OTHER ACTS

EUROPEAN COMMISSION

Publication of an application pursuant to Article 6(2) of Council Regulation (EC) No 510/2006 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs

(2011/C 286/08)

This publication confers the right to object to the application pursuant to Article 7 of Council Regulation (EC) No 510/2006 (1). Statements of objection must reach the Commission within six months of the date of this publication.

SINGLE DOCUMENT

COUNCIL REGULATION (EC) No 510/2006

‘TOMATE LA CAÑADA’

PGI (X) PDO ()

1. Name:
‘Tomate La Cañada’

2. Member State or third country:
Spain

3. Description of the agricultural product or foodstuff:

3.1. Product type:
Class 1.6. Fruit, vegetable and cereals, fresh or processed

3.2. Description of the product to which the name in point 1 applies:

Fruit of the tomato plant (Lycopersicon esculentum Mill.) of the commercial types ‘Redondo Liso’, ‘Asurcado’, ‘Oblongo o alargado’ or ‘Tomate cereza’.

— ‘Redondo Liso’: is intense and very dark in colour, with an intensely green peduncle and an exquisite ripening colour.

— ‘Tomato Cereza’ (including the ‘cocktail’ variety): the fruit of this variety is distinguished by its flavour, sugar content and tolerance to splitting. It produces clusters which are long and well-divided.

— ‘Asurcado’: has ribbed, uniform, dark-coloured fruit, with a very intensely green peduncle and an exquisite flavour.

— ‘Oblongo o Alargado’: has fruit which is very uniform, ovoid in shape, of consistent quality and excellent flavour, and is distinguishable from fruit of the other types by its less acidic flavour and the fact that it grows on branches forming a fan shape.

The physico-chemical and organoleptic properties of the four commercial types of 'Tomate La Cañada' fall within the following ranges:

— lycopene content: 10.8-44 mg/100 g,
— vitamin C content: 62-195 mg/100 g fresh weight,
— L (luminance): between 38 and 49,
— colour (according to the colour chart scale): between 2 and 11.

3.3. Raw materials (for processed products only):

—

3.4. Feed (for products of animal origin only):

—

3.5. Specific steps in production that must take place in the defined geographical area:
Not applicable.

3.6. Specific rules concerning slicing, grating, packaging, etc.:
Not applicable.

3.7. Specific rules concerning labelling:
Any type of packaging in which a tomato with the Protected Geographical Indication is transported must bear numbered labels issued by the Regulatory Board, on which must appear the words: 'Indicación Geográfica Protegida Tomate La Cañada', as well as the PGI's logo 'Tomate La Cañada'.

4. Concise definition of the geographical area:

The geographical area of production of tomatoes covered by the Protected Geographical Indication 'Tomate La Cañada' consists of land located on the hydrogeological units 06.11 (Campo de Nijar) and 06.12 (Andarax-Almería) corresponding to the districts of Campo de Nijar y Bajo Andarax in the province of Almería (Spain). Both units are composed of aquifers affected by salinisation and whose facies are predominantly made up of sodium chloride. The fields irrigated using water from these aquifers are also affected by salinisation. These particular aspects of the defined area have an impact on the specific character of the product.

The total surface area of both hydrogeological units is 901 km².

The defined geographical area is located in south-eastern Spain within the province of Almería, hemmed in to the north by large mountain ranges (Sierra Nevada and Sierra de Los Filabres), further to the south by Sierra Alhamilla and Sierra Cabrera, and to the west by the Sierra de Gador. To the south and east the area is bordered by the Mediterranean Sea.

The production area contains 22 municipalities, although some of these only partially: Almería, Huercal de Almería, Pechina, Viator, Gador, Benahadux, Rioja, Santa Fe de Mondújar, Santa Cruz de Marchena, Algodux, Alhabia, Huéjica, Instinción, Illar, Alboloduy, Bentarique, Terque, Alhama de Almería, Nijar, Carboneras, Lucaínena de la Torres and Sorbas.

5. Link with the geographical area:

5.1. Specificity of the geographical area:
Soils: The flat terrain stretching from the fertile valley of the River Andarax (Almería) to the plains of Nijar is composed of alluvial soils. Elsewhere, sand dunes and sandy material predominate, comprising 95% sand.
There are deep soils which in most cases have developed from limestone, are generally poorly fertile and subject to intense erosion.

The soils of the defined geographical area are affected by salinity, notably as a result of using water for irrigation which is rich in salt from the hydrogeological units 06.11 and 06.12, whose facies consist predominantly of sodium chlorides. The two groups of soils predominant in the area are calcisalic fluvisols (very saline soils) and sali-cumulic anthrosols, which are also markedly saline, thereby making the soil in which the 'Tomate La Cañada' is cultivated conform to the definition of a salino-sodic soil.

The fields within the defined geographical area have high electrical conductivity, reflecting the high salinity levels of the majority of soils in the area, as a result of the high proportion of exchangeable chlorine and sodium. Tomatoes with the Protected Geographical Indication must be grown in soils whose conductivity is equal to or greater than 4.5 dS/m and whose pH is less than 8.5.

As regards the exchangeable sodium percentage (ESP), it may be observed that the 'Tomate La Cañada' is grown in soils with higher ESP values (salino-sodic soils) than those of soils used for growing tomatoes in other areas. Thus the soils in which the 'Tomate La Cañada' is grown have an ESP of more than 15 %, while the ESP in the other growing areas is less, down in Poniente Almeriense to as little as 50 % of the ESP of the soil in which 'Tomate La Cañada' is grown.

Water: The irrigation water used on holdings where 'Tomate La Cañada' is grown comes exclusively from the hydrogeological units 06.11 and 06.12. The water contains sodium chlorides and much iodine, and has high electrical conductivity. The predominant ions in the irrigation water are sodium, chlorides, sulphates and calcium, such that the Cl⁻ and Na⁺ ions are found in concentrations of 40 % and 35 % respectively, which are greater than those in irrigation water in the other growing areas.

The irrigation water used in the cultivation of 'Tomate La Cañada' has high electrical conductivity, attaining values 70 % greater than those in the other growing areas. Similarly the sodium adsorption ratio (SAR) of the irrigation water used for the cultivation of 'Tomate La Cañada' is around four times greater than that of the water used in other areas, which also explains why there is a greater amount of exchangeable sodium in the soil in which the 'Tomate La Cañada' is grown.

The electrical conductivity of the irrigation water in the defined geographical area of the PGI 'Tomate La Cañada' must be at least 2.5 dS/m (water which is already considered quite saline and gives rise to significant decreases in production).

Climate and orography: In general, the defined geographical area falls within an area classified in climatic terms as arid (aridity curve from 3 to 6) and subdesert, i.e. the most arid region of Europe, characterised by a lack of frosts and such low rainfall that it can be referred to as an arid desert environment.

The characteristics of this aridity are low rainfall, average annual rainfall ranging between 200-400 mm, a high average annual temperature of between 16.8 and 18.3 °C and an atmosphere which is strongly conducive to evaporation.

Rainfall is torrential and irregular from month to month and year to year. These natural conditions, along with the hydrogeological characteristics of the area, explain the lack of surface water, making it necessary to draw continually on groundwater resources.

The high average annual temperature, along with low average annual precipitation, results in strong evapotranspiration and limited drainage, allowing soluble salts to remain in the soil permanently and raising the soil's electrical conductivity.

Some of the climatic characteristics of the defined geographical area are the product of the general atmospheric circulation which defines the climate of mainland Spain. At the same time, however, the relative position of the area within the Iberian land mass (i.e. in the south-eastern corner, the furthest possible location from the path of the air masses which contribute to the Peninsula's climate) and the strong influence of the large expanse of the African desert play a determining role.
In addition to these factors the local conditions, with the area being hemmed in to the north by large mountain ranges such as Sierra Nevada and Sierra de Los Filabres, to the south by Sierra Alhamilla and Sierra Cabrera, and to the west by Sierra de Gador, which isolates the area from climatic influences from the north and from westerly and northerly winds, and the position of the area adjacent to the Mediterranean Sea to the south and east, also have an influence.

The district's position to the leeward of the northerly air masses and given its latitude and the influence of the Mediterranean, confer on it exceptional thermal conditions. The average annual relative humidity is around 73 %, which remains largely stable throughout the year, not always resulting in condensation. This means that the area has very few foggy days.

Net incident radiation: The average annual hours of sunshine in the defined geographical area is considerable (3 040), whereas cloud cover is the lowest in Spain, i.e. an average of 35 overcast days a year. The average annual incident radiation in greenhouses is 137,58 W/m².

5.2. Specificity of the product:

Luminance (L) of the tomato:

Hunter measuring instruments use the parameters 'L', ‘a’ and ‘b’ to simulate a rectangular three-dimensional colour space, based on the theory of opposing colours. Within this space, the 'Tomate La Cañada' exhibits an L (luminance) value in excess of the 25-28 range most commonly associated with tomatoes.

Redondo Liso: L of between 42 and 46,5 (between 7 and 10 on the colour chart).

Oblongo: L of between 42,3 and 45 (between 8 and 9 on the colour chart).

Cereza: L of between 38 and 40 (between 10 and 11 on the colour chart).

Asurcado: L of between 45 and 49 (between 2 and 3 on the colour chart).

Lycopene content:
The lycopene content of the types of tomato cultivated in the defined geographical area is much greater than that found in the literature for the same commercial types of tomato cultivated in other production areas.

Redondo Liso: 21-25,8 mg/100 g dry weight.

Oblongo: 10,8-13,2 mg/100 g dry weight.

Cereza: 31,6-38,4 mg/100 g dry weight.

Asurcado: 35,4-44 mg/100 g dry weight.

Vitamin C content:
The vitamin C content of the types of tomato cultivated in the defined geographical area is much greater than that found in the literature for the same commercial types of tomato cultivated in other production areas.

Redondo Liso: 153-195 mg/100 g fresh weight.

Oblongo: 142-186 mg/100 g fresh weight.

Cereza: 62-102 mg/100 g fresh weight.

Asurcado: 130-155 mg/100 g fresh weight.

5.3. Causal link between the geographical area and the quality or characteristics of the product (for PDO) or a specific quality, the reputation or other characteristic of the product (for PGI):

The factors affecting the quality and specific characteristics of the 'Tomate La Cañada' (luminance, vitamin C content and lycopene content) are the irrigation water (chlorinated sodium compounds, sourced exclusively from the Campo de Nijar and Andarax Almería hydrogeological units), the soil as a source of nutrition (salino-sodic soils irrigated with this saline water), and special environmental conditions peculiar to the area (sunshine, temperature and humidity).
(a) Vitamin C
Irrigation with saline water increases the vitamin C concentration.

An increase in the electrical conductivity of the irrigation water, which is directly related to the concentration of salts in the water, increases the vitamin C content of the fruit.

The intensity of light in the defined geographical area to which the tomato plants are exposed before harvesting also have a bearing on the amount of ascorbic acid (vitamin C) in the ripe fruit.

(b) Lycopene
Irrigation with saline water increases the lycopene content. An increase in the electrical conductivity of the irrigation water, which is directly related to the concentration of salts in the water, increases the lycopene content of the four commercial types of tomato. Temperatures between 18 °C and 26 °C generally favour the synthesis of lycopene and carotenoids. The average of 18 °C attained in the defined geographical area facilitates synthesis of lycopene and thus the high lycopene content of the 'Tomate La Cañada'.

The synthesis and high levels of lycopene in the 'Tomate La Cañada' are also brought about by the osmotic salt stress caused by the high electrical conductivity of the soils in which the tomato is grown.

(c) Luminance (L) of the tomato fruit
The L values, referring to the Hunter Lab colour space, depend on the incident radiation, temperature, use of saline water and cultivation in saline soils.

Therefore, irrigation using saline water and cultivation in saline soils enhances the fruit's L value.

It is chloride ions (Cl–) that do most to increase electrical conductivity at equal concentration, followed by calcium (Ca2+) and sodium (Na+) ions. This explains the greater electrical conductivity of the soils in which 'Tomate La Cañada' is grown, as in other areas the Cl– and Na+ concentrations are substantially lower.

A high degree of incident radiation and sunny days with between 8 and 16 hours of sunshine are required for the tomato plant to develop well and produce fruit of a uniform colour. The high amount of radiation influences the flowering, fertilisation and vegetative development of the plant by increasing water and nutrient absorption and thus productivity.

By cultivating the 'Tomate La Cañada' in the part of Europe experiencing the most hours of sunshine means that the tomatoes grown in the defined geographical area attain their optimal colour in winter.

Greenhouses are used to protect the fruits from excess light in spring and summer. To carry out photosynthesis, the chloroplasts, which react directly to solar energy, line up perpendicularly to the rays of light.

If the luminous energy is very strong (in spring and summer), the use of greenhouses prevents the chloroplasts from arranging themselves in such a way that incident radiation strikes them at oblique angles, which would result in their receiving less light which would have an effect on the colour and ripening of the fruit.

The effect of temperature on the colour is also well known: the average temperatures in the defined geographical area (between 16.8 °C and 18.3 °C) favour the production of better coloured tomatoes.
Reference to publication of the specification:
(Article 5(7) of Regulation (EC) No 510/2006)

The full text of the product specification is available at:
http://www.juntadeandalucia.es/agriculturaypesca/portal/export/sites/default/comun/galerias/galeriaDescargas/cap/industrias-agroalimentarias/denominacion-de-origen/Pliegos/Pliego_Mantecados_Estepa.pdf

or via the homepage of the Regional Ministry of Agriculture and Fisheries (http://www.juntadeandalucia.es/agriculturaypesca/portal), by following the navigation pathway ‘Industrias Agroalimentarias’ > ‘Calidad y Promoción’ > ‘Denominaciones de Calidad’ > ‘Frutas y Hortalizas’; the specifications are located under the name of the Quality Designation.