B og C kan bestemmes på en følgende måder:

a) Med henblik på nøjagtig bestemmelse af nhi og nlo måles på ekstra testpunkter i forbindelse med godkendelse af motoreffekten efter direktiv 80/1269/EØF. Den maksimale effekt, nhi og nlo bestemmes af effektkurven, og motorhastighed A, B og C beregnes efter ovenstående forskrifter.

b) Motoren kortlægges langs hele belastningskurven fra den maksimale ubelastede motorhastighed til tomgangshastighed, idet der anvendes mindst 5 målepunkter pr. 1 000 motoromdrejninger på skalaen og målepunkter som højst afviger ± 50 o./min. fra omdrejningstallet svarende til den angivne maksimaleffekt. Af den således registrerede kurve bestemmes maksimaleffekten, nhi og nlo, og motorhastighed A, B og C beregnes efter ovenstående forskrifter.

Hvis den målte motorhastighed A, B og C ikke afviger mere end ± 3 % fra den af fabrikanten angivne motorhastighed, anvendes den af fabrikanten angivne motorhastighed til emissionsprøvningen. Hvis nogen motorhastighed overskrider tolerancen, anvendes den målte motorhastighed til emissionsprøvningen.

1.2. Bestemmelse af dynamometerets indstilling

Momentkurven ved fuld motorbelastning bestemmes eksperimentelt ved forsøg, hvor man beregner drejningsmomentværdierne ved de foreskrevne prøvningssekvenser under nettobetingelser som foreskrevet i bilag II, tillæg 1, punkt 7.2. I givet fald tages hensyn til den af det motordrevne udstyr optagne effekt. Dynamometerindstillingen beregnes for hvert testforløb ved hjælp af formlen:

s = P(n) * >NUM>L

>DEN>100

når afprøvning finder sted under nettobetingelser

s = P(n) * >NUM>L

>DEN>100

+ (P(a) P(b)) når afprøvning ikke finder sted under nettobetingelser

hvor:

s = dynamometerindstilling, kW

P(n) = motorens nettoeffekt som angivet i bilag II, tillæg 1, punkt 7.2., kW

L = belastningsprocent som angivet i punkt 2.7.1. %

P(a) = effekt optaget af det hjælpeudstyr, der skal monteres, som angivet i bilag II, tillæg 1, punkt 5.1.

P(b) = effekt optaget af hjælpeudstyr, som skal afmonteres, som angivet i bilag II, tillæg 1, punkt 5.2.

2. ESC-FORPRØVE

På fabrikantens begæring kan der gennemføres en foreløbig testcyklus for at konditionere motoren og udstødningssystemet før målecyklusen.

2.1. Klargøring af prøvetagningsfiltre

Mindst én time før prøvens gennemførelse skal hvert filter(par) anbringes i en lukket, men ikke tætnet petriskål og stilles til stabilisering i et vejerum. Efter forløbet af stabiliseringsperioden vejes hvert filter(par), og taravægten noteres. Det pågældende filter(par) opbevares derefter i en lukket petriskål eller filterholder, indtil det skal bruges til prøvning. Er det pågældende filter(par) ikke blevet anvendt inden for otte timer efter udtagning af vejerummet, skal det vejes igen før anvendelsen.

2.2. Montering af måleapparaturet

Instrumenter og prøvetagningssonder skal monteres som foreskrevet. Anvendes et totalstrømssystem til fortynding af udstødningsgassen, skal udstødningsrøret være tilsluttet systemet.

2.3. Start af fortyndingssystemet og motoren

Fortyndingssystemet og motoren startes og varmes op, indtil alle temperatur- og trykværdier har stabiliseret sig ved fuld belastning i henhold til fabrikantens anbefalinger og god teknisk skik.

2.4. Start af systemet til partikeludskillelse

Systemet til partikeludskillelse startes med omføring (bypass). Fortyndingsluftens baggrundskoncentration af partikler kan bestemmes ved, at fortyndet luft ledes gennem filtrene. Anvendes filtreret fortyndingsluft, kan der foretages en enkelt måling enten før eller efter prøvens udførelse. Er fortyndingsluften ikke filtreret, skal der måles ved begyndelsen og slutningen af prøvecyklus, og gennemsnitsværdien beregnes.

2.5. Indstilling af fortyndingsforholdet

Fortyndingsluften skal indstilles således, at temperaturen af den fortyndede udstødningsgas, målt umiddelbart før hovedfilteret, ikke er over 325 K (52 °C) i noget forløb. Fortyndingsforholdet (q) må ikke være under 4.

For systemer reguleret af koncentrationen af CO2 eller NOx skal fortyndingsluftens koncentration af CO2 eller NOx måles ved begyndelsen og slutningen af hver prøve. Ved måling af fortyndingsluftens baggrundskoncentration af CO2 eller NOx må start- og slutværdierne ikke afvige mere end henholdsvis 100 ppm og 5 ppm indbyrdes.

2.6. Kontrol af analysatorerne

Analysatorerne til emissionsbestemmelse skal være nulstillet og kalibreret.

2.7. Testcyklus

2.7.1. Ved betjening af dynamometeret på testmotoren går man frem efter følgende cyklus bestående af 13 forløb:

>TABELPOSITION>

2.7.2. Testsekvens

Testsekvensen påbegyndes. Rækkefølgen af forløbene skal svare til disses nummerering i punkt 2.7.1.

Motoren skal fungere i den foreskrevne tid i hvert forløb, således at ændringer i motorhastighed og -belastning er fuldført inden for de første 20 sekunder. Den foreskrevne motorhastighed skal holdes inden for ± 50 o./min., og det foreskrevne drejningsmoment må højst afgive ± 2 % fra det maksimale drejningsmoment ved testhastigheden.

På fabrikantens begæring kan testsekvensen gentages et tilstrækkeligt antal gange til, at der frafiltreres en større masse af partikler på filteret. Fabrikanten skal forelægge en detaljeret beskrivelse af procedurerne til dataevaluering og beregning. Indholdet af forurenende luftarter bestemmes kun ved den første prøvningscyklus.

2.7.3. Analyseapparaternes respons

Analyseapparaternes målinger skal optegnes med båndskriver eller måles med et tilsvarende dataoptegningssystem, idet udstødningsgassen gennemstrømmer analysatorerne gennem hele testcyklusen.

2.7.4. Udtagning af partikelprøver

Der skal anvendes ét par filtre (hovedfilter og ekstrafilter, se bilag III, tillæg 4) til hele prøvningsproceduren. De i testcyklusen for de forskellige forløb angivne vægtningsfaktorer anvendes ved, at der indsamles en prøve, som er proportional med udstødningens massestrøm i hvert enkelt forløb af testcyklusen. Dette kan opnås ved tilsvarende indstilling af prøvestrømningshastighed, prøvetagningstid og/eller fortyndingsforhold, således at kravet til effektive vægtningsfaktorer i punkt 5.6. er opfyldt.

Prøvetagningstiden pr. forløb skal være mindst 4 sekunder pr. 0,01 vægtningsfaktor. Udtagning af prøverne skal finde sted senest muligt i hvert forløb. Prøvetagning af partikler skal afsluttes tidligst 5 sekunder før slutningen af hvert forløb.

2.7.5. Motorens tilstand

Motorhastighed og -belastning, indsugningsluftens temperatur og vakuum, udstødningens temperatur og modtryk, brændstofstrømningshastighed og luft- eller udstødningsstrøm, ladelufttemperatur, brændstoftemperatur og -fugtindhold skal registreres i hver arbejdsmåde, idet kravene til hastighed og belastning (se punkt 2.7.2.) er opfyldt på tidspunktet for udtagning af partikelprøver, og i hvert tilfælde i det sidste minut af hvert forløb.

Eventuelle yderligere data, der måtte være nødvendige til beregningerne, skal registreres (jf. punkt 4. og 5.).

2.7.6. NOx-kontrol inden for kontrolområdet

Umiddelbart efter gennemførelse af forløb 13 foretages kontrol af NOx inden for kontrolområdet. Motoren skal konditioneres i forløb 13 i tre minutter, før målingerne påbegyndes. Der foretages tre målinger på forskellige punkter inden for kontrolområdet, valgt af den tekniske tjeneste (3). Perioden for hver måling skal være 2 minutter.

Målingen, der sker efter samme procedure som for NOx-målingen i cyklusen bestående af 13 testforløb, skal gennemføres i overensstemmelse med punkt 2.7.3., 2.7.5. og 4.1. i dette tillæg, samt med bilag III, tillæg 4, punkt 3.

Beregningen skal foretages i overensstemmelse med punkt 4.

2.7.7. Efterkontrol af analyseapparaterne

Efter emmissionstesten gentages kontrollen med anvendelse af en nulstillingsgas og samme kalibreringsgas. Prøveresultatet regnes for acceptabelt, hvis forskellen mellem målingen før prøven og efter prøven er mindre end 2 % af værdien for kalibreringsgassen.

3. ELR-TEST

3.1. Montering af måleapparaturet

Opacimeter og prøvetagningssonder skal, i givet fald, være monteret efter lyddæmperen og en eventuel efterbehandlingsenhed i overensstemmelse med de almindelige monteringsanvisninger fra instrumentets fabrikant. Derudover skal kravene i punkt 10 i ISO DIS 11614 overholdes, hvor det er hensigtsmæssigt.

Før nulpunkts- og fuldskalakontrol skal opacimeteret varmes op og stabiliseres efter fabrikantens anvisninger. Har opacimeteret renseluftsystem til undgåelse af tilsodning af instrumentets optiske dele, skal også dette system aktiveres og justeres efter fabrikantens anvisninger.

3.2. Kontrol af opacimeteret

Ved nulpunkts- og fuldskalakontrol skal apparatet være indstillet på udlæsning af opacitet, da der er to veldefinerede kalibreringspunkter på opacitetsskalaen, nemlig 0 % opacitet og 100 % opacitet. Lysabsorptionskoefficienten beregnes derefter korrekt på grundlag af den målte røgtæthed og LA som angivet af opacimeterets fabrikant, når instrumentet er stillet tilbage på udlæsning af k-værdi med henblik på testen.

Når opacimeterets lysstråle ikke spærres, skal visningen indstilles til en røgtæthed på 0,0 % ± 1,0 %. Idet lystilgangen til apparatets føler er spærret, indstilles visningen til en opacitet på 100,0 % ± 1,0 %.

3.3. Testcyklus

3.3.1. Konditionering af motoren

Motoren og systemet skal varmes op ved maksimal motoreffekt for at stabilisere motorens driftsparametre i henhold til fabrikantens anvisninger. Formålet med forkonditioneringsfasen er desuden at undgå, at den egentlige måling påvirkes af belægninger i udstødningssystemet efter en foregående prøve. Når motoren er stabiliseret, skal cyklus påbegyndes senest 20 ± 2 s efter forkonditioneringsfasen. På fabrikantens begæring kan der gennemføres en foreløbig testcyklus for at konditionere motoren og udstødningssystemet før målecyklusen.

3.3.2. Testsekvens

Testen består af en sekvens af tre belastningstrin ved hver af de tre motorhastigheder A (cyklus 1), B (cyklus 2) og C (cyklus 3), bestemt som angivet i bilag III, punkt 1.1., efterfulgt af cyklus 4 ved en hastighed inden for kontrolområdet og en belastning, som er mellem 10 % og 100 % og vælges af den tekniske tjeneste (4). Ved betjening af dynamometeret på testmotoren går man frem i følgende rækkefølge som vist i fig. 3.

Figur 3 Sekvens ved ELR-test

>REFERENCE TIL EN GRAFIK>

a) Motoren bringes til at fungere ved motorhastighed A og 10 % belastning i 20 ± 2 s. Den foreskrevne hastighed skal holdes med en nøjagtighed af ± 20 o./min., og det foreskrevne drejningsmoment skal holdes med en nøjagtighed på ± 2 % af det maksimale drejningsmoment ved testhastigheden.

b) Ved afslutningen af foregående segment flyttes hastighedsreguleringsarmen hurtigt til helt åben stilling, hvor den holdes i 10 ± 1 s. Der påføres den nødvendige dynamometerbelastning, således at motorhastigheden holdes med en nøjagtighed af ± 150 o./min. i de første 3 sekunder, og ± 20 o./min. under resten af segmentet.

c) Den i a) og b) beskrevne sekvens gentages to gange.

d) Ved afslutning af det tredje belastningstrin justeres motoren til motorhastighed B og 10 procents belastning i løbet af 20 ± 2 s.

e) Sekvens a) til c) skal gennemløbes med motorhastighed B.

f) Ved afslutning af det tredje belastningstrin justeres motoren til motorhastighed C og 10 procents belastning i løbet af 20 ± 2 s.

g) Sekvens a) til c) skal gennemløbes med motorhastighed C.

h) Ved afslutning af det tredje belastningstrin justeres motoren til den valgte motorhastighed og en vilkårlig belastning over 10 procent i løbet af 20 ± 2 s.

i) Sekvens a) til c) skal gennemløbes ved den valgte motorhastighed.

3.4. Godkendelse af cyklusen

De relative standardafvigelser af de gennemsnitlige røgtæthedsværdier ved hver testhastighed (SVA, SVB, SVC, beregnet i henhold til afsnit 6.3.3 af de tre på hinanden følgende belastningstrin ved hver testhastighed) skal være mindre end 15 % af gennemsnitsværdien, dog højst 10 % af grænseværdien angivet i bilag I, tabel 1. Er værdien større, gentages sekvensen, indtil 3 på hinanden følgende belastningstrin opfylder godkendelseskravet.

3.5. Efterkontrol af opacimeteret

Opacimeterets nulpunktsforskydning må ikke være større end ± 5 % af den i bilag I, tabel 1 angivne grænseværdi.

4. BEREGNING AF EMISSIONEN AF FORURENENDE LUFTARTER

4.1. Dataevaluering

Til vurdering af emissionen af luftarter tages gennemsnittet af aflæst værdi på kurve i de sidste 30 sekunder af hvert forløb, og gennemsnitskoncentrationen (konc) af HC, CO og NOx i hvert forløb bestemmes af gennemsnitsaflæsningen på kurven og de tilhørende kalibreringsdata. Anden form for registrering kan anvendes, forudsat at det sikrer ækvivalent datafangst.

Til kontrol af NOx i kontrolområdet finder ovenstående krav kun anvendelse på NOx.

Vælger man at bestemme strømningshastigheden af udstødningsgas GEXHW eller af fortyndet udstødningsgas GTOTW, skal det ske som angivet i bilag III, tillæg 4, punkt 2.3.

4.2. Korrektion ved omregning tør/våd

Den målte koncentration omregnes til våd basis ved hjælp af følgende formler, medmindre målingen i forvejen fandt sted på våd basis.

konc (våd) = Kw * konc. (tør)

For ufortyndet udstødningsgas:

KW,r = (1 - FFH * >NUM>GFUEL

>DEN>GAIRD

) - KW2

og

FFH = >NUM>1,969

>DEN>(1 + >NUM>GFUEL

>DEN>GAIRW

)

For fortyndet udstødningsgas:

KW,e,1 = (1 - >NUM>HTCRAT * CO2%(wet)

>DEN>200

) - KW1

eller

KW,e,2 = (

>NUM>(1 - KW1)

>DEN>1 + >NUM>HTCRAT * CO2%(dry)

>DEN>200

)

>TABELPOSITION>

hvor:

Ha, Hd = g vand pr. kg tør luft

Rd, Ra = relativ fugtighed at fortyndingsluft/indsugningsluft, %

pd, pa = fortyndings-/indsugningsluftens mætningsdamptryk i kPa

pB = total barometerstand i kPa.

4.3. NOx-korrektion for fugtindhold og temperatur

Da NOx-emissionen påvirkes af den omgivende luft, skal NOx-koncentrationen korrigeres for temperatur og fugtindhold af den omgivende luft ved hjælp af korrektionsfaktorerne i følgende formler.

KH,D = >NUM>1

>DEN>1 + A * (Ha - 10,71) + B * (Ta - 298)

hvor:

A = 0,309 GFUEL/GAIRD - 0,0266,

B = -0,209 GFUEL/GAIRD + 0,00954,

Ta = luftens temperatur, K

Ha = indsugningsluftens fugtindhold i g vand pr. kg tør luft

Ha = >NUM>6,220 * Ra * pa

>DEN>(pB - pa) * Ra * 10-2

hvor:

Ra = indsugningsluftens relative fugtighed i %

pa = indsugningsluftens mætningsdamptryk i kPa

pB = total barometerstand i kPa.

4.4. Beregning af emissionsmassestrømme

Massestrømmene af emissioner (g/h) for hvert forløb beregnes på følgende måde, idet udstødningsgassens massefylde forudsættes at være 1,293 kg/m³ ved 273 K (0 °C) og 101,3 kPa:

1) NOx masse = 0,001587 * NOx konc * KH,D * GEXHW

2) COmasse = 0,000966 * COkonc * GEXHW

3) HCmasse = 0,000479 * HCkonc * GEXHW

hvor NOx konc, COkonc og HCkonc (5) er gennemsnitskoncentrationer (ppm) i den ufortyndede udstødningsgas som bestemt i punkt 4.1.

Hvis man (frivilligt) vælger at bestemme emissionen af luftarter med et fuldstrømsfortyndingssystem, skal følgende formel anvendes:

1) NOx masse = 0,001587 * NOx konc * KH,D * GTOTW

2) COmasse = 0,000966 * COkonc * GTOTW

3) HCmasse = 0,000479 * HCkonc * GTOTW

hvis NOx konc, COkonc og HCkonc (6) er de baggrundskorrigerede gennemsnitskoncentrationer (ppm) i den fortyndede udstødningsgas for hvert forløb, bestemt i henhold til bilag III, tillæg 2, punkt 4.3.1.1.

4.5. Beregning af specifikke emissioner

De specifikke emissioner (g/kWh) beregnes for alle enkeltkomponeneter som følger:

>START GRAFIK>

NOx>SLUT GRAFIK>

= >NUM>Ó NOx, mass * WFi

>DEN>Ó P(n)i * WFi

>START GRAFIK>

CO>SLUT GRAFIK>

= >NUM>Ó COmass * WFi

>DEN>Ó P(n)i * WFi

>START GRAFIK>

HC>SLUT GRAFIK>

= >NUM>Ó HCmass * WFi

>DEN>Ó P(n)i * WFi

De i ovenstående beregning anvendte vægtningsfaktorer (WF) er de punkt 2.7.1. angive.

4.6. Beregning af områdekontrolværdier

For de tre kontrolpunkter, valgt i henhold til afsnit 2.7.6, skal NOx-emissionen måles og beregnes i overensstemmelse med punkt 4.6.1. og endvidere bestemmes ved interpolation mellem de af testcyklusens arbejdsmåder, der er nærmest det pågældende kontrolpunkt i henhold til punkt 4.6.2. De målte værdier sammenholdes derefter med de interpolerede værdier i henhold til punkt 4.6.3.

4.6.1. Beregning af specifik emission

NOx-emissionen for hvert kontrolpunkt (Z) beregnes som følger:

NOx masse,Z = 0,001587 * NOx konc,Z * KH,D * GEXHW

NOx,Z = NOx masse,Z/P(n)Z

4.6.2. Bestemmelse af størrelsen af emissionen i testcyklusen

NOx-emissionen for hvert kontrolpunkt interpoleres fra testcyklusens fire nærmeste forløb omkring det valgte kontrolpunkt Z som vist i fig. 4. For disse forløb (R, S, T, U) gælder følgende definitioner:

Hastighed (R) = hastighed (T) = nRT

Hastighed (S) = hastighed (U) = nSU

Belastningsprocent (R) = belastningsprocent (S)

Belastningsprocent (T) = belastningsprocent (U).

NOx-emissionen for det valgte kontrolpunkt Z beregnes som følger:

EZ = ERS + (ETU - ERS) 7 (MZ - MRS) / (MTU - MRS)

og:

ETU = ET + (EU - ET) 7 (nZ - nRT) / (nSU - nRT)

ERS = ER + (ES - ER) 7 (nZ - nRT) / (nSU - nRT)

MTU = MT + (MU - MT) 7 (nZ - nRT) / (nSU - nRT)

MRS = MR + (MS - MR) 7 (nZ - nRT) / (nSU - nRT)

hvor:

ER, ES, ET, EU = specifik NOx-emission i de tilstødende forløb, beregnet efter punkt 4.6.1.

MR, MS, MT, MU = motorens drejningsmoment i de tilstødende arbejdsmåder.

Figur 4 Interpolation af NOx-kontrolpunkt

>REFERENCE TIL EN GRAFIK>

4.6.3. Sammenholdelse af NOx-emissionsværdier

Den målte specifikke NOx-emission i kontrolpunktet (NOx,Z) sammenholdes med den interpolerede værdi (EZ) på følgende måde:

NOx,diff = 100 * (NOx,z - EZ) / EZ

5. BEREGNING AF PARTIKELEMISSIONEN

5.1. Datavaluering

Til vurdering af partikelemissionen registreres den totale masse (MSAM,i), der er ledt gennem filtrene for hver prøvningssekvens.

Filtrene bringes tilbage til vejerummet og konditioneres i mindst én, men højst 80 timer, hvorefter de vejes. Filtrenes bruttovægt noteres, og taravægten (se punkt 2.1. i dette tillæg) fratrækkes. Partikelmassen Mf er summen af de udskilte partikelmasser på hoved- og ekstrafilter.

Skal der korrigeres for baggrund, noteres massen (MDIL) af fortyndingsluft, der er ført gennem filtrene, og partikelmassen (Md). Er der foretaget flere end én måling, beregnes kvotienten Md/MDIL for hver enkeltmåling, og gennemsnittet af værdierne beregnes.

5.2. Delstrømsfortyndingssystem

De i prøverapporten angivne resultater for partikelemissioner beregnes i følgende trin. Da reguleringen af fortyndingsluftens hastighed kan finde sted på forskellige måder, gælder der forskellige metoder til beregning af GEDFW. Alle beregninger skal baseres på gennemsnitsværdier for de enkelte arbejdsmåder i prøveindsamlingsperioden.

5.2.1. Isokinetiske systemer

GEDFW,i = GEXHW,i * qi

qi = >NUM>GDILW,i + (GEXHW,i * r)

>DEN>(GEXHW,i * r)

hvor r er forholdet mellem tværsnitsarealet af henholdsvis den isokinetiske prøvesonde og udstødningsrøret:

r = >NUM>Ap

>DEN>AT

5.2.2. Systemer med måling af CO2- eller NOx-koncentration

GEDFW,i = GEXHW,i * qi

qi = >NUM>koncE,i - koncA,i

>DEN>koncD,i - koncA,i

hvor:

koncE = våd koncentration af sporgassen i den ufortyndede udstødningsgas

koncD = våd koncentration af sporgassen i den fortyndede udstødningsgas

koncA = våd koncentration af sporgassen i fortyndingsluften.

Koncentrationer, der er målt på tør basis, skal omregnes til våd basis som angivet i dette tillægs punkt 4.2.

5.2.3. Systemer med CO2-måling og kulstofbalancemetoden (7)

GEDFW,i = >NUM>206,5 * GFUEL,i

>DEN>CO2D,i - CO2A,i

hvor:

CO2D = CO2-koncentration i den fortyndede udstødningsgas

CO2A = CO2-koncentration i fortyndingsluften.

(Koncentrationsangivelser i % v/v på våd basis)

Denne ligning bygger på forudsætningen om kulstofbalance (alt kulstof tilført til motoren afgives som CO2) og er udledt i følgende trin:

GEDFW,i = GEXHW,i * qi

og

qi = >NUM>206,5 * GFUEL,i

>DEN>GEXHW,i * (CO2D,i - CO2A,i)

5.2.4. Systemer med flowmåling

GEDFW,i = GEXHW,i * qi

qi = >NUM>GTOTW,i

>DEN>(GTOTW,i - GDILW,i)

5.3. Fortyndingssystem af fuldstrømstypen

Rapportens prøvningsresultater vedrørende partikelemission beregnes i følgende trin. Alle beregninger skal baseres på gennemsnitsværdier for de enkelte sekvenser i prøvetagningsperioden.

GEDFW,i = GTOTW,i

5.4. Beregning af partikelmassestrømmen

Partikelmassestrømmen beregnes på følgende måde:

>START GRAFIK>

PTmasse = Mf

MSAM * GEDFW

1000>SLUT GRAFIK>

hvor:

>START GRAFIK>

GEDFW = Ói = ni = 1GEDFW,i * WFi>SLUT GRAFIK>

>START GRAFIK>

MSAM = Ói = ni = 1MSAM,i>SLUT GRAFIK>

i = 1, . . . n

bestemt for hele testcyklusen ved summation af gennemsnitsværdierne for de enkelte forløb i prøvetagningsperioden.

Partikelmassestrømmen kan korrigeres for baggrund på følgende måde:

>START GRAFIK>

PTmasse = [Mf

MSAM - (

Md

MDIL * ( Ói = ni = 1

(

1 - 1

DFi) * WFi))] * GEDFW

1000>SLUT GRAFIK>

Foretages flere end én måling, skal (Md/MDIL) erstattes af >START GRAFIK>

(Md/MDIL)>SLUT GRAFIK>

.

DFi = 13,4/(koncCO2 + (koncCO + koncHC)*10-4) for de enkelte arbejdsmådereller

DFi = 13,4/koncCO2 for de enkelte forløb.

5.5. Beregning af den specifikke emission

Partikelemissionen beregnes på følgende måde:

>START GRAFIK>

PT = PTmass

Ó P(n)i * WFi>SLUT GRAFIK>

5.6. Effektiv vægtningsfaktor

Den effektive vægtningsfaktor WFE,i for hver arbejdsmåde beregnes som følger:

>START GRAFIK>

WFE,i = MSAM,i * GEDFW

MSAM * GEDFW,i>SLUT GRAFIK>

Den absolutte værdi af de effektive vægtningsfaktorer må højst afvige med ± 0,003 (± 0,005 for tomgangsforløb) fra de i punkt 2.7.1. angivne vægtningsfaktorer.

6. BEREGNING AF RØGTÆTHED

6.1. Bessel-algoritmen

Bessel-algoritmen skal anvendes til beregning af 1 s gennemsnit ud fra de øjeblikkelige røgtætheder, omregnet efter punkt 6.3.1. Algoritmen emulerer et anden ordens lavpasfilter og anvender iterativ beregning til bestemmelse af koefficienterne. Disse koefficienter afhænger af røgtæthedsmålesystemets responstid og af prøvetagningsfrekvensen. Derfor skal punkt 6.1.1. gentages, hver gang systemets responstid og/eller prøvetagningsfrekvens ændrer sig.

6.1.1. Beregning af filterresponstid og Bessel-konstanter

Den nødvendige Bessel-responstid (tF) er en funktion af røgtæthedsmålesystemets fysiske og elektriske responstid som angivet i bilag III, tillæg 4, punkt 5.2.4., og beregnes af følgende ligning:

tF = √1 - (tp2 + te2)

hvor:

tp = fysisk repsonstid, s

te = elektrisk responstid, s.

Beregningerne til opstilling af et skøn over filterets afskæringsfrekvens (fc) er baseret på et trinformet indgangssignal fra 0 til 1 på < 0,01 s (jf. bilag VIII). Responstiden defineres som tiden mellem det punkt, hvor Bessel-afgangssignalet når 10 % (t10) og det punkt hvor det når 90 % (t90) af denne trinfunktions værdi. Dette gøres ved iteration af fc indtil t90-t10 ∴ tF. Den første iterative beregning af fc er givet ved følgende formel:

fc = ð / (10 * tF)

Bessel-konstanterne E og K beregnes af følgende ligninger:

E = >NUM>1

>DEN>1 + Ù * √3 * D + D * Ù2

K = 2 * E * (D * Ù2 - 1) - 1

hvor:

D = 0,618034

Ät = 1 / prøvetagningsfrekvens

Ù = 1 / [tan(ð * Ät * fc)].

6.1.2. Beregning af Bessel-algoritmen

Ved hjælp af værdierne for E og K beregnes 1 sekunds Bessel-gennemsnit af responsen på et trininput Si på følgende måde:

Yi = Yi-1 + E * (Si + 2 * Si-1 * Si-2 - 4 * Yi-2) + K * (Yi-1 - Yi-2)

hvor:

Si-2 = Si-1 = 0

Si = 1

Yi-2 = Yi-1 = 0

Der interpoleres mellem tiderne t10 og t90 beregnes ved interpolation. Forskellen i tid mellem t10 og t90 definerer responstiden tF for den pågældende værdi af fc. Er denne responstid ikke tilstrækkelig tæt på den ønskede responstid, fortsættes iterationen, indtil den faktiske responstid højst afviger 1 % fra den ønskede respons som følger:

|(t90 - t10) - tF ≤ 0,01 * tF

6.2. Dataevaluering

Røgtæthedsværdierne måles med en frekvens på mindst 20 Hz.

6.3. Bestemmelse af røgtæthed

6.3.1. Omregning af data

Da den grundlæggende målestørrelse for alle røgtæthedsmålere er transmittans, skal røgtæthedsværdierne omregnes fra transmittans (ô) til lysabsorptionskoefficient (k) på følgende måde:

k = - >NUM>1

>DEN>LA

* ln (1 - >NUM>N

>DEN>100

)

og

N = 100 - ô

hvor:

k = lysabsorptionskoefficient m-1

LA = effektiv lysvej angivet af instrumentfabrikanten, m

N = opacitet, %

ô = transmittans, %

Omregningen skal foretages inden der sker yderligere behandling af data.

6.3.2. Beregning af Bessel-gennemsnit af røgtætheden

Den mest hensigtsmæssige afskæringsfrekvens fc er den, der frembringer den ønskede filterresponstid tF. Når denne frekvens er bestemt ved den iterative proces i punkt 6.1.1., beregnes de korrekte værdier af konstanterne E og K i Bessel-algoritmen. Derefter anvendes Bessel-algoritmen på kurven over den øjeblikkelige røgtæthed (k-værdi) som beskrevet i punkt 6.1.2.:

Yi = Yi-1 + E * (Si + 2 * Si-1 + Si-2 -4 * Yi-2) + K * (Yi-1 - Yi-2)

Bessel-algoritmen er af rekursiv art. Man har derfor brug for nogle startværdier på input Si-1 og Si-2 og startværdier på output Yi-1 og Yi-2 for at få algoritmen i gang. Disse kan forudsættes at være 0.

For hvert belastningstrin med de tre omdrejningstal A, B og C, vælges 1 sekunds maksimumværdien Ymax blandt de enkelte værdier Yi af hver røgtæthedskurve.

6.3.3. Slutresultat

Gennemsnitlig røgtæthed (SV) for hver cyklus (hver testhastighed) beregnes således:

For testhastighed A:

SVA = (Ymax1,A + Ymax2,A + Ymax3,A) / 3

For testhastighed B:

SVB = (Ymax1,B + Ymax2,B + Ymax3,B) / 3

For testhastighed C:

SVC = (Ymax1,C + Ymax2,C + Ymax3,C) / 3

hvor:

Ymax1, Ymax2, Ymax3 = højeste Bessel-gennemsnit af røgtætheden ved hvert af de tre belastningstrin

Slutværdien beregnes på følgende måde:

SV = (0,43 * SVA) + (0,56 * SVB) + (0,01 * SVC).

Tillæg 2

ETC-TESTCYKLUS

1. OPTEGNING AF MOTORENS KARAKTERISTIK

1.1. Bestemmelse af hastighedsområdet for motorkarakteristikken

For at der kan genereres en ETC på testcellen, må motorens omdrejningstal-drejningsmomentkarakteristik fastlægges inden testcyklusen. Minimums- og maksimumsomdrejningstallet for karakteristikken er defineret således:

Minimumshastighed for karakteristikken = tomgangshastighed

Maksimumshastigheden for karakteristikken = den laveste af følgende størrelser: nhi * 1,02 eller den hastighed, hvor drejningsmomentet ved fuld belastning går mod nul.

1.2. Optegning af motorens effektkarakteristik

Motoren skal varmes op ved maksimal motoreffekt for at stabilisere motorens driftsparametre efter fabrikantens anvisninger og god teknisk skik. Når motoren er stabiliseret, skal motordiagrammet optegnes som følger:

a) Motoren skal være ubelastet og gå med tomgangshastighed.

b) Motoren skal arbejde ved indsprøjtningspumpens fuldlastindstilling ved den mindste karakteristikhastighed.

c) Motorhastigheden øges med en hastighed på gennemsnitligt 8 ± 1 o./min. /s fra den minimale til den maksimale karakteristikhastighed. Motorens hastigheds- og drejningsmomentpunkter skal registreres med en målefrekvens på mindst ét punkt i sekundet.

1.3. Genering af karakteristikkurve for motoren

Alle datapunkter registreret under punkt 1.2. skal forbindes ved lineær interpolation mellem punkterne. Den resulterende drejningsmomentkurve er motorens karakteristik og skal anvendes til at konvertere de normaliserede drejningsmomentværdier fra testcyklusen til egentlige drejningsmomentværdier for testcyklusen som beskrevet i punkt 2.

1.4. Alternativ optegning af karakteristik

Anser en fabrikant ovennævnte teknikker til optegning af karakteristik for sikkerhedsmæssigt utilfredsstillende eller dårligt repræsentative for en given motor, kan alternative teknikker til optegning af karakteristik anvendes. Sådanne alternative teknikker skal opfylde den angivne karakteristikprocedures formål: at bestemme det maksimale drejningsmoment, der er til rådighed ved motorhastigheder, som gennemløbes under testcyklusen. Hvis der afviges fra de teknikker til optegning af karakteristik, som er foreskrevet i dette punkt med begrundelse i sikkerhed eller repræsentativitet, skal sådanne afgivende teknikker godkendes af den tekniske tjeneste tillige med begrundelsen for deres anvendelse. Dog kan gentagne fald i motorhastigheden i intet tilfælde anvendes til regulerede eller turboladede motorer.

1.5. Gentagelse af tests

Der behøver ikke optegnes karakteristik af motoren før hver eneste testcyklus. Der skal optegnes ny karakteristik af en motor før en testcyklus, såfremt:

- der er gået urimelig lang tid siden sidste kortlægning, vurderet ud fra et teknisk skøn,

eller

- der er foretaget fysiske ændringer eller rekalibrering af motoren, som muligvis kan have indflydelse på motorens præstationer.

2. GENERERING AF REFERENCETESTCYKLUSEN

Testcyklusen med kortvarige forløb er beskrevet i tillæg 3 til dette bilag. De normaliserede værdier af drejningsmoment og omdrejningstal skal omregnes til faktiske værdier som beskrevet nedenfor, hvorved referencetestcyklusen fremkommer.

2.1. Faktisk hastighed

Hastigheden normaliseres ved hjælp af følgende ligning:

Faktisk hastighed = >NUM>% hastighed (referencehastighed tomgangshastighed)

>DEN>100

+ tomgangshastighed

Referencehastigheden (nref) svarer til de 100 % hastighedsværdier, der er angivet i dynamometerskemaet i tillæg 3. Den defineres således (se fig. 1 i bilag I):

nref = nlo + 95 % * (nhi nlo)

hvor man som nhi og nlo enten anvender de foreskrevne angivelser i bilag I, punkt 2. eller værdier bestemt efter bilag III, tillæg 1, punkt 1.1.

2.2. Faktisk drejningsmoment

Drejningsmomentet normaliseres i forhold til det maksimale drejningsmoment ved den pågældende hastighed. Referencecyklusens drejningsmomentværdier denormaliseres ved hjælp af den karakteristik, der er fastlagt i henhold til punkt 1.3., på følgende måde:

Faktisk drejningsmoment = >NUM>% drejningsmoment * maks. drejningsmoment

>DEN>100

for den pågældende faktiske hastighed, bestemt i punkt 2.1.

For de negative drejningsmomentværdier i kørepunkterne (»m«) skal til genering af referencecyklusen anvendes denormaliserede værdier, bestemt på en af følgende måder:

- minus 40 % af det positive drejningsmoment, der er til rådighed i det tilknyttede hastighedspunkt;

- optegning af det negative drejningsmoment, der er nødvendigt for at bringe motoren fra karakteristikkens minimums- til maksimumshastigheden;

- bestemmelse af det negative drejningsmoment, der skal til for at drive motoren i tomgangs- og referencehastighed, og lineær interpolation mellem disse to punkter.

2.3. Eksempel på fremgangsmåden ved denormalisering

Som eksempel vises, hvordan følgende testpunkter denormaliseres:

% hastighed = 43

% drejningsmoment = 82.

Følgende værdier er givet:

referencehastighed = 2 200 o./min.

tomgangshastighed = 600 o./min.

resulterende i:

faktisk hastighed = >NUM>43 * (2 200 600)

>DEN>100

+ 600 = 1 288 o./min.

faktisk drejningsmoment = >NUM>82 * 700

>DEN>100

= 574 Nm

hvor det maksimale drejningsmoment, aflæst på kurvebladet ved 1 288 o./min., er 700 Nm.

3. FORELØBIG EMISSIONSTEST

På fabrikantens begæring kan der gennemføres en forprøve til konditionering af motoren og udstødningssystemet før målecyklusen.

NG- og LPG-drevne motorer tilkøres ved hjælp af en ETC-test. Motoren gennemgår mindst to ETC-cykluser, således at CO-emission, som måles i den ene ETC-cyklus, ikke er mere end 10 % højere end den CO-emission, som er målt i den foregående ETC-cyklus.

3.1. Klargøring af prøvetagningsfiltre

Mindst én time før prøvens gennemførelse skal hvert filter(par) anbringes i en lukket, men ikke tætnet petriskål og stilles til stabilisering i et vejerum. Efter forløbet af stabiliseringsperioden vejes hvert filter(par), og taravægten noteres. Det pågældende filter(par) opbevares derefter i en lukket petriskål eller filterholder, indtil det skal bruges til prøvning. Er det pågældende filter(par) ikke blevet anvendt inden for otte timer efter udtagning af vejerummet, skal det vejes igen før anvendelsen.

3.2. Montering af måleapparaturet

Instrumenter og prøvetagningssonder skal monteres som angivet. Udstødningsrøret skal være tilsluttet systemet.

3.3. Start af fortyndingssystemet og motoren

Fortyndingssystemet og motoren startes og varmes op, indtil alle temperatur- og trykværdier har stabiliseret sig ved fuld belastning i henhold til fabrikantens anbefalinger og god teknisk skik.

3.4. Start af systemet til partikeludskillelse

Systemet til partikeludskillelse startes med omføring (bypass). Fortyndingsluftens baggrundskoncentration af partikler kan bestemmes ved, at fortyndet luft ledes gennem filtrene. Anvendes filtreret fortyndingsluft, kan der foretages en enkelt måling enten før eller efter prøvens udførelse. Hvis fortyndingsluften ikke filtreres, kan der måles ved cyklusens begyndelse og afslutning, og gennemsnittet heraf beregnes.

3.5. Indstilling af fuldstrømsfortyndingssystemet

Totalstrømmen af fortyndet udstødningsgas skal indstilles således, at kondensation af vand i systemet undgås, og således at temperaturen af filteroverfladen ikke overstiger 325 K (52 °C) (jf. bilag V, punkt 2.3.1., DT).

3.6. Kontrol af analysatorerne

Analysatorerne til emissionsbestemmelse skal være nulstillet og kalibreret. Anvendes sække til prøveudtagning, skal de være udsuget.

3.7. Fremgangsmåde ved start af motoren

Den stabiliserede motor startes efter den af fabrikanten i instruktionsbogen givne fremgangsmåde, enten ved hjælp af en startmotor fra produktionen eller dynamometeret. Hvis det ønskes, kan motoren startes direkte fra forkonditioneringsfasen uden at motoren forinden standses, efter at motoren har nået tomgangshastighed.

3.8. Testcyklus

3.8.1. Testsekvens

Testsekvensen påbegyndes, når motoren har nået tomgangshastighed. Testen udføres i henhold til referencecyklusen beskrevet i punkt 2 i dette tillæg. Styresignalerne for motorhastighed og drejningsmoment sættes til 5 Hz (10 Hz anbefales) eller derover. Feedbackværdierne af motorhastighed og drejningsmoment registreres mindst en gang i sekundet under testcyklusen, og signalerne kan filtreres elektronisk.

3.8.2. Analysatorernes respons

Hvis testcyklusen påbegyndes direkte fra forkonditioneringsfasen, skal måleudstyret samtidig startes ved start af motoren eller ved begyndelsen af testsekvensen:

- begynd indsamling eller analysering af fortyndingsluft;

- begynd indsamling eller analysering af fortyndet udstødningsgas;

- begynd måling af mængden af fortyndet udstødningsgas (CVS) og de nødvendige temperatur- og trykmålinger;

- begynd registreringen af feedbackværdier af hastighed og drejningsmoment fra dynamometeret.

HC og NOx skal måles kontinuerligt i fortyndingstunnelen med en frekvens på 2 Hz. Gennemsnitskoncentrationerne bestemmes ved integration af signalerne fra analysatorerne gennem testcyklusen. Systemets responstid må ikke være over 20 s og skal om nødvendigt koordineres med svingninger i CVS-strømmen og prøvetagningstid/testcyklus. CO og CO2 bestemmes ved integration eller ved analyse af koncentrationen i prøveopsamlingssækken, hvor der er opsamlet gennem hele cyklusen. Koncentrationerne af forurenende luftarter i fortyndingsluften bestemmes ved integration eller ved opsamling i baggrundssækken. Alle andre værdier registreres med mindst én måling i sekundet (1 Hz).

3.8.3. Partikelprøvetagning

Hvis testcyklusen påbegyndes direkte fra forkonditioneringsfasen, skal systemet til udskillelse af partikelprøver stilles om fra by-pass til partikeludskillelse, når motoren startes eller testsekvensen påbegyndes.

Hvis der ikke bruges strømningskompensation, skal prøvetagningspumpen (-pumperne) indstilles således, at strømningshastigheden gennem partikelprøvesonde eller overføringsrør holdes på en værdi, der højst afviger ± 5 % fra den indstillede strømningshastighed. Hvis der anvendes strømningskompensation (dvs. proportionalregulering af prøvegasstrømmen), skal det være godtgjort, at forholdet mellem gennemstrømningen i hovedtunnelen og partikelprøvestrømmen højst ændrer sig ± 5 % fra den indstillede værdi (bortset fra de første 10 sekunders prøvetagning).

Bemærkning: Anvendes dobbelt fortynding, er prøvegasstrømmen nettoforskellen mellem strømningshastigheden gennem prøvetagningsfiltre og strømmen af sekundær fortyndingsluft.

Gennemsnitstemperatur og -tryk ved gasmåleren (-målerne) eller flowmeterindgang skal registreres. Hvis den indstillede strømningshastighed ikke kan holdes over hele cyklusen (med en nøjagtighed af ± 5 %) på grund af stor partikelbelastning af filteret, skal testresultaterne kasseres. Testen må da gentages med mindre gennemstrømningshastighed og/eller større filterdiameter.

3.8.4. Stalling

Hvis motoren går i stå, uanset hvor i cyklusen det sker, skal motoren forkonditioneres og genstartes, og prøven gentages. Hvis der optræder fejl i noget af det foreskrevne testudstyr under testcyklusen, skal testresultaterne kasseres.

3.8.5. Operationer efter testen

Efter udførelse af testen standses målingen af rumfanget af den fortyndede udstødningsgas, gastilførslen til opsamlingssækkene samt partikelprøvepumpen. For integrerende analysesystemer skal prøvetagningen fortsætte til udløb af systemets responstider.

Koncentrationerne i opsamlingssækkene skal, hvis de bruges, analyseres snarest muligt og under ingen omstændigheder senere end 20 minutter efter afslutning af testcyklusen.

Efter emissionstesten gentages kontrollen af analysatorerne med anvendelse af en nulstillingsgas og samme kalibreringsgas. Testresultatet anses for tilfredsstillende, hvis forskellen mellem resultatet før og efter testen er mindre end 2 % af kalibreringsgassens værdi.

Partikelfiltrene skal returneres til vejerummet senest en time efter testens afslutning og skal inden vejning konditioneres i en lukket, men ikke tætnet petriskål i mindst en time, men ikke over 80 timer.

3.9. Kontrol af testforløbet

3.9.1. Dataforskydning

For at minimere den skævhed, der skyldes tidsforsinkelsen mellem feedback- og referencecyklus, kan hele sekvensen af feedback-signaler bestående af motorhastighed og drejningsmoment fremskyndes eller forsinkes i forhold til sekvensen af referencehastigheds og -drejningsmomentsignalerne. Hvis feedback-signalerne forskydes, skal hastighed og drejningsmoment forskydes lige meget i samme retning.

3.9.2. Beregning af det udførte arbejde i cyklusen

Det faktisk udførte arbejde under cyklusen Wact (kWh) beregnes ved hjælp af hvert datapar bestående af målt motorhastighed og drejningsmoment. Dette skal ske før der foretages forskydning af feedback-data, hvis man vælger at gøre dette. Det faktiske arbejde Wact (kWh)act benyttes til sammenligning med arbejdet Wref i referencecyklusen og til beregning af de specifikke bremseemissioner (jf. punkt 4.4. og 5.2.). Samme metode anvendes til integration af både referencemotoreffekt og faktisk motoreffekt. Til eventuel bestemmelse af værdier mellem tilstødende referenceværdier eller tilstødende måleværdier anvendes lineær interpolation.

Ved integration af referencearbejde og faktisk udført arbejde i cyklusen skal alle negative drejningsmomentværdier sættes lig nul og medindregnes. Hvis integrationen foretages med mindre frekvens end 5 Hertz, og drejningsmomentet inden for et givet tidsafsnit skifter fortegn fra positivt til negativt eller omvendt, skal den negative del beregnes og sættes lig nul. Den positive del skal medregnes i den integrerede værdi.

Wact skal være mellem minus 15 % og + 5 % af Wref.

3.9.3. Statistiske beregninger til godkendelse af testcyklusen

Der foretages lineær regressionsanalyse af feedback-værdierne på referenceværdierne for hastighed, drejningsmoment og effekt. Dette skal ske efter eventuel forskydning af feedback-data, hvis man vælger at foretage en sådan. Der anvendes mindste kvadraters metode, med bedste tilnærmelse repræsenteret ved en ligning med formen:

y = mx + b

hvor:

y = feedback- (faktisk) hastighed (o./min.), drejningsmoment (Nm), eller effekt (kW)

m = regressionslinjens hældning

x = referenceværdien for hastighed (o./min.) drejningsmoment (NM), eller effekt (kW)

b = regressionslinjens skæring med y-aksen.

For hver regressionslinje beregnes middelfejlen på estimatet (SE) af y på x og determinationskoefficienten (r²).

Det anbefales, at denne analyse foretages ved 1 Hertz. Alle negative værdier af referencedrejningsmomentet samt de tilhørende feedbackværdier skal udgå ved den statistiske beregning til godkendelse af drejningsmoment og effekt under cyklusen. For at en test kan anses for gyldig, skal kriterierne i tabel 6 være opfyldt.

>TABELPOSITION>

Sletning af punkter af regressionsanalyserne er tilladt, hvor dette er nævnt i tabel 7.

>TABELPOSITION>

4. BEREGNING AF FORURENENDE LUFTARTER

4.1. Bestemmelse af den fortyndede udstødningsgasstrøm

Den totale fortyndede udstødningsgasstrøm i hele cyklusen (kg/test) beregnes af måleværdierne for hele cyklusen og de tilsvarende kalibreringsdata for flowmeteret (V0 for PDP eller KV for CFV, som foreskrevet i bilag III, tillæg 5, punkt 2.) Der anvendes følgende formler, såfremt temperaturen af den fortyndede udstødningsgas holdes konstant gennem hele cyklusen ved brug af varmeveksler (± 6 K for et PDP-CVS, ± 11 K for et CFV-CVS, jf. bilag V, punkt 2.3.).

for PDP-CVS systemet:

MTOTW = 1,293 * V0 * Np * (pB p1) * 273 / (101,3 * T)

hvor:

MTOTW = masse af fortyndet udstødningsgas på våd basis i hele cyklusen, kg

V0 = volumen gas pumpet pr. omdrejning under testbetingelserne, m³/omdr.

NP = totalt antal pumpeomdrejninger pr. test

pB = atmosfæretryk i testcelle, kPa

p1 = trykfald under atmosfæretrykket ved pumpeindgang, kPa

T = Gennemsnitstemperatur af fortyndet udstødningsgas ved pumpeindgang gennem hele cyklusen, K.

For CFV-CVS systemet:

MTOTW = 1,293 * t * Kv * pA / T0,5

hvor

MTOTW = masse af den fortyndede udstødningsgas på våd basis i løbet af cyklen, kg

t = cyklustid, s,

Kv = kalibreringsfaktor for kritisk venturi ved standardbetingelser

pA = absolut tryk ved venturiens indgang, kPa

T = absolut temperatur ved venturiens indgang, K.

Anvendes et system med strømningskompensation (dvs. uden varmeveksler) skal de øjeblikkelige masseemissioner beregnes og integreres over hele cyklusen. I så fald beregnes den øjeblikkelige masse af den fortyndede udstødningsgas på følgende måde:

for PDP-CVS systemet:

MTOTW,i = 1,293 * V0 * Np,i * (pB p1) * 273 / (101,3 7 T)

hvor:

MTOTW,i = øjeblikkelige masse af fortyndet udstødningsgas på våd basis, kg

Np,i = totalt antal pumpeomdrejninger pr. tidsinterval

For CFV-CVS systemet:

MTOTW,i = 1,293 * Äti * Kv * pA / T0,5

hvor:

MTOTW,i = øjeblikkelige masse af fortyndet udstødningsgas på våd basis, kg

Äti = tidsinterval, s.

Hvis den samlede masse af udskilte partikler (MSAM) og forurenende luftarter udgør over 0,5 % af den totale CVS-strøm (MTOTW), skal CVS-strømmen korrigeres for MSAM eller partikelprøvestrømmen returneres til CVS før flowmeteret (PDP eller CFV).

4.2. NOx korrektion for fugtindhold og temperatur

Da NOx-emissionen påvirkes af den omgivende luft, skal NOx-koncentrationen korrigeres for temperatur og fugtindhold af den omgivende luft ved hjælp af korrektionsfaktorerne i følgende formler.

a) For dieselmotor:

KH,D = >NUM>1

>DEN>1-0,0182 * (Ha - 10,71)

b) For gasmotorer:

KH,G = >NUM>1

>DEN>1-0,0329 * (Ha - 10,71)

hvor:

Ha = indsugningsluftens fugtindhold

Ha = >NUM>6,220 * Ra * pa

>DEN>pB - pa * Ra * 10-2

hvor:

Ra = indsugningsluftens relative fugtighed i %

pa = indsugningsluftens mætningsdamptryk i kPa

pB = total barometerstand, kPa.

4.3. Beregning af emissionens massestrøm

4.3.1. Systemer med konstant massestrøm

For systemer med varmeveksler bestemmes massen af forurenende stoffer (g/test) ved hjælp af følgende ligninger:

(1) NOx masse = 0,001587 * NOx konc * KH,D * MTOTW (dieselmotorer)

(2) NOx masse = 0,001587 * NOx konc * MTOTW (gasmotorer)

(3) COmasse = 0,000966 * COkonc * MTOTW

(4) HCmasse = 0,000479 * HCkonc * MTOTW (dieselmotorer)

(5) HCmasse = 0,000502 * HCkonc * MTOTW (LPG-drevne motorer)

(6) NMHCmasse = 0,000516 * NMHCkonc * MTOTW (NG-drevne motorer)

(7) CH4 mass = 0,000552 * CH4 konc * MTOTW (NG-drevne motorer)

hvor:

NOx konc, COkonc, HCkonc (8), NMHCkonc = baggrundskorrigerede koncentrationer gennem cyclusen, genereret ved integration (obligatorisk for NOx og HC) eller måling med sæk (kun CO), ppm

MTOTW = total masse af fortyndet udstødningsgas gennem cyklusen, som bestemt i punkt 4.1., kg

KH,D = fugtighedskorrektionsfaktor som bestemt i punkt 4.2

KH,G = fugtighedskorrektionsfaktor for gasmotorer, som bestemt i punkt 4.2

Koncentrationer, der er målt på tør basis, skal omregnes til våd basis som angivet bilag III, tillæg 1, punkt 4.2.

NMHCkonc-bestemmelsen afhænger af den anvendte metode (se bilag III, tillæg 4, punkt 3.3.4). I begge tilfælde skal CH4-koncentrationen bestemmes og trækkes fra HC-koncentrationen på følgende måde:

(a) GC-metoden

NMHCkonc = HCkonc CH4 konc

(b) NMC-metoden

NMHCconc = >NUM>HC(u. afskær) * (1 CEM) HC(m. afskær)

>DEN>CEE CEM

hvor:

HC(m. afskær.) = HC-koncentration, når prøvegassen ledes gennem NMC

HC(u. afskær.) = HC-koncentration, når prøvegassen ledes uden om NMC

CEM = methanvirkningsgrad, bestemt efter bilag III, tillæg 5, punkt 1.8.4.1.

CEE = ethanvirkningsgrad, bestemt efter bilag III, tillæg 5, punkt 1.8.4.2.

4.3.1.1. Bestemmelse af baggrundskorrigerede koncentrationer

For at få nettokoncentrationen af forurenende stoffer skal de gennemsnitlige baggrundskoncentrationer af forurenende luftarter i fortyndingsluften trækkes fra de målte koncentrationer. Baggrundskoncentrationernes gennemsnitsstørrelse kan bestemmes ved prøvesækmetoden eller ved kontinuert måling med integration. Der skal anvendes følgende formler:

konc = konce koncd * (1 (1/DF))

hvor:

konc = koncentration af det pågældende forurenende stof i den fortyndede udstødningsgas, korrigeret for mængden af det pågældende forurenende stof i fortyndingsluften, ppm

konce = koncentration af det pågældende forurenende stof i den fortyndede udstødningsgas, ppm

koncd = målt koncentration af det pågældende forurenende stof i fortyndingsluften, ppm

DF = fortyndingsfaktor.

Fortyndingsfaktoren beregnes således:

(a) for dieselmotorer og LPG-drevne gasmotorer

DF = >NUM>FS

>DEN>CO2 konce + (HCkonce + COkonce) * 10-4

(b) for NG-drevne gasmotorer

DF = >NUM>FS

>DEN>CO2 konce + (NMHCkonce + COkonce) * 10-4

hvor:

CO2, konce = koncentration af CO2 i den fortyndede udstødningsgas, % v/v

HCkonce = koncentration af HC i den fortyndede udstødningsgas, ppm C1

NMHCkonce = koncentration af NMHC i den fortyndede udstødningsgas, ppm C1

COkonce = koncentration af CO2 i den fortyndede udstødningsgas, ppm

FS = støkiometrisk koefficient

Koncentrationer, der er målt på tør basis, skal omregnes til våd basis som angivet i bilag III, tillæg 1, punkt 4.2.

Den støkiometriske koefficient beregnes således:

FS = 100 * >NUM>x

>DEN>x + >NUM>y

>DEN>2

+ 3,76 * (x + >NUM>y

>DEN>4

)

hvor:

x,y = brændstoffets sammensætning CxHy

Kendes brændstoffets sammensætning ikke, kan der i stedet anvendes følgende støkiometriske koefficienter:

FS (diesel) = 13,4

FS (LPG) = 11,6

FS (NG) = 9,5

4.3.2. Systemer med strømningskompensation

For systemer uden varmeveksler bestemmes massen af forurenende stoffer (g/test ved beregning af den øjeblikkelige masseemission og integration af de øjeblikkelige værdier over hele cyklusen. Desuden skal de øjeblikkelige koncentrationsværdier direkte korrigeres for baggrundskoncentration. Der anvendes følgende formler:

>START GRAFIK>

(1) NOxmasse = n

Ó

i = 1

(MTOTW,i * NOxconce,i * 0,001587 * KH,D)

(MTOTW * NOxconcd * (1 1/DF) * 0,001587 * KH,D) (dieselmotorer)>SLUT GRAFIK>

>START GRAFIK>

(2) NOxmasse = n

Ó

i = 1

(MTOTW,i * NOxkonce,i * 0,001587 * KH,G)

(MTOTW * NOxkoncd * (1 1/DF) * 0,001587 * KH,G) (gasmotorer)>SLUT GRAFIK>

>START GRAFIK>

(3) COmasse = n

Ó

i = 1

(MTOTW,i * COkonce,i * 0,000966)

(MTOTW * COkoncd * (1 1/DF) * 0,000966)>SLUT GRAFIK>

>START GRAFIK>

(4) HCmasse = n

Ó

i = 1

(MTOTW,i * HCkonce,i * 0,000479)

(MTOTW * HCkoncd * (1 1/DF) * 0,000479) (dieselmotorer)>SLUT GRAFIK>

>START GRAFIK>

(5) HCmasse = n

Ó

i = 1

(MTOTW,i * HCkonce,i * 0,000502)

(MTOTW * HCkoncd * (1 1/DF) * 0,000502) (LPG-motorer)>SLUT GRAFIK>

>START GRAFIK>

(6) NMHCmasse = n

Ó

i = 1

(MTOTW,i * NMHCkonce,i * 0,000516)

(MTOTW * NOxkoncd * (1 1/DF) * 0,000516) (NG-motorer)>SLUT GRAFIK>

>START GRAFIK>

(7) CH4 masse = n

Ó

i = 1

(MTOTW,i * CH4 konce,i * 0,000552)

(MTOTW * CH4 koncd * (1 1/DF) * 0,000552) (NG-motorer)>SLUT GRAFIK>

hvor:

konce = koncentration af det pågældende forurenende stof, målt i den fortyndede udstødningsgas, ppm

koncd = koncentration af det pågældende forurenende stof, målt i fortyndingsluften, ppm

MTOTW,i = øjeblikkelig masse af fortyndet udstødningsgas (se punkt 4.1.), kg

MTOTW = total masse af fortyndet udstødningsgas gennem hele cyklusen (se punkt 4.1.), kg

KH,D = fugtighedskorrektionsfaktor som bestemt i punkt 4.2.

KH,G = fugtighedskorrektionsfaktor for gasmotorer som bestemd i punkt 4.2

DF = fortyndingsfaktor som bestemt i punkt 4.3.1.1.

4.4. Beregning af specifikke emissioner

De specifikke emissioner (g/kWh) beregnes for alle enkeltkomponenter som følger:

>START GRAFIK>

NOx>SLUT GRAFIK>

= NOxmass/Wact (diesel- og gasmotorer)

>START GRAFIK>

CO>SLUT GRAFIK>

= COmasse/Wact (diesel- og gasmotorer)

>START GRAFIK>

HC>SLUT GRAFIK>

= HCmasse/Wact (dieselmotorer og LPG-drevne gasmotorer)

>START GRAFIK>

NMHC>SLUT GRAFIK>

= NMHCmasse/Wact (NG-drevne gasmotorer)

>START GRAFIK>

CH4>SLUT GRAFIK>

= CH4 masse/Wact (NG-drevne gasmotorer)

hvor:

Wact = faktisk arbejde i cyklus som bestemt i punkt 4.9.2. kWh.

5. BEREGNING AF PARTIKELEMISSIONEN

5.1. Beregning af massestrøm

Partikelmassestrømmen (g/test) beregnes på følgende måde:

PTmasse = >NUM>Mf

>DEN>MSAM

* >NUM>MTOTW

>DEN>1 000

hvor:

Mf = partikelmasse opsamlet gennem cyklus, mg

MTOTW = total masse af fortyndet udstødningsgas gennem cyklus, som bestemt i punkt 4.1, kg

MSAM = masse af fortyndet udstødningsgas udtaget af fortyndingstunnelen til udskillelse af partikler, kg

og

Mf = Mf,p + Mf,b, hvis disse vejes separat, mg

Mf,p = partikelmasse udskilt på hovedfilter, mg

Mf,b = partikelmasse udskilt på ekstrafilter, mg

Anvendes dobbelt fortyndingssystem, skal massen af sekundær fortyndingsluft trækkes fra den samlede masse af den dobbelt fortyndede udstødningsgas udskilt af partikelfiltrene.

MSAM = MTOT MSEC

hvor:

MTOT = masse af dobbelt fortyndet udstødningsgas gennem partikelfilter, kg

MSEC = Masse af sekundær fortyndingsluft, kg.

Hvis fortyndingsluftens baggrundsniveau af partikler er bestemt i henhold til punkt 3.4, kan partikelmassen baggrundskorrigeres. I så fald beregnes partikelmassen (g/test) på følgende måde:

PTmasse = [

>NUM>Mf

>DEN>MSAM

- (

>NUM>Md

>DEN>MDIL

* (1 - >NUM>1

>DEN>DF

))] * >NUM>MTOTW

>DEN>1 000

hvor:

Mf, MSAM, MTOTW = se ovenfor

MDIL = masse af primær fortyndingsluft, udtaget af baggrundspartikeludskiller, kg

Md = masse af udskilte baggrundspartikler i primær fortyndingsluft, mg

DF = fortyndingsfaktor som bestemt i punkt 4.3.1.1.

5.2. Beregning af den specifikke emission

Den specifikke partikelemission (g/kWh) beregnes på følgende måde:

>START GRAFIK>

PT>SLUT GRAFIK>

= PTmasse/Wact

hvor:

Wact = faktisk i cyklus som bestemt i punkt 3.9.2, kWh.

Tillæg 3

DYNAMOMETERSKEMA FOR ETC-TEST

>TABELPOSITION>

ETC-dynamometerskemaet er vist grafisk nedenfor.

Figur 5 ETC-dynamometerskemaet

>REFERENCE TIL EN GRAFIK>

Tillæg 4

MÅLE- OG PRØVETAGNINGSMETODER

1. INDLEDNING

Gasformige komponenter, partikler og røg afgivet af den afprøvede motor skal måles med de metoder, der er beskrevet i bilag V. I de pågældende afsnit af bilag V beskrives de anbefalede analysesystemer for forurenende luftarter (punkt 1.), de anbefalede systemer til partikelfortynding og -udskillelse (punkt 2.), og de anbefalede opacimetre til røgtæthedsmåling (punkt 3.).

I ESC-testen skal de gasformige komponenter bestemmes i den ufortyndede rå udstødningsgas. Anvendes et totalstrømsfortyndingssystem til partikelbestemmelse, kan man vælge også at bestemme gasemissionen i den fortyndede udstødningsgas. Bestemmelse af partikler finder sted enten med et delstrøms- eller fuldstrømsfortyndingssystem.

Til ETC-testen må kun et fuldstrømsfortyndingssystem anvendes til bestemmelse af forurenende luftarter og partikler, og dette system regnes for referencesystem. Dog kan delstrømsfortyndingssystemer godkendes af den tekniske tjeneste, såfremt deres ækvivalens i henhold til bilag I, punkt 6.2. godtgøres, og såfremt der forelægges en detaljeret beskrivelse af procedurerne til dataevaluering og beregning for den tekniske tjeneste.

2. DYNAMOMETER OG TESTCELLE

Til emissionsprøvning af motorer på motordynamometer skal følgende udstyr anvendes:

2.1. Motordynamometer

Der skal anvendes et motordynamometer med specifikationer, der gør det velegnet til udførelse af testcyklerne beskrevet i tillæg 1 og 2 til dette bilag. Hastighedsmålesystemets nøjagtighed skal være ± 2 % af den aflæste værdi. Systemet til måling af drejningsmoment skal have en nøjagtighed på ± 3 % af aflæsningen i området > 20 % af fuldskalaværdien og en nøjagtighed på ± 0,6 % af fuldskalaværdien i området ≤ 20 % af fuldskalaværdien.

2.2. Andre instrumenter

I nødvendigt omfang skal anvendes instrumenter til måling af brændstofforbrug, luftforbrug, temperatur af kølemiddel og smøremiddel, udstødningsgastryk og indsugningsmanifoldvakuum, udstødningsgastemperatur, indsugningslufttemperatur og -fugtindhold samt brændstoftemperatur. Disse instrumenter skal opfylde kravene i tabel 8:

>TABELPOSITION>

2.3. Udstødningsgasstrøm

For at beregne emissionerne i den ufortyndede udstødningsgas må man kende udstødningsgasstrømmen (se punkt 4.4. i tillæg 1). Til bestemmelse af udstødningsstrømmen kan en af følgende metoder anvendes:

a) Direkte måling af udstødningsgasstrømmen med venturidyse eller tilsvarende målesystem;

b) Måling af luftstrømmen og brændstofstrømmen med passende målesystemer og beregning af udstødningsstrømmen ved følgende ligning:

GEXHW = GAIRW + GFUEL (for våd masse af udstødning)

Nøjagtigheden af bestemmelsen af udstødningsstrømmen skal være ± 2,5 % af aflæst værdi eller bedre.

2.4. Fortyndet udstødningsgasstrøm

For at beregne emissionerne i den ufortyndede udstødningsgas med et fuldstrømsfortyndingssystem (påbudt for ETC-cyklusen) må man kende den fortyndede udstødningsgasstrøm (se punkt 4.3. i tillæg 2). Den samlede massestrøm af fortyndet udstødningsgas (GTOTW) eller den samlede masse af den fortyndede udstødningsgas gennem hele cyklusen (MTOTW) skal måles med et PDP- eller CFV-system (bilag V, punkt 2.3.1.). Nøjagtigheden skal være ± 2 % af aflæsning eller bedre og bestemmes efter bilag III, tillæg 5, punkt 2.4.

3. BESTEMMELSE AF GASSENS KOMPONENTER

3.1. Almindelige specifikationer for analysatorerne

Analysatorernes måleområde skal være passende til den foreskrevne nøjagtighed ved bestemmelse af koncentrationen af udstødningsgassens komponenter. Det anbefales, at analysatorerne benyttes således, at den målte koncentration er mellem 15 % og 100 % af fuld skalavisning.

Dog kan det godtages, at der måles værdier under 15 % af fuld skalavisning, såfremt der benyttes udlæsningssystemer (datamater eller dataloggere) med tilstrækkelig nøjagtighed og opløsningsevne ved værdier under 15 % af måleområdets øverste værdi. I så fald skal der foretages ekstra kalibreringer på mindst 4 ensartet fordelte punkter med værdi forskellig fra nul for at sikre, at kalibreringskurverne er nøjagtige i henhold til bilag III, tillæg 5, punkt 1.5.5.2.

Udstyrets elektromagnetiske kompatibilitet skal være således, at yderligere fejl mindskes til det mindst mulige.

3.1.1. Målefejl

Den samlede måleusikkerhed, herunder krydsreaktion med andre luftarter (jf. bilag III, tillæg 5, punkt 1.9.) må ikke være over ± 5 % af aflæst værdi, dog højst ± 3,5 % af fuld skalavisning. For koncentrationer under 100 ppm må måleusikkerheden ikke være over ± 4 ppm.

3.1.2. Repteterbarhed

For måleområder over 155 ppm (eller ppm C) må repeterbarheden, defineret som 2,5 gange standardafvigelsen af 10 gentagne målinger på en given kalibreringsgas, ikke være over ± 1 % af fuldt skalaudslag; for måleområder under 155 ppm (eller ppm C) må repeterbarheden ikke være over ± 2 %.

3.1.3. Støj

Apparatets top-til-top respons på nulstillingsgas og kalibreringsgas må i et vilkårligt 10 sekunders interval ikke overstige 2 % af fuldt skalaudslag i noget måleområde.

3.1.4. Nulpunktsforskydning

Nulpunktsforskydningen skal inden for en periode på 1 time være mindre end 2 % af fuldt skalaudslag i det laveste anvendte måleområde. Ved nulpunktsrespons forstås gennemsnitsrespons, herunder støj, på en nulstillingsgas inden for et tidsrum af 30 sekunder.

3.1.5. Forskydning af relativ respons

Forskydningen af den relative respons må i løbet af en time ikke overstige 2 % af fuldt skalaudslag i det laveste anvendte måleområde. Ved relativ respons forstås forskellen mellem responsen på kalibreringsgas og responsen på nulstillingsgas. Ved responsen på kalibreringsgassen forstås gennemsnitsrespons, inklusive støj, på en kalibreringsgas inden for et tidsrum af 30 sekunder.

3.2. Tørring af gassen

Anordningen til gastørring, der er frivillig, skal have minimal indvirkning på koncentrationen af de målte luftarter. Der må ikke anvendes kemiske tørremidler til fjernelse af vand i prøven.

3.3. Analysatorer

Punkt 3.3.1. til 3.3.4. beskriver de måleprincipper, der skal anvendes. En detaljeret beskrivelse af målesystemerne findes i bilag V. Luftarterne analyseres ved hjælp af de i det følgende angivne instrumenter. For ikke-lineære analysatorer tillades brug af lineariseringskredse.

3.3.1. Bestemmelse af carbonmonoxid (CO)

Carbonmonoxid-analysatoren skal være et ikke-dispersivt infrarødabsorptionsapparat (NDIR).

3.3.2. Bestemmelse af kuldioxid (CO2)

Carbondioxid-analysatoren skal være et ikke-dispersivt infrarødabsorptionsapparat (NDIR).

3.3.3. Bestemmelse af carbonhydrider (HC)

Carbonhydridanalysatoren skal være af typen opvarmet flammeiondetektor (HFID), hvor detektor, ventiler, ledninger mv. er opvarmet, således at gastemperaturen holdes på 463 K ± 10 K (190 ± 10 °C).

3.3.4. Analyse af andre carbonhydrider end methan (NMHC) (kun NG-drevne gasmotorer)

Carbonhydrider bortset fra methan bestemmes med en af følgende metoder:

3.3.4.1. Gaskromatografisk bestemmelse (GC)

Indholdet af carbonhydrider bortset fra methan bestemmes ved, at methanindholdet, analyseret ved gaskromatografi (GC), konditioneret ved 423 K (150°C), trækkes fra carbonhydridindholdet, målt efter punkt 3.3.3.

3.3.4.2. Bestemmelse af carbonhydrider bortset fra methan ved afskæringsmetoden (NMC-metoden)

Bestemmelsen af den ikke-methanholdige fraktion udføres med opvarmet NMC, der betjenes svarende til en FID som angivet i punkt 3.3.3, idet indholdet af methan trækkes fra indholdet af carbonhydrider.

3.3.5. Bestemmelse af nitrogenoxider (NOx)

Måles der på tør basis, skal nitrogenoxid-analysatoren enten være en kemiluminescensdetektor (CLD) eller opvarmet kemiluminescensdetektor (HCLD) med NO2/NO-konverter. Måles der på våd basis, skal der anvendes en HCLD med konverter, hvis temperatur holdes over 328 K (55 °C), forudsat at resultatet af vanddæmpningsprøven (bilag III, tillæg 5, punkt 1.9.2.2.) er tilfredsstillende.

3.4. Prøveudtagning til bestemmelse af forurenende luftarter

3.4.1. Ufortyndet udstødningsgas (kun ESC)

Prøvetagningssonder til bestemmelse af forurenende luftarter skal være monteret i en afstand af mindst 0,5 m, dog mindst tre gange udstødningsrørets diameter, oven for udstødningsgassystemets afgang og tilstrækkelig tæt på motoren til at sikre en udstødningsgastemperatur på mindst 343 K (70 °C) ved sonden.

Er der tale om en flercylindret motor med forgrenet udstødningsmanifold, skal prøvetagningssonden være placeret så langt nede, at det sikres, at prøven er repræsentativ for den gennemsnitlige emission fra alle cylindrene. På flercylindrede motorer med flere separate udstødningsmanifolder, f. eks. V-motorer, kan det tillades, at der tages en prøve fra hver cylindergruppe og beregnes en gennemsnitsemission deraf. Andre metoder kan benyttes, hvis det er godtgjort, at de korrelerer med ovenstående metoder. Til beregning af emissionen fra udstødningen skal motorens samlede udstødningsmassestrøm anvendes.

Har motoren anordning til efterbehandling af udstødningen, skal udstødningsgasprøven tages neden for efterbehandlingsanordningen.

3.4.2. Fortyndet udstødningsgas (påbudt for ETC, frivillig for ESC)

Udstødningsrøret mellem motoren og fuldstrømsfortyndingssystemet skal opfylde kravene i bilag V, punkt 2.3.1, EP.

Prøvetagningssonden (-sonderne) for forurenende luftarter skal være placeret et sted i fortyndingstunnelen, hvor fortyndingsluft og udstødningsgas er godt opblandet og tæt på prøvetagningssonden for partikler.

4. BESTEMMELSE AF PARTIKELINDHOLD

Til bestemmelse af partikler kræves et fortyndingssystem. Fortynding kan ske ved et delstrømsfortyndingssystem (kun ESC) eller et fuldstrømsfortyndingssystem (obligatorisk for ETC). Fortyndingssystemet skal have tilstrækkelig strømningskapacitet til helt at udelukke dannelse af kondensvand i fortyndings- og prøvetagningssystemer og holde temperaturen af den fortyndede udstødningsgas på 325 K (52 °C) eller derunder umiddelbart opstrøms for filterholderne. Affugtning af fortyndingsluften før den tilføres fortyndingssystemet er tilladt og især nyttig, når fortyndingsluftens fugtindhold er højt. Temperaturen af fortyndingsluften skal være 298 K ±5 K (25 °C ± 5 °C). Er temperaturen af den omgivende luft under 293 K (20 °C), anbefales forvarmning af fortyndingsluften til en temperatur over den øvre grænseværdi på 303 K (30 °C). Fortyndingsluftens temperatur må dog ikke være over 325 K (52 °C) før udstødningsgassen tilføres fortyndingstunnelen.

I delstrømsfortyndingssystemet opdeles udstødningsstrømmen i to delstrømme, af hvilke den mindste fortyndes med luft og derefter anvendes til partikelbestemmelse. Det er her af afgørende vigtighed, at fortyndingsforholdet bestemmes meget nøje. Andre delingsmetoder kan anvendes, i hvilket tilfælde den anvendte type deling i vid udstrækning er bestemmende for det prøvetagningsudstyr og de prøvetagningsmetoder, der skal anvendes (bilag V, punkt 2.2.). Partikelprøvetagningssonden skal være placeret tæt ved prøvetagningssonden for forurenende luftarter, og installationen skal opfylde bestemmelserne i punkt 3.4.1.

Til bestemmelse af partikelmasse kræves et prøveudtagningssystem til partikelbestemmelse, partikelfiltre, en mikrogramvægt og et vejerum med temperatur- og fugtighedsregulering.

Prøvetagning af partikler skal ske ved enkeltfiltermetoden, hvor der anvendes ét par filtre (jf. punkt 4.1.3.) til hele testcyklusen. Ved ESC-test skal prøvetagningstid og -strøm overvåges nøje i prøvetagningsfasen.

4.1. Partikeludskillelsesfiltre

4.1.1. Filterspecifikation

Der kræves glasfiberfiltre med fluor-kulstofbelægning eller membranfiltre på fluor-kulstofbasis. Alle filtertyper skal have en udskillelsesgrad på mindst 95 % for 0,3 ì DOP (dioktylphthalat) ved en lineær gasfiltreringshastighed på mellem 35 og 80 cm/s.

4.1.2. Filterstørrelse

Partikelfiltrenes diameter skal være mindst 47 mm (pletdiameter 37 mm). Større filterdiameter kan godtages (punkt 4.1.5.).

4.1.3. Hovedfiltre og ekstrafiltre

Prøven af den fortyndede udstødningsgas udtages under testsekvensen ved hjælp af et par filtre placeret i serie (et hovedfilter og et ekstrafilter). Ekstrafilteret må højst være placeret 100 mm nedstrøms for hovedfilteret og må ikke berøre dette. Filtrene kan enten vejes enkeltvis eller parvis; i sidstnævnte tilfælde anbringes filtrene med pletsiderne mod hinanden.

4.1.4. Filtreringshastighed

Gassens lineære hastighed gennem filteret skal være 35 til 80 cm/s. Stigningen i trykfaldet mellem testens begyndelse og slutning må ikke være over 25 kPa.

4.1.5. Filterbelastning

Ved brug af enkeltfiltermetoden anbefales en filterbelastning på mindst 0,5 mg/1 075 mm2 pletareal. I tabel 9 er angivet værdier for de mest anvendte filterstørrelser.

>TABELPOSITION>

4.2. Specifikationer for vejerum og analysevægt

4.2.1. Vejerum

Temperaturen af det vejerum (eller -lokale), hvor partikelfiltrene konditioneres og vejes, skal være 295 K (22 °C ± 3 °C) ved al konditionering og vejning af filtre. Luftfugtigheden skal holdes på et niveau svarende til et dugpunkt på 282,5 K ± 3 K (9,5 °C ± 3 °C) og en relativ fugtighed på 45 % ± 8 %.

4.2.2. Vejning af referencefiltre

Luften i vejekammer (eller -rum) skal være fri for kontaminanter (såsom støv), der kan sætte sig på partikelfiltrene, medens de stabiliseres. Forstyrrelser i vejerummets specifikationer i henhold til beskrivelsen i punkt 4.2.1. kan tillades, hvis forstyrrelsernes varighed ikke er over 30 minutter. Vejerummet skal opfylde de foreskrevne specifikationer, inden personer træder ind i vejerummet. Der vejes mindst to ubrugte referencefiltre eller -filterpar; dette finder sted højst fire timer før eller efter vejning af prøvefiltrene, men helst samtidig dermed. Referencefiltrene skal være af samme størrelse og materiale som prøvefiltrene.

Hvis gennemsnitsvægten af referencefiltre (referencefilterpar) mellem vejningerne af prøvefiltrene varierer mere end ± 5 % (hhv. ± 7,5 % for filterpar) af den anbefalede mindste filterbelastning (punkt 4.1.5.), skal alle prøvefiltre kasseres og emissionstesten gentages.

Hvis de i punkt 4.2.1. angivne kriterier for stabilitet af vejerummet ikke er opfyldt, men referencefilteret (filterparret) opfylder ovenstående kriterier, står det motorfabrikanten frit at godtage de målte vægte af prøvefiltrene eller at kassere testresultaterne, bringe vejerummets reguleringssystem i orden og gentage testen.

4.2.3. Analysevægt

Til vejning af filtrene skal anvendes en vægt med en præcision (standardafvigelse) på 20 ìg og en opløsning på 10 ìg (1 ciffer = 10 ìg). Til filtre med diameter under 70 mm skal vægtens præcision og opløsning være henholdsvis 2 ìg og 1 ìg.

4.2.4. Elimination af virkningerne af statisk elektricitet

For at eliminere virkningerne af statisk elektricitet skal filtrene neutraliseres før vejning, hvilket kan ske ved brug af en jordledning af polonium eller en anordning med tilsvarende virkning.

4.3. Supplerende specifikationer for partikelbestemmelse

Alle de dele af fortyndingssystem og prøvetagningssystem, der er placeret mellem udstødningsrør og filterholder og er i kontakt med ufortyndet og fortyndet udstødningsgas, skal være udformet således, at de giver anledning til mindst mulig afsætning eller ændring af partikler. Alle dele skal være fremstillet af elektrisk ledende materialer, der ikke reagerer med udstødningsgassens komponenter, og skal være jordforbundet, således at elektrostatiske virkninger undgås.

5. BESTEMMELSE AF RØGTÆTHED

Dette punkt indeholder specifikationer for påbudt og frivilligt testudstyr til anvendelse ved ELR-testen. Røgtætheden skal måles med et opacimeter, som kan indstilles til udlæsning af opacitet (røgtæthed) og lysabsorptionskoefficient. Indstillingen til udlæsning af opacitet må kun anvendes til kalibrering og kontrol af apparatet. Til måling af røgtætheden under testcyklus skal apparatet være indstillet til måling af lysabsorptionskoefficient.

5.1. Generelle forskrifter

Til ELR-test skal det til røgtæthedsmåling og databehandling anvendte system have tre funktionelle enheder. Disse enheder kan være sammenbygget i én enkelt enhed eller kan forefindes som et system af indbyrdes forbundne komponenter. De tre funktionelle enheder er:

- et opacimeter, som opfylder forskrifterne i bilag V, punkt 3.

- en databehandlingsenhed, som er i stand til at udføre de i bilag III, tillæg 1, punkt 6. beskrevne funktioner

- en printer og/eller et elektronisk lagringsmedium til registrering og udlæsning af de røgtæthedstal, som foreskrives i bilag III, tillæg 1, punkt 6.3.

5.2. Særlige krav

5.2.1. Linearitet

Systemet skal være lineært inden for ± 2 % røgtæthed.

5.2.2. Nulpunktsforskydning

Nulpunktsforskydningen må inden for et tidsrum af 1 time ikke være over ± 1 % røgtæthed.

5.2.3. Opacimeterets skalavisning og måleområde

Ved aflæsning af opacitet skal måleområdet være opacitet mellem 0 og 100 % med en aflæsenøjagtighed på 0,1 % opacitet. Til aflæsning af lysabsorptionskoefficient skal området være 0 30 m-1 lysabsorptionskoefficient, og aflæsenøjagtigheden 0,01 m1 lysabsorptionskoefficient.

5.2.4. Instrumentets responstid

Opacimeterets fysiske responstid må ikke være over 0,2 s. Den fysiske responstid er den tid, det tager aflæsningen på en hurtigreagerende modtageenhed at nå fra 10 til 90 % af hele ændringen, når opaciteten af den målte gas ændrer sig i løbet af mindre end 0,1 s.

Opacimeterets elektriske responstid må ikke være over 0,05 s. Den elektriske responstid er den tid, det tager aflæsningen på en hurtigreagerende modtageenhed at nå fra 10 til 90 % af fuld skalavisning, når lyskilden afbrydes eller fuldstændig slukkes i løbet af mindre end 0,01 s.

5.2.5. Neutralfiltre

For eventuelle neutralfiltre, der anvendes i forbindelse med kalibrering, linearitetsmåling eller nulstilling af opacimeteret, skal værdien være kendt med en nøjagtighed på 1,0 % opacitet. Nøjagtigheden af filterets nominelle værdi skal kontrolleres mindst en gang årligt ved hjælp af en reference, der kan henføres til en national eller international standard.

Neutralfiltre er præcisionsudstyr, som let kan blive beskadiget under brug. Håndteringen bør indskrænkes til det mindst mulige og bør, når den er nødvendig, ske med forsigtighed for at undgå at filteret ridses eller tilsmudses.

Tillæg 5

KALIBRERINGSMETODE

1. KALIBRERING AF ANALYSEAPPARATURET

1.1. Introduktion

Hver analysator skal kalibreres så ofte som nødvendigt til opfyldelse af nøjagtighedskravene i dette direktiv. I dette punkt beskrives den kalibreringsmetode, som skal anvendes til analysatorerne omhandlet i bilag III, tillæg 4, punkt 3 samt i bilag V, punkt 1.

1.2. Kalibreringsgasser

For alle anvendte kalibreringsgasser skal holdbarhedsperioden overholdes.

Den af for kalibreringsgassens fabrikant angivne udløbsdato skal registreres.

1.2.1. Rene gasser

Renhedskravene til gasserne er fastlagt ved nedenstående renhedsgrænser. Følgende gasser skal være til rådighed til anvendelse ved prøven:

Renset kvælstof

(Urenheder ≤ 1 ppm C1, ≤ 1 ppm CO, ≤ 400 ppm CO2, ≤ 0,1 ppm NO).

Renset ilt

(Renhed > 99,5 % v/v 02).

Hydrogen-helium blanding

(40 ± 2 % hydrogen, resten helium)

(Urenheder ≤ 1 ppm C1, ≤ 400 ppm CO2).

Renset syntetisk luft

(Urenheder ≤ 1 ppm C1, ≤ 1 ppm CO, ≤ 400 ppm CO2, ≤ 0,1 ppm NO)

(Oxygenindhold mellem 18 og 21 % v/v).

Renset propan eller CO til CVS-kontrol.

1.2.2. Kalibrerings- og nulstillingsgasser

Blandinger med følgende kemiske sammensætning skal være til rådighed:

C3H8 og renset syntetisk luft (se punkt 1.2.1.);

CO og renset kvælstof

NOx og renset kvælstof (indholdet af NO2 i denne kalibreringsgas må ikke være over 5 % af NO-indholdet);

CO2 og renset kvælstof

CH4 og renset syntetisk luft

C2H6 og renset syntetisk luft.

Bemærkning: Andre gaskombinationer er tilladt, forudsat at gasserne ikke reagerer indbyrdes.

Den faktiske koncentration i en kalibrerings- eller nulstillingsgas må ikke afvige mere end ± 2 % fra den nominelle. Alle koncentrationer for kalibreringsgasser skal angives på volumenbasis (% v/v eller ppm v/v).De til kalibrering og nulstilling anvendte gasblandinger kan også fremstilles med et gasdeleapparat ved fortynding med renset N2 eller med renset syntetisk luft. Blanderens nøjagtighed skal være således, at koncentrationen af fortyndet kalibreringsgas kan bestemmes med en nøjagtighed på ± 2 %.

1.3. Betjening af analysatorer og prøvetagningssystem

Ved betjening af analysatorer skal fabrikantens anvisninger for opstart og betjening følges. Mindstekravene i punkt 1.4. til 1.9. skal være overholdt.

1.4. Tæthedsprøve

Systemet skal gennemgå en tæthedsprøve. Sonden afbrydes fra udstødningssystemet, og dens ende tilproppes. Analysatorens pumpe startes. Efter den indledende stabilisering skal alle strømningsmålere vise nul. Hvis ikke, kontrolleres prøvetagningsledningerne, og fejlen rettes.

På vakuumsiden tillades en utæthed svarende til højst 0,5 % af den indgående gasstrøm i den afprøvede del af systemet. Størrelsen af den aktuelt anvendte gasstrøm kan skønnes ud fra størrelsen af strømmen gennem analysator og omledningsforbindelse.

En anden metode er at påføre systemet en pludselig ændring af koncentrationen i begyndelsen af prøvetagningsledningen ved at skifte fra nulstillings- til kalibreringsgas. Hvis der efter et passende tidsrum aflæses lavere koncentration end den tilførte koncentration, er det tegn på kalibreringsfejl eller utæthed.

1.5. Kalibreringsmetode

1.5.1. Instrumenter

Til kalibrering af instrumenter og kontrol af kalibreringskurve benyttes standardluftarter. Gasstrømningshastigheden skal være den samme som ved udtagning af prøve af udstødningsgassen.

1.5.2. Opvarmningstid

Opvarmningstiden skal være som anbefalet af fabrikanten. Er der ikke angivet nogen opvarmningstid, anbefales en opvarmningstid på mindst to timer for analysatorerne.

1.5.3. NDIR (infrarødabsorptions-) og HFID (flammeion-) analysatorer

NDIR-analysatoren indstilles om nødvendigt, og HFID-analysatorens forbrændingsflamme optimeres (punkt 1.8.1.).

1.5.4. Kalibrering

Der kalibreres i hvert af de normalt anvendte måleområder.

Analysatorerne for CO, CO2, NOx og HC nulstilles med renset syntetisk luft (eller nitrogen).

Den pågældende kalibreringsgas tilføres analysatorerne, værdierne registreres, og kalibreringskurven optegnes i overensstemmelse med punkt 1.5.5.

Om nødvendigt gentages kontrollen af nulstillingen og kalibreringen.

1.5.5. Optegning af kalibreringskurve

1.5.5.1. Almindelige retningslinjer

Analysatorens kalibreringskurve optegnes på grundlag af mindst fem kalibreringspunkter (nulpunktet ikke medregnet), der skal være så jævnt fordelt som muligt. Den højeste nominelle koncentration skal svare til mindst 90 % af fuldt skalaudslag.

Kalibreringskurven beregnes ved hjælp af mindste kvadraters metode. Hvis der derved fremkommer et polynomium af højere end tredje grad, skal antal kalibreringspunkter (nulpunktet medregnet) mindst være lig polynomiets grad plus to.

Kalibreringskurven på højst afvige ± 2 % fra den nominelle størrelse af hvert kalibreringspunkt og højst ± 1 % af fuldt skalaudslag i nulpunktet.

Af kalibreringskurve og kalibreringspunkterne vil det kunne konstateres, om kalibreringen er korrekt udført. Analysatorernes specifikationer skal angives, navnlig:

- måleområde

- følsomhed

- kalibreringsdato.

1.5.5.2. Kalibrering ved mindre end 15 % af fuldt skalaudslag

Analysatorens kalibreringskurve optegnes på grundlag af mindst fire supplerende kalibreringspunkter (nulpunktet ikke medregnet), der skal være så jævnt fordelt som muligt i området under 15 % af fuldt skalaudslag.

Kalibreringskurven beregnes ved hjælp af mindste kvadraters metode.

Kalibreringskurven på højst afvige ± 4 % fra den nominelle størrelse af hvert kalibreringspunkt og højst ± 1 % af fuldt skalaudslag i nulpunktet.

1.5.5.3. Alternative metoder

Hvis det kan godtgøres, at tilsvarende nøjagtighed kan opnås med alternativ teknologi (f.eks. computer, elektronisk styret områdevælger osv.), kan sådanne alternativer benyttes.

1.6. Efterprøvning af kalibreringen

Før hver bestemmelse skal hvert af de normalt anvendte måleområder efterprøves på følgende måde:

Kalibreringen kontrolleres ved hjælp af en nulstillingsgas og en kalibreringsgas med nominel koncentration på over 80 % af fuldt skalaudslag i det pågældende måleområde.

Afviger kontrolværdierne for de to nævnte punkter højst ± 4 % af fuldt skalaudslag fra den angivne referenceværdi, kan indstillingsparametrene ændres. I modsat fald skal der optegnes en ny kalibreringskurve i overensstemmelse med punkt 1.5.5.

1.7. Kontrol af NOx-konverterens virkningsgrad

Virkningsgraden af konverteren, der anvendes til konvertering af NO2 til NO, kontrolleres som anført i punkt 1.7.1. til 1.7.8. (fig. 6).

1.7.1. Prøveopstilling

Ved hjælp af prøveopstillingen vist i fig. 6 (se også bilag III, tillæg 4, punkt 3.3.5.) og nedenstående fremgangsmåde kontrolleres konverterens virkningsgrad med en ozonisator.

1.7.2. Kalibrering

CLD- og HCLD-apparaterne kalibreres i det mest anvendte arbejdsområde efter fabrikantens anvisninger ved hjælp af nulstillings- og kalibreringsgas (NO-indholdet deri skal være ca. 80 % af arbejdsområdet, og NO2-koncentrationen i gasblandingen under 5 % af NO-koncentrationen). NOx-analysatoren skal være stillet på NO-måling, således at kalibreringsgassen ikke går gennem konverteren. Den viste koncentration registreres.

1.7.3. Beregning

NOx-konverterens virkningsgrad beregnes af følgende udtryk:

Virkningsgrad (%) = (1 + >NUM>a b

>DEN>c d

)* 100

hvor:

a er NOx-koncentrationen i henhold til punkt 1.7.6,

b er NOx-koncentrationen i henhold til punkt 1.7.7,

c er NO-koncentrationen i henhold til punkt 1.7.4,

d er NO-koncentrationen i henhold til punkt 1.7.5.

1.7.4. Oxygentilførsel

Via en T-samling tilføres kontinuerligt oxygen eller nulstillingsluft til gasstrømmen, indtil den aflæste koncentration er ca. 20 % lavere end den aflæste kalibreringskoncentration anført i punkt 1.7.2. (Analysatoren er indstillet på NO-måling). Den aflæste koncentration »c« skal registreres. Ozonisatoren skal være ude af funktion under denne proces.

1.7.5. Aktivering af ozonisatoren

Ozonisatoren aktiveres nu, således at den danner tilstrækkelig ozon til at nedsætte koncentrationen af NO til ca. 20 % (mindst 10 %) af den kalibreringskoncentration, der er angivet i punkt 1.7.2. Den viste koncentration »d« registreres. (Analysatoren indstilles på NO).

1.7.6. NOx-måling

NO-analysatoren stilles derefter om på NOx, således at gasblandingen (bestående af NO, NO2, O2 og N2) nu ledes gennem konverteren. Den aflæste koncentration »a« skal registreres. (Analysatoren indstilles på NOx).

1.7.7. Dekatering af ozonisatoren

Ozonisatoren deaktiveres nu. Den i punkt 1.7.6. beskrevne gasblanding ledes gennem konverteren og til detektoren. Den aflæste koncentration »b« skal registreres. (Analysatoren indstilles på NOx).

1.7.8. NO-måling

Når der er skiftet om til NO og ozonisatoren deaktiveret, afbrydes også tilførslen af ilt eller syntetisk luft. Den af analysatoren målte NOx-værdi må højst afvige ± 5 % fra den, der er målt i henhold til punkt 1.7.2. (Analysatoren indstilles på NO).

1.7.9. Kontrollens hyppighed

Konverterens virkningsgrad skal afprøves før hver kalibrering af NOx-analysatoren.

1.7.10. Krav til virkningsgraden

Konverterens virkningsgrad må ikke være under 90 %; en virkningsgrad på over 95 % må dog stærkt tilrådes.

Bemærkning: Hvis der ved hjælp af ozonisatoren ikke kan opnås en reduktion fra 80 % til 20 % i overensstemmelse med punkt 1.7.5., når analyseenheden er indstillet på det mest anvendte område, anvendes det højeste område, som giver denne reduktion.

Figur 6 Diagram over opstilling til kontrol af NO2-konverterens virkningsgrad

>REFERENCE TIL EN GRAFIK>

1.8. Justering af flammeion-analysatoren

1.8.1. Optimering af detektorens respons

FID-enheden skal justeres som angivet af instrumentets fabrikant. Der anvendes en kalibreringsgas bestående af propan i luft til optimering af responsen i det mest anvendte måleområde.

Med brændstof- og luftstrømme indstillet i henhold til fabrikantens anvisninger tilføres analysatoren en kalibreringsgas på 350 ± 75 ppm C. Responsen på en given brændstoftilførsel bestemmes ud fra forskellen mellem responsen på kalibreringsgas og responsen på nulstillingsgas. Brændstoftilførslen indstilles trinvis over og under fabrikantens specifikation. Responsen på kalibreringsgas og nulstillingsgas ved de pågældende værdier af brændstoftilførslen registreres. Forskellen mellem responsen på kalibrerings- og nulstillingsgassen afbildes i kurveform, og brændstoftilførslen indstilles, så den svarer til kurvens fede side.

1.8.2. Responsfaktorer for carbonhydrider

Analyseapparatet kalibreres med propan i luft og renset syntetisk luft som angivet i punkt 1.5.

Responsfaktorerne skal bestemmes, når en analyseenhed idriftsættes samt efter større serviceeftersyn. Responsfaktoren (Rf) for et given carbonhydrid er forholdet mellem C1-udslaget på FID-analysatoren og gaskoncentrationen i cylinderen, angivet i ppm C1.

Prøvegassen skal have en koncentration, der giver en respons på ca. 80 % af fuldt skalaudslag. Regnet i volumen skal koncentrationen være bestemt med en nøjagtighed på ± 2 % i forhold til en gravimetrisk standard, udtrykt i volumenenheder. Desuden skal gascylinderen være forkonditioneret i 24 timer ved en temperatur på 298 K ± 5 K (25 °C ± 5 °C).

Nedenfor er angivet hvilke prøvegasser, der skal anvendes, og det anbefalede område for responsfaktoren:

Methan og renset syntetisk luft: 1,00 ≤ Rf ≤ 1,15

Propylen og renset syntetisk luft: 0,90 ≤ Rf ≤ 1,1

Toluen og renset syntetisk luft: 0,90 ≤ Rf ≤ 1,10

Værdierne er angivet i forhold til responsfaktoren (Rf) på 1,00 for propan og renset syntetisk luft.

1.8.3. Kontrol af oxygeninterferens

Kontrol af oxygeninterferens skal finde sted, når en analysator idriftsættes samt efter hovedserviceintervallerne.

Definition af responsfaktoren og metode til dens bestemmelse er givet i punkt 1.8.2. Nedenfor er angivet, hvilke prøvegasser, der skal anvendes, og det anbefalede område for den relative responsfaktor:

Propan og kvælstof 0,95 ≤ Rf ≤ 1,05

Værdierne er angivet i forhold til responsfaktoren (Rf) på 1,00 for propan og renset syntetisk luft.

Iltkoncentrationen i FID-brænderen skal med en nøjagtighed på ± 1 molprocent svare til oxygenkoncentrationen i den brænderluft, der er anvendt til den seneste kontrol af oxygeninterferens. Er forskellen større, foretages kontrol af iltinterferens, og om nødvendigt justeres analysatoren.

1.8.4. Virkningsgraden af afskæringen af andre carbonhydrider end methan (NMC, kun NG-drevne gasmotorer)

NMC anvendes til fjernelse af carbonhydrider bortset fra methan fra prøvegassen gennem oxidation af alle carbonhydrider bortset fra methan. Det ideelle er en konverteringsgrad på 0 % for methan og 100 % for de andre carbonhydrider, repræsenteret ved ethan. For at få en nøjagtig bestemmelse af NMHC bestemmer man de to virkningsgrader og anvender dem til beregning af massestrømmen af NMHC-emissioner (se bilag III, tillæg 2, punkt 4.3).

1.8.4.1. Virkningsgrad for methan

Methankalibreringsgassen ledes gennem FID-enheden med og uden omledning ved NMC-enheden, og de to koncentrationer registreres. Virkningsgraden bestemmes som følger:

CEM = 1 - >NUM>koncw

>DEN>koncw/o

hvor:

koncw = HC-koncentration, når CH4 ledes gennem NMC-enheden, og

koncw/o = HC koncentration, når CH4 ledes uden om NMC-enheden.

1.8.4.2. Virkningsgrad for ethan

Ethankalibreringsgassen ledes gennem FID-enheden med og uden omledning ved NMC-eneheden, og de to koncentrationer registreres. Virkningsgraden bestemmes som følger:

CEE = 1 - >NUM>koncw

>DEN>koncw/o

hvor:

koncw = HC-koncentration, når C2H6 ledes gennem NMC-enheden, og

koncw/o = HC-koncentration, når C2H6 ledes uden om NCM-enheden.

1.9. Interferensvirkninger med CO-, CO2- og NOx-analysatorer

Målingerne kan på flere måder påvirkes ved interferens fra andre gasser end den, der bestemmes. Positiv interferens forekommer i NDIR-enheder, hvor den interfererende gas giver samme virkning som den målte, blot i mindre grad. Negativ interferens forekommer ligeledes i NDIR-enheder, når den interfererende gas udvider absorptionsbåndet for den målte gas, samt i CLD-enheder, når den interfererende gas dæmper strålingen. Interferenskontrollen i punkt 1.9.1. og 1.9.2. skal foretages før første ibrugtagning af en analysator samt i forbindelse med større eftersyn.

1.9.1. CO-interferenskontrol for analysatorerne

Vand og CO2 kan interferere med CO-analysatorens resultater. Kontrol heraf foretages ved, at en CO2-kalibreringsgas med en koncentration svarende til 80 til 100 % af fuldt skalaudslag i det højeste under testningen anvendte måleområde bobles gennem vand ved rumtemperatur, og analysatorens respons registreres. For måleområder på 300 ppm eller derover må responsen ikke være over 1 % af fuldt skalaudslag, for måleområder under 300 ppm må responsen ikke være over 3 ppm.

1.9.2. Kontrol af NOx-analysatorernes dæmpning

De to gasser, der har interesse i forbindelse med analysatorer af typen CLD (og HCLD), er CO2 og vanddamp. Disse gassers dæmpning er proportional med deres koncentration, hvorfor der kræves teknikker til bestemmelse af dæmpningen ved de højeste koncentrationer, der forventes at optræde under prøverne.

1.9.2.1. Kontrol af dæmpning fra CO2

En CO2-kalibreringsgas med en koncentration på 80 til 100 % af fuldskalaværdien i det maksimale måleområde ledes gennem NDIR-analysatoren, og CO2-værdien registreres som A. Derefter fortyndes den ca. 50 % med NO-kalibreringsgas og ledes gennem NDIR og (H)CLD, idet CO2 -og NO-værdierne registreres som henholdsvis B og C. Der lukkes for CO2-tilførslen, og kun NO-kalibreringsgassen ledes gennem (H)CLD-enheden; NO-værdien registreres som D.

Dæmpningen, som ikke må være over 3 % af fuld skalavisning, beregnes på følgende måde:

% dæmpning = [1 (

>NUM>(C * A)

>DEN>(D * A) (D * B)

)]* 100

hvor:

A = ufortyndet CO2-koncentration, målt med NDIR, i %

B = fortyndet CO2-koncentration, målt med NDIR, i %

C = den fortyndede NO-koncentration, målt med (H)CLD, i ppm

D = den ufortyndede NO-koncentration, målt med (H)CLD, i ppm.

Alternative metoder til fortynding og kvantitativ bestemmelse af CO2 -og NO-kalibreringsgasserne, således dynamisk opblanding, kan anvendes.

1.9.2.2. Kontrol af dæmpning fra vand

Denne kontrol finder kun anvendelse på gaskoncentrationsmålinger på våd basis. Ved beregning af dæmpningen fra vand skal der tages hensyn til fortyndingen af NO-kalibreringsgassen med vanddamp og tilpasning af blandingens vanddampkoncentration til den, der forventes under testningen.

En NO kalibreringsgas med en koncentration på 80 til 100 % af fuldt skalaudslag i det højeste måleområde ledes gennem (H)CLD-analysatoren, og NO-værdien registreres som D. Derefter bobles NO-kalibreringsgassen gennem vand ved rumtemperatur og ledes gennem (H)CLD-analysatoren, og NO-værdien registreres som C. Analysatorens absolutte arbejdstryk og vandtemperaturen bestemmes og registreres som henholdsvis E og F. Blandingens mætningsdamptryk svarende til gennemboblerens vandtemperatur F bestemmes og registreres som G. Blandingens vanddamptryk (H, i %) beregnes på følgende måde:

H = 100*(G/E)

Den forventede koncentration (De) af den fortyndede NO-kalibreringsgas (i vanddamp) beregnes således:

De = D* (1-H/100)

Idet atomforholdet H/C for dieselolie sættes til 1,8:1, beregnes den under prøven forventede maksimale vanddampkoncentration (Hm, i %) for diesel-udstødningsgas ud fra CO2-koncentrationen i ufortyndet kalibreringsgas (A, målt i punkt 1.9.2.1.), som følger:

Hm = 0,9*A

Dæmpningen fra vand, som ikke må være over 3 % af fuld skalavisning, beregnes på følgende måde:

% dæmpning = 100 * ((De +A7 C)/De) * (Hm/H)

hvor:

De = den forventede NO-koncentration, i ppm

C = den fortyndede NO-koncentration, i ppm

Hm = den maksimale vanddampkoncentration, i %

H = den faktiske vanddampkoncentration, i %.

Bemærkning: Det er vigtigt, at den til denne kontrol anvendte NO-kalibreringsgas indeholder mindst muligt NO2, da der i dæmpningsberegningerne ikke er taget hensyn til opløsning af NO2 i vand.

1.10. Kalibreringsintervaller

Kalibrering af analysatorerne som angivet i punkt 1.5 skal foretages mindst hver 3. måned, samt hver gang der er foretaget reparationer eller ændringer, som kan tænkes at påvirke kalibreringen.

2. KALIBRERING AF CVS-SYSTEMET

2.1. Generelt

CVS-systemet kalibreres med et nøjagtigt flowmeter, der kan henføres til nationale eller internationale standarder, og en forsnævringsanordning. Strømningen gennem systemet måles ved forskellige indstillinger af forsnævringen, og systemets styreparametre måles og sammenholdes med gennemstrømningen.

Der kan anvendes forskellige typer flowmetre, f.eks. kalibreret venturi, kalibreret laminart flowmeter, kalibreret turbinemeter.

2.2. Kalibrering af fortrængningspumpe (PDP)

Alle parametre vedrørende pumpen skal måles samtidig med parametrene vedrørende det flowmeter, der er serieforbundet med pumpen. Den beregnede strømningshastighed (i m3/min ved pumpeindgangen, absolut tryk og temperatur) afsættes mod en korrelationsfunktion, der er dannet ved en bestemt kombination af pumpeparametre. Derefter bestemmes den lineære ligning, som udtrykker sammenhængen mellem pumpeydelsen og korrelationsfunktionen. Hvis drevet på noget CVS arbejder med flere hastigheder, skal der kalibreres for hvert af de anvendte områder. Under kalibreringen skal temperaturen holdes stabil.

2.2.1. Dataanalyse

Luftgennemstrømningen (Qs) ved hver indstilling af forsnævringen (mindst 6 indstillinger) beregnes i standard-m3/min på grundlag af flowmeterdataene med den af fabrikanten foreskrevne metode. Luftstrømningshastigheden omregnes derefter til pumpeydelse (V0) i m3/omdr. ved absolut pumpeindgangstemperatur og -tryk på følgende måde:

V0 = >NUM>Qs

>DEN>n

* >NUM>T

>DEN>273

* >NUM>101,3

>DEN>pA

hvor:

Qs = luftstrøm ved standardbetingelserne (101,3 kPa, 273 K), m3/s,

T = temperatur ved pumpeindgangen, K

pA = absolut tryk ved pumpens indgang (pB p1), kPa,

n = pumpehastighed, omdr./s.

For at tage hensyn til vekselvirkningen mellem trykvariationer ved pumpens sliphastighed beregnes korrelationsfunktionen (X0) mellem pumpehastighed, trykfdifference mellem pumpeindgang og -afgang og absolut pumpeafgangstryk på følgende måde:

X0 = >NUM>1

>DEN>n

*√

>NUM>Äpp

>DEN>pp

hvor:

Äpp = trykforskel mellem pumpeindgang og pumpeafgang, kPa,

pA = absolut afgangstryk ved pumpeudgang, kPa.

Kalibreringsligningen beregnes ved en lineær mindste kvadraters tilnærmelse på følgende måde:

V0 = D0 m * (X0)

Konstanterne D0 og m er henholdsvis regressionslinjernes skæringspunkt og hældning, og beskriver således disse.

For et CVS-system med mange hastigheder skal kalibreringskurverne genereret med forskellige pumpeydelser være tilnærmelsesvis parallelle, og værdierne svarende til skæringspunktet (D0) skal stige med aftagende pumpeydelse. De af ligningen beregnede værdier skal ligge inden for ± 0,5 % af den målte værdi af V0. Værdien af m vil være forskellig for forskellige pumper. Tilførte partikler vil med tiden mindske pumpens slip, således at m aftager. Derfor skal pumpen kalibreres ved opstart, efter større vedligeholdesindgreb samt hvis efterprøvningen af det samlede system (afsnit 2.4) tyder på, at sliphastigheden har ændret sig.

2.3. Kalibrering af kritisk venturi (CFV)

Kalibrering af CFV bygger på strømningsligningen for en kritisk venturi. Gasstrømmen er en funktion af indgangstryk og -temperatur som vist nedenfor:

Qs = >NUM>Kv * pA

>DEN>√T

hvor:

Kv = kalibreringsfaktor

pA = absolut tryk ved venturiens indgang, kPa

T = temperatur ved venturiens indgang, K.

2.3.1. Dataanalyse

Luftgennemstrømningen (Qs) ved hver indstilling af forsnævringen (mindst 8 indstillinger) beregnes i standard-m3/min af flowmeterdataene med den af fabrikanten foreskrevne metode. Kalibreringsfaktoren beregnes af kalibreringsdataene for hver indstilling på følgende måde.

Kv = >NUM>Qs * √T

>DEN>pA

hvor:

Qs = luftstrømningshastighed ved standardbetingelserne (101,3 kPa, 273 K), m3/s,

T = temperatur ved venturiens indgang, K

pA = absolut tryk ved venturiens indgang, kPa.

For at bestemme området med kritisk strømning afsættes Kv som funktion af venturiens indgangstryk. For kritisk (droslet) strømning vil Kv være forholdsvis konstant. Når trykket aftager (vakuum øges) aftager venturiens drosselvirkning og Kv mindskes, ensbetydende med at CFV-enheden arbejder uden for det tilladte arbejdsområde.

For mindst otte punkter i området med kritisk strømning beregnes gennemsnitsværdien af Kv og standardafvigelsen. Standardafvigelsen må ikke være over ± 0,3 % af gennemsnitsværdien af Kv.

2.4. Kontrol af det samlede system

Nøjagtigheden af det samlede CVS-prøvetagnings- og analysesystem bestemmes ved tilledning af en kendt masse af en forurenende luftart til systemet, medens dette er bragt til at fungere på normal måde. Der analyseres for den forurenende luftart, og dens masse beregnes efter bilag III, tillæg 2, punkt 4.3., bortset fra propan, for hvilket der for HC anvendes en faktor 0,000472 i stedet for 0,000479. Der skal anvendes en af følgende to teknikker.

2.4.1. Måling med blænde med kritisk strømning

En kendt mængde af en ren gas (carbonmonoxid eller propan) ledes til CVS-systemet gennem en kalibreret kritisk blænde. Hvis indgangstrykket er tilstrækkelig højt, er strømningshastigheden, som justeres ved hjælp af den kritiske blænde, uafhængigt af blændens afgangstryk (≡ kritisk strømning). CVS-systemet bringes til at fungere som ved en sædvanlig emissionstest af udstødningsgas i 5 til 10 minutter. En gasprøve analyseres med det sædvanlige udstyr (prøvetagningssæk eller integrationsmetoden), og gassens masse beregnes. Den således bestemte masse må højst afvige ± 3 % fra den kendte masse af tilledt gas.

2.4.2. Gravimetrisk måling

Vægten af en lille cylinder fyldt med carbonmonoxid eller propan bestemmes med en præcision på ± 0,01 gram. CVS-systemet bringes til at fungere som ved en sædvanlig emissionstest af udstødningsgas i 5 til 10 minutter, medens der tilledes carbonmonoxid eller propan til systemet. Den afgivne mængde ren gas bestemmes ved differentialvejning. En gasprøve analyseres med det sædvanlige udstyr (prøvetagningssæk eller integrationsmetoden), og gassens masse beregnes. Den således bestemte masse må højst afvige ± 3 % fra den kendte masse af tilledt gas.

3. KALIBRERING AF SYSTEMET TIL PARTIKELBESTEMMELSE

3.1. Introduktion

Hver komponent skal kalibreres så ofte som nødvendigt for at opfylde nøjagtighedskravene i dette direktiv. I dette punkt beskrives den kalibreringsmetode, som skal anvendes til de i bilag III, tillæg 4, punkt 4. samt i bilag V, punkt 2. nævnte komponenter.

3.2. Flowmålinger

Kalibrering af gasflowmålere eller flowmåleinstrumenter skal kunne henføres til nationale og/eller internationale standarder. Den maksimale fejl på den målte værdi må ikke overstige ± 2 % af visningen.

Bestemmes gasstrømmen ved differensflowmåling, skal den maksimale fejl på differensen være af en sådan størrelse, at nøjagtigheden af GEDF er højst ± 4 % (se også bilag V, punkt 2.2.1., EGA). Den kan beregnes som den kvadratiske middelværdi af fejlene på de enkelte instrumenter.

3.3. Kontrol af delstrømsbetingelserne

Størrelsesområdet af udstødningsgashastighed og tryksvingninger skal i givet fald kontrolleres og korrigeres efter forskrifterne i bilag V, punkt 2.2.1., EP.

3.4. Kalibreringsintervaller

Flowmåleinstrumenter skal kalibreres hver 3. måned samt hver gang der er foretaget systemændringer, der kan have betydning for kalibreringen.

4. KALIBRERING AF UDSTYR TIL RØGTÆTHEDSMÅLING

4.1. Indledning

Opacimeteret skal kalibreres så ofte som nødvendigt til at opfylde nøjagtighedskravene i dette direktiv. I dette punkt beskrives den kalibreringsmetode, som skal anvendes til de i bilag III, tillæg 4, punkt 5. samt i bilag V, punkt 3. nævnte komponenter.

4.2. Kalibreringsmetode

4.2.1. Opvarmningstid

Opacimeteret varmes op og stabiliseres efter fabrikantens anvisninger. Har opacimeteret renseluftsystem til undgåelse af tilsodning af instrumentets optiske dele, skal også dette system aktiveres og justeres efter fabrikantens anvisninger.

4.2.2. Måling af responsens linearitet

Opacimeterets linearitet kontrolleres, når apparatet er indstillet til udlæsning af (opacitet) i henhold til fabrikantens anvisninger. Tre neutralfiltre, hvis transmittans er kendt, og som opfylder kravene i bilag III, tillæg 4, punkt 5.2.5. anbringes i opacimeteret, og aflæsningen registreres. Den nominelle opacitet af neutralfiltrene skal være ca. 10 %, 20 % og 40 %.

Lineariteten må højst afvige ± 2 % opacitet fra neutralfilterets nominelle værdi. Enhver ulinearitet større end ovennævnte værdi skal korrigeres før testen.

4.3. Kalibreringsintervaller

Opacimeteret kalibreres i henhold til punkt 4.2.2. mindst hver 3. måned samt efter alle reparationer eller ændringer af systemet, som kan tænkes at påvirke kalibreringen.

(1) Testpunkterne skal vælges ved hjælp af anerkendte statistiske randomiseringsmetoder.

(2) Testpunkterne skal vælges ved hjælp af anerkendte statistiske randomiseringsmetoder.

(3) Testpunkterne skal vælges ved hjælp af anerkendte statistiske randomiseringsmetoder.

(4) Baseret på C1-ækvivalenter.

(5) Værdien gælder kun for det i bilag IV angivne referencebrændstof.

(6) Baseret på C1-ækvivalenter.

BILAG IV

TEKNISKE SPECIFIKATIONER FOR DET REFERENCEBRÆNDSTOF, SOM FORESKRIVES TIL GODKENDELSESPRØVNING OG TIL KONTROL AF PRODUKTIONENS OVERENSSTEMMELSE

1. DIESELOLIE (1)

>

TABELPOSITION>

2. NATURGAS (NG)

På det europæiske marked sælges to gastyper:

- gas i H-området med de ekstreme referencebrændstoffer G20 og G23

- gas i L-området med de ekstreme referencebrændstoffer G23 og G25.

Specifikationerne for referencebrændstofferne G20, G23 og G25 er givet nedenfor:

>TABELPOSITION>

>TABELPOSITION>

>TABELPOSITION>

3. LPG (FLASKEGAS)

>TABELPOSITION>

(1) Hvis det er nødvendigt at beregne den termiske virkningsgrad af en motor eller et køretøj, kan brændstoffets brændværdi beregnes af:

Specifik energi (brændværdi) (netto) i MJ/kg = (46,423 - 8,792d² + 3,170d) (1 - (x + y + s)) + 9,420s - 2,499x

hvor:

d = massefylde ved 15 °C

x = massebrøk vand (% divideret med 100)

y = massebrøk aske (% divideret med 100)

s = massebrøk svovl (% divideret med 100).

BILAG V

SYSTEM TIL ANALYSE OG PRØVETAGNING

1. BESTEMMELSE AF EMISSIONEN AF FORURENENDE LUFTARTER

1.1. Indledning

En detaljeret beskrivelse af det anbefalede prøvetagnings- og analysesystem er givet i punkt 1.2. og fig. 7 og 8; da tilsvarende resultater vil kunne opnås med afvigende udformning af systemerne, kræves der ikke nøje overensstemmelse med fig. 7 og 8. Der kan anvendes supplerende komponenter som instrumenter, ventiler, magnetventiler og kontakter til at tilvejebringe supplerende oplysninger og koordinere funktionerne af de indgående systemer. Andre komponenter kan udelades, hvis de for nogle systemers vedkommende ikke er nødvendige af hensyn til nøjagtigheden, og hvis udeladelsen af dem er teknisk velbegrundet.

Figur 7 Blokdiagram over system til bestemmelse af CO, CO2, NOx og HC i ufortyndet udstødningsgas Kun ESC

>REFERENCE TIL EN GRAFIK>

1.2. Beskrivelse af analysesystemet

Der beskrives et analysesystem til bestemmelse af forurenende luftarter i den ufortyndede udstødningsgas (fig. 7, kun ESC) hhv. i den fortyndede udstødningsgas (fig. 8, ETC og ESC). Systemet er baseret på anvendelse af følgende udstyr:

- HFID-analysatorer til måling af carbonhydrider

- NDIR-analysatorer til måling af carbonmonoxid og carbondioxid

- HCLD- eller tilsvarende analysator til måling af nitrogenoxider.

Prøven til bestemmelse af alle komponenter kan enten tages ved hjælp af en enkelt prøveudtagningssonde eller med to tætsiddende sonder med indvendig forgrening til de forskellige analysatorer. Der skal være draget omsorg for, at der ikke kan forekomme kondensation af udstødningsgassens komponenter (herunder vand og svovlsyre) noget sted i analysesystemet.

Figur 8 Blokdiagram over system til bestemmelse af CO, CO2, NOx og HC i fortyndet udstødningsgas ETC, frivillig for ESC

>REFERENCE TIL EN GRAFIK>

1.2.1. Komponenter i fig. 7 og 8

EP Udstødningsrør

SP1 Prøvetagningssonde for udstødningsgas (kun fig. 7)

Det anbefales at benytte en lige, lukket, flerhullet sonde af rustfrit stål. Den indvendige diameter må ikke være større end den indvendige diameter af prøvetagningsledningen. Sondens vægtykkelse må ikke være over 1 mm. Der skal være mindst 3 huller, som er beliggende i 3 forskellige radiære planer og er dimensioneret, så de optager omtrent samme prøvetagningsstrøm. Sonden skal strække sig over mindst 80 % af udstødningsrørets diameter. Der kan anvendes en eller to prøvetagningssonder.

SP2 Prøvetagningssonde for fortyndet udstødningsgas (kun fig. 8)

Sonden skal:

- være defineret som de første 254 mm til 762 mm af den opvarmede prøvetagningslinje HSL1;

- have en indvendig diameter på mindst 5 mm;

- være monteret i fortyndingstunnelen DT (se punkt 2.3., fig. 20) i et punkt, hvor fortyndingsluft og udstødningsgas bliver opblandet godt (dvs. ca. 10 tunneldiametre nedstrøms for det punkt, hvor udstødningsgassen føres ind i fortyndingstunnelen);

- være placeret i tilstrækkelig afstand (radialt) fra de andre sonder og fra tunnelvæggen til at være upåvirket af slipstrømme og hvirvler;

- være opvarmet, således at gasstrømmens temperatur ved afgangen fra sonden er øget til 463 K ± 10 K (190 °C ± 10 °C).

SP3 Sonde til udtagning af prøver af fortyndet udstødningsgas til bestemmelse af CO, CO2, NOx (kun fig. 8)

Sonden skal:

- være i samme plan som SP 2;

- være placeret i tilstrækkelig (radial) afstand fra andre sonder og fra tunnelvæggen til at være upåvirket af slipstrømme og hvirvler;

- være opvarmet og isoleret i hele sin længde til en temperatur af 328 K (55 °C) for at forhindre dannelse af kondensvand.

HSL1 Opvarmet prøveudtagsledning

Prøveudtagsledningen leder gasprøver fra en enkeltsonde til forgreningspunktet (-punkterne) og til HC-analysatoren.

Denne prøveudtagsledning skal:

- have en indvendig diameter på mindst 5 mm og højst 13,5 mm;

- være fremstillet af rustfrit stål eller PTFE;

- såfremt udstødningsgassens temperatur ved prøvetagningssonden er højst 463 K (190 °C), holde en vægtemperatur på 463 K (190 °C ± 10 °C), målt i hvert særskilt reguleret opvarmet afsnit;

- såfremt udstødningsgassens temperatur ved prøvetagningssonden er over 463 K (190 °C), holde en vægtemperatur på over 453 K ± 10 K (180 °C ± 10 °C);

- holde en gastemperatur på 463 K ± 10 K (190 °C ± 10 °C) umiddelbart før det opvarmede filter F2 og HFID.

HSL2 Opvarmet NOx-prøvetagningsledning

Denne prøveudtagsledning skal:

- holde en vægtemperatur på 328 K til 473 K (55 °C til 200 °C) indtil konverteren C, når der anvendes kølebad B, og indtil analysatoren når der ikke anvendes kølebad B;

- være fremstillet af rustfrit stål eller PTFE.

SL Prøveudtagsledning for CO og CO2

Ledningen skal være fremstillet af PTFE eller rustfrit stål. Den kan være opvarmet eller uopvarmet.

BK Sæk til baggrundsbestemmelse (frivillig; kun fig. 8)

Til bestemmelse af baggrundskoncentrationer.

BG Sæk til baggrundsbestemmelse (frivillig; kun fig. 8 og CO2)

Til bestemmelse af prøvernes koncentrationer.

F1 Opvarmet forfilter (frivilligt)

Temperaturen skal være den samme som HSL1.

F2 Opvarmet filter

Filteret skal udskille alle partikler fra gasprøven før analysatoren. Temperaturen skal være den samme som HSL1. Filteret skal udskiftes efter behov.

P Opvarmet prøvetagningspumpe

Pumpen skal være opvarmet, og temperaturen svare til HSL1.

HC

Opvarmet flammeiondetektor (HFID) til carbonhydridbestemmelse. Temperaturen skal holdes mellem 453 og 473 K (180 °C og 200 °C).

CO og CO2

NDIR-analysatorer til bestemmelse af carbonmonoxid og carbondioxid (frivillig til bestemmelse af fortyndingsforhold ved partikelbestemmelse).

NO

CLD- eller HCLD-analysator til bestemmelse af nitrogenoxider. Anvendes HCLD, skal temperaturen holdes i intervallet mellem 328 K og 473 K (55 °C og 200 °C).

C Konverter

Der skal anvendes en konverter til katalytisk reduktion af NO2 til NO før bestemmelse i CLD- eller HCLD-enheden.

B Kølebad (frivilligt)

Til køling af udstødningsgasprøven og fortætning af dennes vandindhold. Badets temperatur holdes mellem 273 K og 277 K (0 °C og 4 °C) ved istilsætning eller køling. Kølebadet kan undlades, hvis analyseenheden er fri for interferens fra vanddamp som fastlagt i bilag III, tillæg 5, punkt 1.9.1. og 1.9.2. Hvis vandet fjernes ved kondensation, skal prøvegassens temperatur eller dugpunkt overvåges enten i vandudskilleren eller nedstrøms for denne. Prøvegassens temperatur og dugpunkt må ikke være over 280 K (7 °C).

Der må ikke benyttes kemiske tørremidler til fjernelse af vandindholdet i prøven.

T1, T2, T3 Temperaturføler

Til overvågning af gasstrømmens temperatur.

T4 Temperaturføler

Til overvågning af NO2 - NO konverterens temperatur.

T5 Temperaturføler

Til regulering af kølebadets temperatur.

G1, G2, G3 Manometer

Til måling af trykket i prøveudtagsledningerne.

R1, R2 Trykregulator

Til kontrol af henholdsvis luft og brændstof til HFID-analysatoren.

R3, R4, R5 Trykregulator

Til regulering af trykket i prøveudtagsledninger og af gastilførslen til analysatorerne.

FL1, FL2, FL3 Flowmeter

Til flowregulering af prøvegasomledning.

FL4 til FL6 Flowmeter (frivilligt)

Til regulering af gennemstrømningshastigheden i analysatorerne.

V1 til V5 Omskifterventil

Passende ventiler til omskiftning mellem prøve, kalibreringsgas eller nulstillingsgas til analysatoren.

V6, V7 Magnetventil

Til omgåelse af NO2 - NO konverteren.

V8 Nåleventil

Til afbalancering af gennemstrømningen gennem NO2 - NO konverteren og omledningen.

V9, V10 Nåleventil

Til regulering af gasstrømmene til analysatorerne.

V11, V12 Pendulventil (frivillig)

Til udtømning af kondensat fra bad B.

1.3. NMHC-bestemmelse (kun NG-drevne gasmotorer)

1.3.1. Gaskromatografisk bestemmelse (GC, fig. 9)

Ved gaskromatografi indsprøjtes et lille afmålt rumfang af prøven i en analysekolonne, som det føres igennem af en inaktiv bæregas. Kolonnen adskiller de forskellige komponenter efter kogepunkt, så de elueres af kolonnen på forskellige tidspunkter. Derefter føres de gennem en detektor, som afgiver et elektrisk signal, der afhænger af deres koncentration. Da metoden ikke er kontinuerlig, kan den kun anvendes i forbindelse med prøveopsamling i sæk som beskrevet i bilag III, tillæg 4, punkt 3.4.2.

Til NMHC skal anvendes en automatisk gaskromatograf med FID-enhed. Udstødningsgassen opsamles i en prøvetagningssæk, hvorfra der udtages en del, som injiceres i gaskromatografen. Prøven adskilles i to fraktioner (CH4/luft/CO og NMHC/CO2/H2O) på Porapak-kolonne. Molekylsigte-kolonnen adskiller CH4 fra luft og CO, før den ledes ind i FID-enheden, hvor dens koncentration måles. En komplet cyklus, fra indsprøjtning af én prøve til indsprøjtning af den næste, kan fuldføres på 30 s. Til NMHC-bestemmelse skal CH4-koncentrationen trækkes fra den samlede HC-koncentration (se bilag III, tillæg 2, punkt 4.3.1.).

Fig. 9 viser en typisk opstilling til gaskromatografisk rutinebestemmelse af CH4. Andre gaskromatografiske metoder kan anvendes, hvis det er teknisk velbegrundet.

Figur 9 Blokdiagram for gaskromatografisk bestemmelse af methan

>REFERENCE TIL EN GRAFIK>

Komponenter i fig. 9

PC (Porapak-kolonne)

Der anvendes en Porapak N-kolonne 180/300 ìm (mesh 50/80), længde 610 mm x Ø indv. 2,16 mm, som inden brug skal være konditioneret i mindst 12 timer med bæregas ved 423 K (150 °C).

MSC (molekylsigtekolonne)

Der anvendes en kolonne type 13X, 250/350 ìm (mesh 45/60), længde 1220 mm × Ø indv. 2,16 mm, som inden brug skal være konditioneret i mindst 12 timer med bæregas ved 423 K (150 °C).

OV (ovn)

Til opretholdelse af konstant temperatur af kolonner og ventiler under analysatorens drift og til konditionering af kolonnerne ved 423 K (150 °C).

SLP (prøvetagningssløjfe)

Et stykke rør af rustfrit stål med tilstrækkelig længde til at give et rumfang på ca. 1 cm3.

P (pumpe)

Tilfører prøven til gaskromatografen.

D (tørremiddel)

Der skal anvendes en tørreenhed bestående af molykylsigte til fjernelse af vand og andre kontaminanter, der måtte være tilstede i bæregassen.

HC

Flammeiondetektor (FID) til måling af koncentrationen af methan.

V1 Prøveindsprøjtningsventil

Til indsprøjtning af prøve udtaget af prøvetagningssækken gennem SL i fig. 8. Den skal have lille skadeligt rum, være gastæt og kunne opvarmes til 423 K (150 °C).

V3 (omskifterventil)

Til omskift mellem kalibreringsgas, prøve og ingen tilførsel.

V2, V4, V5, V6, V7, V8 (nåleventil)

Til indstilling af strømningshastighederne i systemet.

R1, R2, R3 (trykregulator)

Til regulering af henholdsvis brændstof (= bæregas), prøve og luft.

FC (flowkapillarrør)

Til regulering af lufttilførslen til FID-enheden.

G1, G2, G3 (manometer)

Til regulering af strømmen af henholdsvis brændstof (= bæregas), prøve og luft.

F1, F2, F3, F4, F5 (filter)

Filtre af sintret metal, der forhindrer, at der kommer korn ind i pumpen eller instrumentet.

FM 1

Til måling af den omledte prøvegasstrøm.

1.3.2. Bestemmelse med afskæring af andre carbonhydrider end methan (NMC, fig. 10)

Afskæringsenheden oxiderer alle carbonhydrider, bortset fra CH4, til CO2 og H2O, så FID-enheden kun bestemmer CH4, når prøven ledes gennem NMC-enheden. Anvendes opsamling i prøvetagningssæk, skal der være monteret et strømafledningssystem ved SL (se punkt 1.2., fig. 8), som enten kan lede gasstrømmen gennem eller uden om afskæringsenheden, afhængigt af den øverste del af fig. 10. Til NMHC-bestemmelse skal begge værdier (HC og CH4) aflæses på FID-enheden og registreres. Anvendes integrationsmetoden, skal der monteres en NMC på samme ledning som endnu en FID-enhed, parallelt med den normale FID ind i HSL1 (se punkt 1.2., fig. 8), afhængigt af den nederste del af fig. 10. Til NMHC-bestemmelse aflæses værdierne fra de to FID-enheder (HC og CH4) og registreres.

Afskæringsenheden skal før prøvningen ved en temperatur lig med eller over 600 K (327 °C) karakteriseres med hensyn til katalytisk virkning på CH4 og C2H6 ved H2O-niveauer, som er repræsentative for udstødningsstrømmen. Dugpunkt og O2-indhold af den udtagne prøvestrøm af udstødningsgas skal være kendt. FID-enhedens relative respons på CH4 skal registreres (se bilag III, tillæg 5, punkt 1.8.2.).

Figur 10 Blokdiagram over system til bestemmelse af methan med afskæring af carbonhydrider bortset fra methan (NMC)

>REFERENCE TIL EN GRAFIK>

Komponenterne i fig. 10

NMC (enhed til afskæring af carbonhydrider bortset fra methan)

Til oxidering af alle carbonhydrider bortset fra methan.

HC

Opvarmet flammeiondetektor (HFID) til bestemmelse af HC- og CH4-koncentrationen. Temperaturen skal holdes mellem 453 K og 473 K (180 °C og 200 °C).

V1 (omskifterventil)

Til omskift mellem prøve-, nulstillings- og kalibreringsgas. Er identisk med V2 i fig. 8.

V2, V3 (magnetventil)

Til omledning uden om NMC-systemet

V4 (nåleventil)

Til afbalancering af gennemstrømningen i NMC-systemet og omledningen.

R1 (trykregulator)

Til regulering af trykket i prøvetagningsledningen og tilførslen til HFID-enheden. Er identisk med R3 i fig. 8.

FL1 (flowmeter)

Til måling af den omledte prøvegasstrøm. FL1 er identisk med FL1 i fig. 8.

2. FORTYNDING AF UDSTØDNINGSGASSEN OG BESTEMMELSE AF PARTIKELINDHOLDET

2.1. Introduktion

En udtømmende beskrivelse af de anbefalede systemer til fortynding og prøveudtagning er givet i punkt 2.2., 2.3. og 2.4. samt fig. 11 til 22. Da tilsvarende resultater vil kunne opnås med afvigende udformning af systemerne, kræves der ikke nøje overensstemmelse med den i disse figurer viste udformning. Der kan anvendes supplerende komponenter som instrumenter, ventiler, magnetventiler og kontakter til at tilvejebringe supplerende oplysninger og koordinere funktionerne af de indgående systemer. Andre komponenter kan udelades, hvis de for nogle systemers vedkommende ikke er nødvendige af hensyn til nøjagtigheden, og hvis udeladelsen af dem er teknisk velbegrundet.

2.2. Delstrømsfortyndingssystem

Fig. 11 til 19 viser et fortyndingssystem, der er baseret på fortynding af en del af udstødningsgasstrømmen. Til deling og efterfølgende fortynding af udstødningsgasstrømmen kan forskellige typer fortyndingssystemer anvendes. Til den efterfølgende udskillelse af partikler kan enten al den fortyndede udstødningsgas eller en del heraf ledes til partikelprøveudskillelsessystemet (punkt 2.4., fig. 21). Den førstnævnte metode benævnes, totalprøveudtagning, den sidstnævnte delstrømsprøveudtagning.

Beregningen af fortyndingsforholdet vil afhænge af den anvendte type system. Følgende typer anbefales:

Isokinetiske systemer (fig. 11 og 12)

I denne type systemer afpasses tilførslen til overføringsrøret efter udstødningsgasstrømmens hastighed og/eller tryk, hvorfor der kræves uforstyrret og homogen strømning af udstødningsgassen ved prøveudtagssonden. Dette opnås sædvanligvis ved hjælp af en resonator og en resonator og et lige tilførselsrør opstrøms for prøveudtagningsstedet. Delingsforholdet kan derved beregnes af let målelige størrelser som rørdiametre. Det skal bemærkes, at isokinetiske forhold kun anvendes til tilpasning af strømningsparametrene, ikke til tilpasning af størrelsesfordelingen. Dette sidste er dog typisk unødvendigt, da partiklerne er så små, at de følger strømlinjerne.

Flowkontrollerede systemer med koncentrationsmåling (fig. 13 til 17)

I disse systemer tages en prøve af den samlede udstødningsgasstrøm ved indstilling af strømningshastigheden af fortyndingsluften og af den samlede strøm af fortyndet udstødningsgas. Fortyndingsforholdet bestemmes af koncentrationen af sporluftarter som CO2 eller NOx, der er naturligt forekommende i motorens udstødning. Koncentrationerne i den fortyndede udstødningsgas og i fortyndingsluften måles, medens koncentrationen i den ufortyndede udstødningsgas enten kan måles direkte eller bestemmes af brændstoftilførselshastigheden og kulstofbalancen, forudsat at brændstoffets sammensætning er kendt. Systemerne kan reguleres ved det beregnede fortyndingsforhold (fig. 10 og 11) eller ved størrelsen af den tilførte strøm til overføringsrøret (fig. 15, 16 og 17).

Strømningsregulerede systemer med flowmåling (fig. 18 og 19)

I disse systemer tages en prøve af den samlede udstødningsgasstrøm ved indstilling af strømningshastigheden af fortyndingsluft og af den samlede fortyndede udstødningsgasstrøm. Fortyndingsforholdet bestemmes af forskellen mellem de to strømningshastigheder. Der kræves nøjagtig indbyrdes kalibrering af flowmetrene, da den relative forskel mellem de to strømningshastigheder kan føre til væsentlige fejl ved større fortyndingsforhold (15 og derover). Strømningsreguleringen er ganske enkel og består i, at den fortyndede udstødningsgasstrøm holdes konstant, medens man varierer strømningshastigheden af fortyndingsluften om nødvendigt.

Når der anvendes fortyndingssystemer efter delstrømsprincippet, skal der drages omsorg for at undgå eventuelle problemer med tab af partikler i overføringsrøret, idet der tages en repræsentativ prøve fra motorens udstødning og delingsforholdet bestemmes. I de beskrevne systemer er der taget hensyn til disse vigtige punkter.

Figur 11 Fortyndingssystem efter delstrømsprincippet med isokinetisk sonde og delstrømsprøveudtagning (SB-regulering)

>REFERENCE TIL EN GRAFIK>

Den ufortyndede udstødningsgas overføres fra udstødningsrøret (EP) af den isokinetiske prøveudtagssonde (ISP) gennem overføringsrøret (TT) til fortyndingstunnelen (DT). Trykforskellen mellem udstødningsgassen i udstødningsrøret og i sondens indgang måles af tryktransduceren DPT. Dette signal føres til strømningsregulatoren FC1, som regulerer sugepumpen SB således, at der opretholdes en trykforskel på nul ved sondens yderste ende. Under disse omstændigheder er udstødningsgassens hastighed i EP og ISP ens, og strømmen gennem ISP og TT er en fast brøkdel (delingsforholdet) af udstødningsgasstrømmen. Delingsforholdet er bestemt af tværsnitsarealet af EP og ISP. Strømningshastigheden af fortyndingsluft måles med flowmeteret FM1. Fortyndingsforholdet beregnes af fortyndingsluftens strømningshastighed og delingsforholdet.

Figur 12 Fortyndingssystem efter delstrømsprincippet med isokinetisk sonde og delstrømprøvetagning (PB-regulering)

>REFERENCE TIL EN GRAFIK>

Den ufortyndede udstødningsgas overføres fra udstødningsrøret (EP) af den isokinetiske prøveudtagssonde (ISP) gennem overføringsrøret (TT) til fortyndingstunnelen (DT). Trykforskellen mellem udstødningsgassen i udstødningsrøret og i sondens indgang måles af tryktransduceren DPT. Dette signal overføres til strømningsregulatoren FCI, der regulerer trykpumpen PB, således at trykdifferensen ved enden af sonden holdes på nul. Dette gøres ved at tage en lille brøkdel af fortyndingsluften (efter at dennes strømningshastighed er målt af flowmeteret FM1), og tilføre den til TT ved hjælp af en pneumatisk åbning. Under disse omstændigheder er udstødningsgassens hastighed i EP og ISP ens, og strømmen gennem ISP og TT er en fast brøkdel (delingsforholdet) af udstødningsgasstrømmen. Delingsforholdet er bestemt af tværsnitsarealet af EP og ISP. Fortyndingsluften suges gennem DT af sugepumpem SB, og strømningshastigheden måles af FM1 ved indgangen til DT. Fortyndingsforholdet beregnes af fortyndingsluftens strømningshastighed og delingsforholdet.

Figur 13 Delstrømsfortyndingssystem med måling af CO2- eller NOx-koncentration og delstrømsprøveudtagning

>REFERENCE TIL EN GRAFIK>

Den ufortyndede udstødningsgas overføres fra udstødningsrøret EP til fortyndingstunnelen DT gennem prøvetagningsrøret SP og overføringsrøret TT. Koncentrationerne af sporgasser (CO2 eller NOx) måles i den ufortyndede og fortyndede udstødningsgas samt i fortyndingsluften ved hjælp af gasanalysatoren(-erne) EGA. Signalerne herfra overføres til strømningsregulatoren FC2, der ved styring enten af trykpumpen PB eller sugepumpen SB opretholder det korrekte delings- og fortyndingsforhold i DT. Fortyndingsforholdet beregnes af sporgaskoncentrationerne i ufortyndet udstødningsgas, fortyndet udstødningsgas og fortyndingsluft.

Figur 14 Delstrømsfortyndingssystem med CO2-koncentrationsmåling, kulstofbalance og udtagning af totalstrømsprøve

>REFERENCE TIL EN GRAFIK>

Den ufortyndede udstødningsgas overføres fra udstødningsrøret EP til fortyndingstunnelen DT gennem prøvetagningsrøret SP og overføringsrøret TT. CO2-koncentrationen i den fortyndede udstødningsgas og i fortyndingsluften måles af gasanalysatoreren(-ne) EGA. Signalerne for CO2 brændstofstrøm GFUEL tilføres enten strømningsregulatoren FC2 eller partikelprøvetagningssystemets strømningsregulator FC3 (jf. fig. 21). FC2 regulerer trykpumpen PB, medens FC3 regulerer prøvetagningspumpen P (se fig. 21) og derved indstiller systemets indad- og udadgående strømme, således at det ønskede delingsforhold og fortyndingsforhold i fortyndingstunnelen DT opretholdes. Fortyndingsforholdet beregnes af CO2-koncentrationerne og GFUEL ved hjælp kulstofbalancen.

Figur 15 Delstrømsfortyndingssystem med enkelt venturi, koncentrationsmåling og delstrømsprøveudtagning

>REFERENCE TIL EN GRAFIK>

Ufortyndet udstødningsgas overføres fra udstødningsrøret (EP) gennem prøvetagningssonden SP og overføringsrøret (TT) til fortyndingstunnelen (DT) som følge det undertryk, som venturien (VN) skaber i DT. Gashastigheden i overføringsrøret TT afhænger af impulsudvekslingen i venturiområdet og påvirkes derfor af gassens absolutte temperatur ved afgangen fra TT. Det betyder, at udstødningsgassens delingsforhold ikke er konstant ved en given tunnelgennemstrømning og at fortyndingsforholdet ved lav belastning er en smule lavere end ved høj belastning. Koncentrationen af sporluftarterne (CO2 eller NOx) måles i den ufortyndede udstødningsgas, den fortyndede udstødningsgas og fortyndingsluften med udstødningsgasanalysatoren(-erne) EGA, og fortyndingsforholdet beregnes af de således målte værdier.

Figur 16 Delstrømsfortyndingssystem med dobbelt venturi eller dobbelt blænde, koncentrationsmåling og delstrømsprøveudtagning

>REFERENCE TIL EN GRAFIK>

Den ufortyndede udstødningsgas føres fra udstødningsrøret EP gennem prøvetagningssonden SP og overføringsrøret TT til fortyndingstunnelen DT af en strømdeler, der indeholder et sæt blænder eller venturier. Den første (FD1) er placeret i EP, den anden (FD2) i TT. Herudover kræves to trykreguleringsventiler (PCV1 og PCV2), der holder udstødningsgassens delingsforhold konstant ved at regulere modtrykket i EP og trykket i DT. PCV1 er placeret nedstrøms for SP i EP, PCV2 mellem trykpumpen PB og DT. Koncentrationerne af sporgasserne (CO2 eller NOx) måles i den ufortyndede udstødningsgas, den fortyndede udstødningsgas og fortyndingsluften med udstødningsgasanalysatorerne EGA. Disse værdier er nødvendige til kontrol af udstødningsgassens delingsforhold og kan anvendes til justering af PCV1 og PCV2, hvorved delingsforholdet kan reguleres nøjagtigt. Fortyndingsforholdet beregnes af sporgaskoncentrationerne.

Figur 17 Delstrømsfortyndingssystem med opdeling i flere rør, koncentrationsmåling og delstrømsprøveudtagning

>REFERENCE TIL EN GRAFIK>

Den ufortyndede udstødningsgas føres fra udstødningsrøret EP til fortyndingstunnelen DT gennem overføringsrøret TT af en strømdeler FD3, der består af en række rør af ens dimensioner (samme diameter, længde og indlejringsradius), monteret i EP. Udstødningsgassen fra et af disse rør ledes til fortyndingstunnelen DT, medens gassen fra de øvrige rør føres gennem dæmpekammeret DC. Det er således det samlede antal rør, der er bestemmende for udstødningsgassens delingsforhold. Til at holde delingsforholdet konstant kræves en trykdifferens på nul mellem dæmpekammeret DC og afgangen fra overføringsrøret TT, hvilket måles af differenstryktransduceren DPT. Et differenstryk på nul opnås ved indblæsning af frisk luft i fortyndingstunnelen DT ved afgangen fra overføringsrøret TT. Koncentrationerne af sporgasserne (CO2 eller NOx) måles i den ufortyndede udstødningsgas, den fortyndede udstødningsgas og fortyndingsluften med udstødningsgasanalysatorerne EGA. Disse værdier er nødvendige til regulering af udstødningsgassens delingsforhold og kan anvendes til styring af den indblæste lufts strømningshastighed, hvorved delingsforholdet kan reguleres nøjagtigt. Fortyndingsforholdet beregnes af sporgaskoncentrationerne.

Figur 18 Delstrømsfortyndingssystem med strømningsregulering og totalstrømsprøveudtagning

>

REFERENCE TIL EN GRAFIK>

Den ufortyndede udstødningsgas overføres fra udstødningsrøret EP til fortyndingstunnelen DT gennem prøvetagningsrøret SP og overføringsrøret TT. Den samlede strømningshastighed gennem tunnelen justeres ved hjælp af strømningsregulatoren FC3 og prøvetagningspumpen P i partikelprøveudtagningssystemet (jf. fig. 18). Fortyndingsluftens strømningshastighed reguleres af strømningsregulatoren FC2, der kan benytte GEXHW, GAIRW, eller GFUEL som styresignal til regulering af udstødningsgassens delingsforhold. Fortyndingstunnelen DT's indgående prøvegasstrøm er forskellen mellem den samlede gennemstrømning og fortyndingsluftstrømmen. Fortyndingsluftens strømningshastighed måles af flowmeteret FM1, den samlede strømningshastighed måles af flowmeteret FM3 i partikelprøveudtagningssystemet (se fig. 21). Af de to strømningshastigheder beregnes fortyndingsforholdet.

Figur 19 Delstrømsfortyndingssystem med strømningsregulering og delstrømsprøveudtagning

>

REFERENCE TIL EN GRAFIK>

Den ufortyndede udstødningsgas overføres fra udstødningsrøret EP til fortyndingstunnelen DT gennem prøvetagningsrøret SP og overføringsrøret TT. Udstødningsgassens delingsforhold og den indgående strøm til DT reguleres af strømningsregulatoren FC2, som styrer flow (eller hastighed) af trykpumpen PB og sugepumpen SB i forhold dertil. Dette er muligt, fordi den af partikelprøvetagningssystemet udtagne prøve returneres til DT. GEXHW, GAIRW eller GFUEL kan anvendes som styresignaler for strømningsregulatoren FC2. Fortyndingsluftens strømningshastighed måles med flowmeteret FM1, den samlede gennemstrømning med flowmeteret FM2. Af de to strømningshastigheder beregnes fortyndingsforholdet.

2.2.1. Komponenter i fig. 11 til 19.

EP Udstødningsrør

Udstødningsrøret kan være isoleret. For at mindske udstødningsrørets termiske træghed anbefales et forhold mellem rørets tykkelse og diameter på højst 0,015. Brugen af bøjelige rørafsnit skal være begrænset til en længde af højst 12 rørdiametre. Bøjninger bør indskrænkes til det mindst mulige for at mindske inertiafsætningen. Indgår en prøvebænkslydpotte i systemet, kan denne ligeledes være isoleret.

I isokinetiske systemer skal udstødningsrøret være fri for skarpe bøjninger og bratte diameterændringer i en afstand af mindst seks rørdiametre opstrøms og tre rørdiametre nedstrøms for spidsen af prøvetagningssonden. På prøvetagningsstedet skal gashastigheden være over 10 m/s undtagen i tomgang. Udstødningsgassens tryksvingninger må i gennemsnit ikke overstige ± 500 Pa. Foranstaltninger til nedsættelse af tryksvingningerne ud over brug af et udstødningssystem af chassistype (bestående af en lydpotte og en efterbehandlingsenhed) må ikke ændre motorydelsen eller medføre partikelafsætning.

I systemer uden isokinetisk sonde anbefales, at røret i en afstand af mindst seks rørdiametre opstrøms for og tre rørdiametre nedstrøms for prøvetagningssonden er lige.

SP Prøvetagningssonde (fig. 13, 14, 15, 16, 18 og 19)

Dens indvendige diameter skal være mindst 4 mm. Diameterforholdet mellem udstødningsrør og sonde skal være mindst 4. Sonden skal være et åbent, opadvendt rør beliggende i udstødningsrørets midtlinje, eller en flerhullet sonde som beskrevet under SP1 i punkt 1.2.1, fig. 5.

ISP Isokinetisk prøvetagningssonde (fig. 11 og 12)

Den isokinetiske prøvetagningssonde skal være placeret vendt mod strømmen og i udstødningsrørets midtlinje, hvor kravene til strømningsforholdene i afsnit EP er opfyldt, og skal være udformet således, at den giver en proportional prøve af den ufortyndede udstødningsgas. Dens indvendige diameter skal være mindst 12 mm.

For at isokinetisk opdeling af udstødningsgassen kan finde sted, kræves et reguleringssystem til opretholdelse af et differenstryk på nul mellem EP og ISP. Under disse omstændigheder er gashastigheden i EP og ISP ens, og massestrømmen gennem ISP er en fast brøkdel af udstødningsgasstrømmen. ISP skal være forbundet med en differenstryktransducer (DPT). Ved hjælp af en strømningsregulator FC1 fastholdes et differenstryk mellem EP og ISP på nul.

Strømdelere FD1, FD2 (fig. 16)

I udstødningsrøret (EP) og i overføringsrøret (TT) er henholdsvis indsat et sæt venturier eller blænder, som giver en proportional prøve af den ufortyndede udstødningsgas. For at proportional deling kan opnås, kræves et reguleringssystem bestående af to trykreguleringsventiler PCV1 og PCV2, som regulerer trykket i udstødningsrøret EP og fortyndingstunnelen DT.

FD3 Strømdeler (fig. 17)

I udstødningsrøret EP er monteret et sæt rør (en flerrørsenhed), der giver en proportional prøve af den ufortyndede udstødningsgas. Det ene af rørene fører udstødningsgas til fortyndingstunnelen DT, medens de øvrige rør fører udstødningsgassen til et dæmpekammer DC. Rørene skal have ens dimensioner (samme diameter, længde, bøjningsradius), således at delingsforholdet for udstødningsgassen alene afhænger af det samlede antal rør. For at proportional deling kan opnås, kræves et reguleringssystem, der opretholder et differenstryk på nul mellem flerrørsenhedens udmunding i dæmpekammeret DC og afgangen fra overføringsrøret TT. Under disse omstændigheder er udstødningsgassens hastighed i udstødningsrøret EP og strømdeleren FD3 proportionale, og gennem overføringsrøret TT strømmer en fast brøkdel af udstødningsgasstrømmen. De to punkter skal være forbundet med en differenstryktransducer DPT. Reguleringen af differenstrykket på nul sker ved hjælp af strømningsregulatoren FC1.

EGA Udstødningsgasanalysator (fig. 13, 14, 15, 16 og 17)

Der kan anvendes CO2- eller NOx-analysatorer (med brug af kulstofbalance alene for CO2. Analysatorerne kalibreres på samme måde som dem, der benyttes til bestemmelse af forurenende luftarter. Til bestemmelse af koncentrationsforskelle kan anvendes en eller flere analysatorer. Målesystemet skal kunne bestemme GEDFW,i med en præcision på ± 4 %.

TT Overføringsrør (fig. 11 til 19)

For overføringsrøret gælder:

- røret skal være så kort som muligt, og ikke over 5 m langt

- rørets diameter skal mindst være lig prøvetagningssondens, men højst 25 mm

- røret skal være placeret i fortyndingstunnelens midtlinje og vende i strømmens retning.

Er rørets længde 1 meter eller derunder, skal det være isoleret med et materiale med en varmeledningsevne på højst 0,05 W/m*K med en radial isoleringstykkelse svarende til sondens diameter. Er røret længere end 1 meter, skal det være isoleret og opvarmet til en vægtemperatur på 523 K (250 °C).

DPT Differenstryktransducer (fig. 11, 12 og 17)

Differenstryktransduceren skal have et område på højst ± 500 Pa.

FC1 Strømningsregulator (fig. 11, 12 og 17)

I isokinetiske systemer (fig. 11 og 12) kræves en strømningsregulator til opretholdelse af et differenstryk på nul mellem EP og ISP. Reguleringen kan finde sted på følgende måder:

a) ved at styre sugepumpens (SB) hastighed eller gennemstrømning og fastholde trykpumpens (PB) hastighed i hvert testforløb (fig. 11), eller

b) ved at indstille sugepumpen (SB) på en konstant massestrøm at fortyndet udstødningsgas og styre pumpehastigheden af trykpumpen (PB) og dermed udstødningsprøvegasstrømmen i et område ved enden af overføringsrøret (TT) (fig. 12).

For trykregulerede systemer må restfejlen i reguleringssløjfen ikke være over ± 3 Pa. Tryksvingningerne i fortyndingstunnelen må i gennemsnit ikke overstige ± 250 Pa.

For at opnå proportional opdeling af udstødningsgassen i flerrørsystemer (fig. 17) kræves en strømningsregulator, der holder et differenstryk på nul mellem udgangen af flerrørsenheden og afgangen fra overføringsrøret (TT). Reguleringen kan ske ved styring af luftindblæsningen i fortyndingstunnelen (DT) ved afgangen fra TT.

PCV1, PCV2 Trykreguleringsventiler (fig. 16)

Til proportional strømdeling i systemer med dobbelt venturi/blænde kræves to trykreguleringsventiler, der regulerer modtrykket i udstødningsrøret (EP) og trykket i fortyndingstunnelen (DT). Ventilerne skal være placeret nedstrøms for SP i EP og mellem PB og DT.

DC Dæmpekammer (fig. 17)

Ved afgangen fra flerrørsenheden skal forefindes et dæmpekammer til minimering af tryksvingningernes i udstødningsrøret (EP).

VN Venturi (fig. 15)

Fortyndingstunnelen er forsynet med en venturi, der skaber undertryk omkring afgangen fra overføringsrøret TT. Størrelsen af gasstrømmen gennem TT bestemmes af impulsudvekslingen i venturiområdet og er som hovedregel proportional med strømningshastigheden i trykpumpen PB, hvorved fortyndingsforholdet bliver konstant. Da impulsudvekslingen påvirkes af temperatuen ved afgangen fra overføringsrøret TT og af trykforskellen mellem udstødningsrøret EP og fortyndingstunnelen DT, er det faktiske fortyndingsforhold en smule lavere ved lav end ved høj belastning.

FC2 Strømningsregulator (fig. 13, 14, 18 og 19; frivillig)

Til regulering af gennemstrømningen i trykpumpen PB og/eller sugepumpen SB kan anvendes en strømningsregulator. Des kan tilsluttes signalet for udstødningsgas-, indsugningsluft- eller brændstofstrøm og/eller differenssignalet for CO2 eller NOx. Anvendes en tryksat luftforsyning (fig. 15), kontrollerer strømningsregulatoren FC2 luftstrømmen direkte.

FM1 Flowmeter (fig. 11, 12, 18 og 19)

Gasmåler eller andet flowmeter til måling af fortyndingsluftstrømmen. FM1 er frivillig, hvis sugepumpen PB er kaliberet til måling af gennemstrømningen.

FM2 Flowmeter (fig. 19)

Gasmåler eller andet flowmeter til måling af strømmen af fortyndet udstødningsgas. FM2 er frivillig, hvis sugepumpen SB er kalibreret til måling af gennemstrømningen.

PB Trykblæser (fig. 11, 12, 13, 14, 15, 16 og 19)

Til regulering af fortyndingsluftens strømningshastighed kan PB tilsluttes strømningsregulatorerne FC1 eller FC2. En trykpumpe PB kræves ikke, hvis der anvendes et drosselspjæld. Er PB kalibreret, kan den anvendes til måling af fortyndingsluftstrømmen.

SB Sugeblæser (fig. 11, 12, 13, 16, 17 og 19)

Kun til systemer med delstrømsprøveudtagning. Er SB kalibreret, kan den anvendes til måling af den fortyndede udstødningsgasstrøm.

DAF Fortyndingsluftfilter (fig. 11 til 19)

Det anbefales, at fortyndingsluften filtreres og skrubbes med trækul for at fjerne baggrundsindholdet af carbonhydrider. På fabrikantens begæring skal der efter god teknisk skik tages prøver af fortyndingsluften til bestemmelse af baggrundskoncentrationen af partikler, som derefter kan trækkes fra de målte værdier i den fortyndede udstødningsgas.

DT Fortyndingstunnel (fig. 11 til 19)

For fortyndingstunnelen gælder:

- tunnelen skal være tilstrækkelig lang til at sikre fuldstænding opblanding af udstødningsgas og fortyndingsluft ved turbulent strømning;

- tunnelen skal være udført i rustfrit stål med:

- for tunneler med indv. diameter over 75 mm, et forhold tykkelse/diameter på ikke over 0,025;

- for fortyndingstunneler med indvendig diameter højst 75 mm, nominel tykkelse på mindst 1,5 mm;

- er tunnelen af typen med delstrømsprøveudtagning, skal dens diameter være mindst 75 mm;

- er tunnelen beregnet til totalprøveudtagning, anbefales en tunneldiameter på mindst 25 mm;

- tunnelen kan opvarmes til en vægtemperatur på højst 325 K (52 °C) ved direkte opvarmning eller ved forvarmning af fortyndingsluften, forudsat at lufttemperaturen ikke er over 325 K (52 °C), før udstødningsgassen tilføres fortyndingstunnelen;

- kan være isoleret.

Motorens udstødningsgas skal være fuldstændig opblandet med fortyndingsluft. For systemer med delstrømsprøvetagning skal opblandingens kvalitet efter idriftsættelse kontrolleres ved, at tunnelens CO2-profil bestemmes, mens motoren er i gang (mindst fire målepunkter med samme indbyrdes afstand). Om nødvendigt kan anvendes en blænde til at sikre opblanding.

Bemærkning: Hvis temperaturen omkring fortyndingstunnelen (DT) er under 239 K (20 °C), bør der tages forholdsregler til at undgå tab af partikler på de kolde overflader af fortyndingstunnelens vægge. Det anbefales derfor, at tunnelen opvarmes og/eller isoleres inden for ovennævnte grænser.

Ved stærk belastning af motoren kan tunnelen køles med ikkeaggressive midler som f. eks. roterende ventilator, forudsat at temperaturen af kølemediet ikke er under 239 K (20 °C).

HE Varmeveksler (fig. 16 og 17)

Varmeveksleren skal have tilstrækkelig kapacitet til at holde sugepumpen SB's indgangstemperatur inden for ± 11 K af den gennemsnitlige driftstemperatur, der er iagttaget under testen.

2.3. Fortyndingssystem af fuldstrømstypen

I fig. 20 beskrives et system, hvor al udstødningsgassen fortyndes, og der udtages et konstant prøvevolumen (Constant Volume Sampling (CVS)). Det samlede rumfang af blandingen af udstødningsgas og fortyndingsluft skal måles. Der kan enten anvendes et PDP- eller CFV-system.

Til efterfølgende indsamling af partikler ledes en prøve af den fortyndede udstødningsgas til partikelindsamlingsssystemet (punkt 2.4., fig. 21 og 22). Gøres dette direkte, betegnes det enkelt fortynding. Fortyndes prøven en ekstra gang i den sekundære fortyndingstunnel, betegnes det dobbelt fortynding. Sidstnævnte er nyttigt, hvis kravene til filteroverfladens temperatur ikke kan opfyldes ved enkelt fortynding. Skønt det dobbelte fortyndingssystem delvis er et fortyndingssystem, beskrives det som en modifikation af partikelprøvetagningssystemet i punkt 2.4., fig. 22, da det for de fleste komponenters vedkommende svarer til et typisk partikelprøvetagningssystem.

Figur 20 Fuldstrømsfortyndingssystem

>REFERENCE TIL EN GRAFIK>

Hele mængden af ufortyndet udstødningsgas opblandes i fortyndingstunnelen med fortyndingsluft. Strømningshastigheden af den fortyndede udstødningsgas måles enten med en fortrængningspumpe PDP eller med en kritisk venturi CFV. Til proportional partikeludskillelse og strømningsmåling kan benyttes en varmeveksler HE eller elektronisk strømningskompensation EFC. Da partikelbestemmelsen er baseret på den totale fortyndede udstødningsgasstrøm, behøver fortyndingsforholdet ikke beregnes.

2.3.1. Komponenter i fig. 20

EP Udstødningsrør

Udstødningsrørets længde må ikke være over 10 m, regnet fra afgangen af motorens udstødningsmanifold, turboladerafgang eller efterbehandlingsenhed til fortyndingstunnelen. Hvis udstødningsrøret neden for motorens udstrømningsmanifold, turboladerafgang eller efterbehandlingsenhed er over 4 m langt, skal hele den del af røret, som er over 4 m, være isoleret, bortset fra en eventuel røgtæthedsmåler placeret i selve udstødningsrøret. Isoleringens radiale tykkelse skal være mindst 25 mm. Isoleringsmaterialets varmeledningsevne må højst være 0,1 W/mK, målt ved 673 K (400 °C). For at mindske udstødningsrørets termiske træghed anbefales et forhold mellem rørets tykkelse og diameter på højst 0,015. Brugen af bøjelige rørsektioner bør begrænses til en længde af højst 12 rørdiametre.

PDP Fortrængningspumpe

PDP måler den totale fortyndede udstødningsgasstrøm på grundlag af antal pumpeomdrejninger og pumpens slagvolumen. Modtrykket i udstødningssystemet må ikke kunstigt sænkes af PDP eller tilførselssystemet for fortyndingsluft. Modtrykket i udstødningssystemet, målt under statiske forhold mens PDP-systemet er i funktion, må ikke afvige mere end ± 1,5 kPa fra det målte statiske tryk med samme motorhastighed og -belastning uden tilslutning til PDP. Temperaturen af gasblandingen umiddelbart foran fortrængningspumpen PDP må ikke afvige mere end ± 6 K fra den gennemsnitlige driftstemperatur målt under prøven, når der ikke anvendes strømningskompensation. Strømningskompensation kan kun anvendes, hvis temperaturen ved indgangen til PDP ikke er over 323 K (50 °C).

CFV Kritisk venturi

CFV måler den totale fortyndede udstødningsgasstrøm ved at opretholde neddroslet (kritisk) strømning. Modtrykket i udstødningssystemet, målt under statiske forhold når konstantvolumen-prøvetagningssystemet CFV er i funktion, må ikke afvige mere end ± 1,5 kPa fra det målte statiske tryk uden tilslutning til CFV med samme motorhastighed og -belastning. Temperaturen af gasblandingen umiddelbart foran fortrængningspumpen CFV må ikke afvige mere end ± 11 K fra den gennemsnitlige driftstemperatur målt under prøven, når der ikke anvendes strømningskompensation.

HE Varmeveksler (frivillig når EFC anvendes)

Varmevekslerens kapacitet skal være tilstrækkelig til at holde temperaturen inden for ovennævnte grænser.

EFC Elektronisk strømningskompensation (ikke obligatorisk, når varmeveksler anvendes)

Hvis indgangstemperaturen til enten fortrængningspumpe PDP eller kritisk venturi CFV ikke holdes inden for de ovenfor angivne grænser, kræves et system til elektronisk strømningsberegning, som konstant måler strømningshastigheden og regulerer det proportionale prøveudtag i partikeludskillelsessystemet. Hertil anvendes strømningshastighedssignalerne, der afgives løbende, til at korrigere prøvegassens strømningshastighed gennem partikeludskillelsessystemets partikelfiltre i tilsvarende (se punkt 2.4., fig. 21 og 22).

DT Fortyndingstunnel

For fortyndingstunnelen gælder:

- tunnelens diameter skal være tilstrækkelig lille til at skabe turbulent strømning (Reynold's tal >

4 000) og tilstrækkelig lang til at sikre fuldstændig opblanding af udstødningsgas og fortyndingsluft; til opblanding kan anvendes en blænde;

- skal være mindst 460 mm i diameter med et enkelt fortyndingssystem;

- skal være mindst 210 mm i diameter med et dobbelt fortyndingssystem;

- kan være isoleret.

Motorens udstødning skal ledes med strømmen i det punkt, hvor den tilføres fortyndingstunnelen, og skal være godt opblandet.

Hvis der anvendes enkelt fortynding, overføres en prøve fra fortyndingstunnelen til partikeludskillelsessystemet (punkt 2.4., fig. 21). PDP eller CFV skal have tilstrækkelig strømningskapacitet til at holde temperaturen af den fortyndede udstødningsgas på højst 325 K (52 °C) umiddelbart før partikelhovedfilteret.

Anvendes dobbelt fortynding, overføres en prøve fra fortyndingstunnelen til den sekundære fortyndingstunnel, hvor den fortyndes yderligere, og ledes derefter gennem prøveudskillelsesfiltrene (punkt 2.4, fig. 22). PDP eller CFV skal have tilstrækkelig strømningskapacitet til at holde temperaturen af den fortyndede udstødningsgas på højst 464 K (191 °C) i prøvetagningsområdet. Det sekundære fortyndingssystem skal tilføre tilstrækkelig fortyndingsluft til at holde temperaturen af den dobbelt fortyndede udstødningsgasstrøm på højst 325 K (52 °C) umiddelbart før det primære partikelfilter.

DAF Fortyndingsluftfilter

Det anbefales, at fortyndingsluften filtreres og skrubbes med trækul for at fjerne baggrundsindholdet af carbonhydrider. På motorfabrikantens begæring kan der tages prøver fortyndingsluften efter god teknisk skik for at bestemme baggrundskoncentrationen af partikler, som derefter kan trækkes fra de værdier, der måles i den fortyndede udstødningsgas.

PSP Partikelprøvetagningssonde

Prøvetagningssonden, som er den forreste del af PTT,

- skal være placeret, så den vender mod strømmen et sted, hvor fortyndingsluft og udstødningsgas er godt opblandet, dvs. i midtlinjen af fortyndingstunnelen DT, ca. 10 tunneldiametre nedstrøms for det punkt, hvor udstødningsgassen tilføres fortyndingstunnelen;

- skal have en indvendig diameter på mindst 12 mm;

- tunnelen kan opvarmes til en vægtemperatur på højst 325 K (52 °C) ved direkte opvarmning eller ved forvarmning af fortyndingsluften, forudsat at lufttemperaturen ikke er over 325 K (52 °C), før udstødningsgassen tilføres fortyndingstunnelen;

- kan være isoleret.

2.4. Partikelprøvetagningssystem

Der kræves et system til udskillelse af partiklerne på partikelfilteret. Ved total prøveindsamling med delstrømsfortynding, hvor hele den fortyndede udstødningsgasprøve ledes gennem filtrene, udgør fortyndingssystemet (punkt 2.2., fig. 14 og 18) og prøvetagningssystemet sædvanligvis en helhed. Er der tale om delstrømprøvetagning med delstrømsfortynding eller fuldstrømsfortynding, hvor kun en del af den fortyndede udstødningsgas føres gennem filtrene, er fortyndingssystemet (punkt 2.2., fig. 11, 12, 13, 15, 16, 17 og 19; punkt 2.3., fig. 20) og prøvetagningssystemet sædvanligvis separate enheder.

I dette direktiv anses det dobbelte fortyndingssystem (fig. 22) i et totalstrømsfortyndingssystem som en særlig modifikation af et typisk prøvetagningssystem som det i fig. 21 viste. I det dobbelte fortyndingssystem indgår alle de vigtigste dele af partikelprøvetagningssystemet, og desuden visse fortyndingsfaciliteter som fortyndingslufttilførsel og en sekundær fortyndingstunnel.

For at undgå enhver påvirkning af reguleringssløjferne anbefales det at lade prøvetagningspumpen arbejde under hele prøveforløbet. Ved enkeltfiltermetoden skal der anvendes et omledningssystem til at lede prøven gennem prøvetagningsfiltrene til ønsket tid. Interferens med reguleringssløjferne fra tilkoblingsproceduren skal være minimeret.

Figur 21 Partikelprøvetagningssystem

>REFERENCE TIL EN GRAFIK>

En prøve af den fortyndede udstødningsgas overføres ved hjælp af prøvetagningspumpen P fra fortyndingstunnelen (DT) i et totalstrømsfortyndingssystem eller fuldstrømsfortyndingssystem gennem partikelprøvetagningssonden PSP og partikeloverføringsrøret PTT. Prøven ledes gennem filterholderen (-holderne) FH, som indeholder partikelprøvefiltrene. Prøvestrømmens strømningshastighed reguleres af strømningsregulatoren (FC3). Anvendes elektronisk strømningskompensation (EFC) (se fig. 20), benyttes strømningshastigheden af fortyndet udstødningsgas som styresignal for FC3.

Figur 22 Dobbelt fortyndingssystem (kun fuldstrømssystem)

>REFERENCE TIL EN GRAFIK>

En prøve af den fortyndede udstødningsgas overføres fra fortyndingstunnelen (DT) i et totalstrømsfortyndingssystem gennem partikelprøvetagningssonden PSP og partikeloverføringsrøret PTT til den sekundære fortyndingstunnel SDT, hvor den fortyndes yderligere. Prøven ledes dernæst gennem filterholderen (-holderne), der indeholder partikelprøvetagningsfiltrene. Fortyndingsluftens strømningshastighed er sædvanligvis konstant, hvorimod prøvegassens strømningshastighed reguleres af strømningsregulatoren FC3. Anvendes elektronisk strømningskompensation (EFC) (se fig. 20), benyttes strømningshastigheden af fortyndet udstødningsgas som styresignal for FC3.

2.4.1. Komponenterne i fig. 21 og 22

PTT: partikeloverføringsrør (fig. 21 og 22)

Partikeloverføringsrøret skal være så kort som muligt og højst 1 020 mm langt. Når det er relevant (dvs. for delstrømsfortyndingssystemer med delstrømsprøvetagning og for fuldstrømsfortyndingssystemer), er længden af prøvetagningssonderne (hhv. SP, ISP og PSP, se punkt 2.2. og 2.3.) medregnet heri.

Dimensioneringen er gyldig for:

- delstrømsfortyndingssystemer med delvis prøvetagning samt totalstrømsfortyndingssystemer med enkelt fortyndingssystem fra prøvesondens spids til filterholderen;

- delstrømsfortyndingssystemer med total prøvetagning fra enden af fortyndingstunnelen til filterholderen;

- totalstrømsfortyndingssystemer med dobbelt fortynding fra enden af sonden til den sekundære fortyndingstunnel.

Overføringsrøret:

- kan være opvarmet til en vægtemperatur på højst 325 K (52 °C) ved direkte opvarmning eller ved forvarmning af fortyndingsluften, forudsat at lufttemperaturen ikke er over 325 K (52 °C), før udstødningsgassen tilføres fortyndingstunnelen;

- kan være isoleret.

SDT Sekundær fortyndingstunnel (fig. 21)

Diameteren af den sekundære fortyndingstunnel skal være mindst 75 mm og dens længde skal være tilstrækkelig til, at gassens opholdstid er mindst 0,25 sekund for den dobbeltfortyndede prøve. Den primære filterholder, FH, skal være placeret højst 300 mm fra afgangen fra SDT.

For den sekundære fortyndingstunnel gælder:

- tunnelen kan være opvarmet til en vægtemperatur på højst 325 K (52 °C) ved direkte opvarmning eller ved forvarmning af fortyndingsluften, forudsat at lufttemperaturen ikke er over 325 K (52 °C), før udstødningsgassen tilføres fortyndingstunnelen;

- kan være isoleret.

FH Filterholder(e) (fig. 21 og 22)

Til hoved- og ekstrafilter kan enten anvendes ét enkelt filterhus eller separate filterhuse. Kravene i bilag III, tillæg 4, punkt 4.1.3. skal være opfyldt.

Filterholderen (-holderne):

- kan være opvarmet til en vægtemperatur på højst 325 K (52 °C) ved direkte opvarmning eller ved forvarmning af fortyndingsluften, forudsat at lufttemperaturen ikke er over 325 K (52 °C), før udstødningsgassen tilføres fortyndingstunnelen;

- kan være isoleret.

P Prøvetagningspumpe (fig. 21 og 22)

Partikelprøvetagningspumpen skal være placeret i tilstrækkelig afstand fra tunnelen, således at gassens indgangstemperatur fastholdes (inden for en afvigelse på ± 3 K), hvis der ikke anvendes strømningskorrektion med regulatoren FC3.

DP Fortyndingsluftpumpe (fig. 22)

Fortyndingsluftpumpen skal være anbragt således, at den sekundære fortyndingluft leveres ved en temperatur på 298 K ± 5 K (25 °C ± 5 °C), hvis fortyndingsluften ikke forvarmes.

FC3 Strømningsregulator (fig. 21 og 22)

Til at kompensere for variationer i partikelprøvegassens strømningshastighed forårsaget af svingninger i temperatur og modtryk på prøvens vej anvendes en strømningsregulator, medmindre dette kan ske på anden måde. Strømningsregulator kræves, hvis der benyttes elektronisk strømningskompensation (EFC) (se fig. 20).

FM3 Flowmeter (fig. 21 og 22)

Gasmåler eller flowmeter skal være placeret i tilstrækkelig afstand fra prøvetagningspumpen P, således at gassens indgangstemperatur holdes konstant (inden for ± 3 K), hvis der ikke anvendes strømningskorrektion med regulatoren FC3.

FM4 Flowmeter (fig. 22)

Gasmåler eller flowmeter til måling af fortyndingsluftstrømmen skal være placeret således, at gassens indgangstemperatur holdes på 298 K ± 5 K (25 °C ± 5 °C).

BV Kugleventil (frivillig)

Kugleventilen skal have en indvendig diameter mindst lig partikeloverføringsrørets PTT indvendige diameter og en omskiftningstid på mindre end 0,5 sekund.

Bemærkning: Bemærkning: Hvis temperaturen omkring PSP, PTT, SDT, og FH er under 293 K (20 °C), bør der tages forholdsregler til at undgå tab af partikler på de kolde overflader af væggene af disse dele. Derfor anbefales opvarmning og/eller isolering af disse dele inden for de grænser, der foreskrives i de pågældende beskrivelser. Derudover anbefales, at filteroverfladens temperatur under prøvetagningen ikke er under 293 K (20 °C).

Ved stærk belastning af motoren kan tunnelen køles med ikke-aggressive midler som f. eks. roterende ventilator, forudsat at temperaturen af kølemediet ikke er under 293 K (20 °C).

3. BESTEMMELSE AF RØGTÆTHED

3.1. Indledning

Punkt 3.2. og 3.3. og fig. 23 og 24 indeholder detaljerede beskrivelser af de anbefalede systemer til røgtæthedsmåling. Da tilsvarende resultater vil kunne opnås med afvigende udformning af systemerne, kræves der ikke nøje overensstemmelse med fig. 23 og 24. Der kan anvendes supplerende komponenter som instrumenter, ventiler, magnetventiler og kontakter til at tilvejebringe supplerende oplysninger og koordinere funktionerne af de indgående systemer. Andre komponenter kan udelades, hvis de for nogle systemers vedkommende ikke er nødvendige af hensyn til nøjagtigheden, og hvis udeladelsen af dem er teknisk velbegrundet.

Måleprincippet består i, at der sendes lys gennem en bestemt længde af den undersøgte røg, og ved at måle, hvor stor en del af det indfaldende lys, som når frem til en modtager, kan man bestemme prøvens lysabsorberende egenskaber. Røgtæthedsmåling afhænger af apparatets konstruktion og kan finde sted i udstødningsrøret (linjeopacimeter af fuldstrømstypen), ved enden af udstødningsrøret (fuldstrømsopacimeter ved rørafgang) eller ved udtagning af en prøve fra udstødningsrøret (delstrømsopacimeter). Til bestemmelse af lysabsorptionskoefficienten ud fra opacitetssignalet skal instrumentets optiske lysvej være angivet af instrumentets fabrikant.

3.2. Fuldstrømsopacimeter

Der kan anvendes to hovedtyper af fuldstrømsopacimetre (fig. 23). Med linjeopacimeteret måles røgtætheden af den samlede udstødningsgas i udstødningsrøret. Med denne type opacimeter afhænger den effektive lysvej af opacimeterets konstruktion.

Med opacimeteret i rørafgangen måles røgtætheden af den samlede udstødningsgas ved afgangen fra udstødningsrøret. Med denne type opacimeter afhænger den effektive lysvej af udstødningsrørets udformning og afstanden mellem enden af udstødningsrøret og opacimeteret.

Figur 23 Fuldstrømsopacimeter

>REFERENCE TIL EN GRAFIK>

3.2.1. Komponenter i fig. 23

EP Udstødningsrør

Med linjeopacimeteret må der ikke være nogen ændringer i udstødningsrørets diameter i en afstand af 3 rørdiametre før og efter målestedet. Hvis diameteren i måleområdet er større end udstødningsrørets diameter, anbefales det, at røret konvergerer gradvis før måleområdet.

Med fuldstrømsopacimeteret ved rørafgang skal de sidste 0,6 m af udstødningsrøret have cirkulært tværsnit og være uden vinkler og bøjninger. Enden af udstødningsrøret skal være skåret af i en ret vinkel. Opacimeteret skal være monteret centralt i røgstrømmen højst 25 ± 5 mm fra enden af udstødningsrøret.

OPL Optisk lysvej

Længden af den røgfyldte lysvej mellem opacimeterets lyskilde og modtager, i nødvendigt omfang korrigeret for uhomogenitet som følge af massefyldegradienter og randeffekter. Den optiske lysvejlængde skal angives af instrumentets fabrikant under hensyntagen til eventuelle foranstaltninger mod tilsodning (f. eks. skylleluft). Er lysvejlængden ikke oplyst, skal den bestemmes i henhold til ISO DIS 11614, punkt 11.6.5. Til korrekt bestemmelse af lysvejlængde skal udstødningsgassens hastighed være mindst på 20 m/s.

LS Lyskilde

Lyskilden skal være en glødelampe med en farvetemperatur mellem 2 800 og 3 250 K eller en grøn lysdiode, hvis spektrum har maksimum mellem 550 og 570 nm. Lyskilden skal være beskyttet mod tilsodning på en måde, som ikke ændrer lysvejen, således at denne afviger fra fabrikantens specifikationer.

LD Lysdetektor

Detektoren skal være en fotocelle eller fotodiode (om nødvendigt med filter). Er lyskilden en glødelampe, skal dens responsspektrum have toppunkt (maksimal respons) svarende til den fototopiske kurve for det menneskelige øje, dvs. i området 550 til 570 nm, medens responsen i området under 430 nm og over 680 nm skal være mindre end 4 % af den maksimale respons. Lysdetektoren skal være beskyttet mod tilsodning på en måde, som ikke ændrer lysvejen således at denne afviger fra fabrikantens specifikationer.

CL Kollimatorlinse

Det afgivne lys skal kollimeres til en stråle med en diameter på højst 30 mm. Med en tolerance på 3° skal lyset i strålebundtet være parallelt med den optiske akse.

T1 Temperaturføler (frivillig)

Udstødningsgassens temperatur kan overvåges gennem hele testen.

3.3. Delstrømsopacimeter

Med delstrømsopacimeteret (fig. 24) tages en repræsentativ prøve af udstødningsgas fra udstødningsrøret og ledes gennem en overføringsledning til målekammeret. Med denne type opacimeter afhænger den effektive lysvej af opacimeterets konstruktion. De i det følgende punkt anførte responstider gælder ved opacimeterets minimumsflowhastighed, således som denne angives af instrumentets fabrikant.

Figur 24 Delstrømsopacimeter

>REFERENCE TIL EN GRAFIK>

3.3.1. Komponenter i fig. 24

EP Udstødningsrør

Udstødningsrøret skal i en afstand af mindst seks rørdiametre opstrøms for og tre rørdiametre nedstrøms for prøvetagningssonden være lige.

SP Prøvetagningssonde

Prøvetagningssonden skal være et åbent rør, som vender modsat strømmen og er placeret i eller omkring udstødningsrørets midtlinje. Sonden skal have en afstand på mindst 5 mm fra udstødningsrørets væg. Sondens diameter skal sikre, at den udtagne prøve er repræsentativ og at gennemsstrømningen i opacimeteret er tilstrækkelig.

TT Overføringsrør

For partikelprøveoverføringsrøret gælder:

- Røret skal være så kort som muligt og skal sikre en udstødningsgastemperatur på 373 ± 30 K (100 °C ± 30 °C) ved indgangen til målekammeret.

- Rørets vægtemperatur skal være tilstrækkeligt over udstødningsgassens dugpunkt til at forhindre kondensation.

- Rørets diameter skal i hele dets længde være lig prøvetagningsrørets diameter.

- Rørets responstid skal være mindre end 0,05 s ved mindste flowmetergennemstrømning bestemt i henhold til bilag III, tillæg 4, punkt 5.2.4.

- Røret må ikke have nævneværdig indvirkning på røgtæthedskurvens toppunkt.

FM Flowmåleanordning

Flowmåleanordning til bestemmelse af det korrekte flow ind i målekammeret. Instrumentets fabrikant skal angive en minimums- og maksimumsflowhastighed, som skal være sådan, at kravene til responstid af TT og lysvejlængde er opfyldt. Flowmåleanordningen kan være anbragt tæt på prøvetagningspumpen P, hvis en sådan anvendes.

MC Målekammer

Målekammeret skal indvendigt have ikke-reflekterende overflade eller tilsvarende optisk overflade. Indfald af falsk lys på detektoren som følge af indvendige reflekser af diffust lys skal være nedsat til et minimum.

Gastrykket i målekammeret må ikke afvige mere end 0,75 kPa fra atmosfæretrykket. Når konstruktionen gør dette umuligt, skal opacimeterets aflæsning omregnes til atmosfæretryk.

Målekammerets vægtemperatur skal med en nøjagtighed på ± 5 K være indstillet mellem 343 K (70 °C) og 373 K (100 °C), men under alle omstændigheder tilstrækkeligt over udstødningsgassens dugpunkt til at hindre kondensdannelse. Målekammeret skal være udstyret med passende anordninger til måling af temperaturen.

OPL Optisk lysvejlængde

Længden af den røgfyldte lysvej mellem opacimeterets lyskilde og modtager, i nødvendigt omfang korrigeret for uhomogenitet som følge af massefyldegradienter og randeffekter. Den optiske lysvejlængde skal angives af instrumentets fabrikant under hensyntagen til eventuelle foranstaltninger mod tilsodning (f. eks. skylleluft). Er lysvejlængden ikke oplyst, skal den bestemmes i henhold til ISO DIS 11614, punkt 11.6.5.

LS Lyskilde

Lyskilden skal være en glødelampe med en farvetemperatur mellem 2 800 og 3 250 K eller en grøn lysdiode, hvis spektrum har maksimum mellem 550 og 570 nm. Lyskilden skal være beskyttet mod tilsodning på en måde, som ikke ændrer lysvejen, således at denne afviger fra fabrikantens specifikationer.

LD Lysdetektoren

Detektoren skal være en fotocelle eller fotodiode (om nødvendigt med filter). Er lyskilden en glødelampe, skal dens responsspektrum have toppunkt (maksimal respons) svarende til den fototopiske kurve for det menneskelige øje, dvs. i området 550 til 570 nm, medens responsen i området under 430 nm og over 680 nm skal være mindre end 4 % af den maksimale respons. Lysdetektoren skal være beskyttet mod tilsodning på en måde, som ikke ændrer lysvejen, således at denne afviger fra fabrikantens specifikationer.

CL Kollimatorlinse

Det afgivne lys skal kollimeres til en stråle med en diameter på højst 30 mm. Lyset i strålebundtet skal være parallelt med den optiske akse med en tolerance på 3°.

T1 Temperaturføler

Til at overvåge udstødningsgassens temperatur ved indgangen til målekammeret.

P Prøvetagningspumpe (frivillig)

En prøvetagningspumpe nedstrøms for målekammeret kan anvendes til at føre gassen gennem målekammeret.

BILAG VI

EF TYPEGODKENDELSESATTEST

>START GRAFIK>

Meddelelse om

- typegodkendelse (1)

- udvidelse af typegodkendelse (1) for en type køretøj/separat teknisk enhed (motortype/motorfamilie)/komponent (1) i henhold til direktiv 88/77/EØF, senest ændret ved direktiv .../.../EF.

EF-typegodkendelse nr.: .

Udvidelse nr.: .

DEL I

0. Almindelige oplysninger

0.1. Køretøjets/den separate tekniske enheds/komponentens fabriksmærke (1): .

0.2. Handelsbetegnelse for køretøjstypen/den separate tekniske enhend (motortypen/motorfamilien/komponenten (1): .

0.3. Fabrikantens typebetegnelse som markeret på køretøj/separat teknisk enhed (motortype/motorfamilie)/komponent (1): .

0.4. Køretøjets klasse: .

0.5. Motorkategori: diesel/N6-drevet/LPG-drevet (1): .

0.6. Fabrikantens navn og adresse: .

0.7. Navn og adresse på fabrikantens godkendte repræsentant (udfyldes evt.): .

DEL II

1. Kort beskrivelse (udfyldes evt.): se bilag I. .

2. Teknisk tjeneste, der forestår afprøvningen: .

3. Dato for prøverapport: .

4. Prøverapportens nr.: .

5. Begrundelse for forlængelse af typegodkendelsen (udfyldes evt.): .

6. Eventuelle bemærkninger: se bilag I. .

7. Sted: .

8. Dato: .

9. Underskrift: .

10. Der vedlægges en liste over de dokumenter vedrørende typegodkendelsen, der er deponeret hos den myndighed, som har meddelt typegodkendelse. De udleveres efter anmodning.

(1) Det ikke gældende overstreges.>SLUT GRAFIK>

>START GRAFIK>

Tillæg

til EF typegodkendelsesattest nr. . . . vedrørende typegodkendelse af køretøj/separat teknisk enhed/komponent (1) i den i direktiv 97/. . . /EF anvendte forstand

1. Kort beskrivelse

1.1. Følgende oplysninger gives i forbindelse med typegodkendelse af et køretøj, der er monteret med motor: .

1.1.1. Motorens fabriksmærke (firmabetegnelse): .

1.1.2. Type og handelsbetegnelse (eventuelt angives forskellige udførelser): .

1.1.3. Fabrikationskode som markeret på motoren: .

1.1.4. Køretøjets klasse (udfyldes evt.): .

1.1.5. Motorkategori: diesel/NG-drevet/LPG-drevet (1): .

1.1.6. Fabrikantens navn og adresse: .

1.1.7. Navn og adresse på fabrikantens autoriserede repræsentant (udfyldes evt.) .

1.2. Hvis den under punkt 1.1 anførte motor er typegodkendt som en separat teknisk enhed:

1.2.1. Motorens/motorfamiliens typegodkendelsesnummer (1) .

1.3. Rubrikker som skal udfyldes i forbindelse med typegodkendelse af motor/motorfamilie (1) som separat teknisk enhed (betingelser som skal være overholdt ved montering af motoren på køretøjet): .

1.3.1. Maksimalt og/eller minimalt indsugningsundertryk: . kPa

1.3.2. Maksimalt tilladt modtryk: . kPa

1.3.3. Udstødningssystemets volumen: . cm³

1.3.4. Effekt, som absorberes af det udstyr, som er nødvendigt for motorens funktion:

1.3.4.1. I tomgang: ........ kW; ved lav motorhastighed: ........ kW; ved høj motorhastighed: ........ kWVed hastighed A: .......... kW; ved hastighed B: .......... kW; ved hastighed C: .......... kW; ved referencehastighed: .......... kW

1.3.5. Begrænsninger vedrørende anvendelse (udfyldes evt.): .

1.4. Emissionsværdier for motoren/stammotoren (1):

1.4.1. ESC-test (hvis nødvendig):

CO: .g/kWh

HC: .g/kWh

NOx: .g/kWh

PT: .g/kWh

1.4.2. ELR-test (hvis nødvendig):

Røgtæthed: m-1

1.4.3. ETC-test (hvis nødvendig):

CO: .g/kWh

HC: .g/kWh (1)

NMHC: .g/kWh (1)

CH4: .g/kWh (1)

NOx: .g/kWh

PT: .g/kWh (1)

(1) Det ikke gældende overstreges.>SLUT GRAFIK>

BILAG VII

EKSEMPEL PÅ BEREGNINGSMÅDE

1. ESC-TEST

1.1. Forurenende luftarter

Måledata til beregning af de enkelte resultater er givet nedenfor. I dette eksempel måles CO og NOx på tør basis, HC på våd basis. HC-koncentrationen er givet i propanækvivalenter (C3) og skal ganges med tre for at omregnet til kulstof-(C1)-ækvivalenter. Beregningsmetoden er den samme for de andre testforløb.

>TABELPOSITION>

Beregning af korrektionsfaktor for omregning fra tør til våd basis KW,r (bilag III, tillæg 1, punkt 4.2.):

FFH = >NUM>1,969

>DEN>(1 + >NUM>18,09

>DEN>545,29

)

= 1,9058 og KW2 = >NUM>1,608 * 7,81

>DEN>1 000 + (1,608 * 7,81)

= 0,0124

KW,r = (1 - 1,9058 * >NUM>18,09

>DEN>541,06

) - 0,0124 = 0,9239

Beregning af våde koncentrationer:

CO = 41,2 * 0,9239 = 38,1 ppm

NOx = 495 * 0,9239 = 457 ppm

Beregning af fugtighedskorrektionsfaktoren KH,D for NOx (bilag III, tillæg 1, punkt 4.3.):

A = 0,309 * 18,09/541,06 - 0,0266 = - 0,0163

B = - 0,209 * 18,09/541,06 + 0,00954 = 0,0026

KH,D = >NUM>1

>DEN>1 - 0,0163 * (7,81 - 10,71) + 0,0026 * (294,8 - 298)

= 0,9625

Beregning af emissionsmassestrømme (bilag III, tillæg 1, punkt 4.4.):

NOx = 0,001587 * 457 * 0,9625 * 563,38 = 393,27 g/h

CO = 0,000966 * 38,1 * 563,38 = 20,735 g/h

HC = 0,000479 * 6,3 * 3 * 563,38 = 5,100 g/h

Beregning af specifikke emissionsværdier (bilag III, tillæg 1, punkt 4.5.):

I følgende beregningseksempel er valgt CO; for de øvrige komponenter er beregningsmåden den samme.

Emissionsmassestrømmene for de enkelte testforløb ganges med de respektive vægtningsfaktorer som foreskrevet i bilag III, tillæg 1, punt 2.7.1., og lægges sammen, resulterende i den gennemsnitlige emissionsmassestrøm i hele testcyklusen:

CO = (6,7 * 0,15) + (24,6 * 0,08) + (20,5 * 0,10) + (20,7 *0,10) + (20,6 * 0,05) + (15,0 * 0,05) + (19,7 * 0,05) + (74,5 * 0,09) + (31,5 * 0,10) + (81,9 * 0,08) + (34,8 * 0,05) + (30,8 * 0,05) + (27,3 * 0,05)

= 30,91 g/h

Motoreffekten i de enkelte testforløb ganges med de respektive vægtningsfakorer som foreskrevet i bilag III, tillæg 1, punkt 2.7.1., og lægges sammen, resulterende i den gennemsnitlige effekt i hele testcyklusen:

P(n) = (0,1 * 0,15) + (96,8 * 0,08) + (55,2 * 0,10) + (82,9 * 0,10) + (46,8 * 0,05) + (70,1 * 0,05) + (23,0 * 0,05) + (114,3 * 0,09) + (27,0 * 0,10) + (122,0 * 0,08) + (28,6 * 0,05) + (87,4 * 0,05) + (57,9 * 0,05)

= 60,006 kW

>START GRAFIK>

CO = 30,91

60,006

= 0,515 g/kWh>SLUT GRAFIK>

Beregning af den specifikke NOx-emission i det tilfældigt valgt punkt (bilag III, tillæg 1, punkt 4.6.1.):

Lad os antage, at der i det tilfældige punkt er bestemt følgende værdier:

nZ = 1 600 o./min.

MZ = 495 Nm

NOx mass.Z = 487,9 g/h (beregnet efter foregående formler)

P(n)Z = 83 kW

NOx,Z = 487,9/83 = 5,878 g/kWh

Bestemmelse af emissionsværdien fra testcyklusen (bilag III, tillæg 1, punkt 4.6.2.):

Lad os antage, at de fire tilstødende testforløb i ESC-testen er som følger:

>TABELPOSITION>

ETU = 5,889 + (4,973 - 5,889) * (1 600 - 1 368) / (1 785 - 1 368) = 5,377 g/kWh

ERS = 5,943 + (5,565 - 5,943) * (1 600 - 1 368) / (1 785 - 1 368) = 5,732 g/kWh

MTU = 681 + (601 - 681) * (1 600 - 1 368) / (1 785 - 1 368) = 641,3 Nm

MRS = 515 + (460 - 515) * (1 600 - 1 368) / (1 785 - 1 368) = 484,3 Nm

EZ = 5,732 + (5,377 - 5,732) * (495 - 484,3) / (641,3 - 484,3) = 5,708 g/kWh

Sammenligning af værdierne af NOx-emissionen (bilag III, tillæg 1, punkt 4.6.3.):

NOx diff = 100 * (5,878 - 5,708) / 5,708 = 2,98 %

1.2. Partikelemissioner

Partikelbestemmelsen bygger på det princip, at der indsamles partikler gennem hele testcylusen, medens strømmen af prøvegas (MSAM og GEDF) bestemmes i de enkelte testforløb. Beregningen af GEDF afhænger af det anvendte system. I de følgende eksempler betragtes et system med CO2-måling og kulstofbalancemetoden samt et system med flowmåling. Når der er tale om et fuldstrømsfortyndingssystem, måles GEDF direkte af CVS-udstyret.

Beregning af GEDF (bilag III, tillæg 1, punkt 5.2.3. og 5.2.4.):

Lad os antage, at der er målt følgende data i testforløb 4. Beregningsmåden er den samme for de øvrige testforløb.

>TABELPOSITION>

a) kulstofbalancemetoden

GEDFW = >NUM>206,5 * 10,76

>DEN>0,657 - 0,040

= 3 601,2 kg/hb) flowmålemetodenq = >NUM>6,0

>DEN>(6,0 - 5,4435)

= 10,78

GEDFW = 334,02 * 10,78 = 3 600,7 kg/h

Beregning af massestrømmen (bilag III, tillæg 1, punkt 5.4.):

Emissionsmassestrømmene GEDFW for de enkelte testforløb ganges med de respektive vægtningsfaktorer som angivet i bilag III, tillæg 1, punkt 2.7.1., og lægges sammen, resulterende i den gennemsnitlige GEDF i hele testcyklusen. Den totale prøvetagningshastighed MSAM beregnes ved sammenlægning af prøvetagningshastighederne for de enkelte testforløb.

>START GRAFIK>

GEDFW>SLUT GRAFIK>

= (3 567 * 0,15) + (3 592 * 0,08) + (3 611 * 0,10) + (3 600 * 0,10) + (3 618 * 0,05) + (3 600 * 0,05) + (3 640 * 0,05) + (3 614 * 0,09) + (3 620 * 0,10) + (3 601 * 0,08) + (3 639 * 0,05) + (3 582 * 0,05) + (3 635 * 0,05)

= 3 604,6 kg/h

MSAM = 0,226 + 0,122 + 0,151 + 0,152 + 0,076 + 0,076 + 0,076 + 0,136 + 0,151 + 0,121 + 0,076 + 0,076 + 0,075

= 1,515 kg

Antages det, at massen af partiklerne på filtrene er 2,5 mg, fås

PTmasse = >NUM>2,5

>DEN>1,515

* >NUM>3 604,6

>DEN>1 000

= 5,948 g/h

Baggrundskorrektion (frivillig)

Lad os antage, at der er foretaget én baggrundsmåling med følgende resultater. Beregningen af fortyndingsfaktoren DF er den samme som i punkt 3.1. i dette bilag og er ikke vist her.

Md = 0,1 mg; MDIL = 1,5 kg

Sum af DF = [(1-1/119,15) * 0,15] + [(1-1/8,89) * 0,08] + [(1-1/14,75) * 0,10] + [(1-1/10,10) * 0,10] + [(1-1/18,02) * 0,05] + [(1-1/12,33) * 0,05] + [(1-1/32,18) * 0,05] + [(1-1/6,94) * 0,09] + [(1-1/25,19) * 0,10] + [(1-1/6,12) * 0,08] + [(1-1/20,87) * 0,05] + [(1-1/8,77) * 0,05] + [(1-1/12,59) * 0,05]

= 0,923

PTmasse = >NUM>2,5

>DEN>1,515

- (

>NUM>0,1

>DEN>1,5

* 0,923) * >NUM>3 604,6

>DEN>1 000

= 5,726 g/h

Beregning af den specifikke emission (bilag III, tillæg 1, punkt 5.5.):

P(n) = (0,1 * 0,15) + (96,8 * 0,08) + (55,2 * 0,10) + (82,9 * 0,10) + (46,8 * 0,05) + (70,1 * 0,05) + (23,0 * 0,05) + (114,3 * 0,09) + (27,0 * 0,10) + (122,0 * 0,08) + (28,6 * 0,05) + (87,4 * 0,05) + (57,9 * 0,05)

= 60,006 kW

>START GRAFIK>

PT = 5,948

60,006

= 0,099 g/kWh, hvis baggrundskorrigeret>SLUT GRAFIK>

>START GRAFIK>

PT = 5,726

60,006

= 0,095 g/kWh>SLUT GRAFIK>

Beregning af den specifikke vægtningsfaktor (bilag III, tillæg 1, punkt 5.5.):

Forudsættes værdierne at være de samme som beregnet for arbejdsmåde 4 ovenfor, fås

WFE,i = >NUM>0,152 * 3 604,6

>DEN>1,515 * 3 600,7

= 0,1004

Denne værdi er inden for det tilladte område på 0,10 ± 0,003.

2. ELR-TEST

Da Bessel-filtrering som metode til gennemsnitsberegning er helt ny i europæiske bestemmelser om udstødningsemissioner, er i det følgende givet en beskrivelse af Bessel-filteret, et eksempel på konstruktion af en Bessel-algoritme samt et eksempel på beregning af den endelige røgtæthed. Konstanterne i Bessel-algoritmen afhænger udelukkende af opacimeterets konstruktion og datafangstsystemets prøvetagningsfrekvens. Det anbefales, at opacimeterets fabrikant oplyser de endelige Bessel-filterkonstanter ved forskellige prøvetagningsfrekvenser, og at disse konstanter anvendes af kunden ved konstruktion af Bessel-algoritmen og ved beregning af røgtætheden.

2.1 Almindelige bemærkninger om Bessel-filteret

På grund af højfrekvent forvrængning fremtræder det ubehandlede opacitetssignal sædvanligvis som en meget diffus kurve. For at fjerne disse højfrekvente forvrængninger kræves et Bessel-filter til ELR-testen. Bessel-filteret er selv et rekursivt anden ordens lavpasfilter, som sikrer hurtigst mulig stigning i signalet uden oversvingning.

Hvis man tager udgangspunkt i et tidstro udstødningsrøgforløb i udstødningsrøret, vil hvert opacimeter vise en forskellig røgtæthedskurve med forsinkelse. Det målte opacitetssignals forsinkelse og størrelse er hovedsagelig bestemt af geometrien af opacimeterets målekammer, herunder prøvetagningsledningerne til udstødningsgas, og af den tid, opacimeterets elektronik er om at behandle signalet. Disse to virkninger er karakteriseret af to størrelser, som kaldes den fysiske og den elektriske responstid og repræsenterer et særskilt filter for hver opacimetertype.

Formålet med at anvende et Bessel-filter er at sikre en ensartet samlet filterkarakteristik for hele opacimetersystemet, bestående af:

- opacimeterets fysiske responstid (tp),

- opacimeterets elektriske responstid (te),

- filterresponstiden for det anvendte Bessel-filter (tF),

Den resulterende samlede responstid for systemet tAver er givet ved:

tAver = √tF2 + tp2 + te2

og skal være ens for alle typer opacimetre for at give samme røgtæthed. Derfor er man nødt til at indføre et Bessel-filter således at filterresponstiden (tF) sammen med den fysiske (tp) og elektriske (te) responstid af det enkelte opacimeter resulterer i den ønskede samlede responstid (tAver). Eftersom tp og te er givne størrelser for det enkelte opacimeter og tAver er sat til 1,0 s i dette direktiv, kan tF beregnes af:

tF = √tAver2 - tp2 - te2

Pr. definition er filterresponstiden tF den tid, et filtreret udgangssignal er om at stige fra 10 % til 90 % af værdien af et trinformet indgangssignal. Derfor skal Bessel-filterets afskæringsfrekvens iterativt beregnes således, at Bessel-filterets responstid er i overensstemmelse med den krævede stigningstid.

Figur a Kurve over et trinformet indgangssignal og det filtrerede udgangssignal

>REFERENCE TIL EN GRAFIK>

Fig. a viser både kurven over et trinformet indgangssignal, et Bessel-filtreret udgangssignal og Bessel-filterets responstid (tF).

Konstruktion af Bessel-filterets endelige algoritme er en flertrinsproces, hvori der indgår flere iterationssløjfer. Et diagram over iterationsmetoden er vist nedenfor.

>REFERENCE TIL EN GRAFIK>

2.2. Beregning af Bessel-algoritmen

I dette eksempel konstrueres Bessel-algoritmen i flere trin i henhold til ovenstående iterationsprocedure, som er baseret på bilag III, tillæg 1, punkt 6.1.

For opacimeter og datafangstsystem forudsættes følgende specifikationer:

- fysisk responstid tp: 0,15 s

- elektrisk responstid te: 0,05 s

- samlet responstid tAver: 1,00 s (pr. definition i dette direktiv)

- prøvetagningsfrekvens 150 Hz

Trin 1 Krævet responstid af Bessel-filter tF:

tF = √12 - (0,152 + 0,052) = 0,987421 s

Trin 2 Gætning af afskæringsfrekvens og beregning af Bessel-konstanterne E og K til første iteration:

fc = 3,1415/(10 * 0,987421) = 0,318152 Hz

Ät = 1/150 = 0,006667 s

Ù = 1/[tan (3,1415 * 0,006667 * 0,318152)] = 150,076644

E = >NUM>1

>DEN>1 + 150,076644 * √3 * 0,618034 + 0,618034 * 150,0766442

= 7,07948 E-5K = 2 * 7,07948 E-5 * (0,618034 * 150,0766442-1) - 1 = 0,970783

Derved fås Bessel-algoritmen:

Yi = Yi - 1 + 7,07948 E-5 * (Si + 2 * Si - 1 + Si - 2 - 4 * Yi 2) + 0,970783 * (Yi 1 - Yi 2)

hvor Si repræsenterer de mulige værdier af det trinformede indgangssignal (enten 0 eller 1), og Yi repræsenterer de filtrerede værdier af udgangssignalet.

Trin 3 Anvendelse af Bessel-filteret på det trinformede indgangssignal:

Bessel-filterets responstid tF er defineret som den tid, det tager et filtreret udgangssignal at stige fra 10 % til 90 % af størrelsen af et trinformet indgangssignal. For at bestemme tiderne svarende til 10 % (t10) og 90 % (t90) af udgangssignal skal der anvendes et Bessel-filter på et trinformet indgangssignal, hvor fc, E og K er sat til ovenstående værdier.

I tabel B er angivet indekstal, tid og størrelse af et trinformet indgangssignal og de resulterende værdier af det filtrerede udgangssignal for første og anden iteration. For punkterne nærmest t10 og t90 er anvendt fed skrift.

I første iteration i tabel B indtræder 10 % værdien mellem indeks nr. 30 og 31, og 90 % værdien mellem indeks nr. 191 og 192. Til beregning af tF,iter er den nøjagtige værdi af t10 og t90 bestemt ved lineær interpolation mellem nabomålepunkter på følgende måde:

t10 = tlower + Ät * (0,1-outlower) / (outupper - outlower)

t90 = tlower + Ät * (0,9-outlower) / (outupper - outlower)

hvor outupper og outlower er de respektive nærmestliggende punkter af det Bessel-filterede udgangssignal, og tlower er det nærmestliggende tidspunkt som angivet i tabel B.

t10 = 0,200000 + 0,006667 * (0,1 - 0,099208) / (0,104794 - 0,099208) = 0,200945 s

t90 = 1,273333 + 0,006667 * (0,9 - 0,899147) / (0,901168 - 0,899147) = 1,276147 s

Trin 4 Filterresponstiden for første iterationssløjfe:

tF,iter = 1,276147 - 0,200945 = 1,075202 s

Trin 5 Afvigelsen mellem ønsket og opnået filterresponstid i første iterationssløjfe:

Ä = (1,075202 - 0,987421) / 0,987421 = 0,081641

Trin 6 Kontrol af iterationskriterierne:

Der kræves en værdi på |Ä| ≤ 0,01. Da 0,081641 > 0,01, er iterationskriterierne ikke opfyldt, og der skal begyndes på endnu en iterationssløjfe. Til denne iterationssløjfe beregnes en ny afskæringsfrekvens af fc og Ä på følgende måde:

fc,new = 0,318152 * (1 + 0,081641) = 0,344126 Hz

Denne nye afskæringsfrekvens anvendes i anden iterationssløjfe, igen begyndende med trin 2. Iterationen skal gentages, indtil iterationskriterierne er opfyldt. De resulterende værdier af første og anden iteration er sammenfattet i tabel A.

>TABELPOSITION>

Trin 7 Endelig Bessel-algoritme:

Så snart iterationskriterierne er opfyldt, beregnes de endelige Bessel-filterkonstanter og den endelige Bessel-algoritme som angivet under trin 2. I dette eksempel er iterationskriterierne opfyldt efter den anden iteration (Ä = 0,006657 ≤ 0,01). Den endelige algoritme benyttes derefter til bestemmelse af den gennemsnitlige røgtæthed (se næste afsnit 2.3).

Yi = Yi - 1 + 8,272777 E-5 * (Si + 2 * Si 1 + Si 2-4 * Yi-2) + 0,968410 * (Yi - 1-Yi - 2)

>TABELPOSITION>

2.3. Beregning af røgtæthed

Nedenstående skema sammenfatter proceduren ved bestemmelse af den endelige størrelse af røgtætheden.

>REFERENCE TIL EN GRAFIK>

I fig. b ses kurven over det målte, ubehandlede opacitetssignal og den ufiltrerede og filtrerede lysabsorptionskoefficient (k-værdi) i første belastningstrin af en ELR-test, og maksimumværdien Ymaks1,A (topværdi) af den filtrerede k-kurve er vist. Tilsvarende indeholder tabel C de numeriske værdier af indeks i, tid (prøvetagningsfrekvens 150 Hz), ubehandlet opacitet, ufiltreret k-værdi og filtreret k-værdi. Filtrering skete med brug af konstanterne i den Bessel-algoritme, der opstilledes i punkt 2.2 i dette bilag. På grund af den store datamængde indeholder tabellen kun de dele af røgtæthedskurven, der ligger nærmest begyndelsen og toppen.

Figur b Kurve over målt opacitet N, ufiltreret røgtæthed k og filtreret røgtæthed k

>REFERENCE TIL EN GRAFIK>

Topværdien (i = 272) beregnes under forudsætning af følgende data i tabel C. Alle andre enkeltværdier af røgtæthed beregnes på samme måde. Som startværdier i algoritmen sættes S-1, S-2, Y-1 og Y-2 til nul.

>TABELPOSITION>

Beregning af k-værdi (bilag III, tillæg 1, punkt 6.3.1.):

k = - >NUM>1

>DEN>0,430

* ln (1 - >NUM>16,783

>DEN>100

) = 0,427252 m-1

Denne værdi svarer til S272 i følgende ligning.

Beregning af Bessel-gennemsnit af røgtæthed (bilag III, tillæg 1, punkt 6.3.2.):

I følgende ligning anvendes Bessel-konstanterne fra punkt 2.2. ovenfor. Den faktiske ufiltrerede k-værdi som beregnet ovenfor svarer til S272 (Si). S271 (Si-1) og S270 (Si-2) er de to foregående ufiltrerede k-værdier, medens Y271 (Yi-1) og Y270 (Yi-2) er de to foregående filtrerede k-værdier.

Y272 = 0,542383 + 8,272777 E-5 * (0,427252 + 2 * 0,427392 + 0,427532 - 4 * 0,542337) + 0,968410 * (0,542383 - 0,542337)

= 0,542389 m-1

Denne værdi svarer til Ymaks.1,A i følgende ligning.

Beregning af den endelige værdi af røgtætheden (bilag III, tillæg 1, punkt 6.3.3):

Fra hver røgtæthedskurve tages den maksimale filtrerede k-værdi til videre beregning. Følgende værdier forudsættes:

>TABELPOSITION>

SVA = (0,5424 + 0,5435 + 0,5587) / 3 = 0,5482 m-1

SVB = (0,5596 + 0,5400 + 0,5389) / 3 = 0,5462 m-1

SVC = (0,4912 + 0,5207 + 0,5177) / 3 = 0,5099 m-1

SV = (0,43 * 0,5482) + (0,56 * 0,5462) + (0,01 * 0,5099) = 0,5467 m-1

Validering af cyklus (bilag III, tillæg 1, punkt 3.4)

Før SV beregnes, skal cyklusen godkendes ved beregning af de relative standardafvigelser af røgtætheden under de tre cykluser for hver hastighed.

>TABELPOSITION>

I dette eksempel er godkendelseskriteriet på 15% opfyldt for hver hastighed.

Tabel C

>TABELPOSITION>

>TABELPOSITION>

3. ETC-TEST

3.1. Forurenende luftarter

Lad os antage, at man med et PDP-CVS system har opnået følgende testresultater:

>TABELPOSITION>

Bestemmelse af den fortyndede udstødningsgasstrøm (bilag III, tillæg 2, punkt 4.1):

MTOTW = 1,293 * 0,1776 * 23073 * (98,0 - 2,3) * 273 / (101,3 * 322,5)

= 4237,2 kg

Beregning af NOx-korrektionsfaktoren (bilag III, tillæg 2, punkt 4.2)

KH, D = >NUM>1

>DEN>1 - 0,0182 * (12,8 - 10,71)

= 1,039

Bestemmelse af baggrundskorrigerede koncentrationer (bilag III, tillæg 2, punkt 4.3.1.1.):

Seja o combustível diesel de composição C1H1,8

FS = 100 * >NUM>1

>DEN>1 + (1,8 / 2) + (3,76 * (1 + (1,8 / 4)))

= 13,6

DF =

>NUM>13,6

>DEN>0,723 + (9,00 + 38,9) * 10-4

= 18,69

NOx konc = 53,7 - 0,4 * (1 - (1/18,69)) = 53,3 ppm

COkonc = 38,9 - 1,0 * (1 - (1/18,69)) = 37,9 ppm

HCkonc = 9,00 - 3,02 * (1 - (1/18,69)) = 6,14 ppm

Beregning af emissionens massestrøm (bilag III, tillæg 2, punkt 4.3.1.):

NOx masse = 0,001587 * 53,3 * 1,039 * 4237,2 = 372,391 g

COmasse = 0,000966 * 37,9 * 4237,2 = 155,129 g

HCmasse = 0,000479 * 6,14 * 4237,2 = 12,462 g

Beregning af de specifikke emissioner (bilag IIi, tillæg 2, punkt 4.4.):

>START GRAFIK>

NOx>SLUT GRAFIK>

= 372,391 / 62,72 = 5,94 g/kWh

>START GRAFIK>

CO>SLUT GRAFIK>

= 155,129 / 62,72 = 2,47 g/kWh

>START GRAFIK>

HC>SLUT GRAFIK>

= 12,462 / 62,72 = 0,199 g/kWh

3.2. Partikelemissioner

Lad os antage, at der er målt følgende testresultater med et PDP-CVS system med dobbelt fortynding:

>TABELPOSITION>

Beregning af masseemissionen (bilag III, tillæg 2, punkt 5.1.):

Mf = 3,030 + 0,044 = 3,074 mg

MSAM = 2,159 - 0,909 = 1,250 kg

PTmasse = >NUM>3,074

>DEN>1,250

* >NUM>4237,2

>DEN>1000

= 10,42 g

Beregning af baggrundskorrigerede koncentrationer (bilag III, tillæg 2, punkt 5.1.):

PTmasse = [

>NUM>3,074

>DEN>1,250

- (

>NUM>0,341

>DEN>1,245

* (1 - >NUM>1

>DEN>18,69

))] * >NUM>4237,2

>DEN>1000

= 9,32 g

Beregning af de specifikke emissioner (bilag III, tillæg 2, punkt 5.2.):

>START GRAFIK>

PT>SLUT GRAFIK>

= 10,42 / 62,72 = 0,166 g/kWh

>START GRAFIK>

PT>SLUT GRAFIK>

= 9,32 / 62,72 = 0,149 g/kWh, hvis baggrundskorrigeret

3.3. Forurenende luftarter (CNG-motor)

Det antages, at der er opnået følgende testresultater med et PDP-CVS system med dobbelt fortynding:

>TABELPOSITION>

Beregning af NOx-korrektionsfaktoren (bilag 3, tillæg 2, punkt 4.2.):

KH,G = >NUM>1

>DEN>1 - 0,0329 * (12,8 - 10,71)

= 1,074

Beregning af NMHC-koncentrationen (bilag III, tillæg 2, punkt 4.3.1.):

a) Gaskromatografisk bestemmelse

NMHCkonce = 27,0 - 18,0 = 9,0 ppm

b) NMC-metoden

Idet virkningsgraden for methan sættes til 0,04, og virkningsgraden for ethan til 0,98 (se bilag III, tillæg 5, punkt 1.8.4), fås

NMHCkonce = >NUM>27,0 * (1 - 0,04) - 18,0

>DEN>0,98 - 0,04

= 8,4 ppm

Beregning af baggrundskorrigerede koncentrationer (bilag III, tillæg 2, punkt 4.3.1.1.):

Idet brændstoffet forudsættes at være referencebrændstof G20 (100 % methan) med sammensætningen C1H4, fås

FS = 100 * >NUM>1

>DEN>1 + (4 / 2) + (3,76 * (1 + (1 + 4 / 4)))

= 9,5

DF = >NUM>9,5

>DEN>0,723 + (27,00 + 44,3) * 10-4

= 13,01

For NMHC er baggrundskoncentratioen forskellen mellem HCkoncd og CH4 koncd:

NOx konc = 17,2 - 0,4 * (1 - (1/13,01)) = 16,8 ppm

COkonc = 44,3 - 1,0 * (1 - (1/13,01)) = 43,4 ppm

NMHCkonc = 8,4 - 1,32 * (1 - (1/13,01)) = 7,2 ppm

CH4 konc = 18,0 - 1,7 * (1 - (1/13,01)) = 16,4 ppm.

Beregning af emissionsmassestrømmen (bilag IIi, tillæg 2, punkt 4.3.1.):

NOx masse = 0,001587 * 16,8 * 1,074 * 4 237,2 = 121,330 g

COmasse = 0,000966 * 43,4 * 4 237,2 = 177,642 g

NMHCmasse = 0,000502 * 7,2 * 4 237,2 = 15,315 g

CH4 masse = 0,000554 * 16,4 * 4 237,2 = 38,498 g.

Beregning af de specifikke emissioner (bilag III, tillæg 2, punkt 4.4.):

>START GRAFIK>

NOx>SLUT GRAFIK>

= 121,330/62,72 = 1,93 g/kWh

>START GRAFIK>

CO>SLUT GRAFIK>

= 177,642/62,72 = 2,83 g/kWh

>START GRAFIK>

NMHC>SLUT GRAFIK>

= 15,315/62,72 = 0,244 g/kWh

>START GRAFIK>

CH4>SLUT GRAFIK>

= 38,498/62,72 = 0,614 g/kWH.

4. ë-FORSKYDNINGSFAKTOR (Së)

4.1. Beregning af ë-forskydningsfaktoren (Së) (1)

Së = >NUM>2

>DEN>(1 - >NUM>% inert

>DEN>100

) (n + >NUM>m

>DEN>4

) - >NUM>O2 *

>DEN>100

hvor:

Së = ë-forskydningsfaktor;

% inert = brændstoffets indhold af inerte gasser i % v/v (f.eks. N2, CO2, He, osv.);

O2* = brændstoffets oprindelige iltindhold i % v/v;

n og m = henviser til et gennemsnitligt CnHm, som repræsenterer brændstoffets carbonhydrider, dvs.:

n = >NUM>1 × [

>NUM>% CH4

>DEN>100

] + 2 × [

>NUM>% C2

>DEN>100

] + 3 × [

>NUM>% C3

>DEN>100

] + 4 × [

>NUM>% C4

>DEN>100

] + 5 × [

>NUM>% C5

>DEN>100

] + . .

>DEN>1 - >NUM>% fortynd.

>DEN>100

m =

>NUM>4 × [

>NUM>% CH4

>DEN>100

] + 4 × [

>NUM>% C2H4

>DEN>100

] + 6 × [

>NUM>% C2H6

>DEN>100

] + . . . 8 × [

>NUM>% C3H8

>DEN>100

] + . .

>DEN>1 - >NUM>% fortynd.

>DEN>100

hvor:

CH4 = brændstoffets indhold af methan, % v/v,

C2 = brændstoffets totale indhold af C2-carbonhydrider (f.eks C2H6, C2H4, osv.), % v/v,

C3 = brændstoffets totale indhold af C3-carbonhydrider (f.eks. C3H8, C3H6, osv.), % v/v,

C4 = brændstoffets totale indhold af C4-carbonhydrider (f.eks. C4H10, C4H8, osv.), % v/v,

C5 = brændstoffets totale indhold af C5-carbonhydrider (f.eks C5, C5H12, C5H10, osv.), % v/v,

fortynd. = brændstoffets indhold af fortyndende gasser, (dvs. O2*, N2, CO2, He, osv.), % v/v.

4.2. Eksemplar til beregning af ë-forskydningsfaktoren Së:

Eksempel 1: G25: CH4 = 86 %, N2 = 14 % (v/v)

>START GRAFIK>

1 ×[% CH4

100

]+ 2 ×[% C2

100

]+ . .

1 × 0,860,86

n = = = = 1

1 - % fortynd.

100

1 - 14

100

0,86>SLUT GRAFIK>

>START GRAFIK>

4 ×[% CH4

100

]+ 4 ×[% C2H4

100

]+ . .

4 × 0,86

m = = = 41 - % fortynd.

100

0,86>SLUT GRAFIK>

>START GRAFIK>

Së = 2

= 2

= 1,16

(1 - % fortynd.

100

)

(n + m

4

)

- O2 *

100

(1 - 14

100

) × (n + 4

4)>SLUT GRAFIK>

Eksempel 2: Gxy: CH4 = 87 %, C2H6 = 13 % (v/v)

>START GRAFIK>

1 ×[% CH4

100

]+ 2 ×[% C2

100

]+ . .

1 × 0,87 + 2 × 0,131,13

n = = = = 1,13

1 - % fortynd.

100

1 - 0

100

1>SLUT GRAFIK>

>START GRAFIK>

4 ×[% CH4

100

]+ 6 ×[% C2H6

100

]+ . .

4 × 0,87 + 6 × 0,13

m = = = 4,261 - % fortynd.

100

1>SLUT GRAFIK>

>START GRAFIK>

Së = 2

= 2

= 0,911

(1 - % inert

100

)

(n + m

4

)

- O2 *

100

(1 - 0

100

) × (1,13 + 4,26

4)>SLUT GRAFIK>

Eksempel 3: USA: CH4 = 89 %, C2H6 = 4,5 %, C3H8 = 2,3 %, C6H14 = 0,2 %, O2 = 0,6 %, N2 = 4 %

>START GRAFIK>

1 ×[% CH4

100

]+ 2 ×[% C2

100

]+ . .

1 × 0,89 + 2 × 0,045 + 3 × 0,023 + 4 × 0,002

n = = = 1,111 - % fortynd.

100

1 - (0,64 + 4)

100>SLUT GRAFIK>

m =

>NUM>4 × [

>NUM>% CH4

>DEN>100

] + 4 × [

>NUM>% C2H4

>DEN>100

] + 6 × [

>NUM>% C2H6

>DEN>100

] + . . . 8 × [

>NUM>% C3H8

>DEN>100

] + . .

>DEN>1 - >NUM>% fortynd.

>DEN>100

=

>START GRAFIK>

= 4 × 0,89 + 4 × 0,045 + 8 × 0,023 + 14 × 0,002

= 4,24

1 - 0,6 + 4

100>SLUT GRAFIK>

>START GRAFIK>

Së = 2

= 2

= 0,96

(1 - % inert

100

)

(n + m

4

)

- O2 *

100

(1 - 4100

) × (1,11 + 4,24

4) - 0,6

100>SLUT GRAFIK>

(1) Det støkiometriske luft/brændstof forhold for automobilbrændstoffer - SAE J1829, juni 1987, John B. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill, 1988, kapitel 3.4 »Combustion stoichiometry« (side 68 til 72).