20.10.2005   

LV

Eiropas Savienības Oficiālais Vēstnesis

L 275/1


EIROPAS PARLAMENTA UN PADOMES DIREKTĪVA 2005/55/EK

(2005. gada 28. septembris)

par dalībvalstu tiesību aktu tuvināšanu attiecībā uz pasākumiem, kas jāveic, lai samazinātu gāzveida un daļiņveida piesārņotāju emisiju no kompresijaizdedzes motoriem, kuri paredzēti transportlīdzekļiem, un gāzveida piesārņotāju emisiju no dzirksteļaizdedzes motoriem, ko darbina ar dabasgāzi vai sašķidrinātu naftas gāzi un kas paredzēti transportlīdzekļiem

(Dokuments attiecas uz EEZ)

EIROPAS PARLAMENTS UN EIROPAS SAVIENĪBAS PADOME,

ņemot vērā Eiropas Kopienas dibināšanas līgumu, un jo īpaši tā 95. pantu,

ņemot vērā Komisijas priekšlikumu,

ņemot vērā Eiropas Ekonomikas un sociālo lietu komitejas atzinumu (1),

saskaņā ar Līguma 251. pantā noteikto procedūru (2),

tā kā:

(1)

Padomes Direktīva 88/77/EEK (1987. gada 3. decembris) par dalībvalstu tiesību aktu tuvināšanu attiecībā uz pasākumiem, kas jāveic, lai samazinātu gāzveida un daļiņveida piesārņotāju emisiju no kompresijaizdedzes motoriem, kuri paredzēti transportlīdzekļiem, un gāzveida piesārņotāju emisiju no dzirksteļaizdedzes motoriem, ko darbina ar dabasgāzi vai sašķidrinātu naftas gāzi un kas paredzēti transportlīdzekļiem (3) ir viena no atsevišķām direktīvām saistībā ar tipa apstiprināšanas procedūru, kas noteikta Padomes Direktīvā 70/156/EEK (1970. gada 6. februāris) par dalībvalstu tiesību aktu tuvināšanu attiecībā uz mehānisko transportlīdzekļu un to piekabju tipa apstiprinājumu (4). Direktīvā 88/77/EEK ir izdarīti daudz ievērojamu grozījumu, lai pakāpeniski ieviestu stingrākas piesārņotāju emisijas robežvērtības. Tā kā ir jāizdara turpmāki grozījumi, tā būtu jāpārstrādā skaidrības interesēs.

(2)

Padomes Direktīva 91/542/EEK (5), ar ko groza Direktīvu 88/77/EEK, Eiropas Parlamenta un Padomes Direktīva 1999/96/EK (1999. gada 13. decembris) par dalībvalstu tiesību aktu tuvināšanu attiecībā uz pasākumiem, kas jāveic, lai samazinātu gāzveida un daļiņveida piesārņotāju emisiju no kompresijas izdedzes motoriem, kuri paredzēti transportlīdzekļiem, un gāzveida piesārņotāju emisiju no dzirksteļaizdedzes motoriem, ko darbina ar dabasgāzi vai sašķidrinātu naftas gāzi un kas paredzēti transportlīdzekļiem un par grozījumiem Padomes Direktīvā 88/77/EEK (6), un Komisijas Direktīva 2001/27/EK (7), ar kuru tehnikas attīstībai pielāgo Padomes Direktīvu 88/77/EEK, ir ieviesušas noteikumus, kuri, lai gan ir autonomi, ir cieši saistīti ar shēmu, kas izveidota saskaņā ar Direktīvu 88/77/EEK. Šie autonomie noteikumi būtu pilnībā jāiekļauj Direktīvas 88/77/EEK pārstrādātajā versijā skaidrības un juridiskās noteiktības interesēs.

(3)

Ir nepieciešams, ka visas dalībvalstis pieņem vienas un tās pašas prasības, lai jo īpaši veicinātu EK tipa apstiprināšanas sistēmas, kas ir Direktīvas 70/156/EEK priekšmets, īstenošanu attiecībā uz katru transportlīdzekļa tipu.

(4)

Komisijas programma par gaisa kvalitāti, ceļu satiksmes emisijām, degvielu un motoru tehnoloģijām, turpmāk saukta “pirmā Autoeļļas programma”, atklāja, ka ir nepieciešams turpināt samazināt piesārņotāju emisijas no lielas celtspējas/kravnesības transportlīdzekļiem, ja nepieciešams, lai sasniegtu nākotnes gaisa kvalitātes standartus.

(5)

Emisijas robežvērtību samazinājumi, ko piemēro no 2000. gada un kas atbilst oglekļa oksīda emisijas, kopējās ogļūdeņražu emisijas, kā arī slāpekļa oksīdu un makrodaļiņu emisijas 30 % samazinājumam, pirmajā Autoeļļas programmā ir noteikti kāgalvenie pasākumi, lai vidēji ilgā laikā sasniegtu attiecīgo gaisa kvalitāti. Izplūdes dūmu dūmainības samazinājumam par 30 % vajadzētu sniegt papildu iespēju samazināt makrodaļiņu emisiju. Papildu emisiju robežvērtību samazinājumiem, kas tiek piemēroti no 2005. gada, papildus samazinot oglekļa oksīda, kopējās ogļūdeņražu un slāpekļa oksīdu emisijas par 30 % un makrodaļiņu emisijas par 80 %, vajadzētu sniegt lielu ieguldījumu gaisa kvalitātes uzlabošanā vidēji ilgā vai ilgā termiņā. Ar papildu slāpekļa oksīda robežvērtību, ko piemēro no 2008. gada, šo piesārņotāju emisijas robežvērtību vajadzētu samazināt vēl par 43 %.

(6)

Tipa apstiprināšanas testi attiecībā uz gāzveida un daļiņveida piesārņotāju emisiju un dūmainību tiek piemēroti, lai reprezentatīvāk novērtētu motoru emisijas rādītājus testa apstākļos, kuri vairāk līdzinās apstākļiem, kādos transportlīdzekļus ekspluatē. No 2000. gada standarta kompresijaizdedzes motori un tie kompresijaizdedzes motori, kas aprīkoti ar noteikta veida emisijas kontroles ierīcēm, tiek pārbaudīti vienmērīgas darbības testa ciklā, kā arī izmantojot un jaunas slodzes izturības testā attiecībā uz dūmainību. Kompresijaizdedzes motori, kas aprīkoti ar progresīvām emisijas kontroles sistēmām, tika papildus pārbaudīti jaunajā pārejas ekspluatācijas testa ciklā. No 2005. gada visi kompresijaizdedzes būtu jāpārbauda visos šajos testa ciklos. Ar gāzi darbināmi motori tiek pārbaudīti tikai jaunajā pārejas ekspluatācijas testa ciklā.

(7)

Visos darbības apstākļos, izlases kārtā izvēlējoties slodzi noteiktajā ekspluatācijas diapazonā, robežvertību pārsniegums nedrīkst būt lielāks par atbilstīgu procentuālo daļu.

(8)

Nosakot jaunos standartus un testa procedūras, vajadzētu ņemt vērā to ietekmi uz gaisa kvalitāti, ko radīs Kopienas satiksmes izaugsme nākotnē. Darbs, ko veic Komisija šajā jomā, ir atklājis, ka motoru rūpniecība Kopienā ir spērusi platus soļus tehnoloģijas uzlabošanā, pieļaujot ievērojamus gāzveida un daļiņveida piesārņotāju emisijas samazinājumus. Tomēr joprojām ir nepieciešams veikt turpmākus uzlabojumus attiecībā uz emisijas robežvērtībām un citām tehniskām prasībām vides aizsardzības un sabiedrības veselības interesēs. Jo īpaši būtu jāņem vērā pašreizējo pētījumu rezultāti par sevišķi smalko daļiņu rasturlielumiem.

(9)

Ir nepieciešams veikt turpmākus uzlabojumus attiecībā uz motordegvielu kvalitāti, lai nodrošinātu efektīvu un ilgstošu to emisijas kontroles sistēmu darbību, kas ir ekspluatācijā.

(10)

Būtu jāievieš jauni noteikumi attiecībā uz iebūvētām diagnostikas sistēmām (OBD) no 2005. gada ar mērķi veicināt motora emisiju kontroles aprīkojuma tūlītēju pasliktināšanās vai defekta atklāšanu. Tam vajadzētu uzlabot diagnostikas un remontdarbu iespējas un ievērojami paaugstināt ekspluatācijā esošo lielas celtspējas/kravnesības transportlīdzekļu ilgspējīgu sniegumu attiecībā uz emisiju. Tā kā pasaules mērogā OBD lielas celtspējas/kravnesības transportlīdzekļiem vēl ir attīstības sākumstadijā, tā būtu jāievieš Kopienā divos posmos, lai sistēma attīstītos tā, ka OBD sistēma nesniedz nepareizas norādes. Lai palīdzētu dalībvalstīm nodrošināt, ka lielas celtspējas/kravnesības transportlīdzekļu īpašnieki un operatori ievēro to pienākumu izlabot kļūmes, ko uzrāda OBD sistēma, būtu jāreģistrē attālums, kas veikts, vai laiks, kas pagājis, kopš defekts ir norādīts vadītājam.

(11)

Kompresijaizdedzes motori ir izturīgi un ir demonstrējuši, ka ar atbilstīgu un efektīvu uzturēšanu tie var saglabāt augsta līmeņa sniegumu attiecība uz emisiju ievērojami lielās distances, ko veic lielas celtspējas/kravnesības transportlīdzekļi komerciālu darbību laikā. Tomēr nākotnē emisijas standarti izvirzīs nosacījumu, ka ir jāievieš emisiju kontroles sistēmas motora izejā, kā deNOx sistēmas, dīzeļdegvielas daļiņu filtrs un sistēmas, kurās ir apvienotas abas iepriekš minētās, un, iespējams, citas sistēmas, kas vēl nav definētas. Tādējādi ir nepieciešams noteikt derīgu darbmūža prasību, uz kuras balstīt procedūras, lai nodrošinātu motoru emisiju kontroles sistēmu atbilstību visā minētajā atsauces periodā. Nosakot šādu prasību, būtu pienācigi jāņem vērā ievērojamās distances, ko mēro lielas celtspējas/kravnesības transportlīdzekļi, nepieciešamība iekļaut atbilstīgu un laicīgu apkopi un iespēja ieviest tipa apstiprināšanu attiecība uz N1 kategorijas transportlīdzekļiem saskaņā ar šo direktīvu vai ar Padomes Direktīvu 70/220/EEK (1970. gada 20. marts) par dalībvalstu tiesību aktu tuvināšanu attiecībā uz pasākumiem, kas jāveic, lai novērstu gaisa piesārņošanu, ko rada emisija no mehāniskajiem transportlīdzekļiem (8).

(12)

Būtu jāļauj dalībvalstīm, izmantojot nodokļu atvieglojumus, veicināt to transportlīdzekļu laišanu tirgū, kas atbilst Kopienas līmenī pieņemtajām prasībām, ar nosacījumu, ka šādi atvieglojumi atbilst Līguma noteikumiem un dažiem nosacījumiem, kuri paredzēti, lai novērstu iekšējā tirgus traucējumus. Šī direktīva neskar dalībvalstu tiesību piesārņotāju un citu vielu emisiju iekļaut mehānisko transportlīdzekļu ceļu satiksmes nodokļu aprēķina bāzē.

(13)

Tā kā daži no minētajiem nodokļu atvieglojumiem ir valsts atbalsts saskaņā ar Līguma 87. panta 1. punktu, par tiem būtu jāpaziņo Komisijai saskaņā ar Līguma 88. panta 3. punktu, lai veiktu izvērtēšanu saskaņā ar attiecīgajiem saderības kritērijiem. Paziņošana par šiem pasākumiem saskaņā ar šo direktīvu neskar pienākumu ziņot saskaņā ar Līguma 88. panta 3. punktu.

(14)

Ar mērķi vienkāršot un paātrināt procedūru Komisijai būtu jāuztic uzdevums pieņemt pasākumus, ar kuriem īsteno šīs direktīvas pamatnoteikumus, kā arī pasākumus, lai šīs direktīvas pielikumus pielāgotu zinātnes un tehnikas attīstībai.

(15)

Pasākumi, kas nepieciešami šīs direktīvas īstenošanai un tās pielāgošanai zinātnes un tehnikas attīstībai, būtu jāpieņem saskaņā ar Padomes Lēmumu 1999/468/EK (1999. gada 28. jūnijs), ar ko nosaka Komisijai piešķirto ieviešanas pilnvaru īstenošanas kārtību (9).

(16)

Komisijai vajadzētu pārskatīt nepieciešamību ieviest emisijas robežvērtības attiecībā uz piesārņotājiem, uz kuriem pagaidām vēl neattiecas regulējums, saistībā ar jaunu, alternatīvu degvielu un jaunu izplūdes emisijas kontroles sistēmu plašāku izmantošanu.

(17)

Komisijai cik drīz vien iespējams būtu jāiesniedz priekšlikumi, ko tā uzskata par lietderīgiem, nākamajam posmam attiecībā uz NOx un makrodaliņu emisijas robežvērtībām.

(18)

Ņemot vērā to, ka dalībvalstis nevar pietiekami labi sasniegt šīs direktīvas mērķi, proti, iekšējā tirgus realizāciju, ieviešot kopējas tehniskās prasības attiecībā uz gāzveida un daļiņveida emisiju visu tipu transportlīdzekļiem, un tādēļ rīcības mēroga dēļ tos var labāk sasniegt Kopienas līmenī, Kopiena var pieņemt pasākumus saskaņā ar Līguma 5. pantā noteikto subsidiaritātes principu. Saskaņā ar minētajā pantā noteikto proporcionalitātes principu šajā direktīvā paredz vienīgi to, kas ir vajadzīgs minētā mērķa sasniegšanai.

(19)

Pienākums pārņemt šo direktīvu valsts tiesību aktos attiecas tikai uz noteikumiem, kuri ir būtiski grozījumi, salīdzinot ar iepriekšējām direktīvām. Pienākums pārņemt noteikumus, kas nav mainīti, izriet no iepriekšējām direktīvām.

(20)

Šī direktīva neskar dalībvalstu pienākumus attiecībā uz termiņiem IX pielikuma B daļā minēto direktīvu pārņemšanai valsts tiesību aktos un piemērošanai,

IR PIEŅĒMUŠI ŠO DIREKTĪVU.

1. pants

Definīcijas

Šajā direktīvā piemēro šādas definīcijas:

a)

“transportlīdzeklis” ir jebkurš transportlīdzeklis, kas noteikts Direktīvas 70/156/EEK 2. pantā un ko piedzen ar kompresijaizdedzes vai gāzes motoru, izņemot M1 kategorijas transportlīdzekļus, kuru tehniski pieļaujamā pilnā masa ir 3,5 tonnas vai mazāka;

b)

“kompresijaizdedzes vai gāzes motors” ir transportlīdzekļa vilces piedziņas avots, kam kā atsevišķai tehniskai vienībai saskaņā ar Direktīvas 70/156/EEK 2. pantu var piešķirt tipa apstiprinājumu;

c)

“uzlabots, videi mazāk kaitīgs transportlīdzeklis (EVV)” ir transportlīdzeklis, ko piedzen ar motoru, kurš atbilst pieļaujamām emisijas robežvērtībām, kas norādītas I pielikuma 6.2.1. iedaļā, tabulu C rindā.

2. pants

Dalībvalstu pienākumi

1.   Attiecībā uz visu tipu kompresijaizdedzes vai gāzes motoriem un to tipu transportlīdzekļiem, ko piedzen ar kompresijaizdedzes vai gāzes motoru, ja I līdz VIII pielikumā noteiktās prasības nav izpildītas un jo īpaši ja motora gāzveida un daļiņveida piesārņotāju emisija un dūmu dūmainība neatbilst robežvērtībām, kuras noteiktas I pielikuma 6.2.1. iedaļas tabulu A rindā, dalībvalstis:

a)

atsaka EK tipa apstiprinājumu saskaņā ar Direktīvas 70/156/EEK 4. panta 1. punktu; un

b)

atsaka valsts tipa apstiprinājumu.

2.   Izņemot attiecībā uz transportlīdzekļiem un motoriem, kas paredzēti eksportam uz trešām valstīm, un rezerves motoriem, kuri paredzēti ekspluatācijā esošiem transportlīdzekļiem, dalībvalstis, ja I līdz VIII pielikumā noteiktās prasības nav izpildītas un jo īpaši ja motora gāzveida un daļiņveida piesārņotāju emisija un dūmu dūmainība neatbilst robežvērtībām, kuras noteiktas I pielikuma 6.2.1. iedaļas tabulu A rindā:

a)

uzskata, ka atbilstības sertifikāti, kas pievienoti jauniem transportlīdzekļiem vai jauniem motoriem, ievērojot Direktīvu 70/156/EEK, vairs nav derīgi minētās direktīvas 7. panta 1. punkta nozīmē, un

b)

aizliedz reģistrēt, pārdot, nodot ekspluatācijā vai lietot jaunus transportlīdzekļus, ko piedzen ar kompresijaizdedzes vai gāzes motoru, un pārdot vai lietot jaunus kompresijaizdedzes vai gāzes motorus.

3.   Neskarot 1. un 2. pantu, no 2003. gada 1. oktobra, izņemot attiecībā uz transportlīdzekļiem un motoriem, kas paredzēti eksportam uz trešām valstīm, vai rezerves motoriem, kuri paredzēti ekspluatācijā esošiem transportlīdzekļiem, dalībvalstis, attiecībā uz gāzes motoru tipiem un to transportlīdzekļu tipiem, ko piedzen ar gāzes motoru, kuri neatbilst I līdz VIII pielikumā noteiktajām prasībām:

a)

uzskata, ka atbilstības sertifikāti, kas pievienoti jauniem transportlīdzekļiem vai jauniem motoriem, ievērojot Direktīvu 70/156/EEK, vairs nav derīgi minētās direktīvas 7. panta 1. punkta nozīmē, un

b)

aizliedz jaunu transportlīdzekļu reģistrēšanu, pārdošanu, nodošanu ekspluatācijā vai lietošanu un jaunus motoru pārdošanu vai lietošanu.

4.   Ja prasības, kas noteiktas I līdz VIII pielikumā un 3. un 4. pantā, ir izpildītas, jo īpaši, ja motora gāzveida un daļiņveida piesārņotāju emisija un dūmu dūmainība atbilst robežvērtībām, kuras noteiktas I pielikuma 6.2.1. iedaļas tabulu B1 vai B2 rindā, vai pieļaujamām robežvērtībām, kas noteiktas C rindā, neviena dalībvalsts nedrīkst, pamatojoties uz motora gāzveida un daļiņveida piesārņotāju emisiju un dūmu dūmainību:

a)

atteikt EK tipa apstiprinājumu saskaņā ar Direktīvas 70/156/EEK 4. panta 1. punktu vai valsts tipa apstiprinājumu tāda transportlīdzekļu tipam, ko piedzen ar kompresijaizdedzes vai gāzes motoru;

b)

aizliegt reģistrēt, pārdot, nodot ekspluatācijā vai lietot jaunus transportlīdzekļus, ko piedzen ar kompresijaizdedzes vai gāzes motoru;

c)

atteikt EK tipa apstiprinājumu kompresijaizdedzes vai gāzes motora tipam;

d)

aizliegt jaunu kompresijas izdedzes vai gāzes motoru pārdosanu vai lietošanu.

5.   No 2005. gada 1. oktobra attiecībā uz kompresijaizdedzes vai gāzes motoru tipiem un to transportlīdzekļu tipiem, ko piedzen ar kompresijaizdedzes vai gāzes motoru, kuri neatbilst prasībām, kas noteiktas I līdzVIII pielikumā un 3. un 4. pantā, nav izpildītas, ja motora gāzveida un daļiņveida piesārņotāju emisija un dūmu dūmainība neatbilst robežvērtībām, kuras noteiktas I pielikuma 6.2.1. iedaļas tabulu B1 rindā, dalībvalstis:

a)

atsaka EK tipa apstiprinājumu saskaņā ar Direktīvas 70/156/EEK 4. panta 1. punktu; un

b)

atsaka valsts tipa apstiprinājumu.

6.   No 2006. gada 1. oktobra, izņemot attiecībā uz transportlīdzekļiem un motoriem, kas paredzēti eksportam uz trešām valstīm, vai rezerves motoriem, kuri paredzēti ekspluatācijā esošiem transportlīdzekļiem, dalībvalstis, ja prasības, kas nav izpildītas I līdz VIII pielikumā un 3. un 4. pantā noteiktās prasības un jo īpaši ja motora gāzveida un daļiņveida piesārņotāju emisija un dūmu dūmainība neatbilst robežvērtībām, kuras noteiktas I pielikuma 6.2.1. iedaļas tabulu B1 rindā:

a)

uzskata, ka atbilstības sertifikāti, kas pievienoti jauniem transportlīdzekļiem vai jauniem motoriem, ievērojot Direktīvu 70/156/EEK, vairs nav derīgi minētās direktīvas 7. panta 1. punkta nozīmē, un

b)

aizliedz reģistrēt, pārdot, nodot ekspluatācijā vai lietot jaunus transportlīdzekļus, ko piedzen ar kompresijaizdedzes vai gāzes motoru, un pārdot vai lietot jaunus kompresijaizdedzes vai gāzes motorus.

7.   No 2008. gada 1. oktobra attiecībā uz kompresijaizdedzes vai gāzes motoru tipiem un to transportlīdzekļu tipiem, ko piedzen ar kompresijaizdedzes vai gāzes motoru, kuri neatbilst I līdz VIII pielikumā un 3. un 4. pantā noteiktajām prasībām, ja motora gāzveida un daļiņveida piesārņotāju emisija un dūmu dūmainība neatbilst robežvērtībām, kuras noteiktas I pielikuma 6.2.1. iedaļas tabulu B2 rindā, dalībvalstis:

a)

atsaka EK tipa apstiprinājumu saskaņā ar Direktīvas 70/156/EEK 4. panta 1. punktu; un

b)

atsaka valsts tipa apstiprinājumu.

8.   No 2009. gada 1. oktobra, izņemot attiecībā uz transportlīdzekļiem un motoriem, kas paredzēti eksportam uz trešām valstīm, un rezerves motoriem, kuri paredzēti ekspluatācijā esošiem transportlīdzekļiem, dalībvalstis, ja nav izpildītas I līdz VIII pielikumā un 3. un 4. pantā noteiktās prasībasun jo īpaši ja motora gāzveida un daļiņveida piesārņotāju emisija un dūmu dūmainība neatbilst robežvērtībām, kuras noteiktas I pielikuma 6.2.1. iedaļas tabulu B2 rindā:

a)

uzskata, ka atbilstības sertifikāti, kas pievienoti jauniem transportlīdzekļiem vai jauniem motoriem, ievērojot Direktīvu 70/156/EEK, vairs nav derīgi minētās direktīvas 7. panta 1. punkta nozīmē, un

b)

aizliedz reģistrēt, pārdot, nodot ekspluatācijā vai lietot jaunus transportlīdzekļus, ko piedzen ar kompresijaizdedzes vai gāzes motoru, un pārdot vai lietot jaunus kompresijaizdedzes vai gāzes motorus.

9.   Saskaņā ar 4. punktu motoru, kas atbilst I līdz VIII pielikumā noteiktajām prasībām un jo īpaši atbilst robežvērtībām, kas noteiktas I pielikuma 6.2.1. iedaļas tabulu C rindā, uzskata par atbilstīgu 1. līdz 3. punktā noteiktajām prasībām.

Saskaņā ar 4. punktu, motoru, kas atbilst I līdz VIII pielikumā un 3. un 4. pantā noteiktajām prasībām un jo īpaši atbilst robežvērtībām, kas noteiktas I pielikuma 6.2.1. iedaļas tabulu C rindā, uzskata par atbilstīgu 1. līdz 3. punktā un 5. līdz 8. punktā noteiktajām prasībām.

10.   Attiecībā uz kompresijaizdedzes vai gāzes motoriem, kam jāatbilst I pielikuma 6.2.1. iedaļā noteiktajām robežvērtībām saskaņā ar tipa apstiprināšanas sistēmu, piemēro šādus noteikumus:

visos darbības apstākļos, izvēlējoties slodzi izlases kārtā, attiecībā uz noteikto kontroles diapazonu, izņemot sevišķi norādītos motora ekspluatācijas apstākļus, uz ko šāds noteikums neattiecas, tās emisijas rādītāji, kuras paraugi ņemti laikposmā, kurš nav ilgāks par 30 sekundēm, nepārsniedz I pielikuma 6.2.1. iedaļas tabulu B2 un C rindā noteiktās robežvērtības par vairāk kā 100 %. Kontroles diapazonu, kuram piemēro noteikumu par nepārsniedzamo procentu likmi, un motora ekspluatācijas apstākļus, uz kuriem neattiecas šāds noteikums, ka arī citus attiecīgos nosacījumus paredz saskaņā ar 7. panta 1. punktā minēto procedūru.

3. pants

Emisijas kontroles sistēmu kalpošanas ilgums

1.   No 2005. gada 1. oktobra attiecībā uz jaunu tipu apstiprinājumiem un no 2006. gada 1. oktobra attiecībā uz visu tipu apstiprinājumiem, izgatavotājs pierāda, ka kompresijaizdedzes vai gāzes motori, kas ieguvuši tipa apstiprinājumu, atsaucoties uz robežvērtībām, kas aprakstītas I pielikuma 6.2.1. iedaļas tabulu B1 vai B2, vai C rindā, atbildīs minētajām robežvērtībām visu darbmūžu, kas atbilst:

a)

100 000 km vai pieciem gadiem, atkarībā no tā, kurš lielums iestājas pirmais, gadījumā, ja motorus paredzēts ierīkot N1 vai M2 kategorijas transportlīdzekļos;

b)

200 000 km vai sešiem gadiem, atkarībā no tā, kurš lielums iestājas pirmais, gadījumā, ja motorus paredzēts ierīkot N2 kategorijas transportlīdzekļos, tajos M3 kategorijas transportlīdzekļos, kuru maksimālā tehniski pieļaujamā masa nepārsniedz 16 tonnas, vai tajos M3 kategorijas I, II, A un B klases transportlīdzekļos, kuru maksimālā tehniski pieļaujamā masa nepārsniedz 7,5 tonnas;

c)

500 000 km vai septiņiem gadiem, atkarībā no tā, kurš lielums iestājas pirmais, gadījumā, ja motorus paredzēts ierīkot N3 kategorijas transportlīdzekļos, kuru maksimālā tehniski pieļaujamā masa pārsniedz 16 tonnas, vai M3 kategorijas III un B klases transportlīdzekļos, kuru maksimālā tehniski pieļaujamā masa pārsniedz 7,5 tonnas.

No 2005. gada 1. oktobra jauniem tipiem un 2006. gada 1. oktobra visiem tipiem, lai transportlīdzekļiem piešķirtu tipa apstiprinājumu, ir jāapliecina emisijas kontroles ierīču pareiza darbība transportlīdzekļa parastajā lietderīgās izmantošanas laikā parastajos lietošanas apstākļos (ekspluatācijā esošo un pareizi uzturēto un lietoto transportlīdzekļu atbilstība).

2.   Pasākumus, lai īstenotu 1. punktu, pieņem vēlākais 2005. gada 28. decembrī.

4. pants

Iebūvētas diagnostikas sistēmas

1.   No 2005. gada 1. oktobra attiecībā uz jaunu tipu apstiprinājumiem un no 2006. gada 1. oktobra attiecībā uz visu tipu apstiprinājumiem kompresijaizdedzes motoru, kas ieguvis tipa apstiprinājumu, atsaucoties uz emisijas robežvērtībām, kas aprakstītas I pielikuma 6.2.1. iedaļas tabulu B1 vai C rindā, vai transportlīdzekli, ko piedzen ar šādu motoru, aprīko ar iebūvētu diagnostikas (OBD) sistēmu, kas vadītājam signalizē par defektu, ja tiek pārsniegtas OBD sliekšņa robežvērtības, kas norādītas 3. punkta tabulas B1 vai C rindā.

Izplūdes pēcapstrādes sistēmu gadījumā OBD sistēma var uzraudzīt būtiskos funkcionālos defektus kādā no šiem:

a)

katalizatorā, ja tas uzstādīts kā atsevišķa vienība, neatkarīgi no tā, vai tas ir daļa no deNOx sistēmas vai dīzeļdegvielas daļiņu filtra;

b)

deNOx sistēmā, ja tāda uzstādīta;

c)

dīzeļdegvielas daļiņu filtrā, ja tāds uzstādīts;

d)

kombinētajā deNOx - dīzeļdegvielas daļiņu filtra sistēmā.

2.   No 2008. gada 1. oktobra attiecībā uz jaunu tipu apstiprinājumiem un no 2009. gada 1. oktobra attiecībā uz visu tipu apstiprinājumiem kompresijaizdedzes motoru vai gāzes motoru, kas ieguvis tipa apstiprinājumu, atsaucoties uz emisijas robežvērtībām, kas aprakstītas I pielikuma 6.2.1. iedaļas tabulu B2 vai C rindā, vai transportlīdzekli, ko piedzen ar šādu motoru, aprīko ar OBD sistēmu, kas vadītājam signalizē par defektu, ja tiek pārsniegtas OBD sliekšņa robežvērtības, kas norādītas 3. punkta tabulas B2 vai C rindā.

OBD sistēmā ietver arī saskarni starp motora elektronisko vadības vienību (MEVV) un jebkurām citām motora vai transportlīdzekļa elektriskajām vai elektroniskajām sistēmām, kas nodrošina ievadu vai saņem izvadu no MEKV un kas ietekmē pareizu emisijas kontroles sistēmas funkcionēšanu, piemēram, saskarni starp MEVV un transmisijas elektronisko vadības vienību.

3.   OBD sliekšņa robežvērtības ir šādas:

Rinda

Kompresijaizdedzes motori

Slāpekļa oksīdu masa

(NOx) g/kWh

Daļiņu masa

(PT) g/kWh

B1 (2005)

7,0

0,1

B2 (2008)

7,0

0,1

C (EEV)

7,0

0,1

4.   Jānodrošina pilnīga un vienāda piekļuve OBD informācijai, lai varētu veikt testus, diagnostiku, apkopi, un remontu, ievērojot attiecīgos Direktīvas 70/220/EEK noteikumus un noteikumus par rezerves daļām, kas nodrošina savietojamību ar OBD sistēmām.

5.   Pasākumus, lai īstenotu 1., 2. un 3. punktu, pieņem vēlākais 2005. gada 28. decembrī.

5. pants

Emisijas kontroles sistēmas, kurās izmanto patērējamus reaģentus

Nosakot 4. panta īstenošanai vajadzīgos pasākumus, kā paredzēts 7. panta 1. punktā, Komisija vajadzības gadījumā tajos iekļauj tehniskus pasākumus, lai līdz minimumam samazinātu risku, kas saistīts ar emisijas kontroles sistēmām, kurās izmanto patērējamus reaģentus, ja tās nepareizi uztur ekpluatācijā. Turklāt vajadzības gadījumā tajos iekļauj pasākumus, lai nodrosinātu, ka amonjaka emisija saistībā ar patērējamu reaģentu izmantošanu ir samazināta līdz minimumam.

6. pants

Nodokļu atvieglojumi

1.   Dalībvalstis drīkst paredzēt nodokļu atvieglojumus tikai attiecībā uz tiem transportlīdzekļiem, kas atbilst šai direktīvai. Šādiem atvieglojumiem jāatbilst Līguma noteikumiem, kā arī šī panta 2. vai 3. punktam.

2.   Atvieglojumus piemēro visiem jaunajiem transportlīdzekļiem, ko piedāvā pārdošanai kādas dalībvalsts tirgū un kas jau iepriekš atbilst robežvērtībām, kuras noteiktas I pielikuma 6.2.1. iedaļas tabulu B1 vai B2 rindā.

Tos izbeidz, kad jāsāk obligāti piemērot robežvērtības, kas minētas B1 rindā, kā paredzēts 2. panta 6. punktā, vai kad jāsāk obligāti piemērot robežvērtības, kuras noteiktas B2 rindā, kā paredzēts 2. panta 8. punktā.

3.   Atvieglojumus piemēro visiem jaunajiem transportlīdzekļiem, ko piedāvā pārdošanai kādas dalībvalsts tirgū un kas atbilst pieļaujamām robežvērtībām, kuras noteiktas I pielikuma 6.2.1. iedaļas tabulu C rindā.

4.   Papildus nosacījumiem, kas minēti 1. punktā, attiecībā uz katru transportlīdzekļa tipu atvieglojumi nepārsniedz tās papildu izmaksas, ko rada tehniskie risinājumi, kurus ievieš, lai nodrošinātu atbilstību robežvērtībām, kas noteiktas B1vai B2 rindā, vai pieļaujamajām robežvērtībām, kas noteiktas I pielikuma 6.2.1. iedaļas tabulu C rindā, un tās izmaksas, ko rada to uzstādīšana uz transportlīdzekļa.

5.   Dalībvalstis laicīgi informē Komisiju par plāniem ieviest vai grozīt nodokļu atvieglojumus, kas minēti šajā pantā, tā, lai Komisija varētu iesniegt savus apsvērumus.

7. pants

Īstenošanas pasākumi un grozījumi

1.   Šīs direktīvas 2. panta 10. punkta, 3. un 4. panta īstenošanai vajadzīgos pasākumus pieņem Komisija, kurai palīdz atbilstīgi Direktīvas 70/156/EEK 13. panta 1. punktam izveidotā komiteja, saskaņā ar minētās direktīvas 13. panta 3. punktā minēto procedūru.

2.   Šīs direktīvas grozījumus, kas ir nepieciešami, lai to pielāgotu zinātnes un tehnikas attīstībai, pieņem Komisija, kurai palīdz atbilstīgi Direktīvas 70/156/EEK 13. panta 1. punktam izveidotā komiteja, saskaņā ar minētās direktīvas 13. panta 3. punktā minēto procedūru.

8. pants

Izskatīšana un ziņojumi

1.   Komisija pārskata nepieciešamību ieviest jaunas emisijas robežvērtības, kas jāpiemēro lielas celtspējas/kravnesības transportlīdzekļiem un motoriem attiecībā uz piesārņotājiem, uz kuriem pagaidām neattiecas regulējums. Pārskatīšana jābalsta uz jaunu alternatīvu degvielu plašāku ieviešanu tirgū un uz jaunu izplūdes emisijas kontroles sistēmu, kas darbojas ar piedevam, ieviešanu, lai pildītu turpmākos standartus, kas noteikti šajā direktīvā. Ja nepieciešams, Komisija iesniedz priekšlikumu Eiropas Parlamentam un Padomei.

2.   Komisijai būtu jāiesniedz Eiropas Parlamentam un Padomei priekšlikumi tiesību aktiem par turpmākām NOx un daliņveida emisijas robežvērtībām attiecībā uz lielas celtspējas/kravnesības transportlīdzekļiem.

Vajadzības gadījumā tā izmeklē, vai ir jānosaka papildu rovežvērtības attiecībā uz makrodalīņu daudzumiem un izmēriem, un, ja tas jādara, iekļauj tās priekšlikumos.

3.   Komisija ziņo Eiropas Parlamentam un Padomei par to, kā virzās sarunas par pasaules mērogā saskaņotu darba ciklu (WHDC).

4.   Komisija iesniedz ziņojumu Eiropas Parlamentam un Padomei par prasībām iebūvētas mērīšanas (OBM) sistēmas darbībai. Pamatojoties uz minēto ziņojumu, Komisija, ja nepieciešams, iesniedz priekšlikumu par pasākumiem, ar ko ietvertu tehniskās specifikācijas un atbilstīgos pielikumus, lai paredzētu tādu OBM sistēmu tipa apstiprināšanu, kuras nodrošina vismaz tādu pašu uzraudzības līmeni kā OBD sistēmas un kuras ir saderīgas ar tām.

9. pants

Transponēšana

1.   Līdz 2006. gada 9. novembrim dalībvalstis pieņem un publicē normatīvos un administratīvos aktus, kas vajadzīgi, lai izpildītu šo direktīvu. Ja 7. pantā minētos īstenošanas pasākumus pieņem pēc 2005. gada 28. decembra, dalībvalstis izpilda šo saistību līdz transponēšanas dienai, ko norāda direktīvā, kurā ietverti minētie īstenošanas pasākumi. Tās tūlīt dara zināmus Komisijai minēto aktu tekstu, kā arī minēto aktu un šīs direktīvas korelācijas tabulu.

Tās piemēro minētos aktus no 2006. gada 9. novembra vai, ja 7. pantā minētos īstenošanas pasākumus pieņem pēc 2005. gada 28. decembra, no transponēšanas dienas, ko norāda direktīvā, kurā ietverti minētie īstenošanas pasākumi.

Kad dalībvalstis pieņem minētos aktus, tajos ietver atsauci uz šo direktīvu vai arī šādu atsauci pievieno to oficiālajai publikācijai. Tajos arī ietver paziņojumu, ka atsauces pašreizējos normatīvajos un administratīvajos aktos uz direktīvām, kas atceltas ar šo direktīvu, interpretē kā atsauces uz šo direktīvu. Dalībvalstis nosaka to, kā izdarīt šādas atsauces un kā formulēt minēto paziņojumu.

2.   Dalībvalstis dara Komisijai zināmus galvenos valsts tiesību aktu noteikumus, ko tas pieņem jomā, uz kuru attiecas šī direktīva.

10. pants

Atcelšana

Direktīvas, kas uzskaitītas IX pielikuma A daļā, tiek atceltas no 2006. gada 9. novembra, neskarot dalībvalstu saistības attiecībā uz termiņiem IX pielikuma B daļā uzskaitīto direktīvu transponēšanai valsts tiesību aktos un piemērošanai.

Atsauces uz atceltajām direktīvām interpretē kā atsauces uz šo direktīvu, un tās lasa saskaņā ar korelācijas tabulu X pielikumā.

11. pants

Spēkā stāšanās

Šī direktīva stājas spēkā divdesmitajā dienā pēc tās publicēšanas Eiropas Savienības Oficiālajā Vēstnesī.

12. pants

Adresāti

Šī direktīva ir adresēta dalībvalstīm.

Strasbūrā, 2005. gada 28. septembrī.

Eiropas Parlamenta vārdā —

priekšsēdētājs

J. BORRELL FONTELLES

Padomes vārdā —

priekšsēdētājs

D. ALEXANDER


(1)  OV C 108, 30.4.2004., 32. lpp.

(2)  Eiropas Parlamenta 2004. gada 9. marta atzinums (OV C 102 E, 28.4.2004., 272. lpp.) un Padomes 2005. gada 19. septembra lēmums.

(3)  OV L 36, 9.2.1988., 33. lpp. Direktīvā jaunākie grozījumi izdarīti ar 2003. gada Pievienošanās aktu.

(4)  OV L 42, 23.2.1970., 1. lpp. Direktīvā jaunākie grozījumi izdarīti ar Komisijas Direktīvu 2005/49/EK (OV L 194, 26.7.2005., 12. lpp.).

(5)  OV L 295, 25.10.1991., 1. lpp.

(6)  OV L 44, 16.2.2000., 1. lpp.

(7)  OV L 107, 18.4.2001., 10. lpp.

(8)  OV L 76, 6.4.1970., 1. lpp. Direktīvā jaunākie grozījumi izdarīti ar Komisijas Direktīvu 2003/76/EK (OV L 206, 15.8.2003., 29. lpp.).

(9)  OV L 184, 17.7.1999., 23. lpp.


I PIELIKUMS

PIEMĒROŠANAS JOMA, DEFINĪCIJAS UN SAĪSINĀJUMI, PIETEIKUMS EK TIPA APSTIPRINĀJUMAM, SPECIFIKĀCIJAS UN TESTI, UN RAŽOJUMU ATBILSTĪBA

1.   PIEMĒROŠANAS JOMA

Šī direktīva attiecas uz gāzveida un daļiņveida piesārņotājiem no transportlīdzekļiem, kas aprīkoti ar kompresijaizdedzes motoru, un gāzveida piesārņotājiem no visiem transportlīdzekļiem, kuri aprīkoti ar dzirksteļaizdedzes motoru, ko darbina ar dabasgāzi vai sašķidrinātu naftas gāzi, un uz kompresijaizdedzes un dzirksteļaizdedzes motoriem, kuri norādīti 1. pantā, izņemot tos N1, N2 un M2 kategorijas transportlīdzekļus, kam tipa apstiprinājums piešķirts saskaņā ar Padomes Direktīvu 70/220/EEK (1970. gada 20. marts) par dalībvalstu tiesību aktu tuvināšanu attiecībā uz pasākumiem, kas jāveic, lai novērstu gaisa piesārņošanu, ko rada emisija no mehāniskajiem transportlīdzekļiem (1).

2.   DEFINĪCIJAS UN SAĪSINĀJUMI

Šajā direktīvā:

2.1.   “Testa cikls” ir testēšanas stadiju secība, kur katrā stadijā motoram jādarbojas ar noteiktiem apgriezieniem un griezes momentu vienmērīgas darbības režīmā (ESCtests) vai pārejas ekspluatācijas apstākļos (ETC, ELR tests);

2.2.   “Motora (motoru saimes) apstiprinājums” ir motoru tipa (motoru saimes) apstiprinājums, kas attiecas uz gāzveida un daļiņveida piesārņotāju emisiju;

2.3.   “Dīzeļmotors” ir motors, kas darbojas pēc kompresijaizdedzes principa;

2.4.   “Gāzes motors” ir motors, ko darbina ar dabasgāzi (NG) vai sašķidrinātu naftas gāzi (LPG);

2.5.   “Motoru tips” ir tādu motoru kategorija, kas neatšķiras pēc tādiem būtiskiem rādītājiem kā šās direktīvas II pielikumā noteiktie motora parametri;

2.6.   “Motoru saime” ir izgatavotāju noteikta tādu motoru grupa, kam pēc šās direktīvas II pielikuma 2. papildinājumā noteiktās konstrukcijas ir līdzīgi izplūdes gāzu emisijas parametri; visiem vienas saimes motoriem jāatbilst piemērojamām emisijas robežvērtībām;

2.7.   “Standarta motors” ir motors, kas no motoru saimes atlasīts tā, ka tā emisijas parametri ir raksturīgi visiem attiecīgās saimes motoriem;

2.8.   “Gāzveida piesārņotāji” ir oglekļa oksīds, ogļūdeņraži (pieņemot attiecību CH1,85 dīzeļmotoriem, CH2,525 LPG motoriem un CH2,93 NG (NMHC) motoriem un nosacītu CH3O0,5 molekulu etanola dīzeļmotoriem), metāns (pieņemot attiecību CH4 NG motoriem) un slāpekļa oksīdi, pēdējos izsakot slāpekļa dioksīda (NO2) ekvivalentā;

2.9.   “Daļiņveida piesārņotāji” ir visas vielas, ko savāc noteiktā filtrējošā vidē pēc tam, kad motora izplūdes gāzes ir atšķaidītas ar tīru filtrētu gaisu tā, lai temperatūra nepārsniedz 325 K (52 °C);

2.10.   “Dūmi” ir dīzeļmotora izplūdes plūsmā suspendētas daļiņas, kas absorbē, atstaro vai lauž gaismu;

2.11.   “Lietderīgā jauda” ir EK kW izteikta jauda, ko testēšanas stendā iegūst kloķvārpstas galā, vai tās ekvivalents, kuru mēra saskaņā ar EK jaudas mērīšanas metodi, kura izklāstīta Padomes Direktīvā 80/1269/EEK (1980. gada 16. decembris) par dalībvalstu tiesibu aktu tuvināšanu attiecībā uz mehānisko transportlīdzekļu motora jaudu (2);

2.12.   “Deklarētā maksimālā jauda (Pmaks.)” ir EK kW izteikta maksimālā jauda (lietderīgā jauda), ko izgatavotājs deklarējis tipa apstiprinājuma pieteikumā;

2.13.   “Procentuālā slodze” ir iegūstamā maksimālā griezes momenta attiecība pret motora apgriezienu skaitu;

2.14.   “ESC tests” ir testa cikls, kurā saskaņā ar šā pielikuma 6.2. iedaļu piemēro 13 režīmus ar vienmērīgiem motora apgriezieniem;

2.15.   “ELR tests” ir testa cikls, kurā saskaņā ar šā pielikuma 6.2. iedaļu nemainīgiem motora apgriezieniem secīgi piemēro slodzes pakāpes;

2.16.   “ETC tests” ir testa cikls, kurā saskaņā ar šā pielikuma 6.2. iedaļu piemēro 1 800 vienas sekundes pārejas ekspluatācijas režīmus;

2.17.   “Motora ekspluatācijas apgriezienu diapazons” ir motora apgriezienu skaita diapazons, ko visbiežāk izmanto, motoru ekspluatējot, un kas saskaņā ar šīs direktīvas III pielikumu ir starp mazo apgriezienu skaitu un lielo apgriezienu skaitu;

2.18.   “Mazie apgriezieni (nlo)” ir motora mazākais apgriezienu skaits, kas dod 50 % deklarētās maksimālās jaudas;

2.19.   “Lielie apgriezieni (nhi)” ir motora lielākais apgriezienu skaits, kas dod 70 % deklarētās maksimālās jaudas;

2.20.   “Motora A, B un C apgriezieni” ir testa apgriezienu skaits motora ekspluatācijas apgriezienu diapazonā, kas jāizmanto ESCun ELR testā, kurš izklāstīts šās direktīvas III pielikuma 1. papildinājumā;

2.21.   “Kontroles diapazons” ir diapazons starp motora A un C apgriezieniem un starp 25 – 100 procentu slodzi;

2.22.   “Nominālie apgriezieni (nref)” ir 100 procenti to apgriezienu vērtības, kas jāizmanto, lai denormalizētu relatīvās apgriezienu vērtības, kas iegūtas ETCtestā, kā izklāstīts šīs direktīvas III pielikuma 2. papildinājumā;

2.23.   “Dūmmērs” ir ierīce, kas paredzēta dūmu daļiņu radītas dūmainības mērīšanai pēc gaismas dzēšanas principa;

2.24.   “NG gāzu grupa” ir H vai L grupa saskaņā ar 1993. gada novembra Eiropas standartu EN 437;

2.25.   “Pašregulācija” ir jebkura motora funkcija, kas dod iespēju uzturēt nemainīgu gaisa/degvielas attiecību;

2.26.   “Atkārtota kalibrēšana” ir NGmotora regulēšana, lai tādu pašu darbību (jaudu, degvielas patēriņu) nodrošinātu ar citas grupas dabasgāzi;

2.27.   “Vobeindekss (apakšējais Wl vai augšējais Wu)” ir tilpuma vienības gāzes sadegšanas siltuma un tās relatīvā blīvuma kvadrātsaknes attiecība vienādos standarta apstākļos:

Formula

2.28.   “λ – nobīdes koeficients (Sλ)” ir izteiksme, kas raksturo vajadzīgo motora vadības sistēmas elastību attiecībā uz liekā gaisa attiecības “λ” izmaiņu, ja motoru darbina ar gāzu maisījumu, kurš atšķiras no tīra metāna (Sλ aprēķinu skatīt VII pielikumā).

2.29.   “Izslēgšanas ierīce” ir ierīce, ar ko mēra, konstatē vai maina ekspluatācijas vērtības (piemēram, transportlīdzekļa ātrumu, motora apgriezienus, ieslēgto pārnesumu, temperatūru, ieplūdes spiedienu vai kādu citu parametru) un reaģē uz tām, lai ieslēgtu, pārveidotu, kavētu vai atslēgtu kādas emisijas kontroles sistēmas sastāvdaļas darbību vai funkciju tā, ka emisijas kontroles sistēmas efektivitāte samazinās transportlīdzekļa normālas ekspluatācijas apstākļos, ja šādas ierīces lietošana pēc būtības nav iekļauta piemērojamās emisijas sertifikācijas testa procedūrās.

Image

2.30.   “Kontroles palīgierīce” ir motora vai transportlīdzekļa sistēma, funkcija vai kontroles stratēģija, ko uzstāda motoram un/vai tā papildaprīkojumam, lai aizsargātu pret ekspluatācijas apstākļiem, kuri varētu izraisīt bojājumu vai defektu, vai ar ko atvieglo motora iedarbināšanu. Kontroles palīgierīce var būt arī stratēģija vai mērierīce, ja ir pietiekami pierādīts, ka tā nav izslēgšanas ierīce;

2.31.   “Neracionāla emisijas kontroles stratēģija” ir jebkura stratēģija vai mērierīce, kas, transportlīdzeklim darbojoties normālos ekspluatācijas apstākļos, samazina emisijas kontroles sistēmas efektivitāti tā, ka tā ir mazāka par to, kura gaidāma piemērojamās testa procedūrās.

2.32.   Simboli un saīsinājumi

2.32.1.   Testu parametru simboli

Simbols

Mērvienība

Termins

AP

m2

Izokinētiskās zondes šķērsgriezuma laukums

AT

m2

Izplūdes caurules šķērsgriezuma laukums

CEE

Etāna efektivitāte/lietderība

CEM

Metāna efektivitāte

C1

Oglekļa 1 atomam ekvivalents ogļūdeņradis

conc

ppm/tilp. %

Indekss, ar ko norāda koncentrāciju

D0

m3/s

PDF kalibrēšanas funkcijas leņķis

DF

Atšķaidījuma koeficients

D

Besela funkcijas konstante

E

Besela funkcijas konstante

EZ

g/kWh

Interpolētā NOx emisija kontrolpunktā

fa

Laboratorijas gaisa korekcijas koeficients

fc

s-1

Besela filtra atslēgšanās frekvence/robežfrekvence

FFH

Degvielai specifisks koeficients mitra stāvokļa koncentrācijas attiecināšanai pret sausa stāvokļa koncentrāciju

FS

Stehiometriskais koeficients

GAIRW

kg/h

Ieplūdes gaisa masas caurplūdums, rēķinot uz mitru gaisu

GAIRD

kg/h

Ieplūdes gaisa masas caurplūdums, rēķinot uz sausu gaisu

GDILW

kg/h

Atšķaidīšanas gaisa masas caurplūdums, rēķinot uz mitru gaisu

GEDFW

kg/h

Ekvivalentais atšķaidīto izplūdes gāzu masas caurplūdums, rēķinot uz mitrām gāzēm

GEXHW

kg/h

Izplūdes gāzu masas caurplūdums, rēķinot uz mitrām gāzēm

GFUEL

kg/h

Degvielas masas caurplūdums

GTOTW

kg/h

Atšķaidītu izplūdes gāzu masas caurplūdums, rēķinot uz mitrām gāzēm

H

MJ/m3

Sadegšanas siltuma vērtība

HREF

g/kg

Absolūtā mitruma nominālā vērtība (10,71 g/kg)

Ha

g/kg

Iesūcamā gaisa absolūtais mitrums

Hd

g/kg

Atšķaidīšanas gaisa absolūtais mitrums

HTCRAT

mol/mol

Ūdeņraža attiecība pret oglekli

i

Indekss atsevišķa režīma apzīmēšanai

K

Besela konstante

k

m-1

Gaismas absorbcijas koeficients

KH,D

NOx mitruma korekcijas koeficients dīzeļmotoriem

KH,G

NOx mitruma korekcijas koeficients gāzes motoriem

KV

 

CFV kalibrēšanas funkcija

KW,a

Korekcijas koeficients ieplūdes gaisa pārrēķināšanai no sausa uz mitru

KW,d

Korekcijas koeficients atšķaidīšanas gaisa pārrēķināšanai no sausa uz mitru

KW,e

Korekcijas koeficients atšķaidītu izplūdes gāzu pārrēķināšanai no sausām uz mitrām

KW,r

Korekcijas koeficients neatšķaidītu izplūdes gāzu pārrēķināšanai no sausām uz mitrām

L

%

Griezes moments procentos no testa ātruma maksimālā griezes momentā

La

m

Optiskā ceļa lietderīgais garums

m

 

POP kalibrēšanas funkcijas slīpums

mass

g/h or g

Indekss izmešu masas plūsmas ātruma apzīmēšanai

MDIL

kg

Caur daļiņu parauga ņemšanas filtriem izgājušā atšķaidīšanas gaisa parauga masa

Md

mg

Atšķaidīšanas gaisā savākto daļiņu parauga masa

Mf

mg

Savākto daļiņu parauga masa

Mf,p

mg

Pirmējā filtrā savākto daļiņu parauga masa

Mf,b

mg

Palīgfiltrā savākto daļiņu parauga masa

MSAM

 

Caur daļiņu parauga ņemšanas filtriem izgājušā atšķaidīta izplūdes gāzu parauga masa

MSEC

kg

Otrējā atšķaidīšanas gaisa masa

MTOTW

kg

Kopējā CVS masa visā ciklā, rēķinot uz mitru bāzi

MTOTW,i

kg

Momentānās CVS masa, rēķinot uz mitru bāzi

N

%

Dūmainība

NP

POP kopējie apgriezieni visā ciklā

NP,i

POP apgriezieni laika intervālā

n

min-1

Motora apgriezieni

np

s-1

POP ātrums

nhi

min-1

Lieli motora apgriezieni

nlo

min-1

Mazi motora apgriezieni

nref

min-1

Motora standarta/nominālie apgriezieni ETC testā

pa

kPa

Motora ieplūdes gaisa piesātināta tvaika spiediens

pA

kPa

Absolūtais spiediens

pB

kPa

Kopējais gaisa spiediens

pd

kPa

Atšķaidīšanas gaisa piesātināta tvaika spiediens

ps

kPa

Sausas atmosfēras spiediens

p1

kPa

Retinājuma spiediens sūkņa ieplūdes atverē

P(a)

kW

Jauda, ko absorbē palīgierīces, kuras jāuzstāda testa nolūkā

P(b)

kW

Jauda, ko absorbē palīgierīces, kuras jānoņem testa nolūkā

P(n)

kW

Lietderīgā jauda bez korekcijas

P(m)

kW

Izmēģinājumu stendā izmērītā jauda

Ω

Besela konstante

Qs

m3/s

CVS tilpuma caurplūdums

q

Atšķaidījuma pakāpe

r

Izokinētiskās zondes un izplūdes caurules šķērsgriezumu laukumu attiecība

Ra

%

Ieplūdes gaisa relatīvais mitrums

Rd

%

Atšķaidīšanas gaisa relatīvais mitrums

Rf

FID atbildes koeficients

ρ

kg/m3

blīvums;

S

kW

Dinamometra iestatījums

Si

m-1

Momentāno dūmu vērtība

Sλ

Nobīdes koeficients

T

K

Absolūtā temperatūra

Ta

K

Ieplūdes gaisa absolūtā temperatūra

t

s

Mērīšanas laiks

te

s

Elektriskās reakcijas laiks

tF

s

Filtra reakcijas laiks Besela funkcijai

tp

s

Fizikālās reakcijas laiks

Δt

s

Laika intervāls starp secīgiem dūmu datiem (= 1/parauga ņemšanas frekvence)

Δti

s

Laika intervāls momentānai CFV plūsmai

τ

%

Dūmu caurlaidība

V0

m3/rev

POP tilpuma caurplūdums faktiskos apstākļos

W

Vobeindekss

Wact

kWh

ETC cikla faktiskais darbs

Wref

kWh

ETC standarta cikla darbs

WF

Svēruma koeficients

WFE

Efektīvais svēruma koeficients

X0

m3/rev

PDF tilpuma caurplūduma kalibrēšanas funkcija

Yi

m-1

Besela vidējā 1 s dūmu vērtība

2.32.2.   Ķīmisko sastāvdaļu simboli

CH4

Metāns

C2H6

Etāns

C2H5OH

Etanols

C3H8

Propāns

CO

Oglekļa oksīds

DOP

Dioktilftalāts

CO2

Oglekļa dioksīds

HC

Ogļūdeņraži

NMHC

Ogļūdeņraži, izņemot metānu

NOx

Slāpekļa oksīdi

NO

Slāpekļa (II) oksīds

NO2

Slāpekļa dioksīds

PT

Daļiņas

2.32.3.   Saīsinājumi.

CFV

Kritiskās plūsmas Venturi caurule

CLD

Hemiluminiscences detektors

ELR

Eiropā pieņemtā slodzes reakcijas tests

ESC

Eiropā pieņemtais vienmērīgas darbības cikls

ETC

Eiropā pieņemtais mainīgas darbības cikls

FID

Liesmas jonizācijas detektors

GC

Gāzu hromatogrāfs

HCLD

Karsēts hemiluminiscences detektors

HFID

Karsētas liesmas jonizācijas detektors

LPG

Sašķidrināta naftas gāze

NDIR

Nedispersīvs infrasarkanais analizators

NG

Dabasgāze

NMC

Gāzu, izņemot metānu, nošķīrējs

3.   EK TIPA APSTIPRIN JUMA PIETEIKUMS

3.1.   Motoru tipa vai motoru saimes kā atsevišķas tehniskas vienības EK tipa apstiprinājuma pieteikums.

3.1.1.   Motoru tipa vai motoru saimes EK tipa apstiprinājuma pieteikumu attiecībā uz gāzveida un daļiņveida piesārņotāju emisiju dīzeļmotoriem un attiecībā uz gāzveida piesārņotāju emisiju gāzes motoriem iesniedz motora izgatavotājs vai attiecīgi pilnvarots pārstāvis.

3.1.2.   Tam pievieno šādus dokumentus trijos eksemplāros un šādas ziņas:

3.1.2.1.   Motoru tipa vai motoru saimes aprakstu, pēc vajadzības iekļaujot ziņas, kas minētas šīs direktīvas II pielikumā un kas atbilst Direktīvas 70/156/EEK (1970. gada 6. februāris) par dalībvalstu tiesību aktu tuvināšanu attiecību uz mehānisko transportlīdzekļu un to piekabju tipa apstiprinājumu (3) 3. un 4. panta prasībām.

3.1.3.   Motoru, kas atbilst “motoru tipa” vai “standarta motora” parametriem, kuri aprakstīti II pielikumā, nodod tehniskajam dienestam, kas atbild par apstiprinājuma testiem, kuri noteikti 6. iedaļā.

3.2.   EK tipa apstiprinājuma pieteikums transportlīdzekļa tipam attiecībā uz tā motoru

3.2.1.   Tāda transportlīdzekļu EK tipa apstiprinājuma pieteikumu, kas attiecas uz gāzveida un daļiņveida piesārņotāju emisiju dīzeļmotoriem vai to saimei un uz gāzveida piesārņotāju emisiju gāzes motoriem vai to saimei, iesniedz transportlīdzekļa izgatavotājs vai attiecīgi pilnvarots pārstāvis.

3.2.2.   Tam pievieno šādus dokumentus trijos eksemplāros un šādas ziņas:

3.2.2.1.   Transportlīdzekļu tipa, ar motoru saistīto transportlīdzekļa daļu un motoru tipa vai motoru saimes aprakstu, pēc vajadzības iekļaujot ziņas, kas minētas II pielikumā, kopā ar dokumentāciju, kura vajadzīga, piemērojot Direktīvas 70/156/EEK 3. pantu,

3.3.   EK tipa apstiprinājuma pieteikums transportlīdzekļa tipam ar apstiprinātu motoru.

3.3.1.   Tāda transportlīdzekļu apstiprinājuma pieteikumu, kas attiecas uz gāzveida un daļiņveida piesārņotāju emisiju apstiprinātiem dīzeļmotoriem vai to saimei un uz gāzveida piesārņotāju emisiju apstiprinātiem gāzes motoriem vai to saimei, iesniedz transportlīdzekļa izgatavotājs vai attiecīgi pilnvarots pārstāvis.

3.3.2.   Tam pievieno šādus dokumentus trijos eksemplāros un šādas ziņas:

3.3.2.1.   Transportlīdzekļu tipa un ar motoru saistīto transportlīdzekļa daļu aprakstu, pēc vajadzības iekļaujot ziņas, kas minētas II pielikumā, un EK tipa apstiprinājuma sertifikātu (VI pielikums) attiecībā uz motora tipu vai, ja vajadzīgs, motoru saimi, kā atsevišķu tehnisku vienību, kas ir uzstādīta attiecīgajā transportlīdzeklī, kopā ar dokumentāciju, kura vajadzīga, piemērojot Direktīvas 70/156/EEK 3. pantu.

4.   EK TIPA APSTIPRINĀŠANA

4.1.   Universālas degvielas EK tipa apstiprinājuma piešķiršana

Universālas degvielas EK tipa apstiprinājumu piešķir, ievērojot šādas prasības:

4.1.1.   Ja lieto dīzeļdegvielu, tad standarta motors atbilst šīs direktīvas prasībām, kas attiecas uz standarta degvielu, kura noteikta IV pielikumā.

4.1.2.   Ja lieto dabasgāzi, jāpierāda, ka standarta motors spēj pielāgoties jebkura sastāva degvielai, kāda var būt tirgū. Parasti ir divu veidu dabasgāzes degviela — degviela ar lielu siltumietilpību (H gāze) un degviela ar mazu siltumietilpību (L gāze) — bet abu veidu degviela ievērojami izplešas; tās ievērojami atšķiras pēc enerģijas satura, ko izsaka ar Wobbe indeksu un λ novirzes koeficientu (Sλ). Wobbe indeksu un Sλ aprēķina pēc formulām, kas norādītas 2.27. un 2.28. iedaļā. Uzskata, ka dabasgāzes ar λ novirzes koeficientu no 0,89 līdz 1,08 (0,89 ≤ Sλ ≤ 1,08) pieder pie H gāzēm, bet dabasgāzes ar λ novirzes koeficientu no 1,08 līdz 1,19 (1,08 ≤ Sλ ≤ 1,19) pieder pie L gāzēm. Standarta degvielu sastāvs atspoguļo Sλ galējās izmaiņas.

Standarta motoram bez degvielas padeves pārregulēšanas starp abiem testiem jāatbilst šīs direktīvas prasībām par standarta degvielu GR (1. degviela) un G25 (2. degviela), kas noteiktas IV pielikumā. Tomēr atļauts pēc degvielas maiņas bez mērīšanas izpildīt vienu pielāgošanas ETC. Pirms testēšanas standarta motors jāiesilda pēc procedūras, kas noteikta III pielikuma 2. papildinājuma 3. punktā.

4.1.2.1.   Pēc izgatavotāja pieprasījuma motoru var testēt ar vēl vienu degvielu (3. degvielu), ja λ novirzes koeficients (Sλ) ir no 0,89 (t.i., apakšējās GR robežas) līdz 1,19 (t.i., augšējai G25 robežai), piemēram, ja 3. degviela ir tirgus degviela. Šāda testa rezultātus var izmantot par pamatu ražojuma atbilstības vērtējumam

4.1.3.   Ja dabasgāzes motoru, kas pats pielāgojas, no vienas puses, H gāzēm, un, no otras puses, L gāzēm un ko pārslēdz no Hgāzēm uz L gāzēm un otrādi ar slēdzi, standarta motors visos slēdža stāvokļos jātestē ar attiecīgo standarta degvielu, kura abu grupu gāzēm noteikta IV pielikumā. H grupas gāzēm ir šādas degvielas — GR (1. degviela) un G23 (3. degviela), un L grupas gāzēm ir šādas degvielas — G25 (2. degviela) un G23 (3. degviela). Standarta motoram jāatbilst šīs direktīvas prasībām abos slēdža stāvokļos bez nekādas degvielas padeves pārregulēšanas starp abiem testiem visos slēdža stāvokļos. Tomēr ir atļauts pēc degvielas maiņas bez mērīšanas izpildīt vienu pielāgošanas ETC. Pirms testēšanas standarta motors jāiesilda pēc procedūras, kas noteikta III pielikuma 2. papildinājuma 3. punktā.

4.1.3.1.   Pēc izgatavotāja prasības motoru var testēt ar vēl vienu degvielu (3. degvielu) G23 vietā, ja λ novirzes koeficients (Sλ) ir no 0,89 (t.i., apakšējās GR robežas) līdz 1,19 (t.i., augšējai G25 robežai), piemēram, ja 3. degviela ir tirgus degviela. Šāda testa rezultātus var izmantot par pamatu ražojuma atbilstības vērtējumam.

4.1.4.   Dabasgāzes motoriem emisijas rezultātu attiecība “r” katrai piesārņotājvielai jānoteic šādi:

Formula

vai

Formula

un

Formula

4.1.5.   Ja lieto LPG, jāpierāda, ka standarta motors spēj pielāgoties jebkura sastāva degvielai, kāda var būt tirgū. LPG sastāvā mainās C3/C4. Minētās izmaiņas atspoguļojas standarta degvielās. Standarta motoram bez degvielas padeves pārregulēšanas starp abiem testiem jāatbilst prasībām par A un B standarta degvielu, kas noteiktas IV pielikumā. Tomēr ir atļauts pēc degvielas maiņas bez mērīšanas izpildīt vienu pielāgošanas ETC. Pirms testēšanas standarta motors jāiesilda pēc procedūras, kas noteikta III pielikuma 2. papildinājuma 3. punktā.

4.1.5.1.   Emisijas rezultātu attiecība “r” katrai piesārņotājvielai jānoteic šādi:

Formula

4.2.   Ierobežota diapazona degvielas EK tipa apstiprinājuma piešķiršana

Ierobežota diapazona degvielas EK tipa apstiprinājumu piešķir, ievērojot šādas prasības:

4.2.1.   Tāda motora apstiprināšana attiecībā uz izplūdes izmešiem, kas darbojas ar dabasgāzi un kas paredzēts H grupas gāzēm vai L grupas gāzēm.

Standarta motors jātestē ar attiecīgo standarta degvielu, kas attiecīgās grupas gāzēm noteikta IV pielikumā. H grupas gāzēm ir šādas degvielas — GR (1. degviela) un G23 (3. degviela), un L grupas gāzēm ir šādas degvielas — G25 (2. degviela) un G23 (3. degviela). Standarta motoram bez degvielas padeves pārregulēšanas starp abiem testiem jāatbilst šīs direktīvas prasībām. Tomēr atļauts pēc degvielas maiņas bez mērīšanas izpildīt vienu pielāgošanas ETC. Pirms testēšanas standarta motors jāiesilda pēc procedūras, kas noteikta III pielikuma 2. papildinājuma 3. punktā.

4.2.1.1.   Pēc izgatavotāja prasības motoru var testēt ar vēl vienu degvielu (3. degvielu) G23 vietā, ja λ novirzes koeficients (Sλ) ir no 0,89 (t.i., apakšējās GR robežas) līdz 1,19 (t.i., augšējai G25 robežai), piemēram, ja 3. degviela ir tirgus degviela. Šāda testa rezultātus var izmantot par pamatu ražojuma atbilstības vērtējumam.

4.2.1.2.   Emisijas rezultātu attiecība “r” katrai piesārņotājvielai jānoteic šādi:

Formula

vai

Formula

un,

Formula

4.2.1.3.   Kad motoru piegādā pircējam, uz tā jābūt etiķetei (skatīt 5.1.5. punktu) ar norādi, kuras grupas gāzēm motors ir apstiprināts.

4.2.2.   Tāda motora apstiprināšana attiecībā uz izmetes emisijām, kas darbojas ar dabasgāzi vai LPG un kas paredzēts viena specifiska sastāva degvielai.

4.2.2.1.   Standarta motoram jāatbilst emisijas prasībām, kas noteiktas IV pielikumā, ja testē ar GR un G25 standarta degvielu attiecībā uz dabasgāzi vai ar A un B standarta degvielu attiecībā uz LPG. Starp testiem atļauts precīzi noregulēt degvielas padeves sistēmu. Šajā precīzajā regulēšanā ietilpst degvielas padeves datu bāzes atkārtota kalibrēšana, nemainot kontroles pamatstratēģiju vai datu bāzes pamatstruktūru. Pēc vajadzības drīkst apmainīt daļas, kas tieši saistītas ar degvielas plūsmas daudzumu (piemēram, iesmidzināšanas sprauslas).

4.2.2.2.   Pēc izgatavotāja prasības motoru var testēt ar GR un G23 standarta degvielu vai G25 un G23 standarta degvielu, un šajā gadījumā tipa apstiprinājums ir derīgs attiecīgi tikai H grupas gāzēm vai L grupas gāzēm.

4.2.2.3.   Kad motoru piegādā pircējam, uz tā jābūt etiķetei (skatīt 5.1.5. punktu) ar norādi, kura sastāva degvielai motors ir kalibrēts.

4.3.   Saimes motora apstiprinājums, kas attiecas uz izplūdes gāzu emisiju

4.3.1.   Izņemot gadījumu, kas minēts 4.3.2. punktā, standarta motora apstiprinājums, kurš attiecas uz tādas grupas jebkura sastāva degvielu, kam standarta motors apstiprināts (ja motori aprakstīti 4.2.2. punktā) vai tādas pašas grupas degvielām (ja motori aprakstīti 4.1. vai 4.2. punktā), jāattiecina uz visiem saimes motoriem bez turpmākas testēšanas.

4.3.2.   Sekundārā testa motors

Ja, iesniedzot pieteikumu motora vai transportlīdzekļa tipa apstiprinājumam, kas attiecas uz motoru, kurš pieder pie kādas motoru saimes, tehniskais dienests konstatē, ka attiecībā uz izraudzīto standarta motoru iesniegtais pieteikums pilnībā nepārstāv motoru saimi, kas noteikta I pielikuma 1. papildinājumā, tehniskais dienests testēšanai var izraudzīties papildu standarta testa motoru.

4.4.   Tipa apstiprinājuma sertifikāts

Piešķirot apstiprinājumu, kas noteikts 3.1., 3.2. un 3.3. iedaļā, izsniedz sertifikātu, kas atbilst paraugam VI pielikumā.

5.   MOTORU MARĶĒJUMI

5.1.   Uz motora, kas apstiprināts kā tehniska vienība, jābūt:

5.1.1.   Motora izgatavotāja preču zīmei vai tirdzniecības nosaukumam;

5.1.2.   Izgatavotāja standartapzīmējumam;

5.1.3.   EK tipa apstiprinājuma numuram, kura priekšā ir tās dalībvalsts atšķirības zīme (zīmes), kas piešķīrusi EK tipa apstiprinājumu (4)

5.1.4.   uz NGmotora jābūt vienam no šiem marķējumiem aiz EK tipa apstiprinājuma numura:

H, ja motors apstiprināts un kalibrēts attiecībā uz H grupas gāzēm;

L, ja motors apstiprināts un kalibrēts attiecībā uz L grupas gāzēm;

HL, ja motors apstiprināts un kalibrēts attiecībā uz H grupas gāzēm un L grupas gāzēm;

Ht, ja motors apstiprināts un kalibrēts attiecībā uz specifiska sastāva gāzi H gāzu grupā un, regulējot motora degvielas padevi, pārveidojams atbilstīgi citai specifiskai gāzei H gāzu grupā;

Lt, ja motors apstiprināts un kalibrēts attiecībā uz specifiska sastāva gāzi L gāzu grupā un, regulējot motora degvielas padevi, pārveidojams atbilstīgi citai specifiskai gāzei L gāzu grupā;

HLt, ja motors apstiprināts un kalibrēts attiecībā uz specifiska sastāva gāzi H gāzu grupā vai L gāzu grupā un, regulējot motora degvielas padevi, pārveidojams atbilstīgi citai specifiskai gāzei H vai L gāzu grupā.

5.1.5.   Etiķetes

Uz motoriem, kurus darbina ar NGun LPGun kuru tipa apstiprinājums ir ierobežots ar degvielas grupu, lieto šādas etiķetes.

5.1.5.1.   Saturs

Jāsniedz šāda informācija:

Ja piemērojams 4.2.1.3. punkts, tad uz etiķetes jābūt:

“TIKAI EKSPLUATĀCIJAI AR H GRUPAS DABASGĀZI”. Pēc vajadzības “H” aizstāj ar “L”.

Ja piemērojams 4.2.2.3. punkts, tad uz etiķetes attiecīgi jābūt:

“TIKAI EKSPLUATĀCIJAI AR H GRUPAS DABASGĀZI, KAS ATBILST SPECIFIKĀCIJAI …” vai “TIKAI EKSPLUATĀCIJAI AR SAŠĶIDRINĀTU NAFTAS GĀZI, KAS ATBILST SPECIFIKĀCIJAI …”. Visu informāciju attiecīgajās IV pielikuma tabulās sniedz, norādot atsevišķās sastāvdaļas un robežas, ko noteicis motora izgatavotājs.

Burtiem un cipariem jābūt vismaz 4 mm augstiem.

Piezīme:

Ja šādu etiķeti nevar piestiprināt vietas trūkuma dēļ, tad var lietot vienkāršotu kodu. Tādā gadījumā jebkurai personai, kas uzpilda degvielas tvertni vai apkopj vai remontē motoru un tā palīgierīces, un attiecīgajām iestādēm jābūt viegli pieejamiem paskaidrojumiem, kuros iekļauta visa iepriekšminētā informācija. Šo paskaidrojumu vietu un saturu nosaka ar vienošanos starp izgatavotāju un apstiprinātāju iestādi.

5.1.5.2.   Īpašības

Etiķetēm jābūt izturīgām, lai saglabātos visu motora ekspluatācijas laiku. Etiķetēm jābūt skaidri salasāmām, un burtiem un cipariem uz tām jābūt neizdzēšamiem. Turklāt etiķetes jāpiestiprina tā, lai arī stiprinājums iztur visu motora ekspluatācijas laiku un lai etiķetes nevar noņemt, tās neiznīcinot vai nesabojājot.

5.1.5.3.   Novietojums

Etiķetes jāpiestiprina motora daļai, kas ir nepieciešama motora normālai darbībai un kas parasti motora mūžā nav jānomaina. Turklāt šīs etiķetes ir jānovieto tā, lai tās ir viegli saredzamas vidēja auguma cilvēkam pēc tam, kad motors ir nokomplektēts ar visām motora darbībai vajadzīgām palīgierīcēm.

5.2.   Iesniedzot transportlīdzekļa EK tipa apstiprinājuma pieteikumu attiecībā uz tā motoru, degvielas uzpildes atveres tuvumā novieto arī 5.1.5. iedaļā norādīto marķējumu.

5.3.   Iesniedzot tāda transportlīdzekļa EK tipa apstiprinājuma pieteikumu, kura motors ir apstiprināts, degvielas uzpildes atveres tuvumā novieto arī 5.1.5. iedaļā norādīto marķējumu.

6.   SPECIFIKĀCIJAS UN TESTI

6.1.   Vispārīgi noteikumi

6.1.1.   Emisiju kontroles iekārta

6.1.1.1.   Sastāvdaļas, kas var ietekmēt gāzveida un daļiņveida piesārņotāju emisiju no dīzeļmotoriem un gāzveida piesārņotāju emisiju no gāzes motoriem, jāprojektē, jāizgatavo, jāmontē un jāuzstāda tā, lai motors normālos ekspluatācijas apstākļos atbilst šīs direktīvas prasībām.

6.1.2.   Emisijas kontroles iekārtas funkcijas

6.1.2.1.   Aizliegts lietot izslēgšanas ierīci un/vai neracionālu emisijas kontroles stratēģiju.

6.1.2.2.   Motoram vai transportlīdzeklim var uzstādīt kontroles palīgierīci, ja ierīce:

darbojas tikai ārpus nosacījumiem, kas noteikti 6.1.2.4. iedaļā, vai

ir iedarbināma tikai īslaicīgi saskaņā ar nosacījumiem, kas noteikti 6.1.2.4. iedaļā, tādiem nolūkiem kā motora bojājumu novēršanai, gaisa apstrādes ierīces aizsardzībai, dūmu apstrādei, aukstai iedarbināšanai vai iesildīšanai, vai

ir iedarbināma tikai ar transportlīdzekļa iekšējo signalizāciju tādiem nolūkiem kā ekspluatācijas drošībai un avārijas gadījuma stratēģijai.

6.1.2.3.   Motora kontroles ierīce, funkcija, sistēma vai mērierīce, kas darbojas nosacījumos, kuri paredzēti 6.1.2.4. iedaļā, un kas nosaka tāda cita vai pārveidota motora kontroles stratēģijas izmantošanu, kurš nav piemērojamos emisijas testa ciklos, parasti izmantojamā stratēģija, ir pieļaujama, ja atbilstīgi 6.1.3. un/vai 6.1.4. iedaļas prasībām pilnībā pierādīts, ka mērierīce nesamazina emisijas kontroles sistēmas efektivitāti. Visos pārējos gadījumos šādas ierīces jāuzskata par izslēgšanas ierīcēm.

6.1.2.4.   Noteiktie ekspluatācijas apstākļi, kas atbilst vienmērīgas darbības un īslaicīgas darbības nosacījumiem, 6.1.2.2. iedaļas nozīmē, ir šādi:

absolūtais augstums nepārsniedz 1 000 metrus (vai līdzvērtīgu 90 kPa atmosfēras spiedienu),

vides temperatūra ir no 283 līdz 303 K (no 10 līdz 30 °C),

motora dzesētājvielas temperatūra ir no 343 līdz 368 K (no 70 līdz 95 °C).

6.1.3.   Īpašas prasības elektroniskajām emisiju kontroles sistēmām

6.1.3.1.   Dokumentācijas prasības

Izgatavotājam jāiesniedz dokumentācijas pakete, pēc kuras var spriest par sistēmas pamatkonstrukciju un līdzekļiem, tās izvades mainīgo vērtību kontrolei, kas var būt tieša vai netieša.

Dokumentācijai jābūt pieejamai divās daļās:

a)

formālās dokumentācijas paketē, ko iesniedz tehniskajam dienestam reizē ar tipa apstiprinājuma pieteikumu, iekļauj sistēmas pilnīgu aprakstu. Minētā dokumentācija var būt īsa ar noteikumu, ka tajā ir pierādījums tam, ka visa matricas pieļautā izvade iegūta no kontroles diapazona identificēto atsevišķo vienību ievades. Šādu informāciju pievieno dokumentācijai, kas prasīta I pielikuma 3. iedaļā;

b)

papildu materiālā, kur noteikti parametri, kurus pārveido kāda motora kontroles palīgierīce, un robežnosacījumi, saskaņā ar kuriem ierīce darbojas. Papildu materiālā iekļauj degvielas padeves sistēmas vadības loģikas, iesmidzināšanas iestatīšanas stratēģiju un pārslēgšanas punktu aprakstu visiem ekspluatācijas režīmiem.

Papildu materiālā iekļauj arī pamatojumu jebkuras kontroles palīgierīces lietojumam un papildu materiālu un testa datus, ar ko pierāda katras šādas transportlīdzeklim uzstādītas ierīces ietekmi uz izplūdes gāzu emisiju.

Šāds papildu materiāls paliek stingri konfidenciāls, un to glabā izgatavotājs, bet tas tiek darīts pieejams inspekcijai, kad apstiprina tipu, vai jebkurā laikā tipa apstiprinājuma derīguma termiņā.

6.1.4.   Lai pārbaudītu, vai kāda stratēģija vai mērierīce saskaņā ar definīcijām 2.29. un 2.31. iedaļā jāuzskata par izslēgšanas ierīci vai neracionālu emisijas kontroles stratēģiju, tipa apstiprinātāja iestāde un/vai tehniskais dienests var pieprasīt papildu NOx skrīninga testu, izmantojot ETC, ko var izdarīt kopā ar tipa apstiprināšanas testu vai procedūrām, kuras paredzētas ražojumu atbilstības pārbaudei.

6.1.4.1.   Alternatīvi III pielikuma 4. papildinājuma prasībām ETC NOx emisijas skrīninga testa paraugus var ņemt no neapstrādātajām izplūdes gāzēm, un jāievēro 2000. gada 15. oktobra ISO DIS 16183 tehniskie priekšraksti.

6.1.4.2.   Pārbaudot, vai kāda stratēģija vai mērierīce saskaņā ar definīcijām 2.29. un 2.31. iedaļā jāuzskata par izslēgšanas ierīci vai neracionālu emisijas kontroles stratēģiju, jāpieņem 10 % papildu pielaide, kas attiecas uz attiecīgo NOx robežvērtību.

6.1.5.   Tipa apstiprinājuma attiecināšanas pārejas noteikumi.

6.1.5.1.   Šī iedaļa attiecas tikai uz jauniem kompresijaizdedzes motoriem un jauniem kompresijaizdedzes motora transportlīdzekļiem, kuru tips ir apstiprināts saskaņā ar prasībām, kas noteiktas A rindā tabulās, kuras ir 6.2.1. iedaļā.

6.1.5.2.   Alternatīvi 6.1.3. un 6.1.4. iedaļas prasībām izgatavotājs tehniskajam dienestam var iesniegt NOx skrīninga testa rezultātus pēc ETC izpildes motoram, kas atbilst II pielikumā aprakstītā standarta motora parametriem, un, ņemot vērā 6.1.4.1. un 6.1.4.2. iedaļas noteikumus. Izgatavotājs iesniedz arī rakstveida deklarāciju par to, ka motoram nav nekādas izslēgšanas ierīces vai neracionālas emisijas kontroles stratēģijas, kas noteikts šā pielikuma 2. iedaļā.

6.1.5.3.   Izgatavotājs iesniedz arī rakstveida deklarāciju par to, ka arī 6.1.4. iedaļā minētie NOx skrīninga testa rezultāti un deklarācija par standarta motoru attiecas uz visu II pielikumā aprakstīto saimes tipu motoriem.

6.2.   Specifikācijas, kas attiecas uz gāzveida un daļiņveida piesārņotāju un dūmu emisiju

Tipa apstiprināšanai atbilstīgi 6.2.1. iedaļas tabulu A rindai emisiju noteic ESC un ELR testos ar standarta dīzeļmotoriem, to skaitā ar tiem, kas aprīkoti ar elektronisku degvielas iesmidzināšanas iekārtu, izplūdes gāzu recirkulācijas (EGR) un/vai oksidācijas katalizatoriem. Dīzeļmotorus, kas aprīkoti ar progresīvām izplūdes pēcapstrādes sistēmām, to skaitā NOx katalizatoriem un/vai makrodaļiņu filtriem, papildus pārbauda ETC testā.

Tipa apstiprināšanai atbilstīgi 6.2.1. iedaļas tabulu B1 vai B2, vai C rindai emisiju noteic ESC, ELR un ETC testos.

Gāzes motoriem gāzveida emisiju noteic ETC testā.

ESC un ELR testa procedūras ir aprakstītas III pielikuma 1. papildinājumā, un ETC testa procedūra ir aprakstīta III pielikuma 2. un 3. papildinājumā.

Testēšanai nodotā motora gāzveida piesārņotāju un daļiņveida piesārņotāju emisiju pēc vajadzības un dūmus pēc vajadzības mēra ar metodēm, kas aprakstītas III pielikuma 4. papildinājumā. Ieteicamā dūmu mērīšanas sistēma, ieteicamās gāzveida piesārņotāju analīzes metodes un ieteicamās makrodaļiņu paraugu ņemšanas sistēmas ir aprakstītas V pielikumā.

Tehniskais dienests drīkst apstiprināt citas analīžu sistēmas, ja izrādās, ka ar tām attiecīgajā testa ciklā iegūst līdzvērtīgus rezultātus. Sistēmu līdzvērtību noteic, pamatojoties uz 7 (vai vairāk) paraugu pāru atbilstības pētījumu attiecīgajā sistēmā un kādā no šīs direktīvas standarta sistēmām. Attiecībā uz makrodaļiņu emisiju par standarta sistēmu atzīst tikai pilnas plūsmas atšķaidīšanas sistēmu. “Rezultāti” attiecas uz īpatnējo cikla emisijas vērtību. Atbilstību testē tajā pašā laboratorijā, testa nodalījumā, ar to pašu motoru un, vēlams, vienlaicīgi. Līdzvērtības kritērijs ir paraugu pāra vidējo vērtību ± 5 % sakritība. Jaunas sistēmas ieviešanai direktīvā līdzvērtības noteikšanas pamatā ir atkārtojamības un reproducējamības aprēķins, kas aprakstīts ISO 5725.

6.2.1.   Robežvērtības

Oglekļa oksīda, kopējo ogļūdeņražu, slāpekļa oksīdu un makrodaļiņu īpatnējā masa, ko noteic ESC testā, un dūmainība, kuru noteic ELR testā, nedrīkst pārsniegt 1. tabulā norādītās vērtības.

1. tabula

Robežvērtības ESC un ELR testā

Rinda

Oglekļa monoksīda masa

(CO) g/kWh

Ogļūdeņražu masa

(HC) g/kWh

Slāpekļa oksīdu masa

(NOx) g/kWh

Makrodaļiņu masa

(PT) g/kWh

Dūmi

m–1

A (2000.)

2,1

0,66

5,0

0,10

0,13 (5)

0,8

B1 (2005.)

1,5

0,46

3,5

0,02

0,5

B2 (2008.)

1,5

0,46

2,0

0,02

0,5

C (EEV)

1,5

0,25

2,0

0,02

0,15

Dīzeļmotoriem, ko papildus testē ETC testā, un īpaši gāzes motoriem oglekļa oksīda, ogļūdeņražu, izņemot metānu, arī metāna (pēc vajadzības), slāpekļa oksīdu un makrodaļiņu (pēc vajadzības) īpatnējā masa nedrīkst pārsniegt 2. tabulā norādītās vērtības.

2. tabula

Robežvērtības ETC testos

Rinda

Oglekļa monoksīda masa

(CO) g/kWh

To ogļūdeņražu masa, kas nav metāns

(NMHC) g/kWh

Metāna masa

(CH4) (6) g/kWh

Slāpekļa oksīdu masa

(NOx) g/kWh

Makrodaļiņu (PT) masa

(PT) (7) g/kWh

A (2000.)

5,45

0,78

1,6

5,0

0,16

0,21 (8)

B1 (2005.)

4,0

0,55

1,1

3,5

0,03

B2 (2008.)

4,0

0,55

1,1

2,0

0,03

C (EEV)

3,0

0,40

0,65

2,0

0,02

6.2.2.   Ogļūdeņražu mērījumi dīzeļmotoriem un ar gāzi darbināmiem motoriem

6.2.2.1.   Pēc izgatavotāja izvēles ETC testā to ogļūdeņražu masas vietā, kas nav metāns, var mērīt kopējo ogļūdeņražu (THC) masu. Šajā gadījumā kopējās ogļūdeņražu masas robeža sakrīt ar 2. tabulā norādīto to ogļūdeņražu masas robežu, kas nav metāns.

6.2.3.   Īpašas prasības dīzeļmotoriem

6.2.3.1.   ESC testā nejaušajos kontrolpunktos kontroles diapazonā izmērītā slāpekļa oksīdu īpatnējā masa nedrīkst vairāk par 10 procentiem pārsniegt vērtības, kas interpolētas no blakus esošajiem testa režīmiem (III pielikuma 1. papildinājuma 4.6.2. un 4.6.3. iedaļa).

6.2.3.2.   Dūmu vērtība, kas atbilst nejaušajiem apgriezieniem ELR testā, nedrīkst vairāk par 20 procentiem pārsniegt dūmu lielāko vērtību, kura atbilst diviem blakus esošajiem apgriezieniem, vai vairāk par 5 % robežvērtības – atkarībā no tā, kurš no šiem skaitļiem ir lielākais.

7.   UZSTĀDĪŠANA TRANSPORTLĪDZEKLIM

7.1.   Uzstādot motoru transportlīdzeklī, nodrošina atbilstību šādiem parametriem attiecībā uz motora tipa apstiprinājumu:

7.1.1.   Ieplūdes retinājums nedrīkst pārsniegt apstiprināta tipa motoram VI pielikumā norādīto;

7.1.2.   Izplūdes pretspiediens nedrīkst pārsniegt apstiprināta tipa motoram VI pielikumā norādīto;

7.1.3.   Izplūdes sistēmas apjoms nedrīkst atšķirties par vairāk kā 40 % no apjoma, kas norādīts VI pielikumā apstiprināta tipa motoram.

7.1.4.   Motora darbībai vajadzīgo palīgierīču absorbētā jauda nepārsniedz apstiprināta tipa motoram VI pielikumā norādīto.

8.   MOTORU SAIME

8.1.   Parametri, pēc kuriem noteic motoru saimi

Motoru saimi, ko noteicis izgatavotājs, var noteikt pēc galvenajiem parametriem, kuriem jābūt kopējiem visiem saimes motoriem. Dažreiz parametri var mijiedarboties. Šīs ietekmes arī jāņem vērā, lai nodrošinātu to, ka motoru saimē iekļauj tikai motorus ar līdzīgiem izplūdes gāzu emisijas parametriem.

Lai varētu uzskatīt, ka motori pieder pie vienas motoru saimes, tiem jābūt šādiem kopējiem galvenajiem parametriem:

8.1.1.   Sadedzes cikls:

divtaktu,

četrtaktu.

8.1.2.   Dzesētājvide:

gaiss,

ūdens,

eļļa.

8.1.3.   Gāzes motoriem un motoriem ar pēcapstrādes iekārtu:

cilindru skaits;

(var uzskatīt, ka citi dīzeļmotori, kam ir mazāk cilindru nekā standarta motoram, pieder pie tās pašas motoru saimes, ja degvielas padeves sistēma mēra degvielu katram cilindram atsevišķi).

8.1.4.   Atsevišķu cilindru darba tilpums:

motori ar kopējo izplešanos līdz 15 %.

8.1.5.   Gaisa ieplūdes veids:

dabīgā iesūkšana,

ievadīšana ar spiedienu/ar uzpūti,

motori, kuros spiedienu rada ar uzpūtes gaisa dzesētāju.

8.1.6.   Degkameras tips/konstrukcija:

priekškamera,

virpuļkamera,

atvērtā kamera.

8.1.7.   Vārsts un atvere — konfigurācija, izmērs un skaits:

cilindra galva,

cilindra siena,

karteris.

8.1.8.   Degvielas iesmidzināšanas sistēma (dīzeļmotoriem):

sūknis-sprausla,

rindsūknis,

sadalītājsūknis,

vienots elements,

vienības smidzinātājs.

8.1.9.   Degvielas padeves sistēma (gāzes motoriem):

jaucējs,

gāzes ieplūdes/iesmidzināšana (vienā punktā, vairākos punktos),

šķidruma iesmidzināšana (vienā punktā, vairākos punktos).

8.1.10.   Aizdedzes sistēma (gāzes motoriem).

8.1.11.   Dažādas funkcijas/aprīkojums:

izplūdes gāzu recirkulācija,

ūdens iesmidzināšana/emulģēšana,

sekundārā gaisa iesmidzināšana,

uzpūtes dzesēšanas sistēma.

8.1.12.   Izplūdes pēcapstrāde:

triju veidu katalizators,

oksidācijas katalizators,

reducēšanas katalizators,

termoreaktors,

makrodaļiņu filtrs.

8.2.   Standarta motora izvēle

8.2.1.   Dīzeļmotori

Attiecīgās saimes standarta motora izvēlē galvenais kritērijs ir lielākā degvielas padeve taktī atbilstīgi deklarētajiem maksimālajiem apgriezieniem. Ja šim galvenajam kritērijam atbilst divi vai vairāki motori, tad standarta motoru izraugās pēc sekundārā kritērija — lielākās degvielas padeves taktī atbilstīgi nominālajiem apgriezieniem. Noteiktos apstākļos apstiprinātāja iestāde var secināt, ka lielāko emisiju saimē vislabāk var noteikt, testējot otru motoru. Tā apstiprinātāja iestāde var izraudzīties papildu motoru testam, pamatojoties uz aprīkojumu, kas liecina, ka šim motoram var būt vislielākā emisija attiecīgajā saimē.

Ja attiecīgās saimes motoriem ir cits maināms aprīkojums, kas varētu ietekmēt izplūdes gāzu emisiju, tad tādu aprīkojumu arī nosaka un ņem vērā standarta motora izvēlē.

8.2.2.   Gāzes motori

Saimes standarta motora izvēlē galvenais kritērijs ir cilindru darba lielākais tilpums. Ja šim galvenajam kritērijam atbilst divi vai vairāki motori, tad standarta motoru izraugās pēc sekundārā kritērija šādā kārtībā:

pēc lielākās degvielas padeves taktī atbilstīgi deklarētajiem nominālajiem apgriezieniem;

pēc agrākās aizdedzes;

pēc mazākā EGR ātruma;

pēc gaisa sūkņa neesamības vai gaisa sūkņa ar mazāko faktisko gaisa plūsmu.

Noteiktos apstākļos apstiprinātāja iestāde var secināt, ka lielāko emisiju saimē vislabāk var noteikt, testējot otru motoru. Tā apstiprinātāja iestāde var izraudzīties papildu motoru testam, pamatojoties uz aprīkojumu, kas liecina, ka šim motoram var būt vislielākā emisija attiecīgajā saimē.

9.   RAŽOJUMU ATBILSTĪBA

9.1.   Lai nodrošinātu ražojumu atbilstību, jāveic pasākumi saskaņā ar Direktīvas 70/156/EEK 10. panta noteikumiem. Ražojumu atbilstību testē, pamatojoties uz aprakstu tipa apstiprinājuma sertifikātos, kas noteikti šīs direktīvas VI pielikumā.

Direktīvas 70/156/EEK X pielikuma 2.4.2. un 2.4.3. iedaļu piemēro, ja kompetentās iestādes nav apmierinātas ar izgatavotāja revīzijas procedūru.

9.1.1.   Ja jāizmēra piesārņotājvielu emisija un motoru tipa apstiprinājums ir attiecināts uz vienu vai vairākiem tipiem, tad testē to motoru, kas aprakstīts šā attiecinājuma informācijas paketē.

9.1.1.1.   Piesārņotāju testam pakļautā motora atbilstība:

Pēc motora nodošanas iestādēm izgatavotājs izraudzītos motorus neregulē.

9.1.1.1.1.   No sērijas pēc nejaušības principa atlasa trīs motorus. Uz motoriem, uz ko attiecas tikai ESC un ELR testi vai tikai ETC tests tipa apstiprinājumam atbilstīgi 6.2.1. iedaļas tabulu A rindai, attiecas testi, kuri piemērojami ražojumu atbilstības pārbaudei. Ar iestādes piekrišanu uz visiem pārējiem motoriem, kam ir tipa apstiprinājums atbilstīgi 6.2.1. iedaļas tabulu A, B1 vai B2, vai C rindai, attiecas ESC un ELR cikla tests vai ETC cikla tests, lai pārbaudītu ražojuma atbilstību. Robežvērtības ir noteiktas šā pielikuma 6.2.1. iedaļā.

9.1.1.1.2.   Testus izdara saskaņā ar šā pielikuma 1. papildinājumu, ja kompetentā iestāde ir apmierināta ar ražojuma standarta novirzi, ko izgatavotājs deklarē saskaņā ar Direktīvas 70/156/EEK X pielikumu, kurš attiecas uz mehāniskajiem transportlīdzekļiem un to piekabēm.

Testus izdara saskaņā ar šā pielikuma 2. papildinājumu, ja kompetentā iestāde nav apmierināta ar ražojuma standarta novirzi, ko izgatavotājs deklarē saskaņā ar Direktīvas 70/156/EEK X pielikumu, kurš attiecas uz mehāniskajiem transportlīdzekļiem un to piekabēm.

Pēc izgatavotāja lūguma testus var izdarīt saskaņā ar šā pielikuma 3. papildinājumu.

9.1.1.1.3.   Pamatojoties uz motora testu, ņemot paraugus, sērijas ražojumu uzskata par atbilstīgu, ja saskaņā ar piemērojamiem attiecīgā papildinājuma kritērijiem ir pieņemts labvēlīgs lēmums par visiem piesārņotājiem, un par neatbilstīgu, ja ir pieņemts nelabvēlīgs lēmums par vienu piesārņotāju.

Ja par vienu piesārņotāju ir pieņemts labvēlīgs lēmums, tad šo lēmumu nedrīkst mainīt nekādos papildu testos, ko izdara, lai lemtu par pārējiem piesārņotājiem.

Ja par visām piesārņotājiem nav pieņemts labvēlīgs lēmums un ja ne par vienu piesārņotāju nav pieņemts nelabvēlīgs lēmums, tad testē citu motoru (skatīt 2. attēlu).

Ja lēmums nav pieņemts, tad izgatavotājs jebkurā laikā drīkst izlemt, ka testēšana jāaptur. Tādā gadījumā reģistrē nelabvēlīgu lēmumu.

9.1.1.2.   Testē jaunizgatavotus motorus. Ar gāzi darbināmos motorus piestrādā saskaņā ar procedūru, kas noteikta III pielikuma 2. papildinājuma 3. punktā.

9.1.1.2.1.   Tomēr pēc izgatavotāja lūguma testējamos dīzeļmotorus vai gāzes motorus var piestrādāt ilgāk nekā minēts 9.1.1.2. iedaļā, nepārsniedzot 100 stundas. Šajā gadījumā piestrādes procedūru izpilda izgatavotājs, kas apņemas minētos motorus neregulēt.

9.1.1.2.2.   Ja izgatavotājs lūdz izpildīt piestrādes procedūru saskaņā ar 9.1.1.2.1. iedaļu, to var izpildīt:

visiem testējamajiem motoriem,

vai

pirmajam testējamajam motoram, noteicot evolūcijas koeficientu šādi:

pirmajam testējamajam motoram piesārņotāju emisiju mēra nulles un “x” stundā,

emisijas evolūcijas koeficientu no nulles līdz “x” stundai aprēķina katram piesārņotājam:

emisija “x” stundās / emisija nulles stundās

Tas var būt mazāks par vienu.

Uz turpmāk testējamajiem motoriem neattiecas piestrādes procedūra, bet to nulles stundas emisiju koriģē ar evolūcijas koeficientu.

Šajā gadījumā vērtības, ko noteiks, būs šādas:

vērtības, kas “x” stundās noteiktas pirmajam motoram,

nulles stundā noteikto vērtību reizinājums ar evolūcijas koeficientu pārējiem motoriem.

9.1.1.2.3.   Dīzeļmotoriem un ar LPG darbināmiem motoriem visus šos testus var izdarīt ar komercdegvielu. Tomēr pēc izgatavotāja lūguma var lietot standarta degvielas, kas aprakstītas IV pielikumā. Tas attiecas uz testiem, kuri aprakstīti šā pielikuma 4. iedaļā un kuros katrā gāzes motorā lieto vismaz divas standarta degvielas.

9.1.1.2.4.   Ar NG darbināmiem motoriem visus minētos testus ar komercdegvielu var izdarīt šādi:

motoriem, kas marķēti ar H, ar H grupas (0,89 ≤ Sλ ≤ 1,00) komercdegvielu,

motoriem, kas marķēti ar L, ar L grupas (1,00 ≤ Sλ ≤ 1,19) komercdegvielu,

motoriem, kas marķēti ar HL, ar komercdegvielu, kuras λ novirzes koeficienta galējās robežas ir (0,89 ≤ Sλ ≤ 1,19).

Tomēr pēc izgatavotāja prasības var lietot standarta degvielas, kas aprakstītas IV pielikumā. Tas attiecas uz testiem, kas aprakstīti šā pielikuma 4. iedaļā.

9.1.1.2.5.   Ja rodas domstarpības par gāzes motoru atbilstību, lietojot komercdegvielu, testi jāizdara ar to standarta degvielu, ar ko testēts standarta motors, vai ar iespējamo 3. papildu degvielu, kura minēta 4.1.3.1. un 4.2.1.1. punktā un ar kuru var būt testēts standarta motors. Rezultāts jāpārrēķina, piemērojot attiecīgo koeficientu(-us) “r”, “ra” vai “rb”, kas aprakstīts 4.1.4., 4.1.5.1. un 4.2.1.2. punktā. Ja r, ra vai rb ir mazāks par 1, korekciju nepiemēro. Mērījumu rezultātiem un aprēķinu rezultātiem jāliecina, ka motors atbilst robežvērtībām ar visām attiecīgajām degvielām (dabasgāzes motori ar 1., 2. un pēc vajadzības 3. degvielu un LPG motori ar A un B degvielu).

9.1.1.2.6.   Ražojuma atbilstības testu ar gāzi darbināmam motoram, kas paredzēts darbināšanai ar viena specifiska sastāva degvielu, izdara ar to degvielu, kurai tas ir kalibrēts.

Image


(1)  OV L 76, 6.4.1970., 1. lpp. Direktīvā jaunākie grozījumi izdarīti ar Komisijas Direktīvu 2003/76/EK (OV L 206, 15.8.2003., 29. lpp.).

(2)  OV L 375, 31.12.1980., 46. lpp. Direktīvā jaunākie grozījumi izdarīti ar Komisijas Direktīvu 1999/99/EK (OV L 334, 28.12.1999., 32. lpp.).

(3)  OV L 42, 23.2.1970., 1. lpp. Direktīvā jaunākie grozījumi izdarīti ar Komisijas Direktīvu 2004/104/EK (OV L 337, 13.11.2004., 13. lpp.).

(4)  1 = Vācija, 2 = Francija, 3 = Itālija, 4 = Nīderlande, 5 = Zviedrija, 6 = Beļģija, 7 = Ungārija, 8 = Čehijas Republika, 9 = Spānija, 11 = Apvienotā Karaliste, 12 = Austrija, 13 = Luksemburga, 17 = Somija, 18 = Dānija, 20 = Polija, 21 = Portugāle, 23 = Grieķija, 24 = Īrija, 26 = Slovēnija, 27 = Slovākija, 29 = Igaunija, 32 = Latvija, 36 = Lietuva, 49 = Kipra, 50 = Malta.

(5)  Motoriem, kuru viena cilindra darba tilpums ir mazāks par 0,75 dm3 un nominālajai jaudai atbilstīgie apgriezieni pārsniedz 3 000 min-1.

(6)  Tikai NG motoriem.

(7)  A stadijā un B1 un B2 stadijā nepiemēro motoriem, ko darbina ar gāzi.

(8)  Motoriem, kuru viena cilindra darba tilpums ir mazāks par 0,75 dm3 un nominālajai jaudai atbilstīgie apgriezieni pārsniedz 3 000 min–1.

1. papildinājums

PROCEDŪRA RAŽOJUMU ATBILSTĪBAS TESTAM, JA STANDARTA NOVIRZE IR APMIERINOŠA

1.

Šajā papildinājumā ir aprakstīta procedūra, kas jāizmanto, lai verificētu ražojuma atbilstību attiecībā uz piesārņotāju emisiju, ja izgatavotāja ražojuma standarta novirze ir apmierinoša.

2.

Minimālā lieluma izlasē, kurā ir trīs motori, paraugu ņemšanas procedūra ir tāda, ka testu izturējušā partijā ar 40 % varbūtību ir 0,95 defektīvi motori (ražotāja risks = 5 %), bet pieņemtā partijā ar 65 % varbūtību ir 0,10 defektīvi motori (patērētāja risks = 10 %).

3.

Katru piesārņotāju, kas minēts I pielikuma 6.2.1. iedaļā, noteic pēc šādas procedūras (skatīt 2. attēlu):

 

ja:

 

L

=

piesārņotāja robežvērtības naturāllogaritms;

χi

=

izlases i-tā motora mērījuma naturāllogaritms;

s

=

aprēķinātā ražojuma standarta novirze (pēc mērījumu naturāllogaritma noteikšanas);

n

=

paraugu skaits.

4.

Katram paraugam standarta noviržu summu pret robežu aprēķina pēc šādas formulas:

Formula

5.

Tad:

ja testa statistiskais rezultāts ir lielāks par labvēlīgā lēmuma skaitli attiecībā uz 3. tabulā noteiktā lieluma izlasi/paraugu, tad par piesārņotāju pieņem labvēlīgu lēmumu;

ja testa statistiskais rezultāts ir mazāks par nelabvēlīgā lēmuma skaitli attiecībā uz 3. tabulā noteiktā lieluma izlasi/paraugu, tad par piesārņotāju pieņem nelabvēlīgu lēmumu;

pārējos gadījumos saskaņā ar I pielikuma 9.1.1.1. iedaļu testē papildu motoru un aprēķina procedūru piemēro par vienu vienību palielinātajai izlasei.

3. tabula

Labvēlīgā un nelabvēlīgā lēmuma skaitļi 1. papildinājuma paraugu ņemšanas plānā

Minimālais izlases lielums: 3

Testēto motoru kumulatīvais skaits (parauga lielums)

Labvēlīgo lēmumu skaits An

Nelabvēlīgo lēmumu skaits Bn

3

3,327

– 4,724

4

3,261

– 4,790

5

3,195

– 4,856

6

3,129

– 4,922

7

3,063

– 4,988

8

2,997

– 5,054

9

2,931

– 5,120

10

2,865

– 5,185

11

2,799

– 5,251

12

2,733

– 5,317

13

2,667

– 5,383

14

2,601

– 5,449

15

2,535

– 5,515

16

2,469

– 5,581

17

2,403

– 5,647

18

2,337

– 5,713

19

2,271

– 5,779

20

2,205

– 5,845

21

2,139

– 5,911

22

2,073

– 5,977

23

2,007

– 6,043

24

1,941

– 6,109

25

1,875

– 6,175

26

1,809

– 6,241

27

1,743

– 6,307

28

1,677

– 6,373

29

1,611

– 6,439

30

1,545

– 6,505

31

1,479

– 6,571

32

– 2,112

– 2,112

2. papildinājums

PROCEDŪRA RAŽOJUMU ATBILSTĪBAS TESTAM, JA STANDARTA NOVIRZE IR NEAPMIERINOŠA VAI NAV ZINĀMA

1.

Šajā papildinājumā ir aprakstīta procedūra, kas jāizmanto, lai verificētu ražojuma atbilstību attiecībā uz piesārņotāju emisiju, ja izgatavotāja ražojuma standarta novirze ir neapmierinoša vai nav zināma.

2.

Minimālā lieluma izlasē, kurā ir trīs motori, paraugu ņemšanas procedūra ir tāda, ka testu izturējušā partijā ar 40 % varbūtību ir 0,95 defektīvi motori (ražotāja risks = 5 %), bet pieņemtā partijā ar 65 % varbūtību ir 0,10 defektīvi motori (patērētāja risks = 10 %).

3.

Piesārņotāju vērtības, kas noteiktas I pielikuma 6.2.1. iedaļā, uzskata par log normāli izkliedētām, un tās pārveido, aprēķinot to naturāllogaritmu. Ar m0 un m attiecīgi apzīmē izlases/parauga minimālo un maksimālo lielumu (m0 = 3 un m = 32) un ar n apzīmē paraugu skaitu.

4.

Ja χ1, χ2, … χi ir izmērīto sērijas vērtību naturāllogaritmi un L ir piesārņotāja robežvērtības naturāllogaritms, tad noteic

Formula

un

Formula Formula

5.

Vērtības labvēlīga (An) un nelabvēlīga (Bn) lēmuma skaitļiem attiecībā pret paraugu skaitu ir noteiktas 4. tabulā. Testa statistiskais rezultāts ir attiecība

Formula

, un to izmanto, lai labvēlību vai nelabvēlību sērijai noteiktu šādi:

attiecībā uz m0 ≤ n ≤ m:

par sēriju pieņem labvēlīgu lēmumu, ja Formula,

par sēriju pieņem nelabvēlīgu lēmumu, ja Formula,

izdara papildu mērījumu, ja Formula.

6.

Piezīmes

Testa statistikas secīgo vērtību aprēķināšanai ir derīgas šādas rekursīvas formulas:

Formula Formula Formula

4. tabula

Labvēlīgā un nelabvēlīgā lēmuma skaitļi 2. papildinājuma paraugu ņemšanas plānā

Minimālais izlases lielums: 3

Testēto motoru kumulatīvais skaits (parauga lielums)

Labvēlīgo lēmumu skaits An

Nelabvēlīgo lēmumu skaits Bn

3

- 0,80381

16,64743

4

- 0,76339

7,68627

5

- 0,72982

4,67136

6

- 0,69962

3,25573

7

- 0,67129

2,45431

8

- 0,64406

1,94369

9

- 0,61750

1,59105

10

- 0,59135

1,33295

11

- 0,56542

1,13566

12

- 0,53960

0,97970

13

- 0,51379

0,85307

14

- 0,48791

0,74801

15

- 0,46191

0,65928

16

- 0,43573

0,58321

17

- 0,40933

0,51718

18

- 0,38266

0,45922

19

- 0,35570

0,40788

20

- 0,32840

0,36203

21

- 0,30072

0,32078

22

- 0,27263

0,28343

23

- 0,24410

0,24943

24

- 0,21509

0,21831

25

- 0,18557

0,18970

26

- 0,15550

0,16328

27

- 0,12483

0,13880

28

- 0,09354

0,11603

29

- 0,06159

0,09480

30

- 0,02892

0,07493

31

- 0,00449

0,05629

32

- 0,03876

0,03876

3. papildinājums

PROCEDŪRA RAŽOJUMU ATBILSTĪBAS TESTAM PĒC IZGATAVOTĀJA LŪGUMA

1.

Šajā papildinājumā ir aprakstīta procedūra, kas jāizmanto, lai pēc izgatavotāja lūguma verificētu ražojuma atbilstību attiecībā uz piesārņotāju emisiju.

2.

Minimālā lieluma izlasē, kurā ir trīs motori, paraugu ņemšanas procedūra ir tāda, ka testu izturējušā partijā ar 30 % varbūtību ir 0,90 defektīvi motori (ražotāja risks = 5 %), bet pieņemtā partijā ar 65 % varbūtību ir 0,10 defektīvi motori (patērētāja risks = 10 %).

3.

Katru piesārņotāju, kas minēts I pielikuma 6.2.1. iedaļā, noteic pēc šādas procedūras (skatīt 2. attēlu):

 

ja:

 

L

=

piesārņotāja robežvērtība,

xi

=

izlases i-tā motora mērījuma vērtība,

n

=

paraugu skaits.

4.

Aprēķina neatbilstīgo motoru skaitu izlasē, tas ir, xi ≥ L.

5.

Tad:

ja testa statistiskais rezultāts ir mazāks par labvēlīgā lēmuma skaitli vai vienāds ar to attiecībā uz 5. tabulā noteiktā lieluma izlasi/paraugu, tad par piesārņotāju pieņem labvēlīgu lēmumu;

ja testa statistiskais rezultāts ir lielāks par nelabvēlīgā lēmuma skaitli vai vienāds ar to attiecībā uz 5. tabulā noteiktā lieluma izlasi/paraugu, tad par piesārņotāju pieņem nelabvēlīgu lēmumu;

pārējos gadījumos saskaņā ar I pielikuma 9.1.1.1. iedaļu testē papildu motoru un aprēķina procedūru piemēro par vienu vienību palielinātajai izlasei.

Labvēlīgo un nelabvēlīgo lēmumu skaitļi 5. tabulā ir aprēķināti pēc Starptautiskā standarta ISO 8422/1991.

5. tabula

Labvēlīgā un nelabvēlīgā lēmuma skaitļi 3. papildinājuma paraugu ņemšanas plānā

Minimālais izlases lielums: 3

Testēto motoru kumulatīvais skaits (parauga lielums)

Labvēlīgo lēmumu skaits

Nelabvēlīgo lēmumu skaits

3

3

4

0

4

5

0

4

6

1

5

7

1

5

8

2

6

9

2

6

10

3

7

11

3

7

12

4

8

13

4

8

14

5

9

15

5

9

16

6

10

17

6

10

18

7

11

19

8

9


II PIELIKUMS

Image


(1)  Nevajadzīgo svītrot.

1. papildinājums

Image

Image

Image

Image

Image

Image

Image

Image

Image


(1)  Par nestandarta motoriem un sistēmām ziņas, kas ir līdzvērtīgas še minētajām, sniedz izgatavotājs.

(2)  Nevajadzīgo svītrot.

(3)  Norādīt pielaidi.

(4)  Nevajadzīgo svītrot.

(5)  Norādīt pielaidi.

(6)  Nevajadzīgo svītrot.

(7)  Norādīt pielaidi.

(8)  Nevajadzīgo svītrot.

(9)  Norādīt pielaidi.

(10)  Ja sistēmas ir citādi veidotas, sniegt līdzvērtīgu informāciju (attiecībā uz 3.2. punktu).

(11)  Eiropas Parlamenta un Padomes Direktīva 1999/96/EK (1999. gada 13. decembris) par dalībvalstu tiesību aktu tuvināšanu attiecībā uz pasākumiem, kas jāveic, lai samazinātu gāzveida un daļiņveida piesārņotāju emisiju no kompresijaizdedzes motoriem, kuri paredzēti transportlīdzekļiem, un gāzveida piesārņotāju emisiju no dzirksteļaizdedzes motoriem, ko darbina ar dabasgāzi vai sašķidrinātu naftas gāzi un kas paredzēti transportlīdzekļiem (OV L 44, 16.2.2000., 1. lpp.).

(12)  Nevajadzīgo svītrot.

(13)  Norādīt pielaidi.

(14)  Nevajadzīgo svītrot.

(15)  Norādīt pielaidi.

(16)  ESC testā.

(17)  Tikai ETC testā.

(18)  Norādīt pielaidi.; tai jābūt ± 3 % no vērtības, ko deklarējis izgatavotājs.

(19)  ESC testā.

(20)  Tikai ETC testā.

2. papildinājums

MOTORU SAIMES GALVENIE PARAMETRI

Image

Image


(1)  Ja nav piemērojams, atzīmēt ar n.a.

3. papildinājums

Image

Image

Image

Image

Image

Image


(1)  Jāiesniedz par katru saimes motoru.

(2)  Nevajadzīgo svītrot.

(3)  Norādīt pielaidi.

(4)  Nevajadzīgo svītrot.

(5)  Nevajadzīgo svītrot.

(6)  Norādīt pielaidi.

(7)  Ja sistēmas ir citādi veidotas, sniegt līdzvērtīgu informāciju (attiecībā uz 3.2. punktu).

(8)  Nevajadzīgo svītrot.

(9)  Norādīt pielaidi.

(10)  Nevajadzīgo svītrot.

(11)  Norādīt pielaidi.

(12)  Nevajadzīgo svītrot.

(13)  Norādīt pielaidi.

4. papildinājums

AR MOTORU SAISTĪTO TRANSPORTLĪDZEKĻA DAĻU PARAMETRI

Image


(1)  ESC testā.

(2)  Tikai ETC testā.


III PIELIKUMS

TESTA PROCEDŪRA

1.   IEVADS

1.1.

Šajā pielikumā aprakstīts, kā testējamajiem motoriem noteic gāzveida un daļiņas saturošu sastāvdaļu un dūmu emisiju. Ir aprakstīti trīs testa cikli, ko piemēro saskaņā ar I pielikuma 6.2. iedaļas noteikumiem:

ESC, kas sastāv no 13 vienmērīgas darbības režīmiem,

ELR, kas sastāv no testiem ar īslaicīgām slodzes pakāpēm atbilstīgi dažādiem apgriezieniem; šie testi ir vienas testa procedūras neatņemamas sastāvdaļas un tās izdara vienlaicīgi/vienā paņēmienā,

ETC, kas sastāv no secīgiem īslaicīgiem vienas sekundes ekspluatācijas pārejas režīmiem.

1.2.

Testē motoru, kas uzmontēts izmēģinājumu stendam un savienots ar dinamometru.

1.3.   Mērīšanas princips

Pie mērāmajiem motora izplūdes gāzu emisijas pieder gāzveida sastāvdaļas (oglekļa monoksīds, kopējie ogļūdeņraži dīzeļmotoriem tikai ESC testā; metānu nesaturoši ogļūdeņraži dīzeļmotoriem un gāzes motoriem tikai ETC testā; metāns gāzes motoriem tikai ETC testā un slāpekļa oksīdi), makrodaļiņas (tikai dīzeļmotoriem) un dūmi (dīzeļmotoriem tikai ELR testā). Turklāt oglekļa dioksīdu bieži izmanto par marķiergāzi, lai noteiktu atšķaidījuma pakāpi daļējas un pilnas plūsmas atšķaidīšanas sistēmā. Saskaņā ar labu inženierijas praksi oglekļa dioksīda vispārīgais mērījums ir lielisks līdzeklis mērīšanas problēmu atklāšanai testā.

1.3.1.   ESC tests

Paredzētajos iesildīta motora dažādajos ekspluatācijas apstākļos iepriekšminēto izplūdes gāzu emisijas daudzumus nepārtraukti pārbauda, ņemot paraugu no neapstrādātas izplūdes gāzes. Testa cikls sastāv no vairākiem apgriezienu un jaudas režīmiem, kas atbilst tipiskajam dīzeļmotoru ekspluatācijas diapazonam. Katrā režīmā noteic katras gāzveida piesārņotāja koncentrāciju, izplūdes gāzu plūsmu un jaudu un sver mērījumu vērtības. Makrodaļiņu paraugu atšķaida ar kondicionētu apkārtējo gaisu. Visā testā ņem vienu paraugu, ko sakrāj piemērotos filtros. Katras piesārņotāja emisiju gramos uz kilovatstundu aprēķina, kā aprakstīts šā pielikuma 1. papildinājumā. Turklāt slāpekļa oksīdus mēra trijās testa stadijās kontroles diapazonā, ko izraugās tehniskais dienests (1) un mērījumu vērtības salīdzina ar vērtībām, kuras aprēķinātas pēc tiem testa cikla režīmiem, kas attiecas uz izraudzītajām testa stadijām. NOx kontroles tests nodrošina motora emisijas kontroles efektivitāti motora tipiskajā ekspluatācijas diapazonā.

1.3.2.   ELR tests

Paredzētā slodzes izturības testā ar dūmmēru noteic iesildīta motora dūmus. Testā motoru noslogo ar nemainīgiem apgriezieniem no 10 % līdz 100 % slodzes atbilstīgi trijiem dažādiem motora apgriezieniem. Papildus piemēro vienu slodzes pakāpi, ko izvēlas tehniskais dienests (1), un tās vērtību salīdzina ar iepriekšējo slodzes pakāpju vērtībām. Dūmu maksimumu noteic, izmantojot vidējā noteikšanas algoritmu, kā aprakstīts šā pielikuma 1. papildinājumā.

1.3.3.   ETC tests

Paredzētā īslaicīgā iesildīta motora ekspluatācijas testa ciklā, kurā apstākļi ir līdzīgi tiem ceļa apstākļiem, kādos ekspluatē lieljaudas motorus, kas uzstādīti kravas automašīnās un autobusos, iepriekšminētos piesārņotājus pārbauda pēc kopējo izplūdes gāzu atšķaidīšanas ar kondicionētu gaisu. Izmantojot motora griezes momenta un apgriezienu atgriezeniskās saites signālus, ko dod motora dinamometrs, jaudu integrē attiecībā pret cikla laiku, un rezultāts rāda motora padarīto darbu ciklā. NOx un HC koncentrāciju ciklā noteic, integrējot analizatora signālu. CO, CO2 un NMHC koncentrāciju var noteikt, integrējot analizatora signālu vai ņemot paraugu no filtra. Makrodaļiņu samērīgu paraugu sakrāj piemērotos filtros. Atšķaidītu izplūdes gāzu caurplūdumu ciklā noteic, lai aprēķinātu piesārņotāju masas emisijas vērtības. Masas emisijas vērtības attiecina pret motora darbu, lai iegūtu katra piesārņotāja gramus kilovatstundā, kā aprakstīts šā pielikuma 2. papildinājumā.

2.   TESTA NOSACĪJUMI

2.1.   Motora testa nosacījumi

2.1.1.

Izmēra motora ieplūdes gaisa absolūto temperatūru (Ta), kas izteikta kelvinos, un sausas atmosfēras spiedienu (ps), kurš izteikts kPa, un F parametru noteic saskaņā ar šādiem noteikumiem:

a)

dīzeļmotoriem:

 

Dabiskas velkmes un mehāniskas kompresijas motoriem:

Formula

 

Turbokompresoru motoriem ar ieplūdes gaisa dzesēšanu vai bez tās

Formula

b)

gāzes motoriem:

Formula

2.1.2.   Testa derīgums

Lai testu atzītu par derīgu, F parametram jābūt:

Formula

2.2.   Motori ar uzpūtes gaisa dzesēšanu

Uzpūtes gaisa temperatūra jāreģistrē, un, kad apgriezieni atbilst deklarētajai maksimālajai jaudai un pilnai slodzei, tad tai jābūt ± 5 K robežās no uzpūtes gaisa temperatūras, kas norādīta II pielikuma 1. papildinājuma 1.16.3. iedaļā. Dzesētājvides temperatūrai jābūt vismaz 293 K (20 °C).

Izmantojot testa ceha sistēmu vai ārējo ventilatoru, saspiestā gaisa temperatūrai jābūt ± 5 K robežās no maksimālās saspiestā gaisa temperatūras, kas II pielikuma 1. papildinājuma 1.16.3. iedaļā norādīta atbilstīgi apgriezieniem, kuri atbilst deklarētajai maksimālajai jaudai un pilnai slodzei. Uzpūtes gaisa dzesētāja iestatījumu, kas atbilst iepriekšminētajiem nosacījumiem, testa ciklā nemaina.

2.3.   Motora gaisa ieplūdes sistēma

Motora gaisa ieplūdes sistēmai piemēro gaisa ieplūdes ierobežojumu ± 100 Pa no augšējās robežas, motoram darbojoties ar apgriezieniem, kas atbilst deklarētajai maksimālajai jaudai un pilnai slodzei.

2.4.   Motora izplūdes sistēma

Izplūdes sistēmā izmanto izplūdes pretspiedienu, kura augšējā robeža ir ± 1 000 Pa, motoram darbojoties ar apgriezieniem, kas atbilst deklarētajai maksimālajai jaudai un pilnai slodzei, un tilpumam ± 40 % robežās no izgatavotāja norādītā. Var izmantot testa ceha sistēmu, ja tā nodrošina motora faktiskās ekspluatācijas apstākļus. Izplūdes sistēmai jāatbilst III pielikuma 4. papildinājuma 3.4. iedaļas un V pielikuma 2.2.1. iedaļas EP un 2.3.1. iedaļas EP prasībām, kas attiecas uz izplūdes gāzu paraugu ņemšanu.

Ja motors ir aprīkots ar izplūdes pēcapstrādes ierīci, tad izplūdes caurules diametram faktiski jābūt vienādam vismaz ar četrkāršu to caurules diametru, kurš ir augšpus vietas, kur sākas ieplūde izplešanās posmā, kurā ir pēcapstrādes ierīce. Attālumam no izplūdes kolektora atloka vai turbokompresora izplūdes atveres līdz izplūdes pēcapstrādes ierīcei jābūt vienādam ar attiecīgo attālumu transportlīdzekļa konfigurācijā vai ar izgatavotāja norādīto. Izplūdes pretspiedienam vai ierobežojumam jāatbilst tiem pašiem iepriekšminētajiem kritērijiem, un to var regulēt ar vārstu. Maketa testos un motora kartēšanā pēcapstrādes trauku var noņemt un aizstāt ar līdzvērtīgu trauku, kurā ir neaktīvs katalizatora nesējs.

2.5.   Dzesēšanas sistēma

Motora dzesēšanas sistēmai jābūt pietiekami jaudīgai, lai nodrošinātu normālu motora darba temperatūru, ko noteicis izgatavotājs.

2.6.   Ziežeļļa

Testā lietojamās ziežeļļas specifikācijas reģistrē un uzrāda kopā ar testa rezultātiem, kā norādīts II pielikuma 1. papildinājuma 7.1. iedaļā.

2.7.   Degviela

Degviela ir IV pielikumā norādītā standarta degviela.

Degvielas temperatūra un mērījumu punkts II pielikuma 1. papildinājuma 1.16.5. iedaļā noteiktajās robežās jānorāda izgatavotājam. Degvielas temperatūra nedrīkst būt zemāka par 306 K (33 °C). Ja nav norādīts citādi, tad degvielas ieplūdē tai jābūt 311 K ± 5 K (38 °C ± 5 °C).

Ar NG un LPG darbināmos motoros degvielas temperatūrai un mērīšanas punktam jābūt II pielikuma 1. papildinājuma 1.16.5. iedaļā noteiktajās robežās vai II pielikuma 3. papildinājuma 1.16.5. iedaļā noteiktajās robežās, ja motors nav standarta motors.

2.8.   Izplūdes pēcapstrādes sistēmu testēšana

Ja motors ir aprīkots ar izplūdes pēcapstrādes sistēmu, tad testa ciklā izmērītajai emisijai reprezentatīvi jāraksturo emisija dabā. Ja to nevar sasniegt vienā testa ciklā (piemēram, attiecībā uz makrodaļiņu filtriem ar periodisku reģenerāciju), tad izpilda vairākus testa ciklus un noteic un/vai sver vidējo rezultātu. Par konkrēto procedūru motora izgatavotājs un tehniskais dienests vienojas, pamatojoties uz labu inženiervērtējumu.


(1)  Testa punktus izraugās pēc apstiprinātām nejaušās izlases metodēm.

1. papildinājums

ESC UN ELR TESTA CIKLI

1.   MOTORA UN DINAMOMETRA IESTATĪJUMI

1.1.   Motora A, B un C apgriezienu noteikšana

Izgatavotājs motora A, B un C apgriezienus deklarē saskaņā ar šādiem nosacījumiem:

Lielos apgriezienus nhi noteic, aprēķinot 70 % deklarētās maksimālās lietderīgās jaudas P(n), kā noteikts II pielikuma 1. papildinājuma 8.2. iedaļā. Lielākie motora apgriezieni ar šo jaudas vērtību uz jaudas līknes ir nhi.

Mazos apgriezienus nlo noteic, aprēķinot 50 % deklarētās maksimālās lietderīgās jaudas P(n), kā noteikts II pielikuma 1. papildinājuma 8.2. iedaļā. Mazākie motora apgriezieni ar šo jaudas vērtību uz jaudas līknes ir nlo.

Motora A, B un C apgriezienus aprēķina šādi:

Formula

Formula

Formula

Motora A, B un C apgriezienus var pārbaudīt ar vienu no šīm metodēm:

a)

apstiprinot motora jaudu saskaņā ar Direktīvu 80/1269/EEK, lai precīzi noteiktu nhi un nlo, izdara mērījumus papildu testa punktos. Maksimālo jaudu, nhi un nlo noteic pēc jaudas līknes un motora A, B un C apgriezienus aprēķina saskaņā ar iepriekšminētajiem noteikumiem;

b)

motoru kartē pa visu jaudas līkni no maksimālās jaudas apgriezieniem bez slodzes līdz brīvgaitas apgriezieniem, izmantojot vismaz 5 mērījumu punktus uz 1 000 apgriezieniem minūtē un mērījumu punktus ± 50 apgriezieni minūtē ar deklarētās maksimālās jaudas apgriezieniem. Maksimālo jaudu, nhi un nlo noteic pēc šīs kartēšanas līknes un motora A, B un C apgriezienus aprēķina saskaņā ar iepriekšminētajiem noteikumiem.

Ja izmērītie motora A, B un C apgriezieni ir ± 3 % robežās no izgatavotāja deklarētajiem motora apgriezieniem, tad deklarētos motora apgriezienus izmanto emisijas testā. Ja kādu motora apgriezienu pielaide ir pārsniegta, tad emisijas testā izmanto izmērītos motora apgriezienus.

1.2.   Dinamometra iestatījumu noteikšana

Pilnas jaudas griezes līkni noteic eksperimentējot, lai aprēķinātu griezes vērtības, kas atbilst norādītajiem testa režīmiem saskaņā ar lietderības nosacījumiem, kas norādīti II pielikuma 1. papildinājuma 8.2. iedaļā. Pēc vajadzības ņem vērā jaudu, ko absorbē aprīkojums, kuru piedzen ar motoru. Dinamometra iestatījumu katram testa režīmam aprēķina pēc formulas:

Formula, ja testē lietderības nosacījumos,

Formula, ja netestē lietderības nosacījumos,

kur:

s

=

dinamometra iestatījums, kW

P(n)

=

motora lietderīgā jauda, kas norādīta II pielikuma 1. papildinājuma 8.2. iedaļā, kW

L

=

procentuālā slodze, kas norādīta 2.7.1. iedaļā, %

P(a)

=

jauda, ko absorbē palīgierīces, ar kurām motors jāaprīko, kā norādīts II pielikuma 1. papildinājuma 6.1. iedaļā

P(b)

=

jauda, ko absorbē palīgierīces, kuras jānoņem, kā norādīts II pielikuma 1. papildinājuma 6.2. iedaļā

2.   ESC TESTS

Pēc izgatavotāja lūguma motora un izplūdes sistēmas kondicionēšanai pirms mērīšanas cikla var izdarīt maketa testu.

2.1.   Paraugu ņemšanas filtru sagatavošana

Vismaz vienu stundu pirms testa katru filtru (pāri) ieliek slēgtā, bet ne hermētiski slēgtā Petri traukā un ieliek svaru telpā stabilizēšanai. Stabilizēšanas beigās katru filtru (pāri) nosver un reģistrē taras masu. Pēc tam filtru (pāri) glabā slēgtā Petri traukā vai hermētiski noslēgtā filtru turētājā, līdz tas vajadzīgs testam. Ja filtru (pāri) nelieto astoņas stundas pēc izņemšanas no svaru telpas, tas pirms lietošanas jākondicionē un jānosver vēlreiz.

2.2.   Mēraparatūras uzstādīšana

Ierīces un paraugu ņemšanas zondes uzstāda pēc vajadzības. Ja izplūdes gāzu atšķaidīšanai izmanto pilnas plūsmas atšķaidīšanas sistēmu, izplūdes cauruli pievieno sistēmai.

2.3.   Atšķaidīšanas sistēmas un motora palaišana

Atšķaidīšanas sistēmu un motoru palaiž un iesilda, līdz visas temperatūras un spiedieni maksimālās jaudas apstākļos nostabilizējas saskaņā ar izgatavotāja ieteikumu un labu inženierijas praksi.

2.4.   Makrodaļiņu paraugu ņemšanas sistēmas palaišana

Makrodaļiņu paraugu ņemšanas sistēmu palaiž un darbina apvadā. Atšķaidīšanas gaisa makrodaļiņu fona koncentrāciju var noteikt, laižot atšķaidīšanas gaisu cauri makrodaļiņu filtriem. Ja lieto filtrētu atšķaidīšanas gaisu, tad vienu mērījumu var izdarīt pirms vai pēc testa. Ja atšķaidīšanas gaiss nav filtrēts, tad mērījumus var izdarīt cikla sākumā un beigās un noteikt to vidējo vērtību.

2.5.   Atšķaidījuma pakāpes regulēšana

Atšķaidīšanas gaisam jābūt tādam, lai atšķaidītu izplūdes gāzu temperatūra, ko mēra tieši pirms pirmējās filtrēšanas, nevienā režīmā nepārsniedz 325 K (52 °C). Atšķaidījuma pakāpe (q) nedrīkst būt mazāka par 4.

Sistēmām, kurās atšķaidīšanas pakāpes kontroles nolūkā mēra CO2 vai NOx koncentrāciju, CO2 vai NOx saturs atšķaidīšanas gaisā jāmēra katra testa sākumā un beigās. Pirms un pēc testa atšķaidīšanas gaisa fona CO2 vai NOx koncentrācijas mērījumi attiecīgi nedrīkst atšķirties vairāk par 100 ppm vai 5 ppm.

2.6.   Analizatoru pārbaude

Emisijas analizatorus nostāda uz nulli un pārbauda.

2.7.   Testa cikls

2.7.1.   Dinamometra darbībai uz testa motora piemēro šādu 13-režīmu ciklu:

Režīma numurs

Motora apgriezieni

Procentuālā slodze

Svēruma koeficients

Režīma ilgums

1

Tukšgaitas

0,15

4 minūtes

2

A

100

0,08

2 minūtes

3

B

50

0,10

2 minūtes

4

B

75

0,10

2 minūtes

5

A

50

0,05

2 minūtes

6

A

75

0,05

2 minūtes

7

A

25

0,05

2 minūtes

8

B

100

0,09

2 minūtes

9

B

25

0,10

2 minūtes

10

C

100

0,08

2 minūtes

11

C

25

0,05

2 minūtes

12

C

75

0,05

2 minūtes

13

C

50

0,05

2 minūtes

2.7.2.   Testa secība

Sāk testu. Testu izdara tādā režīmu numuru kārtībā, kāda noteikta 2.7.1. iedaļā.

Motors noteikto laiku jādarbina katrā režīmā, motora apgriezienu un slodzes maiņas pabeidzot pirmajās 20 sekundēs. Norādītos apgriezienus uztur ± 50 apgriezienu robežās minūtē, un norādīto griezes momentu uztur ± 2 % robežās no testa apgriezienu maksimālā griezes momenta.

Pēc izgatavotāja lūguma testu var secīgi atkārtot tik reižu, cik vajadzīgs, lai filtrā savāktu vairāk makrodaļiņu masas parauga. Izgatavotājs iesniedz sīki izstrādātu datu vērtēšanas un aprēķinu procedūru aprakstu. Gāzveida emisiju noteic tikai pirmajā ciklā.

2.7.3.   Analizatora reakcija

Analizatoru izejas signālu reģistrē uz diagrammas lentes vai izmēra ar līdzvērtīgu datu ieguves sistēmu, laižot izplūdes gāzu plūsmu cauri analizatoriem visā testa ciklā.

2.7.4.   Makrodaļiņu paraugu ņemšana

Visā testa procedūrā lieto vienu filtru pāri (pirmējo filtru un palīgfiltru, skatīt III pielikuma 4. papildinājumu). Testa cikla procedūrai norādītie režīma svēruma koeficienti jāņem vērā, ņemot tādu paraugu, kas ir proporcionāls izplūdes masas plūsmai katrā atsevišķā cikla režīmā. To var panākt, attiecīgi noregulējot parauga caurplūdumu, parauga ņemšanas laiku un/vai atšķaidījuma pakāpi tā, lai tā atbilst efektīvo svēruma koeficientu kritērijam, kas noteikts 5.6. iedaļā.

Parauga ņemšanas laikam vienā režīmā jābūt vismaz 4 sekundēm uz svēruma koeficientu 0,01. Paraugs katrā režīmā jāņem iespējami vēlu. Makrodaļiņu parauga ņemšanu nebeidz agrāk kā 5 sekundes pirms katra režīma beigām.

2.7.5.   Motora darbības apstākļi

Motora apgriezienus un slodzi, ieplūdes gaisa temperatūru un retinājumu, izplūdes temperatūru un pretspiedienu, degvielas plūsmu un gaisa vai izplūdes plūsmu, uzpūtes gaisa temperatūru, degvielas temperatūru un mitrumu reģistrē katrā režīmā atbilstīgi apgriezienu un slodzes prasībām (skatīt 2.7.2. iedaļu) makrodaļiņu paraugu ņemšanas laikā, bet jebkurā gadījumā katra režīma pēdējā minūtē.

Visus aprēķinam vajadzīgos papildu datus reģistrē (skatīt 4. un 5. iedaļu).

2.7.6.   NOx pārbaude kontroles diapazonā

NOx kontroles diapazonā pārbauda tieši 13. režīma beigās.

Pirms mērīšanas motoru trīs minūtes kondicionē 13. režīmā. Kontroles diapazonā, dažādās vietās, izdara trīs mērījumus pēc tehniskā dienesta izvēles (1). Katra mērījuma laiks ir 2 minūtes.

Mērīšanas procedūra ir identa NOx mērīšanai 13 režīmu ciklā, un to izpilda saskaņā ar šā papildinājuma 2.7.3., 2.7.5. un 4.1. iedaļu un III pielikuma 4. papildinājuma 3. iedaļu.

Aprēķinu izdara saskaņā ar 4. iedaļu.

2.7.7.   Analizatoru atkārtota pārbaude

Pēc emisijas testa analizatorus atkārtoti pārbauda ar nulles gāzi un to pašu standarta gāzi. Testu uzskata par pieņemamu, ja starpība starp priekštesta un pēctesta rezultātiem ir mazāka par 2 % standarta gāzes vērtības.

3.   ELR TESTS

3.1.   Mēraparatūras uzstādīšana

Dūmmēru un paraugu ņemšanas zondes, ja tādas ir, uzstāda aiz izplūdes klusinātāja vai visām pēcapstrādes ierīcēm, ja tādas ir, saskaņā ar vispārīgajām uzstādīšanas procedūrām, ko noteicis ierīces izgatavotājs. Turklāt attiecīgos gadījumos jāievēro ISO IDS 11614 10. iedaļas prasības.

Pirms visām nulles un pilnas skalas pārbaudēm dūmmēru iesilda un stabilizē saskaņā ar ierīces izgatavotāja ieteikumiem. Ja dūmmērs ir aprīkots ar gaisa izpūšanas sistēmu, lai novērstu dūmmēra optikas apkvēpšanu, tad arī šo sistēmu iedarbina un noregulē saskaņā ar izgatavotāja ieteikumiem.

3.2.   Dūmmēra pārbaude

Nulles un pilnas skalas pārbaudes izdara dūmainības nolasīšanas režīmā, jo uz dūmainības skalas var noteikt divus ticami nosakāmus kalibrēšanas punktus, proti, 0 % dūmainību un 100 % dūmainību. Pēc tam pareizi aprēķina gaismas absorbcijas koeficientu, pamatojoties uz izmērīto dūmainību un dūmmēra izgatavotāja iesniegto LA, kas attiecas uz ierīces k nolasījuma režīmu, kurā atgriežas pirms testa.

Ja dūmmēra staru kūlim šķēršļu nav, tad nolasījumu noregulē uz 0,0 % ± 1,0 % dūmainību. Ja gaismas nokļuve līdz uztvērējam ir traucēta, tad nolasījumu noregulē uz 100,0 % ± 1,0 % dūmainību.

3.3.   Testa cikls

3.3.1.   Motora sagatavošana

Motoru un sistēmu iesilda ar maksimālajiem apgriezieniem, lai motora parametrus stabilizētu saskaņā ar izgatavotāja ieteikumu. Ar iepriekšēju sagatavošanu jānodrošina arī tas, lai faktisko mērījumu neietekmē nosēdumi, kas palikuši izplūdes sistēmā pēc iepriekšējās testa.

Kad motors ir stabilizēts, tad ciklu sāk 20 ± 2 s pēc iepriekšējās sagatavošanas. Pēc izgatavotāja lūguma papildu sagatavošanas nolūkā pirms mērīšanas cikla var testēt maketu.

3.3.2.   Testa secība

Testā ietilpst trīs secīgas slodzes pakāpes katrā motora apgriezienu grupā – A (1. cikls), B (2. cikls) un C (3. cikls) -, ko noteic saskaņā ar III pielikuma 1.1. iedaļu, pēc tam 4. cikls ar 10 % - 100 % slodzi un tādiem apgriezieniem kontroles diapazonā, kādus izraugās tehniskais dienests (2). Motora aprīkojumā esošā dinamometra darbībā ievēro 3. attēlā parādīto secību.

Image

a)

motoru darbina ar A apgriezieniem un 10 % slodzi 20 ± 2 s. Norādītos apgriezienus uztur ± 20 apgriezienu robežās minūtē un norādīto griezes momentu uztur ± 2 % robežās no maksimālā griezes momenta, kas atbilst testa apgriezieniem;

b)

iepriekšējā segmenta beigās apgriezienu kontroles sviru ātri pārvieto plaši atvērtajā stāvoklī un notur tajā 10 ± 1 s. Lai motora apgriezienus uzturētu ± 150 apgriezienu robežās minūtē pirmās 3 s un ± 20 apgriezienu robežās minūtē pārējā segmentā, pieliek vajadzīgo dinamometra slodzi;

c)

secību, kas aprakstīta a) un b) punktā, atkārto divas reizes;

d)

trešās slodzes pakāpes beigās motoru noregulē uz B apgriezieniem un 10 % slodzi 20 ± 2 s;

e)

darbinot motoru ar B apgriezieniem, secīgi izpilda a) līdz c) punktu;

f)

trešās slodzes pakāpes beigās motoru noregulē uz C apgriezieniem un 10 % slodzi 20 ± 2 s;

g)

darbinot motoru ar C apgriezieniem, secīgi izpilda a) līdz c) punktu;

h)

trešās slodzes pakāpes beigās motoru noregulē uz C apgriezieniem un jebkuru slodzi, kas pārsniedz 10 % 20 ± 2 s;

i)

darbinot motoru ar izraudzītajiem apgriezieniem, secīgi izpilda a) līdz c) punktu.

3.4.   Cikla validācija

Dūmu vidējo vērtību relatīvajām standartnovirzēm katrā apgriezienu grupā (SVA, SVB, SVC, ko saskaņā ar šā papildinājuma 6.3.3. iedaļu aprēķina pēc trijām secīgajām slodzes pakāpēm atbilstīgi katrai testa apgriezienu grupai) jābūt mazākām par 15 % vidējās vērtības vai 10 % robežvērtības, kas noteikta I pielikuma 1. tabulā, atkarībā no tā kura vērtība ir lielāka. Ja starpība ir lielāka, tad secīgās darbības atkārto, līdz 3 slodzes pakāpēs pēc kārtas konstatē atbilstību validācijas kritērijiem.

3.5.   Dūmmēra atkārtota pārbaude

Pēc testa dūmmēra nulles svārstību vērtība nedrīkst pārsniegt ± 5,0 % robežvērtības, kas noteikta I pielikuma 1. tabulā.

4.   GĀZVEIDA EMISIJAS APRĒĶINS

4.1.   Datu izvērtēšana

Gāzveida emisiju novērtē pēc katra režīma pēdējo 30 sekunžu vidējiem nolasījumiem no diagrammas, un pēc vidējiem diagrammas nolasījumiem un attiecīgajiem kalibrēšanas datiem katrā režīmā noteic vidējās HC, CO, NOx koncentrācijas (conc.). Var izmantot citu reģistrēšanas metodi, ja tā nodrošina līdzvērtīgu datu ieguvi.

NOx pārbaudē kontroles diapazonā iepriekšminētās prasības piemēro tikai NOx.

Izplūdes gāzu plūsmu GEXHW vai atšķaidīto izplūdes gāzu plūsmu GTOTW , ja to izmanto pēc izvēles, noteic saskaņā ar III pielikuma 4. papildinājuma 2.3. iedaļu.

4.2.   UKorekcija pārejai no sausa stāvokļa uz mitru

Izmērīto koncentrāciju pārrēķina atbilstīgi mitram stāvoklim saskaņā ar šādām formulām, ja mērījumi jau nav izdarīti mitrā stāvoklī.

Formula

Neatšķaidītām izplūdes gāzēm:

Formula

un

Formula

Atšķaidītām izplūdes gāzēm:

Formula

vai

Formula

Atšķaidīšanas gaisam

Ieplūdes gaisam (ja tas atšķiras no atšķaidīšanas gaisa):

Formula

Formula

Formula

Formula

Formula

Formula

kur:

Ha, Hd

=

g ūdens uz kg sausa gaisa

Rd, Ra

=

atšķaidīšanas/ieplūdes gaisa relatīvais mitrums, %

pd, pa

=

atšķaidīšanas/ieplūdes gaisa piesātināta tvaika spiediens, kPa

pB

=

kopējais atmosfēras spiediens, kPa

4.3.   NOx korekcija atbilstīgi mitrumam un temperatūrai

Tā kā NOx emisija ir atkarīga no apkārtējā gaisa apstākļiem, NOx koncentrāciju atbilstīgi apkārtējā gaisa temperatūrai un mitrumam koriģē ar koeficientiem pēc šādām formulām:

Formula

kur:

A

=

0,309 GFUEL/GAIRD - 0,0266

B

=

- 0,209 GFUEL/GAIRD + 0,00954

Ta

=

gaisa temperatūra, K

Ha

=

ieplūdes gaisa mitrums, g ūdens uz kg sausa gaisa

Ha

=

Formula

kur:

Ra

=

ieplūdes gaisa relatīvais mitrums, %

pa

=

ieplūdes gaisa piesātināta tvaika spiediens, kPa

pB

=

kopējais atmosfēras spiediens, kPa

4.4.   Daļiņu masas caurplūduma aprēķins

Daļiņu masas caurplūdumu (g/h) katrā režīmā, pieņemot, ka izplūdes gāzu blīvums 273 K (0 °C) un 101, 3 kPa ir 1, 293 kg/m3, aprēķina šādi:

 

Formula

 

Formula

 

Formula

kur NOx conc, COconc, HCconc  (3) ir vidējās koncentrācijas (ppm) neapstrādātajās izplūdes gāzēs, un tās noteic saskaņā ar 4.1. iedaļu.

Ja pēc izvēles gāzveida emisiju noteic ar pilnas plūsmas atšķaidīšanas sistēmu, tad izmanto šādas formulas:

 

Formula

 

Formula

 

Formula

kur NOx conc, COconc, HCconc  (3) ir katra režīma vidējās koriģētās fona koncentrācijas (ppm) atšķaidītajā izplūdes gāzē, un tās noteic saskaņā ar III pielikuma 2. papildinājuma 4.3.1.1. iedaļu.

4.5.   Īpatnējās emisijas aprēķins

Visu atsevišķo sastāvdaļu īpatnējo emisiju (g/kWh) aprēķina šādi:

Formula

Formula

Formula

Iepriekšminētajā aprēķinā izmanto svēruma koeficientus (WF) saskaņā ar 2.7.1. iedaļu.

4.6.   Diapazona kontroles vērtību aprēķins

Trijos kontroles punktos, kas izraudzīti saskaņā ar 2.7.6. iedaļu, NOx emisiju izmēra un aprēķina saskaņā ar 4.6.1. iedaļu, un noteic arī interpolējot pēc testa cikla režīmiem, kuri ir vistuvāk kontroles punktam saskaņā ar 4.6.2. iedaļu. Izmērītās vērtības salīdzina ar interpolētajām vērtībām saskaņā ar 4.6.3. iedaļu.

4.6.1.   Īpatnējās emisijas aprēķins

NOx emisiju katrā kontroles punktā (Z) aprēķina šādi:

Formula

Formula

4.6.2.   Emisijas vērtības noteikšana pēc testa cikla

NOx emisiju katram kontroles punktam interpolē pēc četriem tuvākajiem testa cikla režīmiem, kuri aptver izraudzīto kontroles punktu Z, kā parādīts 4. attēlā. Šiem režīmiem (R, S, T, U) piemēro šādas definīcijas:

apgriezieni (R)

=

apgriezieni (T) = nRT

apgriezieni (S)

=

apgriezieni (U) = nSU

procentuālā slodze (R)

=

procentuālā slodze (S)

procentuālā slodze (T)

=

procentuālā slodze (U).

NOx emisiju izraudzītajā kontroles punktā (Z) aprēķina šādi:

Formula

un

Formula

Formula

Formula

Formula

kur:

ER, ES, ET, EU

=

aptverošo režīmu īpatnējā NOx emisija, ko aprēķina saskaņā ar 4.6.1. iedaļu.

MR, MS, MT, MU

=

motora aptverošo režīmu griezes moments.

Image

4.6.3.   NOx emisijas vērtību salīdzinājums

Izmērīto īpatnējo NOx emisiju kontroles punktā Z (NOx, Z) ar interpolēto vērtību (EZ) salīdzina šādi:

Formula

5.   DAĻIŅVEIDA PIESĀRŅOTĀJU EMISIJAS APRĒĶINS

5.1.   Datu izvērtēšana

Lai novērtētu makrodaļiņu emisiju, katrā režīmā jāreģistrē kopējās paraugu masas (MSAM,i) filtros.

Filtrus liek atpakaļ svaru telpā un kondicionē vismaz vienu stundu, bet ne ilgāk par 80 stundām, pēc tam nosver. Reģistrē filtru bruto masu un atskaita taras masu (skatīt šā papildinājuma 1. iedaļu). Makrodaļiņu masa Mf ir pirmējos filtros un palīgfiltros uzkrāto makrodaļiņu masu summa.

Ja jāpiemēro fona korekcija, tad reģistrē caur filtriem izplūdušā atšķaidīšanas gaisa masu (MDIL) un makrodaļiņu masu (Md). Ja ir izdarīts vairāk nekā viens mērījums, tad katram atsevišķam mērījumam ir jāaprēķina Md/MDIL attiecība un jānoteic vidējā vērtība.

5.2.   Daļējas plūsmas atšķaidīšanas sistēma

Makrodaļiņu emisijas testa rezultātus nobeiguma ziņojumam noteic šādās stadijās. Tā kā var izmantot dažādu veidu atšķaidījuma pakāpes kontroli, attiecīgi piemēro dažādas GEDFW aprēķina metodes. Visu aprēķinu pamatā ir atsevišķo režīmu vidējās vērtības parauga ņemšanas laikā.

5.2.1.   Izokinētiskās sistēmas

Formula

Formula

kur r atbilst izokinētiskās zondes un izplūdes caurules šķērsgriezumu laukumu attiecībai:

Formula

5.2.2.   Sistēmas ar CO2 vai NOx koncentrācijas mērīšanu

Formula

Formula

kur:

concE

=

mitras marķiergāzes koncentrācija neapstrādātās izplūdes gāzēs

concD

=

mitras marķiergāzes koncentrācija atšķaidītās izplūdes gāzēs

concA

=

mitras marķiergāzes koncentrācija atšķaidīšanas gaisā

Sausā stāvoklī izmērītās koncentrācijas pārrēķina atbilstīgi mitram stāvoklim saskaņā ar šā papildinājuma 4.2. iedaļu.

5.2.3.   Sistēmas ar CO2 mērīšanu un oglekļa bilances metodi (4)

Formula

kur:

CO2D

=

CO2 koncentrācija atšķaidītās izplūdes gāzēs

CO2A

=

CO2 koncentrācija atšķaidīšanas gaisā

(koncentrācijas tilpuma % mitrā stāvoklī)

Šā vienādojuma pamatā ir oglekļa bilances pieņēmums (motoram pievadītos oglekļa atomus izmet CO2 veidā), un to iegūst šādās stadijās:

Formula

un

Formula

5.2.4.   Sistēmas ar plūsmas mērīšanu

Formula

Formula

5.3.   Pilnas plūsmas atšķaidīšanas sistēma

Makrodaļiņu emisijas testa rezultātus ziņojumam noteic šādās stadijās. Visu aprēķinu pamatā ir atsevišķo režīmu vidējās vērtības parauga ņemšanas laikā.

Formula

5.4.   Makrodaļiņu masas plūsmas caurplūduma aprēķins

Makrodaļiņu masas caurplūdumu aprēķina šādi:

Formula

kur:

Formula

= Formula

MSAM=

Formula

i=

Formula

ko noteic testa ciklā, summējot atsevišķo režīmu vidējās vērtības paraugu ņemšanas laikā.

Makrodaļiņu masas caurplūduma fona korekciju var izdarīt šādi:

Formula

Ja izdara vairāk nekā vienu mērījumu, tad Formula aizstāj ar Formula.

Formula atsevišķajos režīmos

vai

Formula atsevišķajos režīmos.

5.5.   Īpatnējās emisijas aprēķins

Makrodaļiņu emisiju aprēķina šādi:

Formula

5.6.   Efektīvais svēruma koeficients

Efektīvo svēruma koeficientu katram režīmam aprēķina šādi

Formula

Efektīvo svēruma koeficientu vērtībai jābūt ± 0,003 robežās (± 0,005 tukšgaitas režīmam) no svēruma koeficientiem, kas iekļauti 2.7.1. iedaļā.

6.   DŪMU VĒRTĪBU APRĒĶINS

6.1.   Besela algoritms

Lai pēc momentāno dūmu nolasījumiem, kas pārrēķināti saskaņā ar 6.3.1. iedaļu, aprēķinātu 1 s vidējās vērtības, jāizmanto Besela algoritms. Algoritms ir pielīdzināms mazas caurlaidības otrās šķiras/pakāpes filtram, un, to izmantojot, jāveic atkārtoti aprēķini, lai noteiktu koeficientus. Šie koeficienti ir dūmmēra sistēmas reakcijas laika un parauga ņemšanas frekvences funkcija. Tāpēc 6.1.1. iedaļa jāizpilda atkārtoti, ja mainās sistēmas reakcijas laiks un/vai parauga ņemšanas frekvence.

6.1.1.   Filtra reakcijas laika un Besela konstanšu aprēķins

Vajadzīgais Besela reakcijas laiks (tF) ir dūmmēra sistēmas fizikālās un elektriskās reakcijas laika funkcija, kas norādīta III pielikuma 4. papildinājuma 5.2.4. iedaļā, un to aprēķina pēc šāda vienādojuma:

Formula

kur:

tp

=

fizikālās reakcijas laiks, s

te

=

elektriskās reakcijas laiks, s

Filtra atslēgšanās frekvences/robežfrekvences (fc) novērtējuma aprēķini pamatojas uz pakāpienveida ievadi no 0 līdz 1 <= 0,01 sekundē (skatīt VII pielikumu). Reakcijas laiku definē ar laiku no brīža, kad Besela izvade sasniedz 10 % (t10), līdz brīdim, kad tā sasniedz 90 % (t90) šīs pakāpienveida funkcijas. Tas jāsasniedz, atkārtojot ar fc līdz t90-t10 ≈ tF. Pirmo atkārtojumu fc izsaka ar šādu formulu:

Formula

Besela E un K konstanti aprēķina pēc šāda vienādojuma:

Formula

Formula

kur:

D

=

0,618034

Δt

=

Formula

Ω

=

Formula

6.1.2.   Besela algoritma aprēķins

Izmantojot E un K vērtību, 1 s Besela vidējo reakciju uz pakāpjveida Si ievadi aprēķina šādi:

Formula

kur:

Si-2

=

Si-1 = 0

Si

=

1

Yi-2

=

Yi-1 = 0

t10 un t90 laiku interpolē. Nobīde laikā starp t90 un t10 ir reakcijas laiks tF, kas atbilst attiecīgajai fc vērtībai. Ja šis reakcijas laiks nav pietiekami tuvs vajadzīgajam reakcijas laikam, tad atkārtošanu šādi turpina, līdz faktiskais reakcijas laiks ir 1 % robežās no vajadzīgās reakcijas:

Formula

6.2.   Datu izvērtēšana

Dūmu mērījumu vērtību paraugu ņemšanas minimālā frekvence ir 20 Hz.

6.3.   Dūmu noteikšana

6.3.1.   Datu pārrēķins

Tā kā visu dūmmēru pamatmērvienība ir caurlaidība, dūmu vērtības šādi pārrēķina no caurlaidības (τ) gaismas absorbcijas koeficientā (k):

Formula

un

Formula

kur:

k

=

gaismas absorbcijas koeficients, m-1

LA

=

optiskā ceļa lietderīgais garums, ko noteicis ierīces izgatavotājs, m

N

=

dūmainība, %

τ

=

caurlaidība, %

Pārrēķinu izdara pirms visas turpmākās datu apstrādes.

6.3.2.   Besela vidējās dūmu vērtības aprēķins

Pareizā atslēgšanās frekvence/robežfrekvence (fc) nodrošina vajadzīgo filtra reakcijas laiku tF. Kad šī frekvence ir noteikta atkārtojuma procesā, kas aprakstīts 6.1.1. iedaļā, aprēķina attiecīgo Besela algoritma E un K konstanti. Pēc tam Besela algoritmu piemēro momentāno dūmu zīmei (k vērtībai), kā aprakstīts 6.1.2. iedaļā:

Formula

Besela algoritms ir rekursīvs. Tātad ir vajadzīgas dažas sākotnējas ievades Si-1 un Si-2 vērtības un sākotnējas izvades Yi-1 un Yi-2 vērtības, lai sāktu algoritmu. Tās var pieņemt par 0.

Katrai slodzes pakāpei ar A, B un C apgriezieniem no katras dūmu zīmes atsevišķajām Yi vērtībām izraugās maksimālo 1 s vērtību Ymax.

6.3.3.   Galīgais rezultāts

Vidējās dūmu vērtības (SV) pēc katra cikla (testa apgriezieniem) jāaprēķina šādi:

testa A apgriezieniem:

SVA = (Ymax1,A + Ymax2,A + Ymax3,A) / 3

testa B apgriezieniem:

SVB = (Ymax1,B + Ymax2,B + Ymax3,B) / 3

testa C apgriezieniem:

SVC = (Ymax1,C + Ymax2,C + Ymax3,C) / 3

kur:

Ymax1, Ymax2, Ymax3

=

lielākā 1 s Besela vidējā dūmu vērtība katrā no trijām slodzes pakāpēm.

Galīgo vērtību aprēķina šādi:

SV = (0,43 × SVA) + (0,56 × SVB) + (0,01 × SVC)


(1)  Testa punktus izraugās pēc apstiprinātām nejaušās izlases metodēm.

(2)  Testa punktus izraugās pēc apstiprinātām nejaušās izlases metodēm.

(3)  Pamatojoties uz C1 ekvivalentu.

(4)  Vērtība attiecas tikai uz standarta degvielu, kas norādīta IV pielikumā.

2. papildinājums

ETC TESTA CIKLS

1.   MOTORA KARTĒŠANAS PROCEDŪRA

1.1.   Kartēšanas apgriezienu diapazona noteikšana

Lai testa nodalījumā nodrošinātu ETC, motors pirms testa cikla jākartē, lai noteiktu apgriezienu un griezes momenta attiecības līkni. Minimālos un maksimālos kartēšanas apgriezienus noteic šādi:

Minimālie kartēšanas apgriezieni

=

tukšgaitas apgriezieni

Maksimālie kartēšanas apgriezieni

=

nhi × 1, 02 vai apgriezieni, kurus sasniedzot, pilnas slodzes nokrītas līdz nullei, atkarībā no tā, kuri apgriezieni ir mazāki

1.2.   Motora jaudas kartēšana

Motoru iesilda ar maksimālo jaudu, lai motora parametrus stabilizētu saskaņā ar izgatavotāja ieteikumu un labu inženierijas praksi. Kad motors ir stabilizēts, motoru kartē šādi:

a)

motoru atslogo un darbina ar tukšgaitas apgriezieniem;

b)

motoru darbina ar pilnu degvielas sūkņa slodzi un minimālajiem kartēšanas apgriezieniem;

c)

motora apgriezienus palielina no minimālajiem līdz maksimālajiem kartēšanas apgriezieniem vidēji ar normu 8 ± 1 min-1/s. Motora apgriezienu un griezes momenta punktus reģistrē ar vismaz viena punkta parauga ņemšanas normu sekundē.

1.3.   Kartēšanas līknes veidošana

Visus punktus, kas reģistrēti saskaņā ar 1.2. iedaļu, savieno, izmantojot lineāru interpolāciju starp punktiem. Iegūtā griezes momenta līkne ir kartēšanas līkne, un to izmanto, lai normalizētās motora cikla griezes vērtības pārrēķinātu testa cikla faktiskajās griezes vērtībās, kā aprakstīts 2. iedaļā.

1.4.   Alternatīvā kartēšana

Ja izgatavotājs uzskata, ka iepriekš aprakstītā kartēšanas metode nav droša vai reprezentatīva attiecībā uz visiem motoriem, tad var izmantot alternatīvu kartēšanas metodi. Alternatīvajai metodei jāatbilst norādīto kartēšanas procedūru mērķim, lai noteiktu maksimāli iespējamo griezes momentu atbilstīgi visiem motora apgriezieniem, ko sasniedz testa ciklos. Novirzes no kartēšanas metodes, kas norādīta šajā iedaļā, drošības vai reprezentativitātes nolūkos kopā ar to izmantošanas pamatojumu jāapstiprina tehniskajam dienestam. Tomēr regulējamiem vai turbokompresora motoriem nekādā gadījumā nedrīkst izmantot dilstošas nepārtrauktas motora apgriezienu frekvences.

1.5.   Atkārtoti testi

Motors nav jākartē pirms katra testa cikla. Motors pirms testa cikla jākartē, ja:

kopš iepriekšējās kartēšanas, pēc labas inženierijas apsvēruma, ir pagājis pārāk ilgs laiks,

vai

motoram ir izdarīti fizikāli pārveidojumi vai atkārtota kalibrēšana, kas var būt ietekmējusi motora darbību.

2.   STANDARTA TESTA CIKLS

Pārejas ekspluatācijas testa cikls ir aprakstīts šā pielikuma 3. papildinājumā. Normalizētās griezes momenta un apgriezienu vērtības pārrēķina faktiskajās vērtībās un tā iegūst standarta ciklu.

2.1.   Faktiskie apgriezieni

Nenormalizētos apgriezienus iegūst pēc šāda vienādojuma:

Formula

Nominālie apgriezieni (nref) atbilst 100 % apgriezienu vērtībām, kas norādītas motora dinamometra grafikā 3. papildinājumā. To noteic šādi: (skatīt I pielikuma 1. attēlu):

Formula

kur nhi un nlo ir norādīti saskaņā ar I pielikuma 2. iedaļu vai noteikti saskaņā ar III pielikuma 1. papildinājuma 1.1. iedaļu.

2.2.   Faktiskais griezes moments

Griezes momentu normalizē ar maksimālo griezes momentu atbilstīgi attiecīgajiem apgriezieniem. Standarta cikla griezes vērtības nenormalizē, izmantojot kartēšanas līkni, ko saskaņā ar 1.3. iedaļu noteic šādi:

faktiskais griezes moments = (% griezes moments × maksimālais griezes moments/100)

attiecīgajiem faktiskajiem apgriezieniem, kas noteikti 2.1. iedaļā.

Ar negatīvajām griezes momenta vērtībām motora apgriezienu punktos (“m”) standarta cikla izveides nolūkos papildina nenormalizētās vērtības, ko noteic vienā no šiem veidiem:

atskaitot 40 % no pozitīvā griezes momenta, kas iespējams attiecīgajā apgriezienu punktā,

kartējot negatīvo griezes momentu, kas vajadzīgs, lai motoru grieztu no minimālajiem līdz maksimālajiem kartēšanas apgriezieniem,

noteicot negatīvo griezes momentu, kas vajadzīgs, lai motoru grieztu ar tukšgaitas un nominālajiem apgriezieniem, un lineāru interpolāciju starp šiem diviem punktiem.

2.3.   Nenormalizēšanas procedūras piemērs

Šāda testa punkta nenormalizēšanas piemērs:

% apgriezieni

=

43

% griezes moments

=

82

Ja:

nominālie apgriezieni

=

2 200 min- 1

tukšgaitas apgriezieni

=

600 min- 1

tad

faktiskie apgriezieni = (43 × (2 200 – 600)/100) + 600 = 1 288 min-1

faktiskais griezes moments = (82 × 700/100) = 574 Nm

ja pēc kartēšanas līknes noteiktais maksimālais griezes moments, kas atbilst 1 288 min- 1 apgriezieniem, ir 700 Nm.

3.   EMISIJAS TESTS

Pēc izgatavotāja lūguma motora un izplūdes sistēmas kondicionēšanai pirms mērīšanas cikla var izdarīt maketa testu.

Ar NG un LPG darbināmus motorus pirms ETC testa piestrādā. Motoru darbina vismaz divus ETC ciklus un līdz brīdim, kad CO emisija, ko mēra vienā veselā ETC ciklā, vairāk par 10 % nepārsniedz CO emisiju, kura izmērīta iepriekšējā ETC ciklā.

3.1.   Paraugu ņemšanas filtru sagatavošana (tikai dīzeļmotoriem)

Vismaz vienu stundu pirms testa katru filtru (pāri) ieliek slēgtā, bet ne hermētiski slēgtā Petri traukā un ieliek svaru telpā stabilizēšanai. Stabilizēšanas beigās katru filtru (pāri) nosver un reģistrē taras masu. Pēc tam filtru (pāri) glabā slēgtā Petri traukā vai hermētiski noslēgtā filtru turētājā, līdz tas vajadzīgs testam. Ja filtru (pāri) nelieto astoņas stundas pēc izņemšanas no svaru telpas, tas pirms lietošanas jākondicionē un jānosver vēlreiz.

3.2.   Mēraparatūras uzstādīšana

Ierīces un paraugu ņemšanas zondes uzstāda pēc vajadzības. Izplūdes cauruli savieno ar pilnas plūsmas atšķaidīšanas sistēmu.

3.3.   Atšķaidīšanas sistēmas un motora palaišana

Atšķaidīšanas sistēmu un motoru palaiž un iesilda, līdz visas temperatūras un spiedieni maksimālās jaudas apstākļos nostabilizējas saskaņā ar izgatavotāja ieteikumu un labu inženierijas praksi.

3.4.   Makrodaļiņu paraugu ņemšanas sistēmas palaišana (tikai dīzeļmotoriem)

Makrodaļiņu paraugu ņemšanas sistēmu palaiž un darbina apvadā. Atšķaidīšanas gaisa makrodaļiņu fona koncentrāciju var noteikt, laižot atšķaidīšanas gaisu cauri makrodaļiņu filtriem. Ja lieto filtrētu atšķaidīšanas gaisu, tad vienu mērījumu var izdarīt pirms vai pēc testa. Ja atšķaidīšanas gaiss nav filtrēts, tad mērījumus var izdarīt cikla sākumā un beigās un noteikt to vidējo vērtību.

3.5.   Pilnas plūsmas atšķaidīšanas sistēmas regulēšana

Kopējo atšķaidītās izplūdes gāzu plūsmu noregulē tā, lai novērstu ūdens kondensēšanos sistēmā un iegūtu maksimālo filtra virsmas temperatūru, kas ir 325 K (52 °C) vai mazāka (skatīt V pielikuma 2.3.1. iedaļas DT).

3.6.   Analizatoru pārbaude

Emisijas analizatorus nostāda uz nulli un pārbauda. Ja lieto paraugu maisiņus, tad tos iztukšo.

3.7.   Motora palaišanas procedūra

Stabilizēto motoru, izmantojot standarta palaidējmotoru vai dinamometru, palaiž saskaņā ar palaišanas procedūru, ko izgatavotājs ieteicis lietotāja rokasgrāmatā. Pēc izvēles testu var sākt tieši no motora iepriekšējas kondicionēšanas stadijas, motoru neizslēdzot, kad tas ir sasniedzis tukšgaitas apgriezienus.

3.8.   Testa cikls

3.8.1.   Testa secība

Testa secīgu izpildi sāk, ja motors ir sasniedzis tukšgaitas apgriezienus. Testu izdara saskaņā ar standarta ciklu, kas noteikts šā papildinājuma 2. iedaļā. Motora apgriezienu un izraudzīto griezes momenta uzstādījuma punktu frekvence ir 5 Hz (ieteicams 10 Hz ) vai lielāka. Atgriezeniskos motora apgriezienus un griezes momentu reģistrē vismaz vienu reizi sekundē visā testa ciklā un signālus var elektroniski filtrēt.

3.8.2.   Analizatora reakcija

Palaižot motoru vai sākot secīgi izpildīt testu, ja ciklu sāk tieši no iepriekšējas kondicionēšanas, vienlaicīgi iedarbina mēraparatūru, lai:

sāktu atšķaidīšanas gaisa savākšanu vai analīzi;

sāktu atšķaidītu izplūdes gāzu savākšanu vai analīzi;

sāktu atšķaidītu izplūdes gāzu (CVS) daudzuma un vajadzīgās temperatūras un spiediena mērīšanu;

sāktu reģistrēt apgriezienu un griezes momenta atgriezeniskos dinamometra datus.

HC un NOx atšķaidīšanas kanālā mēra nepārtraukti ar 2 Hz frekvenci. Vidējās koncentrācijas noteic, integrējot analizatora signālus visā testa ciklā. Sistēmas reakcijas laiks nedrīkst pārsniegt 20 s, un tas jāsaskaņo ar CVS plūsmas svārstībām un parauga ņemšanas laiku/testa cikla nobīdēm, ja vajadzīgs. CO, CO2, NMHC un CH4 noteic, integrējot vai analizējot koncentrācijas maisiņā savāktajā paraugā. Gāzveida piesārņotāju koncentrācijas atšķaidīšanas gaisā noteic, integrējot vai savācot fona maisiņā. Visu pārējo vērtību reģistrēšanas minimālā frekvence ir viens mērījums sekundē (1 Hz).

3.8.3.   Makrodaļiņu paraugu ņemšana (tikai dīzeļmotoriem)

Palaižot motoru vai sākot secīgi izpildīt testu, ja ciklu sāk tieši no iepriekšējas kondicionēšanas, daļiņu paraugu ņemšanas sistēmu pārslēdz no apvada režīma uz daļiņu savākšanas režīmu.

Ja neizmanto plūsmas kompensāciju, tad parauga sūkni noregulē tā, lai caurplūdums daļiņu parauga zondē vai pārvades caurulē ir ± 5 % no iestatītā caurplūduma. Ja izmanto plūsmas kompensāciju (t.i., samērīgu/proporcionālu parauga plūsmas kontroli), tad jāpierāda, ka attiecība starp plūsmu galvenajā kanālā un makrodaļiņu plūsmu nemainās vairāk kā par ± 5 % no uzstādītās vērtības (izņemot parauga ņemšanas pirmās 10 sekundes).

Piezīme: Divkārši atšķaidot, parauga plūsma ir tīrā starpība starp caurplūdumu paraugu filtros un otrējā atšķaidīšanas gaisa caurplūdumu.

Reģistrē vidējo temperatūru un spiedienu ieplūdē gāzes skaitītājā vai plūsmas mērierīcē. Ja iestatīto caurplūdumu (± 5 % robežās) nevar uzturēt visā ciklā tāpēc, ka filtrā uzkrājies daudz makrodaļiņu, tad testu uzskata par nederīgu. Testu atkārto ar mazāku caurplūdumu un/vai lielāka diametra filtru.

3.8.4.   Motora apgriezienu samazināšanās

Ja testa ciklā motora apgriezieni samazinās, tad veic motora iepriekšēju kondicionēšanu, motoru atkārtoti iedarbina un testu atkārto. Ja darbības traucējums testa ciklā rodas testam vajadzīgajā aprīkojumā, tad testu uzskata par nederīgu.

3.8.5.   Darbības pēc testa

Beidzot testu, aptur atšķaidītu izplūdes gāzu tilpuma un savākšanas maisiņos ieplūstošās gāzes plūsmas mērīšanu un makrodaļiņu parauga sūkni. Integrēšanas analizatora sistēmā parauga ņemšanu turpina līdz sistēmas reakcijas laiku beigām.

Koncentrācijas savākšanas maisiņos, ja tos izmanto, analizē pēc iespējas agrāk un ne vēlāk kā 20 minūtes pēc testa cikla beigām.

Pēc emisijas testa ar nulles gāzi un to pašu standarta gāzi atkārtoti pārbauda analizatorus. Testu uzskata par pieņemamu, ja starpība starp priekštesta un pēctesta rezultātiem ir mazāka par 2 % standarta gāzes vērtības.

Tikai dīzeļmotoru makrodaļiņu filtrus vēlākais vienu stundu pēc testa beigām liek atpakaļ svaru telpā un kondicionē slēgtā, bet ne hermētiski slēgtā Petri traukā vismaz vienu stundu, bet ne vairāk kā 80 stundas pirms svēršanas.

3.9.   Testa verifikācija

3.9.1.   Datu nobīde

Lai līdz minimumam samazinātu laika novirzes efektu starp atgriezeniskajām standarta cikla vērtībām, visu motora apgriezienu un griezes momenta atgriezenisko signālu secību var nobīdīt, to aizturot vai apsteidzot laikā nominālo apgriezienu un griezes momentu secību. Ja atgriezeniskos signālus nobīda, tad tajā pašā virzienā tikpat daudz jānobīda apgriezieni un griezes moments.

3.9.2.   Cikla darba aprēķins

Cikla faktisko darbu Wact (kWh) aprēķina, izmantojot visu reģistrēto motora atgriezenisko apgriezienu un griezes momenta pāru vērtības. To dara pēc katras atgriezenisko datu nobīdes, ja ir izraudzīta šī izvēle. Cikla faktisko darbu Wact izmanto salīdzināšanai ar standarta cikla darbu Wref un īpatnējās emisijas aprēķināšanai (skatīt 4.4. un 5.2. iedaļu). To pašu metodoloģiju izmanto motora standarta un faktiskās jaudas integrēšanai. Ja jānoteic vērtības starp blakus standarta vai blakus mērījumu vērtībām, tad izmanto lineāro interpolāciju.

Integrējot cikla standarta un faktisko darbu, visas negatīvās griezes momenta vērtības pielīdzina nullei un iekļauj integrēšanā. Ja integrēšanas frekvence ir mazāka par 5 Hz un ja attiecīgā laika segmentā griezes momenta vērtība mainās no pozitīvas uz negatīvu vai no negatīvas uz pozitīvu, tad negatīvo daļu aprēķina un pielīdzina nullei. Pozitīvo daļu iekļauj integrētajā vērtībā.

Wact ir no - 15 % līdz + 5 % no Wref.

3.9.3.   Testa cikla validācijas statistika

Atgriezenisko vērtību lineāro regresiju pret standarta vērtībām noteic attiecībā uz apgriezieniem, griezes momentu un jaudu. To dara pēc katras atgriezenisko datu nobīdes, ja ir izraudzīta šī izvēle. Izmanto mazāko kvadrātu metodi ar piemērotāko vienādojumu šādā formā:

Formula

kur:

y

=

atgriezeniskā (faktiskā) apgriezienu (min-1), griezes momenta (Nm) vai jaudas (kW) vērtība,

m

=

regresijas taisnes kritums/slīpums,

x

=

apgriezienu (min-1), griezes momenta (Nm) vai jaudas (kW) standarta vērtība,

b

=

y krustošanās ar regresijas taisni.

y pret x standartkļūdas novērtējumu (SE) un noteiktības koeficientu (r2) aprēķina katrai regresijas taisnei.

Šo analīzi ieteicams izdarīt ar 1 herca frekvenci. Visas negatīvās standarta griezes momenta vērtības un attiecīgās atgriezeniskās vērtības svītro no cikla griezes momenta un jaudas validācijas statistiskā aprēķina. Lai testu uzskatītu par derīgu, tai jāatbilst kritērijiem, kas iekļauti 6. tabulā.

6. tabula

Regresijas taisnes pielaides

 

Apgriezieni

Griezes moments

Jauda

Y pret X aprēķina standartnovirze (SE)

Maksimālā: 100 min–1

Maksimālā: 13 % (15 %) (1) motora maksimālā griezes momenta pēc jaudas kartes

Maksimālā: 8 % (15 %) (1) motora maksimālās jaudas pēc jaudas kartes

Regresijas taisnes slīpums, m

0,95–1,03

0,83–1,03

0,89–1,03(0,83–1,03) (1)

Noteikšanas koeficients, r2

Minimālais: 0,9700 (Minimālais: 0,500) (1)

Minimālais: 0,8800 (Minimālais: 0,7500) (1)

Minimālais: 0,9100 (Minimālais: 0,7500) (1)

Y krustošanās ar regresijas taisni, b

± 50 min-1

± 20 Nm vai ± 2 % (± 20 Nm vai ± 3 %) maksimālā griezes momenta, izvēloties lielāku vertību (1)

± 4 kW vai ± 2 % (± 4 kW vai ± 3 %) maksimālās jaudas, izvēloties lielāku vertību (1)

Punktu svītrošana no regresijas analīzēm ir atļauta, ja ir attiecīga norāde 7. tabulā.

7. tabula

Atļautie punktu svītrojumi no regresijas analīzes

Nosacījumi

Punkti, kas jāsvītro

Pilnas slodzes un griezes momenta atdeve < standarta griezes moments

Griezes moments un/vai jauda

Bezslodzes, kas nav tukšgaitas punkts, un griezes momenta atdeve > standarta griezes moments

Griezes moments un/vai jauda

Bezslodzes/ar aizvērtu droseļvārstu, tukšgaitas punkts un apgriezieni > standarta tukšgaitas apgriezieni

Apgriezieni un/vai jauda

4.   GĀZVEIDA EMISIJAS APRĒĶINS

4.1.   Atšķaidītu izplūdes gāzu plūsmas noteikšana

Kopējo atšķaidītu izplūdes gāzu plūsmu visā ciklā (kg/testā) aprēķina pēc visa cikla mērījumu vērtībām un atbilstīgajiem plūsmas mērīšanas ierīces kalibrēšanas datiem (V0 attiecībā uz PDP vai KV attiecībā uz CFV, kā noteikts III pielikuma 5. papildinājuma 2. iedaļā). Šādas formulas piemēro, ja ar siltummaini visā ciklā atšķaidīto izplūdes gāzu temperatūru uztur nemainīgu (± 6 K attiecībā uz PDP-CVS, ± 11 K attiecībā uz CFV-CVS, skatīt V pielikuma 2.3. iedaļu).

PDP-CVS sistēmai:

MTOTW = 1,293 × V0 × Np × (pB – p1) × 273 / (101,3 × T)

kur:

MTOTW

=

atšķaidītās izplūdes gāzu masa mitrā stāvoklī visā ciklā, kg,

V0

=

gāzes tilpums, uz vienu sūkņa apgriezienu testa nosacījumos, m3/apgr.,

NP

=

sūkņa kopējie apgriezieni testā,

pB

=

atmosfēras spiediens testa nodalījumā, kPa,

p1

=

retinājuma spiediens, kas ir mazāks par atmosfēras spiedienu, sūkņa ieplūdes atverē, kPa,

T

=

atšķaidītu izplūdes gāzu vidējā temperatūra visā ciklā sūkņa ieplūdes atverē, K.

CFV-CVS sistēmai:

MTOTW = 1,293 × t × Kv × pA/T0,5

kur:

MTOTW

=

atšķaidītu izplūdes gāzu masa mitrā stāvoklī visā ciklā, kg,

t

=

cikla laiks, s,

Kv

=

kritiskās plūsmas Venturi caurules kalibrēšanas koeficients standarta nosacījumiem,

pA

=

absolūtais ieplūdes spiediens Venturi caurulē, kPa.

T

=

absolūtā temperatūra Venturi caurules ieplūdes atverē, K.

Ja sistēmā plūsmu kompensē (t. i., nelieto siltummaini), tad momentāno emisijas masu aprēķina un integrē visā ciklā. Šajā gadījumā atšķaidīto izplūdes gāzu momentāno masu aprēķina šādi.

PDP-CVS sistēmai:

MTOTW,i = 1,293 × V0 × Np,i × (pB – p1) × 273 / (101,3 × T)

kur:

MTOTW,i

=

atšķaidītu izplūdes gāzu momentānā masa mitrā stāvoklī, kg,

Np,i

=

sūkņa kopējie apgriezieni laika intervālā.

CFV-CVS sistēmai:

MTOTW,i = 1,293 × Δti × Kv × pA/T0,5

kur:

MTOTW,i

=

atšķaidītu izplūdes gāzu momentānā masa mitrā stāvoklī, kg,

Δti

=

laika intervāls, s.

Ja parauga daļiņveida un gāzveida piesārņotāju kopējā masa (MSAM) pārsniedz 0,5 % kopējās CVS plūsmas (MTOTW), tad CVSplūsmu koriģē atbilstīgi MSAM vai makrodaļiņu parauga plūsmu novirza atpakaļ uz CVSpirms plūsmas mērierīces (PDP vai CFV).

4.2.   NOx mitruma korekcija

Tā kā NOx emisija ir atkarīga no apkārtējā gaisa apstākļiem, NOx koncentrāciju atbilstīgi gaisa mitrumam koriģē ar koeficientiem, kas iekļauti šajās formulās.

a)

dīzeļmotoriem:

Formula

b)

gāzes motoriem:

Formula

kur:

Ha

=

ieplūdes gaisa mitrums, ūdens uz kg svaiga gaisa,

kur:

Formula

Ra

=

ieplūdes gaisa relatīvais mitrums, %,

pa

=

ieplūdes gaisa piesātināta tvaika spiediens, kPa,

pB

=

kopējais atmosfēras spiediens, kPa.

4.3.   Emisijas masas plūsmas aprēķins

4.3.1.   Nemainīgas masas plūsmas sistēmas

Sistēmām ar siltummaini piesārņotāju masu (g/testā) noteic pēc šādiem vienādojumiem:

 

Formula

 

Formula

 

Formula

 

Formula

 

Formula

 

Formula

 

Formula

kur:

NOx conc, COconc, HCconc  (2), NMHCconc

=

vidējās koncentrācijas, kas koriģētas atbilstīgi fonam visā ciklā pēc integrēšanas (obligāti attiecībā uz NOx un HC) vai maisiņu mērījuma, ppm,

MTOTW

=

atšķaidītu izplūdes gāzu kopējā masa visā ciklā, kā noteikts 4.1. iedaļā, kg,

KH,D

=

mitruma korekcijas koeficients dīzeļmotoriem, kas noteikts 4.2. iedaļā,

KH,G

=

mitruma korekcijas koeficients gāzes motoriem, kas noteikts 4.2. iedaļā.

Sausā stāvoklī mērītās koncentrācijas pārrēķina mitra stāvokļa koncentrācijās saskaņā ar III pielikuma 1. papildinājuma 4.2. iedaļu.

NMHCconc noteikšana ir atkarīga no izmantotās metodes (skatīt III pielikuma 4. papildinājuma 3.3.4. iedaļu). Abos gadījumos CH4 koncentrāciju noteic un atskaita no HC koncentrācijas šādi:

a)

GC metode

Formula

b)

NMC metode

Formula

kur:

HC(wCutter)

=

HC koncentrācija, parauga gāzei plūstot cauri NMC,

HC(w/oCutter)

=

HC koncentrācija, parauga gāzei plūstot garām NMC,

CEM

=

metāna efektivitāte, kas noteikta III pielikuma 5. papildinājuma 1.8.4.1. iedaļā,

CEE

=

etāna efektivitāte/lietderība, kas noteikta III pielikuma 5. papildinājuma 1.8.4.2. iedaļā.

4.3.1.1.   Atbilstīgi fonam koriģēto koncentrāciju noteikšana

Gāzveida piesārņotāju vidējo fona koncentrāciju atšķaidīšanas gaisā atskaita no izmērītajām koncentrācijām, lai iegūtu piesārņotāju tīrās koncentrācijas. Fona koncentrāciju vidējās vērtības var noteikt ar paraugu maisiņu metodi vai ar nepārtrauktiem mērījumiem un integrēšanu. Izmanto šādu formulu.

Formula

kur:

conc

=

tā attiecīgā piesārņotāja koncentrācija atšķaidītajās izplūdes gāzēs, kas koriģēta atbilstīgi attiecīgā piesārņotāja daudzumam atšķaidīšanas gaisā, ppm,

conce

=

attiecīgā piesārņotāja koncentrācija, ko mēra atšķaidītajās izplūdes gāzēs, ppm,

concd

=

attiecīgā piesārņotāja koncentrācija, ko mēra atšķaidīšanas gaisā, ppm,

DF

=

atšķaidījuma pakāpe.

Atšķaidījuma pakāpi aprēķina šādi:

a)

dīzeļmotoriem un ar LPGdarbināmiem gāzes motoriem

Formula

b)

ar NG darbināmiem gāzes motoriem

Formula

kur:

CO2, conce

=

CO2 koncentrācija atšķaidītajās izplūdes gāzēs, tilp. %,

HCconce

=

HC koncentrācija atšķaidītajās izplūdes gāzēs, ppm C1,

NMHCconce

=

NMHC koncentrācija atšķaidītajās izplūdes gāzēs, ppm C1,

COconce

=

CO koncentrācija atšķaidītajās izplūdes gāzēs, ppm,

FS

=

stehiometriskais koeficients.

Sausā stāvoklī mērītās koncentrācijas pārrēķina atbilstīgi mitram stāvoklim saskaņā ar III pielikuma, 1. papildinājuma 4.2. iedaļu.

Stehiometrisko koeficientu aprēķina šādi:

Formula

kur:

x, y

=

degvielas sastāvs CxHy.

Ja degvielas sastāvs nav zināms, tad alternatīvi var lietot šādus stehiometriskos koeficientus:

FS (dīzeļdegvielai)= 13,4

FS (LPG)= 11,6

FS (NG)= 9,5

4.3.2.   Plūsmas kompensācijas sistēmas

Sistēmās bez siltummaiņa piesārņotāju masu (g/testā) noteic, aprēķinot momentāno emisijas masu un integrējot momentānās vērtības visā ciklā. Arī fona korekciju piemēro tieši momentānās koncentrācijas vērtībai. Piemēro šādas formulas:

 

Formula

 

Formula

 

Formula

 

Formula

 

Formula

 

Formula

 

Formula

kur:

conce

=

attiecīgā piesārņotāja koncentrācija, ko mēra atšķaidītajās izplūdes gāzēs, ppm,

concd

=

attiecīgā piesārņotāja koncentrācija, ko mēra atšķaidīšanas gaisā, ppm,

MTOTW,i

=

atšķaidītu izplūdes gāzu momentānā masa (skatīt 4.1. iedaļu), kg,

MTOTW

=

atšķaidītu izplūdes gāzu kopējā masa visā ciklā (skatīt 4.1. iedaļu), kg,

KH,D

=

mitruma korekcijas koeficients dīzeļmotoriem, kas noteikts 4.2. iedaļā,

KH,G

=

mitruma korekcijas koeficients gāzes motoriem, kas noteikts 4.2. iedaļā,

DF

=

atšķaidījuma pakāpe, kas noteikta 4.3.1.1. iedaļā.

4.4.   Īpatnējās emisijas aprēķins

Visu atsevišķo sastāvdaļu īpatnējo emisiju (g/kWh) aprēķina šādi:

Formula (dīzeļmotoriem un gāzes motoriem)

Formula (dīzeļmotoriem un gāzes motoriem)

Formula (dīzeļmotoriem un ar LPG darbināmiem gāzes motoriem)

Formula (ar NG darbināmiem gāzes motoriem)

Formula (ar NG darbināmiem gāzes motoriem)

kur:

Wact

=

cikla faktiskais darbs, kas noteikts 3.9.2. iedaļā, kWh.

5.   MAKRODAĻIŅU EMISIJAS APRĒĶINS (TIKAI DĪZEĻMOTORIEM)

5.1.   Plūsmas masas aprēķins

Makrodaļiņu plūsmas masu (g/testā) aprēķina šādi:

Formula

kur:

Mf

=

visā ciklā savāktā makrodaļiņu parauga masa, mg,

MTOTW

=

atšķaidītu izplūdes gāzu kopējā masa visā ciklā (skatīt 4.1. iedaļu), kg,

MSAM

=

tās atšķaidītu izplūdes gāzu masa, ko ņem no atšķaidīšanas kanāla makrodaļiņu savākšanai, kg,

un:

Mf

=

Mf,p + Mf,b ja sver atsevišķi, mg,

Mf,p

=

pirmējā filtrā savākto makrodaļiņu masa, mg,

Mf,b

=

palīgfiltrā savākto makrodaļiņu masa, mg.

Ja izmanto divkāršās atšķaidīšanas sistēmu, tad otrējās atšķaidīšanas gaisa masu atskaita no kopējās divkārt atšķaidītās makrodaļiņu filtros filtrētās izplūdes gāzu masas.

Formula

kur:

MTOT

=

tās divkārt atšķaidītās izplūdes gāzu masa, ko filtrē makrodaļiņu filtrā, kg,

MSEC

=

otrējā atšķaidīšanas gaisa masa, kg.

Ja atšķaidīšanas gaisa makrodaļiņu fona koncentrāciju noteic saskaņā ar 3.4. iedaļu, tad makrodaļiņu masu var koriģēt atbilstīgi fonam. Šajā gadījumā makrodaļiņu masu (g/testā) aprēķina šādi:

Formula

kur:

Mf, MSAM, MTOTW

=

skatīt iepriekš

MDIL

=

tā pirmējā atšķaidīšanas gaisa masa, kura paraugu ņem ar fona makrodaļiņu paraugu ņemšanas ierīci, kg,

Md

=

savākto pirmējā atšķaidīšanas gaisa fona makrodaļiņu masa, mg,

DF

=

atšķaidījuma pakāpe, kas noteikta 4.3.1.1. iedaļā.

5.2.   Īpatnējās emisijas aprēķins

Makrodaļiņu emisiju (g/kWh) aprēķina šādi:

Formula

kur:

Wact

=

cikla faktiskais darbs, kas noteikts 3.9.2. iedaļā, kWh.


(1)  Līdz 2005. gada 1. oktobrim gāzes motoru tipa apstiprināšanas testos drīkst izmantot iekavās norādītās vērtības. (Komisija ziņo par gāzes motoru tehnoloģijas attīstību, lai apstiprinātu vai pārveidotu regresijas taisnes pielaides, ko gāzes motoriem piemēro saskaņā ar šo tabulu.)

(2)  Pamatojoties uz C1 ekvivalentu.

3. papildinājums

ETC MOTORA DINAMOMETRA GRAFIKS

Laiks

s

Normālie apgriezieni

%

Normālais griezes moments

%

1

0

0

2

0

0

3

0

0

4

0

0

5

0

0

6

0

0

7

0

0

8

0

0

9

0

0

10

0

0

11

0

0

12

0

0

13

0

0

14

0

0

15

0

0

16

0,1

1,5

17

23,1

21,5

18

12,6

28,5

19

21,8

71

20

19,7

76,8

21

54,6

80,9

22

71,3

4,9

23

55,9

18,1

24

72

85,4

25

86,7

61,8

26

51,7

0

27

53,4

48,9

28

34,2

87,6

29

45,5

92,7

30

54,6

99,5

31

64,5

96,8

32

71,7

85,4

33

79,4

54,8

34

89,7

99,4

35

57,4

0

36

59,7

30,6

37

90,1

“m”

38

82,9

“m”

39

51,3

“m”

40

28,5

“m”

41

29,3

“m”

42

26,7

“m”

43

20,4

“m”

44

14,1

0

45

6,5

0

46

0

0

47

0

0

48

0

0

49

0

0

50

0

0

51

0

0

52

0

0

53

0

0

54

0

0

55

0

0

56

0

0

57

0

0

58

0

0

59

0

0

60

0

0

61

0

0

62

25,5

11,1

63

28,5

20,9

64

32

73,9

65

4

82,3

66

34,5

80,4

67

64,1

86

68

58

0

69

50,3

83,4

70

66,4

99,1

71

81,4

99,6

72

88,7

73,4

73

52,5

0

74

46,4

58,5

75

48,6

90,9

76

55,2

99,4

77

62,3

99

78

68,4

91,5

79

74,5

73,7

80

38

0

81

41,8

89,6

82

47,1

99,2

83

52,5

99,8

84

56,9

80,8

85

58,3

11,8

86

56,2

“m”

87

52

“m”

88

43,3

“m”

89

36,1

“m”

90

27,6

“m”

91

21,1

“m”

92

8

0

93

0

0

94

0

0

95

0

0

96

0

0

97

0

0

98

0

0

99

0

0

100

0

0

101

0

0

102

0

0

103

0

0

104

0

0

105

0

0

106

0

0

107

0

0

108

11,6

14,8

109

0

0

110

27,2

74,8

111

17

76,9

112

36

78

113

59,7

86

114

80,8

17,9

115

49,7

0

116

65,6

86

117

78,6

72,2

118

64,9

“m”

119

44,3

“m”

120

51,4

83,4

121

58,1

97

122

69,3

99,3

123

72

20,8

124

72,1

“m”

125

65,3

“m”

126

64

“m”

127

59,7

“m”

128

52,8

“m”

129

45,9

“m”

130

38,7

“m”

131

32,4

“m”

132

27

“m”

133

21,7

“m”

134

19,1

0,4

135

34,7

14

136

16,4

48,6

137

0

11,2

138

1,2

2,1

139

30,1

19,3

140

30

73,9

141

54,4

74,4

142

77,2

55,6

143

58,1

0

144

45

82,1

145

68,7

98,1

146

85,7

67,2

147

60,2

0

148

59,4

98

149

72,7

99,6

150

79,9

45

151

44,3

0

152

41,5

84,4

153

56,2

98,2

154

65,7

99,1

155

74,4

84,7

156

54,4

0

157

47,9

89,7

158

54,5

99,5

159

62,7

96,8

160

62,3

0

161

46,2

54,2

162

44,3

83,2

163

48,2

13,3

164

51

“m”

165

50

“m”

166

49,2

“m”

167

49,3

“m”

168

49,9

“m”

169

51,6

“m”

170

49,7

“m”

171

48,5

“m”

172

50,3

72,5

173

51,1

84,5

174

54,6

64,8

175

56,6

76,5

176

58

“m”

177

53,6

“m”

178

40,8

“m”

179

32,9

“m”

180

26,3

“m”

181

20,9

“m”

182

10

0

183

0

0

184

0

0

185

0

0

186

0

0

187

0

0

188

0

0

189

0

0

190

0

0

191

0

0

192

0

0

193

0

0

194

0

0

195

0

0

196

0

0

197

0

0

198

0

0

199

0

0

200

0

0

201

0

0

202

0

0

203

0

0

204

0

0

205

0

0

206

0

0

207

0

0

208

0

0

209

0

0

210

0

0

211

0

0

212

0

0

213

0

0

214

0

0

215

0

0

216

0

0

217

0

0

218

0

0

219

0

0

220

0

0

221

0

0

222

0

0

223

0

0

224

0

0

225

21,2

62,7

226

30,8

75,1

227

5,9

82,7

228

34,6

80,3

229

59,9

87

230

84,3

86,2

231

68,7

“m”

232

43,6

“m”

233

41,5

85,4

234

49,9

94,3

235

60,8

99

236

70,2

99,4

237

81,1

92,4

238

49,2

0

239

56

86,2

240

56,2

99,3

241

61,7

99

242

69,2

99,3

243

74,1

99,8

244

72,4

8,4

245

71,3

0

246

71,2

9,1

247

67,1

“m”

248

65,5

“m”

249

64,4

“m”

250

62,9

25,6

251

62,2

35,6

252

62,9

24,4

253

58,8

“m”

254

56,9

“m”

255

54,5

“m”

256

51,7

17

257

56,2

78,7

258

59,5

94,7

259

65,5

99,1

260

71,2

99,5

261

76,6

99,9

262

79

0

263

52,9

97,5

264

53,1

99,7

265

59

99,1

266

62,2

99

267

65

99,1

268

69

83,1

269

69,9

28,4

270

70,6

12,5

271

68,9

8,4

272

69,8

9,1

273

69,6

7

274

65,7

“m”

275

67,1

“m”

276

66,7

“m”

277

65,6

“m”

278

64,5

“m”

279

62,9

“m”

280

59,3

“m”

281

54,1

“m”

282

51,3

“m”

283

47,9

“m”

284

43,6

“m”

285

39,4

“m”

286

34,7

“m”

287

29,8

“m”

288

20,9

73,4

289

36,9

“m”

290

35,5

“m”

291

20,9

“m”

292

49,7

11,9

293

42,5

“m”

294

32

“m”

295

23,6

“m”

296

19,1

0

297

15,7

73,5

298

25,1

76,8

299

34,5

81,4

300

44,1

87,4

301

52,8

98,6

302

63,6

99

303

73,6

99,7

304

62,2

“m”

305

29,2

“m”

306

46,4

22

307

47,3

13,8

308

47,2

12,5

309

47,9

11,5

310

47,8

35,5

311

49,2

83,3

312

52,7

96,4

313

57,4

99,2

314

61,8

99

315

66,4

60,9

316

65,8

“m”

317

59

“m”

318

50,7

“m”

319

41,8

“m”

320

34,7

“m”

321

28,7

“m”

322

25,2

“m”

323

43

24,8

324

38,7

0

325

48,1

31,9

326

40,3

61

327

42,4

52,1

328

46,4

47,7

329

46,9

30,7

330

46,1

23,1

331

45,7

23,2

332

45,5

31,9

333

46,4

73,6

334

51,3

60,7

335

51,3

51,1

336

53,2

46,8

337

53,9

50

338

53,4

52,1

339

53,8

45,7

340

50,6

22,1

341

47,8

26

342

41,6

17,8

343

38,7

29,8

344

35,9

71,6

345

34,6

47,3

346

34,8

80,3

347

35,9

87,2

348

38,8

90,8

349

41,5

94,7

350

47,1

99,2

351

53,1

99,7

352

46,4

0

353

42,5

0,7

354

43,6

58,6

355

47,1

87,5

356

54,1

99,5

357

62,9

99

358

72,6

99,6

359

82,4

99,5

360

88

99,4

361

46,4

0

362

53,4

95,2

363

58,4

99,2

364

61,5

99

365

64,8

99

366

68,1

99,2

367

73,4

99,7

368

73,3

29,8

369

73,5

14,6

370

68,3

0

371

45,4

49,9

372

47,2

75,7

373

44,5

9

374

47,8

10,3

375

46,8

15,9

376

46,9

12,7

377

46,8

8,9

378

46,1

6,2

379

46,1

“m”

380

45,5

“m”

381

44,7

“m”

382

43,8

“m”

383

41

“m”

384

41,1

6,4

385

38

6,3

386

35,9

0,3

387

33,5

0

388

53,1

48,9

389

48,3

“m”

390

49,9

“m”

391

48

“m”

392

45,3

“m”

393

41,6

3,1

394

44,3

79

395

44,3

89,5

396

43,4

98,8

397

44,3

98,9

398

43

98,8

399

42,2

98,8

400

42,7

98,8

401

45

99

402

43,6

98,9

403

42,2

98,8

404

44,8

99

405

43,4

98,8

406

45

99

407

42,2

54,3

408

61,2

31,9

409

56,3

72,3

410

59,7

99,1

411

62,3

99

412

67,9

99,2

413

69,5

99,3

414

73,1

99,7

415

77,7

99,8

416

79,7

99,7

417

82,5

99,5

418

85,3

99,4

419

86,6

99,4

420

89,4

99,4

421

62,2

0

422

52,7

96,4

423

50,2

99,8

424

49,3

99,6

425

52,2

99,8

426

51,3

100

427

51,3

100

428

51,1

100

429

51,1

100

430

51,8

99,9

431

51,3

100

432

51,1

100

433

51,3

100

434

52,3

99,8

435

52,9

99,7

436

53,8

99,6

437

51,7

99,9

438

53,5

99,6

439

52

99,8

440

51,7

99,9

441

53,2

99,7

442

54,2

99,5

443

55,2

99,4

444

53,8

99,6

445

53,1

99,7

446

55

99,4

447

57

99,2

448

61,5

99

449

59,4

5,7

450

59

0

451

57,3

59,8

452

64,1

99

453

70,9

90,5

454

58

0

455

41,5

59,8

456

44,1

92,6

457

46,8

99,2

458

47,2

99,3

459

51

100

460

53,2

99,7

461

53,1

99,7

462

55,9

53,1

463

53,9

13,9

464

52,5

“m”

465

51,7

“m”

466

51,5

52,2

467

52,8

80

468

54,9

95

469

57,3

99,2

470

60,7

99,1

471

62,4

“m”

472

60,1

“m”

473

53,2

“m”

474

44

“m”

475

35,2

“m”

476

30,5

“m”

477

26,5

“m”

478

22,5

“m”

479

20,4

“m”

480

19,1

“m”

481

19,1

“m”

482

13,4

“m”

483

6,7

“m”

484

3,2

“m”

485

14,3

63,8

486

34,1

0

487

23,9

75,7

488

31,7

79,2

489

32,1

19,4

490

35,9

5,8

491

36,6

0,8

492

38,7

“m”

493

38,4

“m”

494

39,4

“m”

495

39,7

“m”

496

40,5

“m”

497

40,8

“m”

498

39,7

“m”

499

39,2

“m”

500

38,7

“m”

501

32,7

“m”

502

30,1

“m”

503

21,9

“m”

504

12,8

0

505

0

0

506

0

0

507

0

0

508

0

0

509

0

0

510

0

0

511

0

0

512

0

0

513

0

0

514

30,5

25,6

515

19,7

56,9

516

16,3

45,1

517

27,2

4,6

518

21,7

1,3

519

29,7

28,6

520

36,6

73,7

521

61,3

59,5

522

40,8

0

523

36,6

27,8

524

39,4

80,4

525

51,3

88,9

526

58,5

11,1

527

60,7

“m”

528

54,5

“m”

529

51,3

“m”

530

45,5

“m”

531

40,8

“m”

532

38,9

“m”

533

36,6

“m”

534

36,1

72,7

535

44,8

78,9

536

51,6

91,1

537

59,1

99,1

538

66

99,1

539

75,1

99,9

540

81

8

541

39,1

0

542

53,8

89,7

543

59,7

99,1

544

64,8

99

545

70,6

96,1

546

72,6

19,6

547

72

6,3

548

68,9

0,1

549

67,7

“m”

550

66,8

“m”

551

64,3

16,9

552

64,9

7

553

63,6

12,5

554

63

7,7

555

64,4

38,2

556

63

11,8

557

63,6

0

558

63,3

5

559

60,1

9,1

560

61

8,4

561

59,7

0,9

562

58,7

“m”

563

56

“m”

564

53,9

“m”

565

52,1

“m”

566

49,9

“m”

567

46,4

“m”

568

43,6

“m”

569

40,8

“m”

570

37,5

“m”

571

27,8

“m”

572

17,1

0,6

573

12,2

0,9

574

11,5

1,1

575

8,7

0,5

576

8

0,9

577

5,3

0,2

578

4

0

579

3,9

0

580

0

0

581

0

0

582

0

0

583

0

0

584

0

0

585

0

0

586

0

0

587

8,7

22,8

588

16,2

49,4

589

23,6

56

590

21,1

56,1

591

23,6

56

592

46,2

68,8

593

68,4

61,2

594

58,7

“m”

595

31,6

“m”

596

19,9

8,8

597

32,9

70,2

598

43

79

599

57,4

98,9

600

72,1

73,8

601

53

0

602

48,1

86

603

56,2

99

604

65,4

98,9

605

72,9

99,7

606

67,5

“m”

607

39

“m”

608

41,9

38,1

609

44,1

80,4

610

46,8

99,4

611

48,7

99,9

612

50,5

99,7

613

52,5

90,3

614

51

1,8

615

50

“m”

616

49,1

“m”

617

47

“m”

618

43,1

“m”

619

39,2

“m”

620

40,6

0,5

621

41,8

53,4

622

44,4

65,1

623

48,1

67,8

624

53,8

99,2

625

58,6

98,9

626

63,6

98,8

627

68,5

99,2

628

72,2

89,4

629

77,1

0

630

57,8

79,1

631

60,3

98,8

632

61,9

98,8

633

63,8

98,8

634

64,7

98,9

635

65,4

46,5

636

65,7

44,5

637

65,6

3,5

638

49,1

0

639

50,4

73,1

640

50,5

“m”

641

51

“m”

642

49,4

“m”

643

49,2

“m”

644

48,6

“m”

645

47,5

“m”

646

46,5

“m”

647

46

11,3

648

45,6

42,8

649

47,1

83

650

46,2

99,3

651

47,9

99,7

652

49,5

99,9

653

50,6

99,7

654

51

99,6

655

53

99,3

656

54,9

99,1

657

55,7

99

658

56

99

659

56,1

9,3

660

55,6

“m”

661

55,4

“m”

662

54,9

51,3

663

54,9

59,8

664

54

39,3

665

53,8

“m”

666

52

“m”

667

50,4

“m”

668

50,6

0

669

49,3

41,7

670

50

73,2

671

50,4

99,7

672

51,9

99,5

673

53,6

99,3

674

54,6

99,1

675

56

99

676

55,8

99

677

58,4

98,9

678

59,9

98,8

679

60,9

98,8

680

63

98,8

681

64,3

98,9

682

64,8

64

683

65,9

46,5

684

66,2

28,7

685

65,2

1,8

686

65

6,8

687

63,6

53,6

688

62,4

82,5

689

61,8

98,8

690

59,8

98,8

691

59,2

98,8

692

59,7

98,8

693

61,2

98,8

694

62,2

49,4

695

62,8

37,2

696

63,5

46,3

697

64,7

72,3

698

64,7

72,3

699

65,4

77,4

700

66,1

69,3

701

64,3

“m”

702

64,3

“m”

703

63

“m”

704

62,2

“m”

705

61,6

“m”

706

62,4

“m”

707

62,2

“m”

708

61

“m”

709

58,7

“m”

710

55,5

“m”

711

51,7

“m”

712

49,2

“m”

713

48,8

40,4

714

47,9

“m”

715

46,2

“m”

716

45,6

9,8

717

45,6

34,5

718

45,5

37,1

719

43,8

“m”

720

41,9

“m”

721

41,3

“m”

722

41,4

“m”

723

41,2

“m”

724

41,8

“m”

725

41,8

“m”

726

43,2

17,4

727

45

29

728

44,2

“m”

729

43,9

“m”

730

38

10,7

731

56,8

“m”

732

57,1

“m”

733

52

“m”

734

44,4

“m”

735

40,2

“m”

736

39,2

16,5

737

38,9

73,2

738

39,9

89,8

739

42,3

98,6

740

43,7

98,8

741

45,5

99,1

742

45,6

99,2

743

48,1

99,7

744

49

100

745

49,8

99,9

746

49,8

99,9

747

51,9

99,5

748

52,3

99,4

749

53,3

99,3

750

52,9

99,3

751

54,3

99,2

752

55,5

99,1

753

56,7

99

754

61,7

98,8

755

64,3

47,4

756

64,7

1,8

757

66,2

“m”

758

49,1

“m”

759

52,1

46

760

52,6

61

761

52,9

0

762

52,3

20,4

763

54,2

56,7

764

55,4

59,8

765

56,1

49,2

766

56,8

33,7

767

57,2

96

768

58,6

98,9

769

59,5

98,8

770

61,2

98,8

771

62,1

98,8

772

62,7

98,8

773

62,8

98,8

774

64

98,9

775

63,2

46,3

776

62,4

“m”

777

60,3

“m”

778

58,7

“m”

779

57,2

“m”

780

56,1

“m”

781

56

9,3

782

55,2

26,3

783

54,8

42,8

784

55,7

47,1

785

56,6

52,4

786

58

50,3

787

58,6

20,6

788

58,7

“m”

789

59,3

“m”

790

58,6

“m”

791

60,5

9,7

792

59,2

9,6

793

59,9

9,6

794

59,6

9,6

795

59,9

6,2

796

59,9

9,6

797

60,5

13,1

798

60,3

20,7

799

59,9

31

800

60,5

42

801

61,5

52,5

802

60,9

51,4

803

61,2

57,7

804

62,8

98,8

805

63,4

96,1

806

64,6

45,4

807

64,1

5

808

63

3,2

809

62,7

14,9

810

63,5

35,8

811

64,1

73,3

812

64,3

37,4

813

64,1

21

814

63,7

21

815

62,9

18

816

62,4

32,7

817

61,7

46,2

818

59,8

45,1

819

57,4

43,9

820

54,8

42,8

821

54,3

65,2

822

52,9

62,1

823

52,4

30,6

824

50,4

“m”

825

48,6

“m”

826

47,9

“m”

827

46,8

“m”

828

46,9

9,4

829

49,5

41,7

830

50,5

37,8

831

52,3

20,4

832

54,1

30,7

833

56,3

41,8

834

58,7

26,5

835

57,3

“m”

836

59

“m”

837

59,8

“m”

838

60,3

“m”

839

61,2

“m”

840

61,8

“m”

841

62,5

“m”

842

62,4

“m”

843

61,5

“m”

844

63,7

“m”

845

61,9

“m”

846

61,6

29,7

847

60,3

“m”

848

59,2

“m”

849

57,3

“m”

850

52,3

“m”

851

49,3

“m”

852

47,3

“m”

853

46,3

38,8

854

46,8

35,1

855

46,6

“m”

856

44,3

“m”

857

43,1

“m”

858

42,4

2,1

859

41,8

2,4

860

43,8

68,8

861

44,6

89,2

862

46

99,2

863

46,9

99,4

864

47,9

99,7

865

50,2

99,8

866

51,2

99,6

867

52,3

99,4

868

53

99,3

869

54,2

99,2

870

55,5

99,1

871

56,7

99

872

57,3

98,9

873

58

98,9

874

60,5

31,1

875

60,2

“m”

876

60,3

“m”

877

60,5

6,3

878

61,4

19,3

879

60,3

1,2

880

60,5

2,9

881

61,2

34,1

882

61,6

13,2

883

61,5

16,4

884

61,2

16,4

885

61,3

“m”

886

63,1

“m”

887

63,2

4,8

888

62,3

22,3

889

62

38,5

890

61,6

29,6

891

61,6

26,6

892

61,8

28,1

893

62

29,6

894

62

16,3

895

61,1

“m”

896

61,2

“m”

897

60,7

19,2

898

60,7

32,5

899

60,9

17,8

900

60,1

19,2

901

59,3

38,2

902

59,9

45

903

59,4

32,4

904

59,2

23,5

905

59,5

40,8

906

58,3

“m”

907

58,2

“m”

908

57,6

“m”

909

57,1

“m”

910

57

0,6

911

57

26,3

912

56,5

29,2

913

56,3

20,5

914

56,1

“m”

915

55,2

“m”

916

54,7

17,5

917

55,2

29,2

918

55,2

29,2

919

55,9

16

920

55,9

26,3

921

56,1

36,5

922

55,8

19

923

55,9

9,2

924

55,8

21,9

925

56,4

42,8

926

56,4

38

927

56,4

11

928

56,4

35,1

929

54

7,3

930

53,4

5,4

931

52,3

27,6

932

52,1

32

933

52,3

33,4

934

52,2

34,9

935

52,8

60,1

936

53,7

69,7

937

54

70,7

938

55,1

71,7

939

55,2

46

940

54,7

12,6

941

52,5

0

942

51,8

24,7

943

51,4

43,9

944

50,9

71,1

945

51,2

76,8

946

50,3

87,5

947

50,2

99,8

948

50,9

100

949

49,9

99,7

950

50,9

100

951

49,8

99,7

952

50,4

99,8

953

50,4

99,8

954

49,7

99,7

955

51

100

956

50,3

99,8

957

50,2

99,8

958

49,9

99,7

959

50,9

100

960

50

99,7

961

50,2

99,8

962

50,2

99,8

963

49,9

99,7

964

50,4

99,8

965

50,2

99,8

966

50,3

99,8

967

49,9

99,7

968

51,1

100

969

50,6

99,9

970

49,9

99,7

971

49,6

99,6

972

49,4

99,6

973

49

99,5

974

49,8

99,7

975

50,9

100

976

50,4

99,8

977

49,8

99,7

978

49,1

99,5

979

50,4

99,8

980

49,8

99,7

981

49,3

99,5

982

49,1

99,5

983

49,9

99,7

984

49,1

99,5

985

50,4

99,8

986

50,9

100

987

51,4

99,9

988

51,5

99,9

989

52,2

99,7

990

52,8

74,1

991

53,3

46

992

53,6

36,4

993

53,4

33,5

994

53,9

58,9

995

55,2

73,8

996

55,8

52,4

997

55,7

9,2

998

55,8

2,2

999

56,4

33,6

1000

55,4

“m”

1001

55,2

“m”

1002

55,8

26,3

1003

55,8

23,3

1004

56,4

50,2

1005

57,6

68,3

1006

58,8

90,2

1007

59,9

98,9

1008

62,3

98,8

1009

63,1

74,4

1010

63,7

49,4

1011

63,3

9,8

1012

48

0

1013

47,9

73,5

1014

49,9

99,7

1015

49,9

48,8

1016

49,6

2,3

1017

49,9

“m”

1018

49,3

“m”

1019

49,7

47,5

1020

49,1

“m”

1021

49,4

“m”

1022

48,3

“m”

1023

49,4

“m”

1024

48,5

“m”

1025

48,7

“m”

1026

48,7

“m”

1027

49,1

“m”

1028

49

“m”

1029

49,8

“m”

1030

48,7

“m”

1031

48,5

“m”

1032

49,3

31,3

1033

49,7

45,3

1034

48,3

44,5

1035

49,8

61

1036

49,4

64,3

1037

49,8

64,4

1038

50,5

65,6

1039

50,3

64,5

1040

51,2

82,9

1041

50,5

86

1042

50,6

89

1043

50,4

81,4

1044

49,9

49,9

1045

49,1

20,1

1046

47,9

24

1047

48,1

36,2

1048

47,5

34,5

1049

46,9

30,3

1050

47,7

53,5

1051

46,9

61,6

1052

46,5

73,6

1053

48

84,6

1054

47,2

87,7

1055

48,7

80

1056

48,7

50,4

1057

47,8

38,6

1058

48,8

63,1

1059

47,4

5

1060

47,3

47,4

1061

47,3

49,8

1062

46,9

23,9

1063

46,7

44,6

1064

46,8

65,2

1065

46,9

60,4

1066

46,7

61,5

1067

45,5

“m”

1068

45,5

“m”

1069

44,2

“m”

1070

43

“m”

1071

42,5

“m”

1072

41

“m”

1073

39,9

“m”

1074

39,9

38,2

1075

40,1

48,1

1076

39,9

48

1077

39,4

59,3

1078

43,8

19,8

1079

52,9

0

1080

52,8

88,9

1081

53,4

99,5

1082

54,7

99,3

1083

56,3

99,1

1084

57,5

99

1085

59

98,9

1086

59,8

98,9

1087

60,1

98,9

1088

61,8

48,3

1089

61,8

55,6

1090

61,7

59,8

1091

62

55,6

1092

62,3

29,6

1093

62

19,3

1094

61,3

7,9

1095

61,1

19,2

1096

61,2

43

1097

61,1

59,7

1098

61,1

98,8

1099

61,3

98,8

1100

61,3

26,6

1101

60,4

“m”

1102

58,8

“m”

1103

57,7

“m”

1104

56

“m”

1105

54,7

“m”

1106

53,3

“m”

1107

52,6

23,2

1108

53,4

84,2

1109

53,9

99,4

1110

54,9

99,3

1111

55,8

99,2

1112

57,1

99

1113

56,5

99,1

1114

58,9

98,9

1115

58,7

98,9

1116

59,8

98,9

1117

61

98,8

1118

60,7

19,2

1119

59,4

“m”

1120

57,9

“m”

1121

57,6

“m”

1122

56,3

“m”

1123

55

“m”

1124

53,7

“m”

1125

52,1

“m”

1126

51,1

“m”

1127

49,7

25,8

1128

49,1

46,1

1129

48,7

46,9

1130

48,2

46,7

1131

48

70

1132

48

70

1133

47,2

67,6

1134

47,3

67,6

1135

46,6

74,7

1136

47,4

13

1137

46,3

“m”

1138

45,4

“m”

1139

45,5

24,8

1140

44,8

73,8

1141

46,6

99

1142

46,3

98,9

1143

48,5

99,4

1144

49,9

99,7

1145

49,1

99,5

1146

49,1

99,5

1147

51

100

1148

51,5

99,9

1149

50,9

100

1150

51,6

99,9

1151

52,1

99,7

1152

50,9

100

1153

52,2

99,7

1154

51,5

98,3

1155

51,5

47,2

1156

50,8

78,4

1157

50,3

83

1158

50,3

31,7

1159

49,3

31,3

1160

48,8

21,5

1161

47,8

59,4

1162

48,1

77,1

1163

48,4

87,6

1164

49,6

87,5

1165

51

81,4

1166

51,6

66,7

1167

53,3

63,2

1168

55,2

62

1169

55,7

43,9

1170

56,4

30,7

1171

56,8

23,4

1172

57

“m”

1173

57,6

“m”

1174

56,9

“m”

1175

56,4

4

1176

57

23,4

1177

56,4

41,7

1178

57

49,2

1179

57,7

56,6

1180

58,6

56,6

1181

58,9

64

1182

59,4

68,2

1183

58,8

71,4

1184

60,1

71,3

1185

60,6

79,1

1186

60,7

83,3

1187

60,7

77,1

1188

60

73,5

1189

60,2

55,5

1190

59,7

54,4

1191

59,8

73,3

1192

59,8

77,9

1193

59,8

73,9

1194

60

76,5

1195

59,5

82,3

1196

59,9

82,8

1197

59,8

65,8

1198

59

48,6

1199

58,9

62,2

1200

59,1

70,4

1201

58,9

62,1

1202

58,4

67,4

1203

58,7

58,9

1204

58,3

57,7

1205

57,5

57,8

1206

57,2

57,6

1207

57,1

42,6

1208

57

70,1

1209

56,4

59,6

1210

56,7

39

1211

55,9

68,1

1212

56,3

79,1

1213

56,7

89,7

1214

56

89,4

1215

56

93,1

1216

56,4

93,1

1217

56,7

94,4

1218

56,9

94,8

1219

57

94,1

1220

57,7

94,3

1221

57,5

93,7

1222

58,4

93,2

1223

58,7

93,2

1224

58,2

93,7

1225

58,5

93,1

1226

58,8

86,2

1227

59

72,9

1228

58,2

59,9

1229

57,6

8,5

1230

57,1

47,6

1231

57,2

74,4

1232

57

79,1

1233

56,7

67,2

1234

56,8

69,1

1235

56,9

71,3

1236

57

77,3

1237

57,4

78,2

1238

57,3

70,6

1239

57,7

64

1240

57,5

55,6

1241

58,6

49,6

1242

58,2

41,1

1243

58,8

40,6

1244

58,3

21,1

1245

58,7

24,9

1246

59,1

24,8

1247

58,6

“m”

1248

58,8

“m”

1249

58,8

“m”

1250

58,7

“m”

1251

59,1

“m”

1252

59,1

“m”

1253

59,4

“m”

1254

60,6

2,6

1255

59,6

“m”

1256

60,1

“m”

1257

60,6

“m”

1258

59,6

4,1

1259

60,7

7,1

1260

60,5

“m”

1261

59,7

“m”

1262

59,6

“m”

1263

59,8

“m”

1264

59,6

4,9

1265

60,1

5,9

1266

59,9

6,1

1267

59,7

“m”

1268

59,6

“m”

1269

59,7

22

1270

59,8

10,3

1271

59,9

10

1272

60,6

6,2

1273

60,5

7,3

1274

60,2

14,8

1275

60,6

8,2

1276

60,6

5,5

1277

61

14,3

1278

61

12

1279

61,3

34,2

1280

61,2

17,1

1281

61,5

15,7

1282

61

9,5

1283

61,1

9,2

1284

60,5

4,3

1285

60,2

7,8

1286

60,2

5,9

1287

60,2

5,3

1288

59,9

4,6

1289

59,4

21,5

1290

59,6

15,8

1291

59,3

10,1

1292

58,9

9,4

1293

58,8

9

1294

58,9

35,4

1295

58,9

30,7

1296

58,9

25,9

1297

58,7

22,9

1298

58,7

24,4

1299

59,3

61

1300

60,1

56

1301

60,5

50,6

1302

59,5

16,2

1303

59,7

50

1304

59,7

31,4

1305

60,1

43,1

1306

60,8

38,4

1307

60,9

40,2

1308

61,3

49,7

1309

61,8

45,9

1310

62

45,9

1311

62,2

45,8

1312

62,6

46,8

1313

62,7

44,3

1314

62,9

44,4

1315

63,1

43,7

1316

63,5

46,1

1317

63,6

40,7

1318

64,3

49,5

1319

63,7

27

1320

63,8

15

1321

63,6

18,7

1322

63,4

8,4

1323

63,2

8,7

1324

63,3

21,6

1325

62,9

19,7

1326

63

22,1

1327

63,1

20,3

1328

61,8

19,1

1329

61,6

17,1

1330

61

0

1331

61,2

22

1332

60,8

40,3

1333

61,1

34,3

1334

60,7

16,1

1335

60,6

16,6

1336

60,5

18,5

1337

60,6

29,8

1338

60,9

19,5

1339

60,9

22,3

1340

61,4

35,8

1341

61,3

42,9

1342

61,5

31

1343

61,3

19,2

1344

61

9,3

1345

60,8

44,2

1346

60,9

55,3

1347

61,2

56

1348

60,9

60,1

1349

60,7

59,1

1350

60,9

56,8

1351

60,7

58,1

1352

59,6

78,4

1353

59,6

84,6

1354

59,4

66,6

1355

59,3

75,5

1356

58,9

49,6

1357

59,1

75,8

1358

59

77,6

1359

59

67,8

1360

59

56,7

1361

58,8

54,2

1362

58,9

59,6

1363

58,9

60,8

1364

59,3

56,1

1365

58,9

48,5

1366

59,3

42,9

1367

59,4

41,4

1368

59,6

38,9

1369

59,4

32,9

1370

59,3

30,6

1371

59,4

30

1372

59,4

25,3

1373

58,8

18,6

1374

59,1

18

1375

58,5

10,6

1376

58,8

10,5

1377

58,5

8,2

1378

58,7

13,7

1379

59,1

7,8

1380

59,1

6

1381

59,1

6

1382

59,4

13,1

1383

59,7

22,3

1384

60,7

10,5

1385

59,8

9,8

1386

60,2

8,8

1387

59,9

8,7

1388

61

9,1

1389

60,6

28,2

1390

60,6

22

1391

59,6

23,2

1392

59,6

19

1393

60,6

38,4

1394

59,8

41,6

1395

60

47,3

1396

60,5

55,4

1397

60,9

58,7

1398

61,3

37,9

1399

61,2

38,3

1400

61,4

58,7

1401

61,3

51,3

1402

61,4

71,1

1403

61,1

51

1404

61,5

56,6

1405

61

60,6

1406

61,1

75,4

1407

61,4

69,4

1408

61,6

69,9

1409

61,7

59,6

1410

61,8

54,8

1411

61,6

53,6

1412

61,3

53,5

1413

61,3

52,9

1414

61,2

54,1

1415

61,3

53,2

1416

61,2

52,2

1417

61,2

52,3

1418

61

48

1419

60,9

41,5

1420

61

32,2

1421

60,7

22

1422

60,7

23,3

1423

60,8

38,8

1424

61

40,7

1425

61

30,6

1426

61,3

62,6

1427

61,7

55,9

1428

62,3

43,4

1429

62,3

37,4

1430

62,3

35,7

1431

62,8

34,4

1432

62,8

31,5

1433

62,9

31,7

1434

62,9

29,9

1435

62,8

29,4

1436

62,7

28,7

1437

61,5

14,7

1438

61,9

17,2

1439

61,5

6,1

1440

61

9,9

1441

60,9

4,8

1442

60,6

11,1

1443

60,3

6,9

1444

60,8

7

1445

60,2

9,2

1446

60,5

21,7

1447

60,2

22,4

1448

60,7

31,6

1449

60,9

28,9

1450

59,6

21,7

1451

60,2

18

1452

59,5

16,7

1453

59,8

15,7

1454

59,6

15,7

1455

59,3

15,7

1456

59

7,5

1457

58,8

7,1

1458

58,7

16,5

1459

59,2

50,7

1460

59,7

60,2

1461

60,4

44

1462

60,2

35,3

1463

60,4

17,1

1464

59,9

13,5

1465

59,9

12,8

1466

59,6

14,8

1467

59,4

15,9

1468

59,4

22

1469

60,4

38,4

1470

59,5

38,8

1471

59,3

31,9

1472

60,9

40,8

1473

60,7

39

1474

60,9

30,1

1475

61

29,3

1476

60,6

28,4

1477

60,9

36,3

1478

60,8

30,5

1479

60,7

26,7

1480

60,1

4,7

1481

59,9

0

1482

60,4

36,2

1483

60,7

32,5

1484

59,9

3,1

1485

59,7

“m”

1486

59,5

“m”

1487

59,2

“m”

1488

58,8

0,6

1489

58,7

“m”

1490

58,7

“m”

1491

57,9

“m”

1492

58,2

“m”

1493

57,6

“m”

1494

58,3

9,5

1495

57,2

6

1496

57,4

27,3

1497

58,3

59,9

1498

58,3

7,3

1499

58,8

21,7

1500

58,8

38,9

1501

59,4

26,2

1502

59,1

25,5

1503

59,1

26

1504

59

39,1

1505

59,5

52,3

1506

59,4

31

1507

59,4

27

1508

59,4

29,8

1509

59,4

23,1

1510

58,9

16

1511

59

31,5

1512

58,8

25,9

1513

58,9

40,2

1514

58,8

28,4

1515

58,9

38,9

1516

59,1

35,3

1517

58,8

30,3

1518

59

19

1519

58,7

3

1520

57,9

0

1521

58

2,4

1522

57,1

“m”

1523

56,7

“m”

1524

56,7

5,3

1525

56,6

2,1

1526

56,8

“m”

1527

56,3

“m”

1528

56,3

“m”

1529

56

“m”

1530

56,7

“m”

1531

56,6

3,8

1532

56,9

“m”

1533

56,9

“m”

1534

57,4

“m”

1535

57,4

“m”

1536

58,3

13,9

1537

58,5

“m”

1538

59,1

“m”

1539

59,4

“m”

1540

59,6

“m”

1541

59,5

“m”

1542

59,6

0,5

1543

59,3

9,2

1544

59,4

11,2

1545

59,1

26,8

1546

59

11,7

1547

58,8

6,4

1548

58,7

5

1549

57,5

“m”

1550

57,4

“m”

1551

57,1

1,1

1552

57,1

0

1553

57

4,5

1554

57,1

3,7

1555

57,3

3,3

1556

57,3

16,8

1557

58,2

29,3

1558

58,7

12,5

1559

58,3

12,2

1560

58,6

12,7

1561

59

13,6

1562

59,8

21,9

1563

59,3

20,9

1564

59,7

19,2

1565

60,1

15,9

1566

60,7

16,7

1567

60,7

18,1

1568

60,7

40,6

1569

60,7

59,7

1570

61,1

66,8

1571

61,1

58,8

1572

60,8

64,7

1573

60,1

63,6

1574

60,7

83,2

1575

60,4

82,2

1576

60

80,5

1577

59,9

78,7

1578

60,8

67,9

1579

60,4

57,7

1580

60,2

60,6

1581

59,6

72,7

1582

59,9

73,6

1583

59,8

74,1

1584

59,6

84,6

1585

59,4

76,1

1586

60,1

76,9

1587

59,5

84,6

1588

59,8

77,5

1589

60,6

67,9

1590

59,3

47,3

1591

59,3

43,1

1592

59,4

38,3

1593

58,7

38,2

1594

58,8

39,2

1595

59,1

67,9

1596

59,7

60,5

1597

59,5

32,9

1598

59,6

20

1599

59,6

34,4

1600

59,4

23,9

1601

59,6

15,7

1602

59,9

41

1603

60,5

26,3

1604

59,6

14

1605

59,7

21,2

1606

60,9

19,6

1607

60,1

34,3

1608

59,9

27

1609

60,8

25,6

1610

60,6

26,3

1611

60,9

26,1

1612

61,1

38

1613

61,2

31,6

1614

61,4

30,6

1615

61,7

29,6

1616

61,5

28,8

1617

61,7

27,8

1618

62,2

20,3

1619

61,4

19,6

1620

61,8

19,7

1621

61,8

18,7

1622

61,6

17,7

1623

61,7

8,7

1624

61,7

1,4

1625

61,7

5,9

1626

61,2

8,1

1627

61,9

45,8

1628

61,4

31,5

1629

61,7

22,3

1630

62,4

21,7

1631

62,8

21,9

1632

62,2

22,2

1633

62,5

31

1634

62,3

31,3

1635

62,6

31,7

1636

62,3

22,8

1637

62,7

12,6

1638

62,2

15,2

1639

61,9

32,6

1640

62,5

23,1

1641

61,7

19,4

1642

61,7

10,8

1643

61,6

10,2

1644

61,4

“m”

1645

60,8

“m”

1646

60,7

“m”

1647

61

12,4

1648

60,4

5,3

1649

61

13,1

1650

60,7

29,6

1651

60,5

28,9

1652

60,8

27,1

1653

61,2

27,3

1654

60,9

20,6

1655

61,1

13,9

1656

60,7

13,4

1657

61,3

26,1

1658

60,9

23,7

1659

61,4

32,1

1660

61,7

33,5

1661

61,8

34,1

1662

61,7

17

1663

61,7

2,5

1664

61,5

5,9

1665

61,3

14,9

1666

61,5

17,2

1667

61,1

“m”

1668

61,4

“m”

1669

61,4

8,8

1670

61,3

8,8

1671

61

18

1672

61,5

13

1673

61

3,7

1674

60,9

3,1

1675

60,9

4,7

1676

60,6

4,1

1677

60,6

6,7

1678

60,6

12,8

1679

60,7

11,9

1680

60,6

12,4

1681

60,1

12,4

1682

60,5

12

1683

60,4

11,8

1684

59,9

12,4

1685

59,6

12,4

1686

59,6

9,1

1687

59,9

0

1688

59,9

20,4

1689

59,8

4,4

1690

59,4

3,1

1691

59,5

26,3

1692

59,6

20,1

1693

59,4

35

1694

60,9

22,1

1695

60,5

12,2

1696

60,1

11

1697

60,1

8,2

1698

60,5

6,7

1699

60

5,1

1700

60

5,1

1701

60

9

1702

60,1

5,7

1703

59,9

8,5

1704

59,4

6

1705

59,5

5,5

1706

59,5

14,2

1707

59,5

6,2

1708

59,4

10,3

1709

59,6

13,8

1710

59,5

13,9

1711

60,1

18,9

1712

59,4

13,1

1713

59,8

5,4

1714

59,9

2,9

1715

60,1

7,1

1716

59,6

12

1717

59,6

4,9

1718

59,4

22,7

1719

59,6

22

1720

60,1

17,4

1721

60,2

16,6

1722

59,4

28,6

1723

60,3

22,4

1724

59,9

20

1725

60,2

18,6

1726

60,3

11,9

1727

60,4

11,6

1728

60,6

10,6

1729

60,8

16

1730

60,9

17

1731

60,9

16,1

1732

60,7

11,4

1733

60,9

11,3

1734

61,1

11,2

1735

61,1

25,6

1736

61

14,6

1737

61

10,4

1738

60,6

“m”

1739

60,9

“m”

1740

60,8

4,8

1741

59,9

“m”

1742

59,8

“m”

1743

59,1

“m”

1744

58,8

“m”

1745

58,8

“m”

1746

58,2

“m”

1747

58,5

14,3

1748

57,5

4,4

1749

57,9

0

1750

57,8

20,9

1751

58,3

9,2

1752

57,8

8,2

1753

57,5

15,3

1754

58,4

38

1755

58,1

15,4

1756

58,8

11,8

1757

58,3

8,1

1758

58,3

5,5

1759

59

4,1

1760

58,2

4,9

1761

57,9

10,1

1762

58,5

7,5

1763

57,4

7

1764

58,2

6,7

1765

58,2

6,6

1766

57,3

17,3

1767

58

11,4

1768

57,5

47,4

1769

57,4

28,8

1770

58,8

24,3

1771

57,7

25,5

1772

58,4

35,5

1773

58,4

29,3

1774

59

33,8

1775

59

18,7

1776

58,8

9,8

1777

58,8

23,9

1778

59,1

48,2

1779

59,4

37,2

1780

59,6

29,1

1781

50

25

1782

40

20

1783

30

15

1784

20

10

1785

10

5

1786

0

0

1787

0

0

1788

0

0

1789

0

0

1790

0

0

1791

0

0

1792

0

0

1793

0

0

1794

0

0

1795

0

0

1796

0

0

1797

0

0

1798

0

0

1799

0

0

1800

0

0

ETC dinamometra grafiks parādīts 5. attēlā.

Image

4. papildinājums

MĒRĪŠANAS UN PARAUGU ŅEMŠANAS PROCEDŪRAS

1.   IEVADS

Testam nodotā motora gāzveida sastāvdaļu, makrodaļiņu un dūmu emisija jāizmēra ar metodēm, kas aprakstītas V pielikumā. Attiecīgajās V pielikuma iedaļās ir aprakstītas ieteicamās gāzveida emisijas analīzes sistēmas (1. iedaļā), ieteicamās makrodaļiņu atšķaidīšanas un paraugu ņemšanas sistēmas (2. iedaļā) un ieteicamie dūmmēri dūmu mērīšanai (3. iedaļā).

ESC nolūkā gāzveida sastāvdaļas noteic neapstrādātajās izplūdes gāzēs. Pēc izvēles tās var noteikt atšķaidītajās izplūdes gāzēs, ja makrodaļiņas noteic, izmantojot pilnas plūsmas atšķaidīšanas sistēmu. Makrodaļiņas noteic, izmantojot daļējas plūsmas vai pilnas plūsmas atšķaidīšanas sistēmu.

ETC nolūkā gāzveida un makrodaļiņu emisiju noteic tikai, izmantojot pilnas plūsmas atšķaidīšanas sistēmu, un to uzskata par standarta sistēmu. Tomēr tehniskais dienests var apstiprināt daļējas plūsmas atšķaidīšanas sistēmas, ja to līdzvērtība ir pierādīta saskaņā ar I pielikuma 6.2. iedaļu un ja tehniskajam dienestam ir iesniegts sīki izstrādāts datu novērtēšanas un aprēķinu procedūru apraksts.

2.   DINAMOMETRU UN TESTA NODALĪJUMU APRĪKOJUMS

Motoru emisijas testēšanas nolūkā motoru dinamometrus aprīko šādi.

2.1.   Motora dinamometrs

Lieto tādu motora dinamometru, kura parametri dod iespēju izpildīt testa ciklus, kas aprakstīti šā pielikuma 1. un 2. papildinājumā. Apgriezienu mērīšanas sistēmai jānodrošina ± 2 % nolasījuma precizitāte. Griezes momenta mērīšanas sistēmas precizitātei jābūt ± 3 % nolasījuma diapazonā, kas pārsniedz 20 % pilnas skalas, un ± 0, 6 % pilnas skalas diapazonā, kurš ir vienāds ar 20 % pilnas skalas vai mazāks.

2.2.   Citas ierīces

Degvielas patēriņa, gaisa patēriņa, dzesētājvielas un eļļošanas līdzekļa temperatūras, izplūdes gāzu spiediena un ieplūdes kolektora retinājuma, izplūdes gāzu temperatūras, ieplūdes gaisa temperatūras, atmosfēras spiediena, mitruma un degvielas temperatūras mērierīces lieto pēc vajadzības. Šīm ierīcēm jāatbilst prasībām, kas noteiktas 8. tabulā:

8. tabula

Mērierīču precizitāte

Mērierīce

Precizitāte

Degvielas patēriņš

± 2 % motora maksimālās vērtības

Gaisa patēriņš

± 2 % motora maksimālās vērtības

Temperatūra ≤ 600 K (327 °C)

± 2 K no absolūtās temperatūras

Temperatūra > 600 K (327 °C)

± 1 % no lasījuma

Gaisa spiediens

± 0,1 kPa no absolūtā spiediena

Izplūdes gāzu spiediens

± 0,2 kPa no absolūtā spiediena

Ieplūdes retinājums

± 0,05 kPa no absolūtā retinājuma

Citi spiedieni

± 0,1 kPa no absolūtā spiediena

Relatīvais mitrums

± 3 % no absolūtā mitruma

Absolūtais mitrums

± 5 % no lasījuma

2.3.   Izplūdes gāzu plūsma

Lai aprēķinātu emisiju neapstrādātajās izplūdes gāzēs, jāzina izplūdes gāzu plūsma (skatīt 1. papildinājuma 4.4. iedaļu). Lai noteiktu izplūdes gāzu plūsmu, var izmantot vienu no šīm metodēm:

a)

izplūdes gāzu plūsmas tiešo mērīšanu ar plūsmas mērsprauslu vai līdzvērtīgu mērīšanas sistēmu;

b)

gaisa plūsmas mērīšanu un degvielas plūsmas mērīšanu ar piemērotām mērīšanas sistēmām un izplūdes gāzu plūsmas aprēķināšanu pēc šāda vienādojuma:

GEXHW = GAIRW + GFUEL (mitrai izplūdes masai)

Izplūdes gāzu plūsma jānosaka ar precizitāti ± 2,5 % nolasījuma vai precīzāk.

2.4.   Atšķaidītu izplūdes gāzu plūsma

Lai aprēķinātu emisiju atšķaidītajās izplūdes gāzēs, izmantojot pilnas plūsmas atšķaidīšanas sistēmu (obligāti ETC nolūkā), jāzina atšķaidītu izplūdes gāzu plūsma (skatīt 2. papildinājuma 4.3. iedaļu). Atšķaidītu izplūdes gāzu (GTOTW) kopējās masas caurplūdumu vai atšķaidītu izplūdes gāzu kopējo masu visā ciklā (MTOTW) mēra ar PDP vai CFV (V pielikuma 2.3.1. iedaļa). Precizitātei jābūt ± 2 % nolasījuma vai augstākai, un to noteic saskaņā ar III pielikuma 5. papildinājuma 2.4. iedaļas noteikumiem.

3.   GĀZVEIDA SASTĀVDAĻU NOTEIKŠANA

3.1.   Vispārīgas analizatoru specifikācijas

Analizatoru mērījumu diapazonam jāatbilst precizitātei, kāda vajadzīga izplūdes gāzu sastāvdaļu koncentrācijas mērījumiem (3.1.1. iedaļa). Ieteicams analizatorus darbināt tā, lai mērāmā koncentrācija ir no 15 % līdz 100 % pilnas skalas.

Ja nolasīšanas sistēmas (datori, datu glabātāji) var nodrošināt pietiekamu precizitāti un izšķirtspēju zem 15 % pilnas skalas, tad ir pieņemami arī mērījumi zem 15 %. Šajā gadījumā papildus jākalibrē vismaz 4 punkti, kas nav nulles punkti un kuru novietojums ir nomināli līdzvērtīgs, lai nodrošinātu kalibrēšanas līkņu precizitāti saskaņā ar III pielikuma 5. papildinājuma 1.5.5.2. iedaļu.

Iekārtas elektromagnētiskajai saderībai (EMC) jābūt tādai, lai līdz minimumam samazinātu papildu kļūdas.

3.1.1.   Mērījumu kļūda

Kopējā mērījumu kļūda, ieskaitot šķērsjutību pret citām gāzēm (sk. III pielikuma 5. papildinājuma 1.9. iedaļu), nedrīkst pārsniegt ± 5 % nolasījuma vai ± 3,5 % pilnas skalas, izvēloties mazāko no abām vērtībām. Koncentrācijām, kas mazākas par 100 ppm, mērījumu kļūda nedrīkst pārsniegt ± 4 ppm.

3.1.2.   Atkārtojamība

Atkārtojamība, kas definēta ar 2,5 standartnovirzēm 10 atkārtotos atbildes signālos uz attiecīgo kalibrēšanas vai standarta gāzi, nedrīkst būt lielāka par ± 1 % pilnas skalas koncentrācijas katram diapazonam, ko izmanto virs 155 ppm (vai ppm C) vai ± 2 % katram diapazonam, ko izmanto zem 155 ppm (vai ppm C).

3.1.3.   Troksnis

Analizatora pilnas amplitūdas atbildes signāls uz nulles gāzi un kalibrēšanas vai standarta gāzēm nevienā periodā, kas ir lielāks par 10 sekundēm, nedrīkst pārsniegt 2 % pilnas skalas nevienā izmantotajā diapazonā.

3.1.4.   Nulles svārstība

Nulles svārstībai vienā stundā jābūt mazākai par 2 % pilnas skalas zemākajā izmantojamā diapazonā. Nulles atbildes signāls ir vidējais atbildes signāls, ieskaitot troksni, uz nulles gāzi 30 sekundēs.

3.1.5.   Kalibrēšanas svārstība

Kalibrēšanas svārstībai vienā stundā jābūt mazākai par 2 % pilnas skalas zemākajā izmantojamā diapazonā. Kalibrēšanas svārstību definē ar starpību starp kalibrēšanas atbildes signālu un nulles atbildes signālu. Kalibrēšanas atbildes signāls ir vidējais atbildes signāls, ieskaitot troksni, uz standarta gāzi 30 sekundēs.

3.2.   Gāzes žāvēšana

Izvēles gāzu žāvēšanas ierīcei jābūt ar minimālu ietekmi uz mērāmo gāzu koncentrāciju. Ūdens aizvadīšana no parauga ar ķīmiskajiem žāvētājiem nav pieņemama metode.

3.3.   Analizatori

Jāizmanto 3.3.1. līdz 3.3.4. iedaļā aprakstītie mērīšanas principi. Sīki izstrādāts mērīšanas sistēmu apraksts ir V pielikumā. Mērāmās gāzes analizē ar šādām ierīcēm. Nelineāriem analizatoriem ir atļauts lietot linearizējošas shēmas.

3.3.1.   Oglekļa ksīda (CO) analīze

Oglekļa oksīda analizators ir nedispersīvas infrasarkanās (NDIR) absorbcijas tipa analizators.

3.3.2.   Oglekļa dioksīda (CO2) analīze

Oglekļa dioksīda analizators ir nedispersīvas infrasarkanās (NDIR) absorbcijas tipa analizators.

3.3.3.   Ogļūdeņražu (HC) analīze

Dīzeļmotoriem un ar LPG darbināmiem motoriem ogļūdeņražu analizators ir karsētas liesmas jonizācijas detektora (HFID) tipa analizators ar detektoru, ventiļiem, cauruļu sistēmu utt., kas ir tā karsējams, lai uzturētu 463 K ± 10 K (190 ± 10 °C) gāzes temperatūru. Ar NG darbināmiem motoriem atkarībā no izmantojamās metodes (skatīt V pielikuma 1.3. iedaļu) ogļūdeņražu analizators var būt nekarsētas liesmas jonizācijas detektora (FID) tipa analizators.

3.3.4.   To ogļūdeņražu, kas nav metāns, (NMHC) analīze (tikai ar NG darbināmiem gāzes motoriem)

Ogļūdeņražus, kas nav metāns, noteic pēc vienas no šīm metodēm:

3.3.4.1.   Gāzu hromatogrāfijas (GC) metode

Ogļūdeņražus, kas nav metāns, noteic, no ogļūdeņražiem, kurus mēra saskaņā ar 3.3.3. iedaļu, atskaitot metānu, ko analizē ar gāzu hromatogrāfu (GC), kurš kondicionēts 423 K (150 °C).

3.3.4.2.   Gāzu, izņemot metānu, nošķīrēja (NMC) metode

Metānu nesaturošo frakciju noteic ar karsētu NMC, ko darbina kopā ar FID, kā aprakstīts 3.3.3. iedaļā, atskaitot no ogļūdeņražiem metānu.

3.3.5.   Slāpekļa oksīdu (NOx) analīze

Slāpekļa oksīdu analizators ir hemiluminiscences detektora (CLD) vai karsēta hemiluminiscences detektora (HCLD) tipa analizators ar NO2/NO pārveidotāju, ja mērījumus izdara sausā stāvoklī. Ja mērījumus izdara mitrā stāvoklī, tad izmanto HCLD ar pārveidotāju, kura temperatūru uztur virs 328 K (55 °C) ar nosacījumu, ka ūdens dzēšanas testa (III pielikuma 5. papildinājuma 1.9.2.2. iedaļa) rezultāti ir apmierinoši.

3.4.   Gāzveida emisijas paraugu ņemšana

3.4.1.   Neapstrādātas izplūdes gāzes (tikai ESC)

Gāzveida emisijas paraugu ņemšanas zondes jāpierīko vismaz 0,5 m vai izplūdes caurules trīskārša diametra attālumā, izvēloties lielāko no abām vērtībām, augšpus izplūdes gāzu sistēmas izplūdes atveres, ciktāl tas ir iespējams, un pietiekami tuvu motoram, lai pie zondes izplūdes atveres nodrošinātu vismaz 343 K (70 °C) gāzu temperatūru.

Daudzcilindru motoram ar sazarotu izplūdes kolektoru zondes ieplūdes atveri novieto pietiekami tālu lejpus pa plūsmu tā, lai nodrošinātu to, ka paraugs pārstāv vidējos izplūdes gāzu emisiju no visiem cilindriem. Daudzcilindru motoriem, kam ir atsevišķas kolektoru grupas, tādas kā “V” konfigurācijas motoriem, ir atļaujams iegūt paraugu no katras grupas atsevišķi un aprēķināt vidējo izplūdes gāzu emisiju. Var izmantot citas metodes, ja ir pierādīts, ka tās atbilst iepriekšminētajām metodēm. Lai aprēķinātu izplūdes gāzu emisiju, jāizmanto motora kopējā izplūdes gāzu masas plūsma.

Ja motors ir aprīkots ar izplūdes pēcapstrādes sistēmu, tad izplūdes paraugu ņem lejpus izplūdes pēcapstrādes sistēmas.

3.4.2.   Atšķaidītas izplūdes gāzes (obligāti ETC nolūkā, pēc izvēles ESC nolūkā)

Izplūdes caurulei no motora līdz pilnas plūsmas atšķaidīšanas sistēmai jāatbilst V pielikuma 2.3.1. iedaļas EP prasībām.

Gāzveida emisijas paraugu zondi uzstāda atšķaidīšanas kanālā, vietā, kur atšķaidīšanas gaiss labi sajaucas ar izplūdes gāzēm, un makrodaļiņu paraugu zondes tiešā tuvumā.

ETC nolūkā paraugus parasti var ņemt divējādi:

piesārņotāju paraugu savāc parauga maisiņā visā ciklā un mēra pēc testa;

piesārņotāju paraugu ņem nepārtraukti un integrē visā ciklā; šī metode ir obligāta attiecībā uz HC un NOx.

4.   MAKRODAĻIŅU NOTEIKŠANA

Makrodaļiņu noteikšanai ir vajadzīga atšķaidīšanas sistēma. Atšķaidīt var ar daļējas plūsmas atšķaidīšanas sistēmu (tikai ESC) vai ar pilnas plūsmas atšķaidīšanas sistēmu (obligāti ETC). Atšķaidīšanas sistēmas plūsmas caurlaidībai jābūt pietiekamai, lai pilnīgi novērstu ūdens kondensāciju atšķaidīšanas un paraugu ņemšanas sistēmās un uzturētu 325 K (52 °C) vai zemāku atšķaidītās izplūdes gāzu temperatūru tieši augšpus filtru turētājiem. Atšķaidīšanas gaisa atbrīvošana no mitruma pirms ieplūdes atšķaidīšanas sistēmā ir atļauta, ja atšķaidīšanas gaiss ir īpaši mitrs. Atšķaidīšanas gaisa temperatūrai jābūt 298 K ± 5 K (25 °C ± 5 °C). Ja apkārtējā temperatūra ir mazāka par 293 K (20 °C), tad ieteicams atšķaidīšanas gaisu iepriekš sasildīt virs augšējās 303 K (30 °C) temperatūras robežas. Tomēr pirms izplūdes gāzu ievadīšanas atšķaidīšanas kanālā atšķaidīšanas gaisa temperatūra nedrīkst pārsniegt 325 K (52 °C).

Daļējas plūsmas atšķaidīšanas sistēma jāizveido tā, lai izplūdes gāzu plūsma sadalītos divās frakcijās, no kurām mazāko atšķaida ar gaisu un pēc tam izmanto makrodaļiņu mērījumiem. Tāpēc ir svarīgi ļoti precīzi noteikt atšķaidījuma pakāpi. Var izmantot dažādas dalīšanas metodes, turklāt izmantotā dalīšanas metode lielā mērā nosaka parauga ņemšanas aparatūru un izmantojamās procedūras (V pielikuma 2.2. iedaļa). Makrodaļiņu paraugu zondi uzstāda gāzveida emisijas paraugu zondes tiešā tuvumā atbilstīgi 3.4.1. iedaļas noteikumiem.

Lai noteiktu makrodaļiņu masu, ir vajadzīga makrodaļiņu paraugu ņemšanas sistēma, makrodaļiņu paraugu ņemšanas filtri, mikrogramu svari un svaru telpa ar regulējamu temperatūru un mitrumu.

Makrodaļiņu paraugus ņem ar vienfiltra metodi, lietojot vienu filtru pāri (skatīt 4.1.3.) visā testa ciklā. ESC liela uzmanība jāveltī paraugu ņemšanas laikiem un plūsmām testa paraugu ņemšanas stadijā.

4.1.   Makrodaļiņu paraugu ņemšanas filtri

4.1.1.   Sīki izstrādāta filtru specifikācija

Vajadzīgi ar fluorogļūdeņradi pārklāti stiklšķiedras filtri vai membrānfiltri uz fluorogļūdeņraža bāzes. Visu tipu filtriem jābūt 0,3 μm DOP (dioktilftalāta) minimālajai 95 % savākšanas spējai, ja gāzes nominālais ātrums ir no 35 līdz 80 cm/s.

4.1.2.   Filtru izmēri

Makrodaļiņu filtru minimālajam diametram jābūt 47 mm (37 mm plankuma diametrs). Ir pieņemami lielāka diametra filtri (4.1.5. iedaļa).

4.1.3.   Galvenais filtrs un palīgfiltrs

Atšķaidītos izplūdes gāzu paraugus ņem ar filtru pāri, kas novietoti viens aiz otra (viens galvenais un viens palīgfiltrs). Palīgfiltru novieto ne tālāk kā 100 mm lejpus galvenā filtra, lai tas nesaskaras ar pirmējo filtru. Filtrus var svērt atsevišķi vai pārī, novietojot kopā ar pusēm, uz kurām ir plankumi.

4.1.4.   Plūsmas nominālais ātrums filtrā

Gāzes plūsmas nominālajam ātrumam filtrā jāsasniedz 35 – 80 cm/s. Spiediena krituma palielinājums starp testa sākumu un beigām nav lielāks par 25 kPa.

4.1.5.   Filtra slodze

Ieteicamā minimālā filtra slodze ir 0,5 mg/1075 mm2 plankuma laukuma. Parastāko izmēru Filtriem vērtības ir iekļautas 9. tabulā.

9. tabula

Ieteicamā filtra slodze

Filtra diametrs

Ieteicamais plankums

Ieteicamā minimālā slodze

(mm)

(mm)

(mg)

47

37

0,5

70

60

1,3

90

80

2,3

110

100

3,6

4.2.   Sīki izstrādātas svaru telpas un analītisko svaru specifikācijas

4.2.1.   Apstākļi svaru telpā

Svaru telpā (vai istabā), kurā kondicionē un sver makrodaļiņu filtrus, uztur 295 K ± 3 K (22 °C ± 3 °C) temperatūru visā filtru kondicionēšanas un svēršanas laikā. Mitrumu uztur 282,5 K ± 3 K (9,5 °C ± 3 °C) rasas punktā un relatīvais mitrums 45 ± 8 %.

4.2.2.   Standartfiltra svēršana

Telpas (vai istabas) videi jābūt brīvai no apkārtnes piesārņojumiem (tādiem kā putekļi), kas nosēstos uz makrodaļiņu filtriem to stabilizēšanas laikā. Traucējumi 4.2.1. iedaļā norādītajā svēršanas telpas specifikācijā ir atļauti, ja traucējumu ilgums nepārsniedz 30 minūtes. Svēršanas telpai jāatbilst vajadzīgajai specifikācijai pirms personāla ieiešanas svēršanas telpā. Vismaz divus nelietotus standartfiltrus vai filtru pārus nosver četrās stundās pēc parauga filtru svēršanas, bet vēlams svērt vienlaikus ar parauga filtru (pāri). Standartfiltriem ir tie paši izmēri un materiāls kā parauga filtriem.

Ja standartfiltru (standartfiltru pāru) vidējā masa starp parauga filtru svēršanām mainās vairāk par ± 5 % (filtru pārim attiecīgi par ± 7,5 %) ieteicamās minimālās filtru slodzes (4.1.5. iedaļa), tad visus paraugu filtrus izmet un emisijas testu atkārto.

Ja nav izpildīti 4.2.1. iedaļā norādītie svēršanas telpas stabilitātes kritēriji, bet standartfiltrs (pāris) atbilst iepriekšminētajiem kritērijiem, tad motora izgatavotājam ir iespēja pieņemt paraugu filtru masu vai anulēt testus, regulējot svēršanas telpas kontroles sistēmu un atkārtojot testu.

4.2.3.   Analītiskie svari

Visu filtru svēršanai izmantojamo analītisko svaru precizitāte (standartnovirze) ir 20 μg un izšķirtspēja 10 μg (1 vienība = 10 μg ). Filtriem ar diametru, mazāku par 70 mm, precizitāte un izšķirtspēja attiecīgi ir 2 μg un 1 μg.

4.3.   Papildu specifikācijas makrodaļiņu mērījumiem

Visas tās atšķaidīšanas sistēmas un paraugu ņemšanas sistēmas daļas no izplūdes caurules līdz filtra turētājam, kas saskaras ar neapstrādātām un atšķaidītām izplūdes gāzēm, jākonstruē tā, lai līdz minimumam samazinātu makrodaļiņu nogulsnēšanos vai izmaiņas. Visām daļām jābūt izgatavotām no elektrību vadošiem materiāliem, kas nereaģē ar izplūdes gāzu sastāvdaļām, un tām jābūt elektriski iezemētām, lai novērstu elektrostatiskos efektus.

5.   DŪMU NOTEIKŠANA

Šajā nodaļā ir ELR testā izmantojamā obligātā un izvēles aprīkojuma specifikācija. Dūmus mēra ar dūmmēru, kam ir dūmainības un gaismas absorbcijas koeficienta nolasīšanas režīms. Dūmainības nolasīšanas režīmu izmanto tikai dūmmēra kalibrēšanai un pārbaudei. Dūmu vērtības testa ciklā mēra gaismas absorbcijas koeficienta nolasīšanas režīmā.

5.1.   Vispārīgas prasības

ELR jālieto tāda dūmu mērīšanas un datu apstrādes sistēma, kas ietver trīs funkcionālās vienības. Šīs vienības var apvienot vienā komponentā vai savstarpēji saistītu komponentu sistēmā. Minētās trīs funkcionālās vienības ir:

dūmmērs, kas atbilst V pielikuma 3. iedaļas specifikācijām,

datu apstrādes bloks, kas var izpildīt III pielikuma 1. papildinājuma 6. iedaļas funkcijas,

printeris un/vai elektroniskā datu glabāšanas vide III pielikuma 1. papildinājuma 6.3. iedaļā norādīto vajadzīgo dūmu vērtību reģistrācijai un izvadei.

5.2.   Īpašas prasības

5.2.1.   Linearitāte

Linearitāte ir ± 2 % dūmainības.

5.2.2.   Nulles svārstība

Nulles svārstība vienā stundā nedrīkst pārsniegt ± 1 % dūmainības.

5.2.3.   Dūmmēra displejs un diapazons

Dūmainības displeja diapazons ir no 0 % dūmainības līdz 100 % dūmainībai ar 0,1 % dūmainības nolasāmību. Attiecībā uz gaismas absorbcijas koeficientu displejs darbojas diapazonā no 0 gaismas absorbcijas koeficienta līdz 30 m-1 gaismas absorbcijas koeficientam ar 0, 01 m-1 gaismas absorbcijas koeficienta nolasāmību.

5.2.4.   Ierīces reakcijas laiks

Dūmmēra fizikālās reakcijas laiks nedrīkst pārsniegt 0,2 s. Fizikālās reakcijas laiks ir to laiku starpība, kuros ātrdarbīga uztvērēja izvade sasniedz 10 un 90 % pilnās novirzes, ja mērāmās gāzes dūmainība mainās laikā, kas īsāks par 0,1 s.

Dūmmēra elektriskās reakcijas laiks nedrīkst pārsniegt 0,05 s. Elektriskās reakcijas laiks ir to laiku starpība, kuros dūmmēra izvade sasniedz 10 un 90 % pilnās skalas, ja gaismas avotu aizsedz vai pilnīgi dzēš laikā, kas īsāks par 0,01 s.

5.2.5.   Neitrāla blīvuma filtri

Jebkura tāda neitrāla blīvuma filtra vērtība, ko lieto saistībā ar dūmmēra kalibrēšanu, linearitātes mērījumiem vai iestatījumu intervālu, ir zināmai 1,0 % dūmainības robežās. Filtra nominālvērtības precizitāte vismaz vienreiz gadā jāpārbauda pēc standarta, ko var salīdzināt ar valsts vai starptautisku standartu.

Neitrāla blīvuma filtri ir precīzijas ierīces, un lietojot tos var viegli sabojāt. Rīkošanās ar tiem būtu jāsamazina līdz minimumam un vajadzības gadījumā būtu jāveic tā, lai filtru nesaskrāpē vai nenotraipa.

5. papildinājums

KALIBRĒŠANAS PROCEDŪRA

1.   ANALĪTISKO IERĪČU KALIBRĒŠANA

1.1.   Ievads

Katru analizatoru kalibrē tik bieži, cik vajadzīgs, lai izpildītu šīs direktīvas precizitātes prasības. Šajā iedaļā ir aprakstīta III pielikuma 4. papildinājuma 3. iedaļā un V pielikuma 1.iedaļā norādītajiem analizatoriem izmantojamā kalibrēšanas metode.

1.2.   Kalibrēšanas gāzes

Jāievēro visu kalibrēšanas gāzu glabāšanas laiks.

Izgatavotāja noteikto kalibrēšanas gāzu derīguma termiņu reģistrē.

1.2.1.   Ķīmiski tīrās gāzes

Vajadzīgo gāzu ķīmisko tīrību nosaka ar piemaisījuma robežām, kas iekļautas še turpmāk. Darbam vajadzīgas šādas gāzes:

 

Attīrīts slāpeklis

(Piemaisījums ≤ 1 ppm C1, ≤ 1 ppm CO, ≤ 400 ppm CO2, ≤ 0, 1 ppm NO)

 

Attīrīts slāpeklis

(Ķīmiskā tīrība > 99, 5 tilp. % O2)

 

Ūdeņraža un hēlija maisījums

(40 ± 2 % ūdeņraža, pārējais hēlijs)

(Piemaisījums ≤ 1 ppm C1, ≤ 400 ppm CO2)

 

Attīrīts sintezētais gaiss

(Piemaisījums ≤ 1 ppm C1, ≤ 1 ppm CO, ≤ 400 ppm CO2, ≤ 0,1 ppm NO)

(Skābekļa saturs no 18-21 % tilp.)

 

Attīrīts propāns vai CO CVS verifikācijai.

1.2.2.   Kalibrēšanas un standarta gāzes

Ir pieejami gāzu maisījumi ar šādu ķīmisko sastāvu:

C3H8 un attīrītam sintezētajam gaisam (skatīt 1.2.1. iedaļu);

CO un attīrītam slāpeklim;

NOx un attīrītam slāpeklim (NO2 daudzums šajā kalibrēšanas gāzē nedrīkst pārsniegt 5 % NO satura);

CO2 un attīrītam slāpeklim

CH4 un attīrītam sintezētajam gaisam

C2H6 un attīrītam sintezētajam gaisam.

Piezīme: atļauts apvienot citas gāzes, ja tās savstarpēji nereaģē.

Kalibrēšanas un standarta gāzes faktiskajai koncentrācijai jābūt ± 2 % robežās no nominālās vērtības. Visas kalibrēšanas gāzu koncentrācijas norāda tilpuma vienībās (tilpuma procentos vai tilpuma ppm).

Kalibrēšanas un standarta gāzes var iegūt arī ar gāzu dalītāju, atšķaidot ar attīrītu N2 vai ar attīrītu sintezēto gaisu. Sajaukšanas ierīces precizitātei jābūt tādai, lai atšķaidīto kalibrēšanas gāzu koncentrāciju var noteikt ar precizitāti ± 2 %.

1.3.   Analizatoru un paraugu ņemšanas sistēmas darbināšana

Analizatorus darbina, ievērojot ierīču izgatavotāja izdoto palaišanas un darbināšanas instrukciju. Iekļauj prasību minimumu, kas noteikts 1.4. līdz 1.9. iedaļā.

1.4.   Noplūdes tests

Pārbauda, vai sistēmā nav noplūdes. Zondi atvieno no izplūdes sistēmas un galu noslēdz. Ieslēdz analizatora sūkni. Pēc sākotnēja stabilizēšanas perioda visiem plūsmas mērītājiem būtu jārāda nulle. Ja tā nav, pārbauda parauga ņemšanas vadus un kļūmi izlabo.

Pieļaujamais maksimālais noplūdes ātrums vakuuma pusē ir 0,5 % faktiskā caurplūduma pārbaudāmajā sistēmas daļā. Lai noteiktu faktisko caurplūdumu, var izmantot analizatora plūsmas un apvada plūsmas.

Otra metode ir koncentrācijas pakāpjveida maiņa paraugu ņemšanas vada sākumā, pārslēdzot no nulles uz standarta gāzi. Ja pēc atbilstīga laika perioda nolasījumi liecina par mazāku koncentrāciju, salīdzinot ar ievadīto koncentrāciju, tas norāda uz kalibrēšanas vai noplūdes problēmu.

1.5.   Kalibrēšanas procedūra

1.5.1.   Ierīces komplektācija

Nokomplektēto ierīci kalibrē un kalibrēšanas līknes pārbauda pret standarta gāzēm. Izmanto tos pašus gāzu caurplūdumus, ko izplūdes gāzu paraugu ņemšanā.

1.5.2.   Iesildīšanas laiks

Iesildīšanas laikam būtu jāatbilst izgatavotāja ieteikumiem. Ja nav norādīts, tad analizatorus ieteicams iesildīt vismaz divas stundas.

1.5.3.   NDIR un HFID analizators

NDIR analizatoru noregulē pēc vajadzības un HFID analizatora degšanas liesmu optimizē (1.8.1. iedaļa).

1.5.4.   Kalibrēšana

Katru parasti izmantojamu darbības diapazonu kalibrē.

Lietojot attīrītu sintezēto gaisu (vai slāpekli), CO, CO2, NOx, un HC analizatorus iestata uz nulli.

Analizatoros ievada attiecīgās kalibrēšanas gāzes, vērtības reģistrē un izveido kalibrēšanas līkni saskaņā ar 1.5.5. iedaļu.

Vajadzības gadījumā vēlreiz pārbauda nulles iestatījumu un atkārto kalibrēšanu.

1.5.5.   Kalibrēšanas līknes izveide

1.5.5.1.   Vispārīgas pamatnostādnes

Analizatora kalibrēšanas līkni izveido vismaz pēc pieciem kalibrēšanas punktiem (neskaitot nulli), kas ir izvietoti iespējami vienmērīgi. Lielākajai nominālajai koncentrācijai jābūt vienādai ar pilnas skalas 90 % vai lielākai.

Kalibrēšanas līkni izrēķina ar mazāko kvadrātu metodi. Ja iegūtā polinoma pakāpe ir lielāka par 3, tad kalibrēšanas punktu skaitam (nulli ieskaitot) jābūt vismaz vienādam ar šo polinoma pakāpi, kam pieskaitīts 2.

Kalibrēšanas līkne nedrīkst atšķirties vairāk par ± 2 % no katra kalibrēšanas punkta nominālvērtības un vairāk par ± 1 % no pilnas skalas nulles punktā.

Pēc kalibrēšanas līknes un kalibrēšanas punktiem var pārbaudīt, vai kalibrēšana ir izdarīta pareizi. Jānorāda atšķirīgie analizatoram raksturīgie parametri, īpaši:

mērīšanas diapazons,

jutība,

kalibrēšanas datums.

1.5.5.2.   Kalibrēšana zem 15 % pilnas skalas

Analizatora kalibrēšanas līkni izveido, vismaz 4 papildu kalibrēšanas punktus (izņemot nulli) novietojot nomināli līdzvērtīgi zem 15 % pilnas skalas.

Kalibrēšanas līkni izrēķina ar mazāko kvadrātu metodi.

Kalibrēšanas līkne nedrīkst atšķirties vairāk par ± 4 % no katra kalibrēšanas punkta nominālvērtības un vairāk par ± 1 % no pilnas skalas nulles punktā.

1.5.5.3.   Alternatīvas metodes

Ja var pierādīt, ka alternatīva tehnika (piemēram, dators, elektroniski regulējams diapazonu slēdzis u.c.) var dot līdzvērtīgu precizitāti, tad var izmantot šīs alternatīvas.

1.6.   Kalibrēšanas verifikācija

Katru parasti izmantojamu darbības diapazonu pirms katras analīzes pārbauda saskaņā ar šādu procedūru.

Kalibrēšanu pārbauda, izmantojot nulles gāzi un standarta gāzi, kuras nominālā vērtība ir lielāka par 80 % mērīšanas diapazona pilnas skalas.

Ja diviem attiecīgajiem punktiem atrastā vērtība no noteiktās standartvērtības neatšķiras vairāk par ± 4 % pilnas skalas, tad korekcijas parametrus var mainīt. Ja tā nav, tad saskaņā ar 1.5.5. iedaļu izveido jaunu kalibrēšanas līkni.

1.7.   NOx pārveidotāja efektivitātes tests

NO2 pārveidošanai par NO lietojamā pārveidotāja efektivitāti testē, kā noteikts 1.7.1. līdz 1.7.8. iedaļā (6. attēls).

1.7.1.   Testa iekārtas uzbūve

Lietojot testa iekārtu, kas parādīta 6. attēlā, (skatīt arī III pielikuma 4. papildinājuma 3.3.5. iedaļu) un še turpmāk aprakstīto procedūru, pārveidotāju efektivitāti var testēt ar ozonatoru.

1.7.2.   Kalibrēšana

CLD un HCLD kalibrē parastākajā darbības diapazonā, ievērojot izgatavotāja specifikācijas, lietojot nulles un standarta gāzi (kurā NO saturam jābūt aptuveni līdz 80 % darbības diapazona un NO2 koncentrācijai gāzu maisījumā līdz mazāk nekā 5 % NO koncentrācijas). NOx analizatoram jābūt NO režīmā, lai standarta gāze neplūst caur pārveidotāju. Norādītā koncentrācija jāreģistrē.

1.7.3.   Aprēķins

NOx pārveidotāja efektivitāti aprēķina šādi:

Formula

kur:

a

=

ir NOx koncentrācija saskaņā ar 1.7.6. iedaļu,

b

=

ir NOx koncentrācija saskaņā ar 1.7.7. iedaļu,

c

=

ir NO koncentrācija saskaņā ar 1.7.4. iedaļu,

d

=

ir NO koncentrācija saskaņā ar 1.7.5. iedaļu.

1.7.4.   Skābekļa pievienošana

Skābekli vai nulles gaisu gāzes plūsmai nepārtraukti pievieno pa T-veida savienotājelementu, līdz parādītā koncentrācija ir aptuveni par 20 % mazāka nekā 1.7.2. iedaļā norādītā kalibrēšanas koncentrācija (analizators ir NO režīmā). Ar c apzīmēto koncentrāciju reģistrē. Ozonatoru visā procesā uztur neaktivētu.

1.7.5.   Ozonatora ieslēgšana

Ozonatoru tagad aktivē, lai tas radītu pietiekami daudz ozona NO koncentrācijas samazināšanai līdz aptuveni 20 % (minimāli 10 %) no 1.7.2. iedaļā dotās kalibrēšanas koncentrācijas. Ar d apzīmēto koncentrāciju pieraksta. (Analizators ir NO režīmā).

1.7.6.   NOx režīms

Pēc tam NO analizatoru pārslēdz uz NOx režīmu, lai gāzu maisījums (kas sastāv no NO, NO2, O2 un N2) plūst caur pārveidotāju. Parādīto a koncentrāciju reģistrē. (Analizators ir NOx režīmā.)

1.7.7.   Ozonatora izslēgšana

Ozonatoru izslēdz. Gāzu maisījums, kas aprakstīts 1.7.6. iedaļā, caur pārveidotāju ieplūst detektorā. Parādīto b koncentrāciju reģistrē. (Analizators ir NOx režīmā.)

1.7.8.   NO režīms

Pēc pārslēgšanas uz NO režīmu un pēc ozonatora izslēgšanas noslēdz arī skābekļa vai sintezētā gaisa plūsmu. Analizatora NOx nolasījuma novirze nedrīkst pārsniegt ± 5 % vērtības, kas izmērīta saskaņā ar 1.7.2. iedaļu. (Analizators ir NO režīmā.)

1.7.9.   Testu intervāls

Pārveidotāja efektivitāte jāpārbauda pirms katras NOx analizatora kalibrēšanas.

1.7.10.   Efektivitātes prasība

Pārveidotāja efektivitāte nedrīkst būt mazāka par 90 %, bet ir ļoti ieteicama lielāka, 95 %, efektivitāte.

Piezīme: ja, analizatoram darbojoties parastākajā diapazonā, ozonators nevar dot samazinājumu no 80 % līdz 20 % saskaņā ar 1.7.5. iedaļu, tad izmanto augstāko diapazonu, kurā ozonators dod šo samazinājumu.

Image

1.8.   FID noregulēšana

1.8.1.   Detektora atbildes signāla optimizēšana

FID jānoregulē, kā norādījis ierīces izgatavotājs. Lai optimizētu atbildes signālu visvairāk izmantojamā darbības diapazonā, par standarta gāzi lieto gaisu ar propāna piedevu.

Degvielas un gaisa caurplūdumu noregulē atbilstīgi izgatavotāja ieteikumiem un analizatorā ievada 350 ± 75 ppm C standarta gāzes. Atbildes signālu atbilstīgi degvielas plūsmai noteic pēc starpības starp standarta gāzes atbildes signālu un nulles gāzes atbildes signālu. Degvielas plūsmu noregulē nedaudz virs izgatavotāja norādītās un nedaudz zem tās. Reģistrē šīm degvielas plūsmām atbilstīgos standarta un nulles atbildes signālus. Starpību starp standarta un nulles atbildes signālu atzīmē grafiski, un degvielas plūsmu pielāgo līknes bagātīgākajai daļai.

1.8.2.   Ogļūdeņražu atbildes signālu koeficienti

Analizatoru kalibrē, izmantojot gaisu ar propāna piedevu un attīrītu sintezēto gaisu saskaņā ar 1.5. iedaļu.

Atbildes koeficientus noteic, laižot analizatoru ekspluatācijā, un pēc ilgākiem ekspluatācijas periodiem. Atbildes koeficients (Rf) noteiktas grupas ogļūdeņražiem ir FID C1 nolasījuma attiecība pret gāzes koncentrāciju cilindrā, kas izteikta ar ppm C1.

Testa gāzes koncentrācijai jābūt tādai, lai atbildes signāls ir aptuveni 80 % pilnas skalas. Koncentrācijai jābūt zināmai ar precizitāti ± 2 % attiecībā uz gravimetrisko standartu, kas izteikts ar tilpumu. Turklāt gāzes cilindrs iepriekš jākondicionē 24 stundas 298 K ± 5 K (25 °C ± 5°C) temperatūrā.

Lietojamās testa gāzes un ieteicamie relatīvās atbildes koeficientu intervāli ir šādi:

Metānam un attīrītam sintezētajam gaisam 1,00 ≤ Rf ≤ 1,15

Propilēnam un attīrītam sintezētajam gaisam 0,90 ≤ Rf ≤ 1,10

Toluolam un attīrītam sintezētajam gaisam 0,90 ≤ Rf ≤ 1,10

Šīs vērtības ir attiecinātas pret propāna un attīrīta sintezētā gaisa atbildes koeficientu (Rf) 1,00.

1.8.3.   Skābekļa traucējošās ietekmes pārbaude

Skābekļa traucējošo ietekmi noteic, laižot analizatoru ekspluatācijā, un pēc ilgākiem ekspluatācijas periodiem.

Atbildes koeficients ir definēts un tā noteikšana aprakstīta 1.8.2. iedaļā. Izmantojamā testa gāze un ieteicamie relatīvās atbildes signāla koeficienti ir šādi:

Formula

Šī vērtība ir attiecināta pret propāna un attīrīta sintezētā gaisa atbildes koeficientu (Rf) 1,00.

FID degļa gaisa skābekļa koncentrācijai jābūt ± 1 mola % robežās no skābekļa koncentrācijas degļa gaisā, kas ir izmantots iepriekšējā skābekļa traucējošās ietekmes pārbaudē. Ja starpība ir lielāka, tad jāpārbauda skābekļa traucējošā ietekme un vajadzības gadījumā jānoregulē analizators.

1.8.4.   Gāzu, izņemot metānu, nošķīrēja efektivitāte (NMC, tikai ar NG darbināmiem gāzes motoriem)

NMClieto, lai ogļūdeņražus, kas nav metāns, atdalītu no parauga gāzes, oksidējot visus ogļūdeņražus, izņemot metānu. Ideāli, ja pārveido 0 % metāna un 100 % pārējo ogļūdeņražu, ko pārstāv etāns. Lai precīzi izmērītu NMHC, noteic abu iepriekšminēto ogļūdeņražu grupu efektivitāti un izmanto NMHC emisijas masas caurplūduma aprēķinam (skatīt III pielikuma 2. papildinājuma 4.3. iedaļu).

1.8.4.1.   Metāna efektivitāte

Metāna kalibrēšanas gāzi laiž caur FID, apejot un neapejot NMC, un abas koncentrācijas reģistrē. Efektivitāti noteic šādi:

Formula

kur:

concw

=

HC koncentrācija, CH4 plūstot caur NMC,

concw/o

=

HC koncentrācija, CH4 plūsmu novirzot garām NMC.

1.8.4.2.   Etāna efektivitāte

Etāna kalibrēšanas gāzi laiž caur FID, apejot un neapejot NMC, un abas koncentrācijas reģistrē. Efektivitāti noteic šādi:

Formula

kur:

concw

=

HC koncentrācija, C2H6 plūstot caur NMC

concw/o

=

HC koncentrācija, C2H6 plūsmu novirzot garām NMC

1.9.   Traucējošas ietekmes CO, CO2 un NOx analizatoros

Izplūdes gāzu sastāvā esošās gāzes, kas nav analizējamā gāze, var traucēt nolasīšanu vairākos veidos. Traucējums ar pozitīvu zīmi NDIR ierīcēs rodas, ja traucējošā gāze dod tādu pašu ietekmi kā mērāmā gāze, bet mazākā mērā. Traucējumi ar negatīvu zīmi NDIR ierīcēs rodas, ja traucējošā gāze paplašina mērāmās gāzes absorbcijas joslu, un CLD ierīcēs — ja traucējošā gāze slāpē starojumu. Traucējumu pārbaudes atbilstīgi 1.9.1. un 1.9.2. iedaļai veic pirms analizatora ekspluatācijas sākuma un pēc lielākiem ekspluatācijas periodiem.

1.9.1.   CO analizatora traucējumu pārbaude

CO analizatora darbību var traucēt ūdens un CO2. Tāpēc CO2 standarta gāzi ar koncentrāciju no 80 līdz 100 % pilnas skalas testos izmantojamā maksimālajā darbības diapazonā burbuļo caur ūdeni istabas temperatūrā un reģistrē analizatora reakcijas signālu. Analizatora reakcijas signāls nedrīkst būt lielāks par 1 % pilnas skalas diapazonos, kas ir vienādi ar 300 ppm vai lielāki, vai lielāks par 3 ppm diapazonos, kuri ir zem 300 ppm.

1.9.2.   NOx analizatora dzēšanas pārbaudes

CLD (un HCLD) analizatoriem nozīmīgas ir divas gāzes: CO2 un ūdens tvaiks. Šo gāzu radītie dzēšanas signāli ir proporcionāli to koncentrācijai, un tāpēc ir vajadzīgas testa metodes, ar ko noteikt dzēšanu, kura atbilst lielākajām testā gaidāmajām koncentrācijām.

1.9.2.1.   CO2 dzēšanas pārbaude

Caur NDIR analizatoru laiž cauri CO2 standarta gāzi, kuras koncentrācija ir 80 līdz 100 % no pilnas skalas lielākajā testos izmantojamā darbības diapazonā, un pieraksta CO2 lielumu, apzīmējot ar A. Pēc tam gāzi atšķaida aptuveni līdz 50 % ar NO standarta gāzi un laiž cauri NDIR un (H)CLD analizatoriem, pierakstot CO2 un NO lielumus, ko attiecīgi apzīmē ar B un C. Pēc tam noslēdz CO2 un caur (H)CLD laiž tikai NO standarta gāzi, reģistrējot NO vērtību un to apzīmējot ar D.

Dzēšana nedrīkst pārsniegt 3 % pilnas skalas, un to aprēķina šādi:

Formula

kur:

A

=

ir neatšķaidītās CO2 koncentrācija, ko mēra ar NDIR %,

B

=

ir atšķaidītās CO2 koncentrācija, ko mēra ar NDIR %,

C

=

ir atšķaidītā NO koncentrācija, ko mēra ar (H)CLD ppm,

D

=

ir neatšķaidītā NO koncentrācija, ko mēra ar (H)CLD ppm.

Var izmantot tādas alternatīvas atšķaidīšanas un CO2 un NO standarta gāzes vērtību aprēķināšanas metodes kā dinamisko sajaukšanu/samaisīšanu.

1.9.2.2.   Ūdens dzēšanas pārbaude

Šo pārbaudi piemēro tikai mitras gāzes koncentrācijas mērījumiem. Aprēķinot ūdens dzēšanu, jāņem vērā NO standarta gāzes atšķaidījums ar ūdens tvaiku un maisījuma ūdens tvaika koncentrācijas attiecība pret noteikšanā sagaidāmo koncentrāciju.

NO standarta gāzi ar koncentrāciju 80 līdz 100 % no pilnas skalas parastajā darbības diapazonā laiž caur (H)CLD un pieraksta NO lielumu, apzīmējot ar D. NO gāzi burbuļo caur ūdeni istabas temperatūrā un laiž caur (H)CLD, un pieraksta NO lielumu, apzīmējot ar C. Nosaka analizatora absolūto darba spiedienu un ūdens temperatūru un pieraksta, attiecīgi apzīmējot ar E un F. Nosaka maisījuma piesātināta tvaika spiedienu, kas atbilst barbotiera ūdens temperatūrai (F), un pieraksta, apzīmējot ar G. Maisījuma ūdens tvaika koncentrāciju (H, %) aprēķina šādi:

Formula

Sagaidāmo atšķaidītās NO standarta gāzes (ūdens tvaikā) koncentrāciju (De) aprēķina šādi:

Formula

Dīzeļmotoru izplūdes gāzēm testā paredzamo maksimālo izplūdes ūdens tvaika koncentrāciju (Hm, %), pamatojoties uz pieņēmumu, ka degvielas atoma H/C attiecība ir 1,8:1, prognozē pēc neatšķaidītās CO2 standarta gāzes koncentrācijas (A, ko mēra, kā aprakstīts 1.9.2.1. iedaļā) šādi:

Formula

Ūdens dzēšanu, kas nedrīkst pārsniegt 3 %, aprēķina šādi:

Formula

kur:

De

=

paredzamā atšķaidītā NO koncentrācija ppm,

C

=

atšķaidītā NO koncentrācija ppm,

Hm

=

maksimālā ūdens tvaika koncentrācija %,

H

=

faktiskā ūdens tvaika koncentrācija %.

Piezīme: svarīgi, lai NO standarta gāzē šajā pārbaudē NO2 koncentrācija ir iespējami maza, jo dzēšanas aprēķinos nav ņemta vērā NO2 absorbcija ūdenī.

1.10.   Kalibrēšanas intervāli

Analizatorus kalibrē saskaņā ar 1.5. iedaļu vismaz vienu reizi 3 mēnešos vai ikreiz pēc sistēmas remonta vai izmaiņas, kas var būt ietekmējusi kalibrēšanu.

2.   CVS SISTĒMAS KALIBRĒŠANA

2.1.   Vispārīgi noteikumi

CVS sistēmu kalibrē ar precīzu caurplūduma mērītāju, kas atbilst valsts vai starptautiskiem standartiem, un ierobežošanas ierīci. Plūsmu cauri sistēmai mēra atbilstīgi dažādiem ierobežojuma iestatījumiem un sistēmas kontrolparametrus mēra un attiecina pret plūsmu.

Var lietot dažādus caurplūduma mērītājus, piemēram, kalibrētu Venturi cauruli, kalibrētu laminārā caurplūduma mērītāju, kalibrētu turbomērītāju.

2.2.   Pozitīvā darba tilpuma sūkņa (PDP) kalibrēšana

Visus parametrus, kas attiecas uz sūkni, mēra vienlaicīgi ar parametriem, kuri attiecas uz caurplūduma mērītāju, kas ir savienots virknē ar sūkni. Aprēķināto caurplūdumu (m3/min. pie sūkņa ieplūdes atveres, absolūto spiedienu un temperatūru) atzīmē pret korelācijas funkciju, kas ir īpašas sūkņa parametru kombinācijas vērtība. Pēc tam noteic lineāro vienādojumu, ar ko izsaka sūknētās plūsmas un korelācijas funkcijas attiecību. Ja CVS ir vairāku ātrumu caurplūdums, tad kalibrē visus diapazonus. Kalibrējot nodrošina nemainīgu temperatūru.

2.2.1.   Datu analīze

Gaisa caurplūdumu (Qs) atbilstīgi katram ierobežojuma iestatījumam (vismaz 6 iestatījumiem) aprēķina pēc caurplūduma mērītāja datiem, izmantojot izgatavotāja noteikto metodi un izsakot standarta m3/min. Pēc tam gaisa caurplūdumu šādi pārrēķina sūknētajā plūsmā (V0) m3/apgr. atbilstīgi absolūtajai temperatūrai un spiedienam sūkņa ieplūdes atverē:

Formula

kur:

Qs

=

gaisa caurplūdums standarta nosacījumos (101, 3 kPa, 273 K), m3/s,

T

=

temperatūra sūkņa ieplūdes atverē, K,

pA

=

absolūtais spiediens sūkņa ieplūdes atverē (pB-p1), kPa,

n

=

sūkņa darbības ātrums, apgr./s.

Lai ņemtu vērā spiediena svārstību mijiedarbi sūknī un sūknētā daudzuma izmaiņu ātrumu, korelācijas funkciju (X0) starp sūkņa darbības ātrumu, sūkņa ieplūdes un izplūdes spiediena starpību un absolūto spiedienu sūkņa izplūdes atverē aprēķina šādi:

Formula

kur:

Δpp

=

sūkņa ieplūdes un izplūdes spiediena starpība, kPa,

pA

=

absolūtais spiediens sūkņa izplūdes atverē, kPa.

Šādi izveido kalibrēšanas vienādojumu, lineāri pielāgojot mazākos kvadrātus:

Formula

D0 un m ir regresijas taišņu attiecīgo leņķu konstantes.

CVS sistēmai ar vairākiem ātrumiem kalibrēšanas līknes, kas izveidotas dažādiem sūknētās plūsmas diapazoniem, ir aptuveni paralēlas un leņķu vērtības (D0) palielinās, sūknētās plūsmas diapazonam samazinoties.

Pēc vienādojuma aprēķinātajām vērtībām jābūt ± 0, 5 % robežās no izmērītās V0 vērtības. Dažādiem sūkņiem m vērtības atšķiras. Makrodaļiņu ieplūde ar laiku samazina sūkņa padeves spēju; tas atspoguļojas mazākās m vērtībās. Tāpēc kalibrēšanu izdara sūkņa darbības sākumā, pēc lielākas apkopes un ja visas sistēmas verifikācija (2.4. iedaļā) liecina par padeves ātruma izmaiņu.

2.3.   Kritiskās plūsmas Venturi caurules kalibrēšana (CFV)

CFV kalibrēšana pamatojas uz caurplūduma vienādojumu kritiskās plūsmas Venturi caurulei. Gāzes plūsma ir ieplūdes spiediena un temperatūras funkcija, kas parādīta turpmāk:

Formula

kur:

Kv

=

kalibrēšanas koeficients,

pA

=

absolūtais ieplūdes spiediens Venturi caurulē, kPa,

T

=

ieplūdes temperatūra Venturi caurulē, K.

2.3.1.   Datu analīze

Gaisa caurplūdumu (Qs) atbilstīgi katram ierobežojuma iestatījumam (vismaz 8 iestatījumiem) aprēķina pēc caurplūduma mērītāja datiem, izmantojot izgatavotāja noteikto metodi un izsakot standarta m3/min. Kalibrēšanas koeficientu aprēķina šādi pēc kalibrēšanas datiem katram iestatījumam:

Formula

kur:

Qs

=

gaisa caurplūdums standarta nosacījumos (101,3 kPa, 273 K), m3/s,

T

=

ieplūdes temperatūra Venturi caurulē, K,

pA

=

absolūtais ieplūdes spiediens Venturi caurulē, kPa.

Lai noteiktu kritiskās plūsmas diapazonu, Kv atzīmē Venturi caurules ieplūdes spiediena funkcijas veidā. Kritiskajai (robežstāvokļa) plūsmai Kv ir samērā konstanta vērtība. Spiedienam samazinoties (vakuumam palielinoties), Venturi caurulē rodas retinājums, un Kv samazinās, kas liecina, ka CFV darbojas ārpus pieļaujamā diapazona.

Vismaz astoņiem punktiem kritiskās plūsmas apgabalā aprēķina vidējo Kv un standartnovirzi. Standartnovirze nedrīkst pārsniegt ± 0, 3 % vidējā KV.

2.4.   Kopējā sistēmas verificēšana

CVS paraugu ņemšanas sistēmas un analīzes sistēmas kopējo precizitāti noteic, ievadot zināmu piesārņotājgāzes masu sistēmā, kad tā darbojas parastajā režīmā. Piesārņotāju analizē un masu aprēķina saskaņā ar III pielikuma 2. papildinājuma 4.3. iedaļu; izņēmums ir propāns, kam piemēro HC koeficientu 0,000472, nevis 0,000479. Izmanto vienu no šīm metodēm.

2.4.1.   Mērīšana ar kritiskās plūsmas diafragmu

Zināmu daudzumu ķīmiski tīras gāzes (oglekļa oksīda vai propāna) pa kalibrētu kritiskās plūsmas diafragmu ievada CVS sistēmā. Ja ieplūdes spiediens ir pietiekami augsts, tad caurplūdums, ko regulē ar kritiskās plūsmas diafragmu, nav atkarīgs no atveres izplūdes spiediena identisks ar kritisko plūsmu). CVS sistēmu aptuveni no 5 līdz 10 minūtēm darbina, kā parastā izplūdes gāzu emisijas testā. Gāzes paraugu analizē ar standarta līdzekļiem (paraugu maisiņu vai integrēšanas metodi) un aprēķina gāzes masu. Tā noteiktā masa ir ± 3 % robežās no zināmās iesmidzinātās gāzes masas.

2.4.2.   Mērīšana ar gravimetrisko metodi

Ar ± 0, 01 grama precizitāti noteic tāda neliela cilindra masu, kas pildīts ar oglekļa oksīdu vai propānu. CVS sistēmu aptuveni no 5 līdz 10 minūtēm darbina, kā parastā izplūdes gāzu emisijas testā, un sistēmā iesmidzina oglekļa oksīdu vai propānu. Izplūdušās ķīmiski tīrās gāzes daudzumu noteic pēc masas starpības sverot. Gāzes paraugu analizē ar standarta līdzekļiem (paraugu maisiņu vai integrēšanas metodi) un aprēķina gāzes masu. Tā noteiktā masa ir ± 3 % robežās no zināmās iesmidzinātās gāzes masas.

3.   MAKRODAĻIŅU MĒRĪŠANAS SISTĒMAS KALIBRĒŠANA

3.1.   Ievads

Katru komponentu kalibrē tik bieži, cik vajadzīgs, lai izpildītu šīs direktīvas precizitātes prasības. Šajā iedaļā ir aprakstīta III pielikuma 4. papildinājuma 4. iedaļā un V pielikuma 2. iedaļā norādītajiem komponentiem izmantojamā kalibrēšanas metode.

3.2.   Plūsmas mērīšana

Gāzes plūsmas mērītāju vai plūsmas mērīšanas ierīču kalibrēšana atbilst valsts un/vai starptautiskiem standartiem. Izmērītās vērtības maksimālā kļūda ir ± 2 % robežās no nolasījuma.

Ja gāzes plūsmu noteic ar plūsmas starpības mērīšanu, tad starpības maksimālā kļūda ir tāda, lai GEDF precizitāte ir ± 4 % robežās (skatīt arī V pielikuma 2.2.1. iedaļas EGA). To var aprēķināt, noteicot visu ierīču kļūdu vidējo ģeometrisko vērtību.

3.3.   Daļējas plūsmas nosacījumu pārbaude

Izplūdes gāzu ātruma diapazonu un spiediena svārstības pārbauda un pēc vajadzības regulē saskaņā ar V pielikuma 2.2.1. iedaļas EP prasībām.

3.4.   Kalibrēšanas intervāli

Plūsmas mērīšanas ierīces kalibrē vismaz vienu reizi trijos mēnešos vai ikreiz pēc sistēmas remonta vai izmaiņas, kas var būt ietekmējusi kalibrēšanu.

4.   DŪMU MĒRĪŠANAS IERĪCES KALIBRĒŠANA

4.1.   Ievads

Dūmmēru kalibrē tik bieži, cik vajadzīgs, lai izpildītu šīs direktīvas precizitātes prasības. Šajā iedaļā ir aprakstīta III pielikuma 4. papildinājuma 5. iedaļā un V pielikuma 3. iedaļā norādītajiem komponentiem izmantojamā kalibrēšanas metode.

4.2.   Kalibrēšanas procedūra

4.2.1.   Iesildīšanas laiks

Dūmmēru iesilda un stabilizē saskaņā ar izgatavotāja ieteikumiem. Ja dūmmērs ir aprīkots ar gaisa izpūšanas/tīrīšanas sistēmu, lai novērstu dūmmēra optikas apkvēpšanu, tad arī šī sistēma būtu jāiedarbina un jānoregulē saskaņā ar izgatavotāja ieteikumiem.

4.2.2.   Linearitātes atbildes signāla noteikšana

Dūmmēra linearitāti pārbauda dūmainības nolasīšanas režīmā saskaņā ar izgatavotāja ieteikumiem. Dūmmēru aprīko ar trijiem zināmas caurlaidības neitrāla blīvuma filtriem, kas atbilst III pielikuma 4. papildinājuma 5.2.5. iedaļas prasībām, un vērtību reģistrē. Neitrālā blīvuma filtru nominālā necaurlaidība ir aptuveni 10 %, 20 % un 40 %.

Linearitāte nedrīkst atšķirties no neitrālā blīvuma filtra nominālvērtības vairāk pār 2 % necaurlaidības. Jebkura nelinearitāte, kas pārsniedz minēto vērtību, jākoriģē pirms testa.

4.3.   Kalibrēšanas intervāli

Dūmmēru kalibrē saskaņā ar 4.2.2. iedaļu vismaz vienu reizi 3 mēnešos vai ikreiz pēc sistēmas remonta vai izmaiņas, kas var būt ietekmējusi kalibrēšanu.


IV PIELIKUMS

APSTIPRINĀJUMA TESTIEM UN RAŽOJUMU ATBILSTĪBAS VERIFICĒŠANAI NOTEIKTĀS STANDARTA DEGVIELAS TEHNISKAIS RAKSTUROJUMS

Dīzeļdegviela (1)

Parametrs

Mērvienība

Robežas (2)

Testa metode

Publikācija

Apakšējā

Augšējā

Cetānskaitlis (3)

 

52,0

54,0

EN-ISO 5165

1998. g. (4)

Blīvums 15 °C temperatūrā

kg/m3

833

837

EN-ISO 3675

1995. g.

Destilācija:

 

 

 

 

 

— 50 % punkts

°C

245

EN-ISO 3405

1998. g.

— 95 % punkts

°C

345

350

EN-ISO 3405

1998. g.

— galīgās viršanas punkts

°C

370

EN-ISO 3405

1998. g.

Uzliesmošanas temperatūra

°C

55

EN 27719

1993. g.

CFPP

°C

- 5

EN 116

1981. g.

Viskozitāte 40 °C temperatūrā

mm2/s

2,5

3,5

EN-ISO 3104

1996. g.

Policikliskie aromātiskie ogļūdeņraži

% m/m

3,0

6,0

IP 391 (7)

1995. g.

Sēra saturs (5)

mg/kg

300

pr. EN-ISO/DIS 14596

1998. g. (4)

Vara korozija

 

1

EN-ISO 2160

1995. g.

Konradsona oglekļa piemaisījums (10 % DR)

% m/m

0,2

EN-ISO 10370

 

Pelnu saturs

% m/m

0,01

EN-ISO 6245

1995. g.

Ūdens saturs

% m/m

0,05

EN-ISO 12937

1995. g.

(Stipras skābes) neitralizācijas skaitlis

mg KOH/g

0,02

ASTM D 974-95

1998. g. (4)

Noturība pret oksidēšanu (6)

mg/ml

0,025

EN-ISO 12205

1996. g.

% m/m

EN 12916

[2000. g.] (4)

Etanols dīzeļmotoriem (8)

Parametrs

Mērvienība

Robežas (9)

Testa metode (10)

Apakšējā

Augšējā

Spirta masa

% m/m

92,4

ASTM D 5501

Spirta, izņemot etanolu, masa kopējā alkohola masā

% m/m

2

ADTM D 5501

Blīvums 15 °C temperatūrā

kg/m3

795

815

ASTM D 4052

Pelnu saturs

% m/m

 

0,001

ISO 6245

Uzliesmošanas temperatūra

°C

10

 

ISO 2719

Skābums, ko aprēķina etiķskābes ekvivalentā

% m/m

0,0025

ISO 1388-2

(Stipras skābes) neitralizācijas skaitlis

KOH mg/l

1

 

Krāsa

Saskaņā ar skalu

10

ASTM D 1209

Sausais atlikums 100 °C temperatūrā

mg/kg

 

15

ISO 759

Ūdens saturs

% m/m

 

6,5

ISO 760

Aldehīdi, ko aprēķina etiķskābes ekvivalentā

% m/m

 

0,0025

ISO 1388-4

Sēra saturs

mg/kg

10

ASTM D 5453

Esteri, ko aprēķina etilacetāta ekvivalentā

% m/m

0,1

ASSTM D 1617

2.   DABASGĀZE (NG)

Eiropas tirgū ir divu grupu degvielas:

H grupas degvielas, kuru galējās standarta degvielas ir GR un G23;

L grupas degvielas, kuru galējās standarta degvielas ir G23 un G25.

GR, G23 un G25 standarta degvielu parametru kopsavilkums ir turpmākajās tabulās:

GR standarta degviela

Parametri

Mērvienības

Bāze

Robežas

Testa metode

Apakšējā

Augšējā

Sastāvs:

 

 

 

 

 

Metāns

 

87

84

89

 

Etāns

 

13

11

15

 

Bilance (11)

molu %

1

ISO 6974

Sēra saturs

mg/m3  (12)

10

ISO 6326-5


G23 standarta degviela

Parametri

Mērvienības

Bāze

Robežas

Testa metode

Apakšējā

Augšējā

Sastāvs:

 

 

 

 

 

Metāns

 

92,5

91,5

93,5

 

Bilance (13)

molu %

1

ISO 6974

N2

 

7,5

6,5

8,5

 

Sēra saturs

mg/m3  (14)

10

ISO 6326-5


G25 standarta degviela

Parametri

Mērvienības

Bāze

Robežas

Testa metode

Apakšējā

Augšējā

Sastāvs:

 

 

 

 

 

Metāns

 

86

84

88

 

Bilance (15)

molu %

1

ISO 6974

N2

 

14

12

16

 

Sēra saturs

mg/m3  (16)

10

ISO 6326-5

3.   SAŠĶIDRINĀTĀ NAFTAS GĀZE (LPG)

Parametrs

Mērvienība

Robežas A degvielai

Robežas B degvielai

Testa metode

Apakšējā

Augšējā

Apakšējā

Augšējā

Motora oktānskaitlis

 

92,5 (17)

 

92,5

 

EN 589 B pielikums

Sastāvs

 

 

 

 

 

 

C3 saturs

Tilp. %

48

52

83

87

 

C4 saturs

Tilp. %

48

52

13

17

ISO 7941

Olefīni

Tilp. %

 

12

 

14

 

Iztvaikošanas atlikums

mg/kg

 

50

 

50

NFM 41015

Kopējais sēra saturs

Masas ppm (17)

 

50

 

50

EN 24260

Sērūdeņradis

Nav

Nav

ISO 8819

Vara sloksnītes korozija

Vērtējums

1. klase

1. klase

ISO 6251 (18)

Ūdens 0 °C temperatūrā

 

Nav

Nav

Vizuālā pārbaude


(1)  Ja jāaprēķina motora vai transportlīdzekļa siltumefektivitāte, tad degvielas sadegšanas siltumu var aprēķināt pēc:

īpatnējās enerģijas (sadegšanas siltuma)( tīrā), ko izsaka MJ/kg = (46,423 - 8,792d2 + 3,170d) (1 - (x + y + s)) + 9,420s - 2,499x

kur

d = blīvums 15 °C temperatūrā,

x = ūdens daļa pēc masas (%, dalot ar 100),

y = pelnu daļa pēc masas (%, dalot ar 100),

s = sēra daļa pēc masas (%, dalot ar 100).

(2)  Specifikācijā norādītās vērtības ir patiesās vērtības. Nosakot to robežvērtības, ir piemēroti ISO 4259 noteikumi “Naftas produkti: to precizitātes datu noteikšana un piemērošana, kas attiecas uz testa metodēm” un, nosakot apakšējās robežas vērtību, ir ņemta vērā minimālā 2R starpība virs nulles; nosakot augšējo un apakšējo robežu, minimālā starpība ir 4R (R = sakritība). Neatkarīgi no šā noteikuma, kas ir vajadzīgs statistiskos nolūkos, degvielas ražotājam tomēr būtu jācenšas nodrošināt nulles vērtību, ja noteiktā augšējā robeža ir 2R, un vidējo vērtību, ja ir noteikta augšējā un apakšējā robeža. Ja jānoskaidro, vai degviela atbilst specifikācijas prasībām, tad būtu jāpiemēro ISO 4259 noteikumi.

(3)  Cetānskaitļa diapazons nav saskaņā ar prasību par minimālo 4R diapazonu. Tomēr, ja rodas domstarpības starp degvielas piegādātāju un degvielas lietotāju, tad šādu domstarpību atrisināšanai var izmantot ISO 4259 noteikumus, ja vienreizējas noteikšanas vietā izdara pietiekami daudz atkārtotu mērījumu, lai nodrošinātu vajadzīgo precizitāti.

(4)  Publicēšanas mēnesis būs norādīts vēlāk.

(5)  Norāda faktisko sēra saturu degvielā, ko lieto testā. Turklāt standarta degvielā, ko lieto, lai apstiprinātu transportlīdzekli vai motoru attiecībā pret robežvērtībām, kuras noteiktas B rindā tabulā šīs direktīvas I pielikuma 6.2.1. iedaļā, maksimālais sēra saturs ir 50 ppm. Komisija pēc iespējas agrāk modificē šo pielikumu, atspoguļojot tirgus vidējo degvielas sēra saturu, kas attiecas uz degvielu, kura noteikta Direktīvas 98/70/EK IV pielikumā.

(6)  Pat kontrolējot noturību pret oksidēšanu, glabāšanas laiks būs ierobežots. Par glabāšanas apstākļiem un termiņu būtu jākonsultējas ar piegādātāju.

(7)  Jauna un labāka metode izstrādes stadijā policiklisko aromātisko ogļūdeņražu noteikšanai

(8)  Saskaņā ar motora izgatavotāja norādījumu etanola degvielu var uzlabot ar cetānu. Maksimālais atļautais daudzums ir 10 % m/m.

(9)  Specifikācijā norādītās vērtības ir patiesās vērtības. Nosakot to robežvērtības, ir piemēroti ISO 4259 noteikumi “Naftas produkti: to precizitātes datu noteikšana un piemērošana, kas attiecas uz testa metodēm” un, nosakot apakšējās robežas vērtību, ir ņemta vērā minimālā 2R starpība virs nulles; nosakot augšējo un apakšējo robežu, minimālā starpība ir 4R (R = sakritība). Neatkarīgi no šā noteikuma, kas ir vajadzīgs statistiskos nolūkos, degvielas ražotājam tomēr būtu jācenšas nodrošināt nulles vērtību, ja noteiktā augšējā robeža ir 2R, un vidējo vērtību, ja ir noteikta augšējā un apakšējā robeža. Ja jānoskaidro, vai degviela atbilst specifikācijas prasībām, tad būtu jāpiemēro ISO 4259 noteikumi.

(10)  Līdzvērtīgas ISO metodes pieņem, ja tās attiecas uz visām iepriekšminētajām īpašībām.

(11)  Inertās sastāvdaļas +C2+.

(12)  Vērtība jānosaka standarta apstākļos (293,2 K (20 °C) un 101,3 kPa).

(13)  Inertās sastāvdaļas (kas nav N2) +C2+ +C2+.

(14)  Vērtība jānosaka standarta apstākļos (293,2 K (20° C) un 101,3 kPa).

(15)  Inertās sastāvdaļas (kas nav N2) +C2+ +C2+.

(16)  Vērtība jānosaka standarta apstākļos (293,2 K (20 °C) un 101,3 kPa).

(17)  Vērtība jānosaka standarta apstākļos 293,2 K (20 °C) un 101,3 kPa.

(18)  Ar šo metodi korozīvo vielu klātbūtni nevar noteikt precīzi, ja paraugs satur inhibitorus vai citas ķīmiskas vielas, kas samazina parauga korozīvo iedarbību uz vara sloksnīti. Tādēļ aizliegts šādus savienojumus pievienot tikai tāpēc, lai radītu novirzes testa metodē.


V PIELIKUMS

ANALĪZES UN PARAUGU ŅEMŠANAS SISTĒMAS

1.   GĀZVEIDA EMISIJAS NOTEIKŠANA

1.1.   Ievads

Sīki izstrādāti ieteicamie paraugu ņemšanas un analizēšanas sistēmu apraksti ir 1.2. iedaļā un 7. un 8. attēlā. Tā kā dažādas konfigurācijas var dot līdzvērtīgus rezultātus, precīza atbilstība 7. un 8. attēlam nav vajadzīga. Lai nodrošinātu papildu informāciju un koordinētu komponentu sistēmu funkcijas, var lietot tādas papildu ierīces kā vārstus, solenoīdus, sūkņus un slēdžus. Var atteikties no dažiem komponentiem, kas nav vajadzīgi dažu sistēmu precizitātes uzturēšanai, ja atteikšanās pamatojas uz labu inženierijas apsvērumu.

Image

1.2.   Analīzes sistēmas apraksts

Analīzes sistēma gāzveida emisijas noteikšanai neapstrādātajā (7. attēls, tikai ESC) vai atšķaidītajā (8. attēls, ETC un ESC) izplūdes gāzēs ir aprakstīta, pamatojoties uz:

HFID analizatora lietojumu ogļūdeņražu mērīšanai;

NDIR analizatoru lietojumu oglekļa oksīda un oglekļa dioksīda mērīšanai;

HCLD vai līdzvērtīga analizatora lietojumu slāpekļa oksīdu mērīšanai.

Visu sastāvdaļu paraugu var ņemt ar vienu paraugu zondi vai ar divām paraugu zondēm, ko novieto tiešā tuvumā un kas ir iekšēji sadalītas tā, ka paraugus novada uz attiecīgajiem analizatoriem. Jānodrošina, lai izplūdes gāzu sastāvdaļas (to skaitā ūdens un sērskābe) nevienā analīzes sistēmas vietā nekondensētos.

Image

1.2.1.   Komponenti 7. un 8. attēlā

EP izplūdes caurule

Izplūdes gāzu paraugu ņemšanas zonde (tikai 7. attēlā)

Ieteicama taisna nerūsējoša tērauda zonde ar slēgtu galu un daudzām atverēm. Iekšējais diametrs nedrīkst būt lielāks par paraugu ņemšanas vada iekšējo diametru. Zondes sieniņu biezums nav lielāks par 1 mm. Tai trijās dažādās radiālās plaknēs ir vismaz trīs atveres, kuru lielums ļauj noņemt aptuveni vienādas plūsmas paraugu. Zondei jāaizņem vismaz 80 % izplūdes caurules diametra. Var lietot vienu paraugu ņemšanas zondi vai divas.

SP2 atšķaidītas izplūdes gāzu HC paraugu ņemšanas zonde (tikai 8. attēls)

Zondei jābūt:

pirmajos 254 līdz 762 mm sakarsētā paraugu ņemšanas vada HSL1;

ar vismaz 5 mm iekšējo diametru;

uzstādītai DT atšķaidīšanas kanālā (skatīt 2.3. iedaļu, 20. attēlu), vietā, kur atšķaidīšanas gaiss ir labi sajaucies ar izplūdes gāzēm (t. i., aptuveni 10 kanāla diametrus lejpus vietas, kur izplūdes gāzes ieplūst atšķaidīšanas kanālā);

pietiekami tālu (radiāli) no citām zondēm un kanāla sienas, lai to neietekmē plūsmas un virpuļi;

karsējamai tā, lai gāzes plūsmas temperatūru zondes izejā palielinātu līdz 463 K ± 10 K (190 °C ± 10 °C).

SP3 atšķaidītu izplūdes gāzu CO, CO2, NOx paraugu ņemšanas zonde (tikai 8. attēlā)

Zondei jābūt:

vienā plaknē ar SP 2;

pietiekami tālu (radiāli) no citām zondēm un kanāla sienas, lai to neietekmē plūsmas un virpuļi;

visā garumā izolētai un karsējamai vismaz līdz 328 K (55 °C), lai novērstu ūdens kondensāciju.

HSL1 karsējams paraugu ņemšanas vads

Paraugu ņemšanas vads nodrošina gāzes parauga ņemšanu no vienas zondes līdz dalīšanas vietai un HC analizatoram.

Paraugu ņemšanas vadam:

jābūt ar iekšējo diametru no 5 mm līdz 13, 5 mm;

jābūt izgatavotam no nerūsējoša tērauda vai PTFE;

jāuztur 463 K ± 10 K (190 °C ± 10 °C) sienas temperatūra, mērot katrā atsevišķi regulējamā karsējamā daļā, ja izplūdes gāzu temperatūra pie paraugu ņemšanas zondes ir 463 K (190 °C) vai zemāka;

sienas temperatūra jāuztur virs 453 K (180 °C), ja izplūdes gāzu temperatūra pie parauga ņemšanas zondes ir lielāka par 463 K (190 °C);

jāuztur 463 K ± 10 K (190 °C ± 10 °C) gāzes temperatūra tieši pirms karsējamā F2 filtra un HFID.

HSL2 karsējamais NOx paraugu ņemšanas vads

Paraugu ņemšanas vadam:

jāuztur sienas temperatūra no 328 K līdz 473 K (55 °C līdz 200 °C) līdz C pārveidotājam, ja lieto B dzesēšanas vannu, un līdz analizatoram, ja B dzesēšanas vannu nelieto;

jābūt izgatavotam no nerūsējoša tērauda vai PTFE.

SL paraugu ņemšanas vads CO un CO2 paraugiem

Vadam jābūt izgatavotam no nerūsējošā tērauda vai PTFE. Tas var būt karsējams vai nekarsējams.

BK fona paraugu ņemšanas maiss (pēc izvēles; tikai 8. attēlā).

Fona koncentrāciju noteikšanai paredzētu paraugu ņemšanai.

BG paraugu maisiņš (pēc izvēles; tikai CO un CO2 8. attēlā).

Fona koncentrāciju noteikšanai paredzētu paraugu ņemšanai.

F1 karsējams priekšfiltrs (pēc izvēles).

Temperatūra ir tāda pati kā HSL1.

F2 karsējamais filtrs.

Filtrs atdala visas cietās makrodaļiņas no gāzes parauga, pirms tas iekļūst analizatorā. Temperatūra ir tāda pati kā HSL1. Filtru nomaina pēc vajadzības.

P sildāmais paraugu ņemšanas sūknis.

Sūkni silda līdz HSL1 temperatūrai.

HC

Karsētas liesmas jonizācijas detektors (HFID) ogļūdeņražu noteikšanai. Temperatūru uztur no 453 K līdz 473 K (no 180 °C līdz 200 °C).

CO, CO2

NDIR analizatori oglekļa oksīda un oglekļa dioksīda noteikšanai (nav obligāti atšķaidījuma pakāpes noteikšanai PT mērījumiem).

NO

CLD vai HCLD analizators slāpekļa oksīdu noteikšanai. Ja lieto HCLD, tā temperatūru uztur no 328 K līdz 473 K (no 55 °C līdz 200 °C).

C pārveidotājs

Pārveidotāju lieto NO2 katalītiskai reducēšanai līdz NO pirms analīzes ar CLD vai HCLD.

B dzesēšanas vanna (pēc izvēles).

Ūdens atdzesēšanai un kondensēšanai izplūdes gāzu paraugā. Vannā ar ledu vai dzesēšanu temperatūru uztur no 273 K līdz 277 K (no 0 °C līdz 4 °C). Tas nav obligāti, ja analizatoru neietekmē ūdens tvaiks, kā noteikts III pielikuma 5. papildinājuma 1.9.1. un 1.9.2. iedaļā. Ja ūdeni aizvada kondensējot, tad parauga gāzes temperatūru vai rasas punktu kontrolē ūdens filtrā vai lejpus tā. Parauga gāzes temperatūra vai rasas punkts nedrīkst pārsniegt 280 K (7 °C). Ūdens aizvadīšanai no parauga nav atļauts lietot ķīmiskos žāvētājus.

T1, T2, T3 temperatūras devējs.

Gāzes plūsmas temperatūras kontrolei.

T4 temperatūras devējs.

NO2-NO pārveidotāja temperatūras kontrolei.

T5 temperatūras devējs.

Dzesēšanas vannas temperatūras kontrolei.

G1, G2, G3 manometrs.

Spiediena mērīšanai paraugu ņemšanas vados.

R1, R2 spiediena regulators

Attiecīgi gaisa un degvielas spiediena regulēšanai HFID.

R3, R4, R5 spiediena regulators

Spiediena regulēšanai paraugu ņemšanas vados un uz analizatoriem virzītās plūsmas regulēšanai.

FL1, FL2, FL3 caurplūduma mērītājs

Parauga pārplūdes/apvada caurplūduma kontrolei.

FL4 – FL6 caurplūduma mērītājs (pēc izvēles).

Caurplūduma kontrolei analizatoros.

V1 – V5 pārslēgšanas vārsts.

Piemēroti vārsti, lai analizatoriem pēc izvēles pievadītu paraugu, standarta gāzi vai nulles gāzi.

V6, V7 solenoīda vārsti.

NO2-NO pārveidotāja apvadam.

V8 adatvārsts.

Caurplūduma vienādošanai apvadā un NO2-NO C pārveidotājā.

V9, V10 adatvārsts.

Uz analizatoriem virzīto plūsmu regulēšanai.

V11, V12 sviras vārsts (pēc izvēles).

Kondensāta izlaišanai no B vannas.

1.3.   NMHC analīze (tikai ar NG darbināmiem gāzes motoriem)

1.3.1.   Gāzu hromatogrāfijas metode (GC, 9. attēls)

Ja izmanto GC metodi, tad nelielu izmērītu parauga tilpumu izsmidzina uz analīzes kolonnas, caur kuru to nes inerta nesējgāze. Kolonna atdala dažādas sastāvdaļas atkarībā no to viršanas punkta, lai tās eluējas no kolonnas dažādos laikos. Pēc tam tās plūst caur detektoru, kas dod elektrisko signālu atkarībā no to koncentrācijas. Tā kā tā nav nepārtrauktas analīzes tehnoloģija, to var izmantot tikai kopā ar paraugu maisiņu metodi, kas aprakstīta III pielikuma 4. papildinājuma 3.4.2. iedaļā.

NMHC noteikšanai izmanto automatizētu GCar FID. Izplūdes gāzu paraugus savāc paraugu maisiņā, no kura daļu iesmidzina GC. Paraugu Porapak kolonnā sadala divās daļās (CH4/gaiss/CO un NMHC/CO2/H2O). Molekulārā sieta kolonna atdala CH4 no gaisa un CO pirms ieplūdes FID, kur mēra tā koncentrāciju. Pilnu ciklu no viena parauga iesmidzināšanas līdz nākamā parauga iesmidzināšanai var veikt 30 sekundēs. Lai noteiktu NMHC, CH4 koncentrācija jāatskaita no kopējo HC koncentrācijas (skatīt III pielikuma 2. papildinājuma 4.3.1. iedaļu).

Raksturīgu GC periodiskai CH4 noteikšanai skatīt 9. attēlā. Pamatojoties uz labu inženierijas apsvērumu, var izmantot citas GC metodes.

Image

Komponenti 9. attēlā

Porapak kolonna PC.

Lieto 180/300 μm Porapak N kolonnu (ar daļiņu izmēru 50/80), kuras garums ir 610 mm, ID 2,16 mm, un pirms pirmās lietošanas to kondicionē ar nesējgāzi vismaz 12 stundas 423 K (150 °C) temperatūrā.

Molekulārā sieta kolonna MSC.

Lieto 13X, 250/350 μm molekulārā sieta kolonnu (ar acu izmēru 45/60), kuras garums ir 1220 mm, ID 2,16 mm, un pirms pirmās lietošanas to kondicionē ar nesējgāzi vismaz 12 stundas 423 K (150 °C) temperatūrā.

Žāvēšanas skapis OV.

Kolonnu un vārstu uzturēšanai vienmērīgā temperatūrā, kas vajadzīga analizatoru darbībai, un kolonnu kondicionēšanai 423 K (150 °C).

Parauga kontūrs SLP.

Nerūsējoša tērauda caurule, kas ir pietiekami gara, lai iegūtu paraugu, kura tilpums ir aptuveni 1 cm3.

Sūknis P.

Parauga pārnešanai uz gāzu hromatogrāfu.

Eksikators D.

Eksikatoru ar molekulāro sietu lieto, lai atdalītu ūdeni un citus piemaisījumus, kas varētu būt nesējgāzē.

HC

Ar liesmas jonizācijas detektoru (FID) mēra metāna koncentrāciju.

Parauga iesmidzināšanas vārsts V1.

Lai iesmidzinātu paraugu, ko ņem no paraugu ņemšanas maisiņa pa SL 8. attēlā. Tas ir ar mazu tukšo tilpumu, hermētisks un karsējams līdz 423 K (150 °C).

Pārslēgšanas vārsts V3.

Lieto, lai ieslēgtu standarta gāzes, parauga vai bezplūsmas režīmu.

V2, V4, V5, V6, V7, V8 adatvārsts.

Lieto, lai noregulētu plūsmas sistēmā.

R1, R2, R3 spiediena regulators.

Lieto, lai kontrolētu attiecīgi degvielas (=nesējgāzes), parauga un gaisa plūsmu.

FC plūsmas kapilārs.

Lieto, lai kontrolētu gaisa caurplūdumu uz FID.

G1, G2, G3 manometrs

Lieto, lai kontrolētu attiecīgi degvielas (= nesējgāzes), parauga un gaisa plūsmu.

F1, F2, F3, F4, F5 filtrs.

Saķepināta/aglomerēta metāla filtri, ko lieto, lai novērstu smilšu iekļuvi sūknī vai ierīcē.

FL1

Lieto, lai mērītu parauga caurplūdumu apvadā.

1.3.2.   Gāzu, izņemot metānu, nošķīrēja metode (NMC, 10. attēls)

Nošķīrējs oksidē visus ogļūdeņražus, izņemot CH4 par CO2 un H2O, tā ka, laižot paraugu caur NMC, FID atklāj tikai CH4. Ja lieto paraugu maisiņus, tad pie SL jāuzstāda plūsmas novadīšanas sistēma (skatīt 1.2. iedaļu, 8. attēlu), ar ko plūsmu var pārmaiņus novadīt pa nošķīrēju vai tam garām saskaņā ar 10. attēla augšējo daļu. Mērot NMHC, abas vērtības (HC un CH4) novēro ar FID un reģistrē. Ja izmanto integrēšanas metodi, tad NMC kopā ar otru FID uzstāda HSL1 paralēli standarta FID (skatīt 1.2. iedaļu, 8. attēlu) saskaņā ar 10. attēla apakšējo daļu. Mērot NMHC, abas FID vērtības (HC un CH4) novēro un reģistrē.

Nošķīrēju pirms testa raksturo 600 K (327 °C) vai augstākā temperatūrā, ievērojot tā katalītisko efektu uz CH4 un C2H6 atbilstīgi H2O vērtībām, kas ir reprezentatīvas izplūdes gāzu plūsmas nosacījumos. Jāzina parauga izplūdes gāzu plūsmas rasas punkts un O2 koncentrācija. Jāreģistrē FID relatīvā reakcija uz CH4 (skatīt III pielikuma 5. papildinājuma 1.8.2. iedaļu).

Image

Komponenti 10. attēlā

Gāzu, izņemot metānu, nošķīrējs.

Lieto, lai oksidētu visus ogļūdeņražus, izņemot metānu.

HC

Karsējamas liesmas jonizācijas detektoru (HFID) lieto, lai izmērītu HC un CH4 koncentrāciju. Temperatūru uztur no 453 K līdz 473 K (no 180 °C līdz 200 °C).

V1 pārslēgšanas vārsts

Lieto, lai ieslēgtu parauga, nulles vai standarta gāzes režīmu. V1 ir idents V2 8. attēlā.

V2, V3 solenoīda vārsts.

Lieto, lai radītu NMC apvadu.

V4 adatvārsts.

Lieto, lai vienādotu caurplūdumu NMC un apvadā.

R1 spiediena regulators.

Lieto, lai regulētu spiedienu parauga ņemšanas vadā un plūsmu uz HFID. R1 ir idents R3 8. attēlā.

FL1 caurplūduma mērītājs.

Lieto, lai mērītu parauga caurplūdumu apvadā. FL1 ir idents FL1 8. attēlā.

2.   IZPLŪDES GĀZU ATŠĶAIDĪŠANA UN MAKRODAĻIŅU NOTEIKŠANA

2.1.   Ievads

Ieteicamās atšķaidīšanas un paraugu ņemšanas sistēmas ir sīki aprakstītas 2.2., 2.3. un 2.4. iedaļā un parādītas 11. un 22. attēlā. Tā kā dažādas konfigurācijas var dot līdzvērtīgus rezultātus, precīza atbilstība šiem attēliem nav vajadzīga. Lai nodrošinātu papildu informāciju un koordinētu komponentu sistēmu funkcijas, var lietot tādas papildu ierīces kā vārstus, solenoīdus, sūkņus un slēdžus. Var atteikties no dažiem komponentiem, kas nav vajadzīgi dažu sistēmu precizitātes uzturēšanai, ja atteikšanās pamatojas uz labu inženierijas apsvērumu.

2.2.   Daļējas plūsmas atšķaidīšanas sistēma

Atšķaidīšanas sistēma, pamatojoties uz daļējas izplūdes gāzu plūsmas atšķaidīšanu, ir aprakstīta 11. līdz 19. attēlā. Izplūdes gāzu plūsmu var sadalīt un pēc tam atšķaidīt ar dažādu veidu atšķaidīšanas sistēmām. Turpmākās makrodaļiņu savākšanas nolūkā uz makrodaļiņu paraugu ņemšanas sistēmu novada visu atšķaidīto izplūdes gāzi vai tikai atšķaidīto izplūdes gāzu daļu (2.4. iedaļa, 21. attēls). Pirmo metodi sauc par pilno paraugu ņemšanu, otro metodi par dalīto paraugu ņemšanu.

Atšķaidījuma pakāpes aprēķins ir atkarīgs no lietojamās sistēmas veida. Ieteicamie veidi ir šādi:

Izokinētiskās sistēmas (11., 12. attēls)

Ar šīm sistēmām plūsmu pārvades caurulē pieskaņo kopējai izplūdes gāzu plūsmai gāzes ātruma un/vai spiediena izteiksmē, tā panākot netraucētu un vienādu izplūdes gāzu plūsmu paraugu ņemšanas zondē. To parasti sasniedz, izmantojot rezonatoru un taisnu cauruli augšpus parauga ņemšanas vietas. Sadalījuma attiecību aprēķina pēc tādām viegli izmērāmām vērtībām kā cauruļu diametriem. Jāievēro, ka izokinēzi izmanto tikai, lai pieskaņotu plūsmas nosacījumus, nevis lai pieskaņotu lieluma sadalījumu. Tā kā makrodaļiņas ir pietiekami mazas, lai iekļautos šķidruma plūsmās, pēdējais parasti nav vajadzīgs.

Sistēmas ar plūsmas kontroli un koncentrācijas mērīšanu (13. līdz 17. attēls)

Šajās sistēmās paraugu ņem no kopējās izplūdes gāzu plūsmas, noregulējot atšķaidīšanas gaisa plūsmu un kopējo atšķaidīto atgāzu plūsmu. Atšķaidījuma pakāpi noteic pēc tādu marķiergāzu koncentrācijām kā CO2 vai NOx, kas pašas par sevi ir motora izplūdes gāzēs. Koncentrācijas atšķaidītajās izplūdes gāzēs un atšķaidīšanas gaisā izmēra, bet koncentrāciju neapstrādātajā izplūdes gāzē var izmērīt tieši vai noteikt pēc degvielas caurplūduma un oglekļa bilances vienādojuma, ja degvielas sastāvs ir zināms. Sistēmas var kontrolēt pēc aprēķinātās atšķaidījuma pakāpes (13., 14. attēls) vai pēc ieplūdes pārvades caurulē (12., 13., 14. attēls).

Sistēmas ar plūsmas kontroli un caurplūduma mērīšanu (18., 19. attēls)

Šajās sistēmās paraugu ņem no kopējās izplūdes gāzu plūsmas, iestatot atšķaidīšanas gaisa plūsmu un kopējo atšķaidīto izplūdes gāzu plūsmu. Atšķaidījuma pakāpi noteic pēc starpības starp abiem caurplūdumiem. Tā kā abu caurplūdumu relatīvā vērtība var radīt nozīmīgas kļūdas augstākās atšķaidījuma pakāpēs (15 un augstākās), caurplūduma mērītāji attiecībā viens pret otru precīzi jākalibrē. Caurplūdumu regulē vienkārši, uzturot atšķaidītas izplūdes gāzu caurplūdumu nemainīgu un pēc vajadzības mainot atšķaidīšanas gaisa caurplūdumu.

Lietojot daļējas plūsmas atšķaidīšanas sistēmas, jānovērš iespējamie makrodaļiņu zudumi pārvades caurulē, nodrošinot reprezentatīva parauga paņemšanu no motora izplūdes gāzēm un sadalījuma attiecības noteikšanu. Aprakstītajās sistēmās pievērš uzmanību šīm būtiskajām jomām.

Image

Neapstrādātas izplūdes gāzes pārvada no izplūdes caurules EP uz atšķaidīšanas kanālu DT pa pārvades cauruli TT ar izokinētisko paraugu ņemšanas zondi ISP. Izplūdes gāzu diferenciālo spiedienu starp izplūdes cauruli un zondes ieplūdes atveri mēra ar spiediena devēju DPT. Šo signālu pārraida uz plūsmas regulatoru FC1, kas regulē velkmes ventilatoru SB, lai zondes galā uzturētu nulles diferenciālo spiedienu. Ar šiem nosacījumiem izplūdes gāzu ātrumi EP un ISP ir vienādi un plūsma pa ISP un TT ir izplūdes gāzu plūsmas (sadalījuma) nemainīga daļa. Sadalījuma attiecību noteic pēc EP un ISP šķērsgriezumu laukumiem. Atšķaidīšanas gaisa caurplūdumu izmēra ar plūsmas mērīšanas ierīci FM1. Atšķaidījuma pakāpi aprēķina pēc atšķaidīšanas gaisa caurplūduma un sadalījuma attiecības.

Image

Neapstrādātas izplūdes gāzes pārvada no izplūdes caurules EP uz atšķaidīšanas kanālu DT pa pārvades cauruli TT ar izokinētisko paraugu ņemšanas zondi ISP. Izplūdes gāzu diferenciālo spiedienu starp izplūdes cauruli un zondes ieplūdes atveri mēra ar spiediena devēju DPT. Šo signālu pārraida uz plūsmas regulatoru FC1, kas regulē spiedventilatoru PB, lai zondes galā uzturētu nulles diferenciālo spiedienu. To izdara, ņemot mazu daļu atšķaidīšanas gaisa, kura caurplūdums jau izmērīts ar plūsmas mērīšanas ierīci FM1, un padodot to uz TT ar pneimatisko diafragmu. Ar šiem nosacījumiem izplūdes gāzu ātrumi EP un ISP ir vienādi un plūsma pa ISP un TT ir izplūdes gāzu plūsmas (sadalījuma) nemainīga daļa. Sadalījuma attiecību noteic pēc EP un ISP šķērsgriezumu laukumiem. Atšķaidīšanas gaisu iesūc pa DT ar velkmes ventilatoru SB un caurplūdumu izmēra ar FM1 pie DT ieplūdes atveres. Atšķaidījuma pakāpi aprēķina pēc atšķaidīšanas gaisa caurplūduma un sadalījuma attiecības.

Image

Neapstrādātas izplūdes gāzu pārvada no izplūdes caurules EP uz atšķaidīšanas kanālu DT pa paraugu ņemšanas zondi SP un pārvades cauruli TT. Marķiergāzes (CO2 vai NOx) koncentrāciju izmēra neapstrādātās un atšķaidītās izplūdes gāzēs, kā arī atšķaidīšanas gaisā ar izplūdes gāzu analizatoru EGA. Šos signālus pārraida uz plūsmas regulatoru FC2, kas regulē spiedventilatoru PB vai velkmes ventilatoru SB, lai uzturētu vēlamo izplūdes gāzu sadalījumu un atšķaidījuma pakāpi atšķaidīšanas kanālā DT. Atšķaidījuma pakāpi aprēķina pēc marķiergāzes koncentrācijas neapstrādātajās izplūdes gāzēs, atšķaidītajās izplūdes gāzēs un atšķaidīšanas gaisā.

Image

Neapstrādātu izplūdes gāzu pārvada no izplūdes caurules EP uz atšķaidīšanas kanālu DT pa paraugu ņemšanas zondi SP un pārvades cauruli TT. CO2 koncentrācijas izmēra atšķaidītajās izplūdes gāzēs un atšķaidīšanas gaisā ar izplūdes gāzu analizatoru EGA. CO2 un degvielas plūsmas GFUEL signālus pārraida uz plūsmas regulatoru FC2 vai makrodaļiņu paraugu ņemšanas sistēmas plūsmas regulatoru FC3 (skatīt 21. attēlu). FC2 regulē spiedventilatoru PB, FC3 paraugu ņemšanas sūkni P (skatīt 21. attēlu), regulējot sistēmā ieplūstošās plūsmas un no tās izplūstošās plūsmas tā, ka uztur vēlamo izplūdes gāzu sadalījumu un atšķaidījuma pakāpi atšķaidīšanas kanālā DT. Atšķaidījuma pakāpi aprēķina pēc CO2 koncentrācijām un GFUEL, izmantojot oglekļa bilances pieņēmumu.

Image

Neapstrādātu izplūdes gāzu pārvada no izplūdes caurules EP uz atšķaidīšanas kanālu DT pa paraugu ņemšanas zondi SP un pārvades cauruli TT ar negatīvo spiedienu, ko atšķaidīšanas kanālā rada Venturi caurule. Gāzes caurplūdums pa TT ir atkarīgs no momenta apmaiņas Venturi caurules zonā, un tāpēc to ietekmē gāzes absolūtā temperatūra pie TT izejas. Tāpēc izplūdes gāzu sadalījums atbilstīgi caurplūdumam kanālā nav nemainīgs, un atšķaidījuma pakāpe mazas slodzes apstākļos ir nedaudz mazāka nekā lielas slodzes apstākļos. Marķiergāzes (CO2 vai NOx) koncentrācijas izmēra neapstrādātajās izplūdes gāzēs, atšķaidītajās izplūdes gāzēs un atšķaidīšanas gaisā ar izplūdes gāzu analizatoru EGA un atšķaidījuma pakāpi aprēķina pēc tā izmērītajām vērtībām.

Image

Neapstrādātas izplūdes gāzes pārvada no izplūdes caurules EP uz atšķaidīšanas kanālu DT pa paraugu ņemšanas zondi SP un pārvades cauruli TT ar plūsmas dalītāju, kurā ir diafragmu vai Venturi cauruļu komplekts. Pirmais (FD1) atrodas izplūdes caurulē EP, otrais (FD2) atrodas pārvades caurulē TT. Turklāt, lai uzturētu nemainīgu izplūdes gāzu sadalījumu, regulējot EP pretspiedienu un DT spiedienu, ir vajadzīgi divi spiediena regulēšanas vārsti (PCV1 un PCV2). PCV1 atrodas lejpus SP izplūdes caurulē EP, PCV2 atrodas starp spiedventilatoru PB un DT. Marķiergāzes (CO2 vai NOx) koncentrācijas mēra neapstrādātajās izplūdes gāzēs, atšķaidītajās izplūdes gāzēs un atšķaidīšanas gaisā ar izplūdes gāzu analizatoriem EGA. Tie ir vajadzīgi izplūdes gāzu sadalījuma pārbaudei, un tos var izmantot PCV1 un PCV2 regulēšanai, lai precīzi noregulētu sadalījumu. Atšķaidījuma pakāpi aprēķina pēc marķiergāzes koncentrācijām.

Image

Neapstrādātas izplūdes gāzes pārvada no izplūdes caurules EP uz atšķaidīšanas kanālu DT pa pārvades cauruli TT ar plūsmas dalītāju FD3, kas sastāv no vairākām vienāda izmēra (vienāda diametra, garuma un liekuma rādiusa) caurulēm, kuras uzstādītas EP. Izplūdes gāzes pa vienu no šīm caurulēm novada uz DT, un izplūdes gāzes pa pārējām caurulēm laiž caur slāpēšanas kameru DC. Tā izplūdes sadalījumu noteic cauruļu kopējais skaits. Pastāvīgai dalījuma regulēšanai ir vajadzīgs nulles diferenciālais spiediens starp DC un TT izeju, ko mēra ar diferenciālā spiediena devēju DPT. Marķiergāzes (CO2 vai NOx) koncentrācijas mēra neapstrādātajās izplūdes gāzēs, atšķaidītajās izplūdes gāzēs un atšķaidīšanas gaisā ar izplūdes gāzu analizatoriem EGA. Tie ir vajadzīgi izplūdes sadalījuma pārbaudei, un tos var izmantot iesmidzināmā gaisa caurplūduma regulēšanai, lai precīzi noregulētu sadalījumu. Atšķaidījuma pakāpi aprēķina pēc marķiergāzes koncentrācijām.

Image

Neapstrādātas izplūdes gāzes pārvada no izplūdes caurules EP uz atšķaidīšanas kanālu DT pa paraugu ņemšanas zondi SP un pārvades cauruli TT. Kopējo plūsmu pa kanālu regulē ar plūsmas regulatoru FC3 un makrodaļiņu paraugu ņemšanas sistēmas sūkni P (skatīt 18. attēlu). Atšķaidīšanas gaisa plūsmu regulē ar plūsmas regulatoru FC2, kuram par vēlamā izplūdes sadalījuma komandsignāliem var lietot GEXHW, GAIRW vai GFUEL. Parauga ieplūde atšķaidīšanas kanālā DT ir kopējās plūsmas un atšķaidīšanas gaisa plūsmas starpība. Atšķaidīšanas gaisa caurplūdumu mēra ar caurplūduma mērīšanas ierīci FM1, kopējo caurplūdumu ar makrodaļiņu paraugu ņemšanas sistēmas caurplūduma mērīšanas ierīci FM3 (skatīt 21. attēlu). Atšķaidījuma pakāpi aprēķina pēc šiem diviem caurplūdumiem.

Image

Neapstrādātas izplūdes gāzes pārvada no izplūdes caurules EP uz atšķaidīšanas kanālu DT pa paraugu ņemšanas zondi SP un pārvades cauruli TT. Izplūdes sadalījumu un ieplūdi atšķaidīšanas kanālā DT regulē ar plūsmas regulatoru FC2, kas saskaņo spiedventilatora PB un velkmes ventilatora SB plūsmas (vai ātrumus). Tas ir iespējams tāpēc, ka paraugu, kas ir ņemts ar makrodaļiņu paraugu ņemšanas sistēmu, novada atpakaļ atšķaidīšanas kanālā. Par FC2 komandsignāliem var izmantot GEXHW, GAIRW vai GFUEL. Atšķaidīšanas gaisa caurplūdumu mēra ar caurplūduma mērīšanas ierīci FM1, kopējo plūsmu ar plūsmas mērīšanas ierīci FM2. Atšķaidījuma pakāpi aprēķina pēc šiem diviem caurplūdumiem.

2.2.1.   Komponenti 11. līdz 19. attēlā

EP izplūdes caurule

Izplūdes cauruli var izolēt. Lai samazinātu izplūdes caurules siltuma inerci, ieteicamā biezuma attiecība pret diametru ir 0, 015 vai mazāka. Lokanu daļu lietošanu ierobežo ar garuma attiecību pret diametru, kas ir 12 vai mazāka. Liekumus samazina līdz minimumam, lai samazinātu nosēdumu veidošanos inerces dēļ. Ja sistēmā ir izmēģinājumu stenda trokšņa slāpētājs, trokšņa slāpētāju arī var izolēt.

Izokinētiskā sistēmā izplūdes caurulei jābūt bez līkumiem, liekumiem un straujām diametra maiņām vismaz 6 caurules diametrus augšpus un 3 caurules diametrus lejpus zondes gala. Gāzes ātrumam parauga ņemšanas zonā jābūt lielākam par 10 m/s, izņemot brīvgaitas režīmu. Izplūdes gāzu spiediena svārstības nedrīkst pārsniegt vidēji ± 500 Pa. Neviens spiediena svārstību samazināšanas pasākums, kas pārsniedz šasijas veida izplūdes sistēmas izmantošanu (to skaitā trokšņa slāpētājs un pēcapstrādes ierīces), nedrīkst mainīt motora darbību un izraisīt makrodaļiņu nosēšanos.

Sistēmās bez izokinētiskās zondes ir ieteicama taisna caurule sešu caurules diametru garumā augšpus un triju caurules diametru garumā lejpus zondes gala.

SP makrodaļiņu paraugu ņemšanas zonde (10., 14., 15., 16., 18., 19. attēls)

Iekšējais diametrs ir 4 mm. Izplūdes caurules un zondes diametra attiecība ir 4. Zonde ir vaļēja caurule, kas vērsta pret plūsmu pa izplūdes caurules centra līniju, vai zonde ar daudzām atverēm, kā aprakstīts pie SP1 1.2.1. iedaļā 5. attēlā.

ISP izokinētiskā paraugu ņemšanas zonde (11., 12. attēls)

Izokinētiskā parauga ņemšanas zonde jāuzstāda pretī plūsmai pa izplūdes caurules centra līniju, lai izpildītu EP iedaļā minētos plūsmas nosacījumus, un zonde ir jākonstruē tā, lai iegūtu neapstrādātās izplūdes gāzu proporcionālu paraugu. Minimālais iekšējais diametrs ir 12 mm.

Izokinētiskai izplūdes sadalīšanai, uzturot nulles diferenciālo spiedienu starp EP un ISP, ir vajadzīga regulēšanas sistēma. Ar šiem nosacījumiem izplūdes gāzu ātrumi EP un ISP ir vienādi un masas plūsma pa ISP ir izplūdes gāzu plūsmas nemainīga daļa. ISP jāsavieno ar diferenciālā spiediena devēju DPT. Nulles diferenciālo spiedienu starp EP un ISP nodrošina ar plūsmas regulatoru FC1.

FD1, FD2 plūsmas dalītājs (16. attēls)

Attiecīgi izplūdes caurulē EP un pārvades caurulē TT uzstāda Venturi cauruļu vai diafragmu komplektu, lai nodrošinātu neapstrādātās izplūdes gāzu proporcionālu paraugu. Proporcionālai sadalīšanai, regulējot spiedienus EP un DT, ir vajadzīga regulēšanas sistēma, kas sastāv no diviem spiediena regulēšanas vārstiem PCV1 un PCV2.

FD3 plūsmas dalītājs (17. attēls)

Izplūdes caurulē EP uzstāda cauruļu komplektu (vairāku cauruļu mezglu), lai iegūtu neapstrādātu izplūdes gāzu proporcionālu paraugu. Pa vienu no caurulēm izplūdes gāzes ievada atšķaidīšanas kanālā DT, bet pa pārējām caurulēm izplūdes gāzes izvada uz slāpēšanas kameru DC. Tām jābūt vienāda izmēra (vienāda diametra, garuma, liekuma rādiusa) caurulēm, lai izplūdes sadalījums būtu atkarīgs no kopējā cauruļu skaita. Proporcionālai sadalīšanai, uzturot nulles diferenciālo spiedienu starp vairāku cauruļu mezgla izeju slāpēšanas kamerā DC un TT izeju, ir vajadzīga regulēšanas sistēma. Ar šiem nosacījumiem izplūdes gāzu ātrumi EP un FD3 ir proporcionāli, un plūsma pa TT ir izplūdes gāzu plūsmas nemainīga daļa. Abi punkti ir jāpievieno diferenciālā spiediena devējam DPT. Nulles diferenciālo spiedienu regulē ar plūsmas regulatoru FC1.

Izplūdes gāzu analizators EGA (13., 14., 15., 16., 17. attēls)

Var izmantot CO2 vai NOx (ar oglekļa bilances metodi tikai CO2) analizatorus. Analizatorus kalibrē tāpat kā analizatorus gāzveida emisijas mērīšanai. Lai noteiktu koncentrācijas starpības, var lietot vienu analizatoru vai vairākus analizatorus. Mērīšanas sistēmu precizitātei jābūt tādai, lai GEDFW,i precizitāte ir ± 4 % robežās.

TT pārvades caurule (11. līdz 19. attēlam)

Pārvades caurulei jābūt:

iespējami īsai un ne garākai par 5 m,

ar tādu diametru, kas ir vienāds ar zondes diametru vai lielāks, bet nepārsniedz 25 mm,

ar izeju pa atšķaidīšanas kanāla centra līniju virzienā lejup pa plūsmu.

Ja caurule ir 1 metru gara vai īsāka, tad tā jāizolē ar materiālu, kura maksimālā siltumvadītspēja ir 0,05 W/m*K, un izolācijas radiālajam biezumam jāatbilst zondes diametram. Ja caurule ir garāka par 1 metru, tā jāizolē un jāsakarsē vismaz līdz sienas 523 K (250 °C) temperatūrai.

DPT diferenciālā spiediena devējs (11., 12., 17. attēls)

Diferenciālā spiediena devēja diapazonam jābūt ± 500 Pa vai mazākam.

FC1 plūsmas regulators (11., 12., 17. attēls)

Izokinētiskās sistēmās (11., 12. attēls) ir vajadzīgs plūsmas regulators, lai uzturētu nulles diferenciālo spiedienu starp EP un ISP. Regulēt var:

a)

regulējot velkmes ventilatora SB ātrumu vai plūsmu un katrā režīmā uzturot spiedventilatora PB ātrumu nemainīgu (11. attēls) vai

b)

pieskaņojot velkmes ventilatoru SB atšķaidītās izplūdes gāzu nemainīgai masas plūsmai un regulējot spiedventilatora PB plūsmu un tātad izplūdes parauga plūsmu pārvades caurules TT gala zonā (12. attēls).

Regulējama spiediena sistēmas gadījumā paliekošā kļūda regulēšanas kontūrā nedrīkst pārsniegt ± 3 Pa. Spiediena svārstības atšķaidīšanas kanālā nedrīkst pārsniegt vidēji ± 250 Pa.

Vairāku cauruļu sistēmā (17. attēls) ir vajadzīgs plūsmas regulators izplūdes proporcionālai sadalīšanai, lai uzturētu nulles diferenciālo spiedienu starp vairāku cauruļu mezgla izeju un TT izeju. Regulēšanu veic, regulējot atšķaidīšanas kanālā iesmidzināmā gaisa caurplūdumu pie TT izejas.

PCV1, PCV2 spiediena regulēšanas vārsti (16. attēls)

Sapārotu Venturi cauruļu/sapārotu diafragmu sistēmai ir vajadzīgi divi spiediena regulēšanas vārsti proporcionālai plūsmas sadalīšanai, regulējot EP pretspiedienu un spiedienu atšķaidīšanas kanālā DT. Vārstus novieto EP lejpus SP un starp PB un DT.

DC slāpēšanas kamera (17. attēls)

Slāpēšanas kameru uzstāda pie vairāku cauruļu mezgla izejas, lai līdz minimumam samazinātu spiediena svārstības izplūdes caurulē EP.

VN Venturi caurule (15. attēls)

Venturi cauruli uzstāda atšķaidīšanas kanālā DT, lai radītu negatīvu spiedienu pārvades caurules TT izejas zonā. Gāzes caurplūdumu pa TT nosaka momenta apmaiņa Venturi caurules zonā, un šis caurplūdums lielākoties ir proporcionāls spiedventilatora PB caurplūdumam, kas rada nemainīgu atšķaidījuma pakāpi. Tā kā momenta apmaiņu ietekmē temperatūra pie TT izejas un spiedienu starpība starp EP un DT, tad mazai slodzei atbilst nedaudz mazāka faktiskā atšķaidījuma pakāpe nekā lielai slodzei.

FC2 plūsmas regulators (13., 14., 18., 19. attēls, pēc izvēles)

Plūsmas regulatoru var izmantot, lai regulētu spiedventilatora PB un/vai velkmes ventilatora SB plūsmu. To var pievienot izplūdes, ieplūdes gaisa vai degvielas plūsmas signāliem un/vai CO2 vai NOx diferenciālsignāliem. Izmantojot saspiesta gaisa padevi (18. attēls), FC2 tieši regulē gaisa plūsmu.

FM1 plūsmas mērīšanas ierīce (11., 12., 18., 19. attēls)

Gāzes mērītājs vai cits plūsmas mērierīce atšķaidīšanas gaisa plūsmas mērīšanai. FM1 nav obligāts, ja spiedventilators PB ir kalibrēts plūsmas mērīšanai.

FM2 plūsmas mērīšanas ierīce (19. attēls)

Gāzes mērītājs vai cits plūsmas mērierīce atšķaidītas izplūdes gāzu plūsmas mērīšanai. FM2 nav obligāts, ja velkmes ventilators SB ir kalibrēts plūsmas mērīšanai.

PB spiedventilators (11., 12., 13., 14., 15., 16., 19. attēls)

Lai regulētu atšķaidīšanas gaisa caurplūdumu, PB var pievienot plūsmas regulatoram FC1 vai FC2. PB nav vajadzīgs, ja lieto droseļvārstu. Ar PB var mērīt atšķaidīšanas gaisa plūsmu, ja tas ir kalibrēts.

SB velkmes ventilators (11., 12., 13., 16., 17., 19. attēls)

Tikai dalītas paraugu ņemšanas sistēmām. Ar SB var mērīt atšķaidītas izplūdes gāzu plūsmu, ja tas ir kalibrēts.

DAF atšķaidīšanas gaisa filtrs (11. līdz 19. attēlam)

Lai atbrīvotos no fona ogļūdeņražiem, ir ieteicams atšķaidīšanas gaisu filtrēt un attīrīt ar kokogles skruberi. Pēc motora izgatavotāja lūguma atšķaidīšanas gaisa paraugus ņem saskaņā ar labu inženierijas praksi, lai noteiktu fona makrodaļiņu koncentrāciju, ko pēc tam var atskaitīt no atšķaidītajās izplūdes gāzēs izmērītajām vērtībām.

DT atšķaidīšanas kanāls (11. līdz 19. attēlam)

Atšķaidīšanas kanālam:

jābūt pietiekami garam, lai radītu izplūdes un atšķaidīšanas gaisa pilnīgu sajaukšanos turbulentas plūsmas apstākļos;

jābūt izgatavotam no nerūsējoša tērauda, kura:

biezuma attiecība pret diametru ir 0,025 vai mazāka, ja atšķaidīšanas kanālu iekšējais diametrs pārsniedz 75 mm;

nominālais biezums nav mazāks par 1,5 mm, ja atšķaidīšanas kanālu iekšējais diametrs ir 75 mm vai mazāks;

jābūt vismaz ar 75 mm diametru, ja izmanto dalīto paraugu ņemšanu;

ieteicams būt vismaz ar 25 mm diametru, ja izmanto pilno paraugu ņemšanu;

karsējams ne vairāk kā līdz 325 K (52 °C) sienas temperatūrai, karsējot tieši vai ar atšķaidīšanas gaisa iepriekšēju karsēšanu, ar nosacījumu, ka gaisa temperatūra nepārsniedz 325 K (52 °C) pirms izplūdes ievadīšanas atšķaidīšanas kanālā;

izolējams.

Motora izplūdi rūpīgi sajauc ar atšķaidīšanas gaisu. Dalītas paraugu ņemšanas sistēmām sajaukšanas kvalitāti pārbauda pēc izmantošanas sākuma ar kanāla CO2 profilu, motoram darbojoties (vismaz četros mērījumu punktos vienādos atstatumos). Vajadzības gadījumā var izmantot sajaukšanas diafragmu.

Piezīme: Ja apkārtējā temperatūra atšķaidīšanas kanāla (DT) tuvumā ir zemāka par 293 K (20 °C), tad jāveic piesardzības pasākumi, lai izvairītos no makrodaļiņu zudumiem uz atšķaidīšanas kanāla vēsajām sienām. Tāpēc ir ieteicams sakarsēt un/vai izolēt kanālu iepriekš norādītajās robežās. Ja motora slodze ir liela, tad kanālu var dzesēt ar tādiem neagresīviem līdzekļiem kā cirkulācijas ventilatoru, ja dzesētājvides temperatūra nav zemāka par 293 K (20 °C).

HE siltummainis (16., 17. attēls)

Siltummainim jābūt ar pietiekamu ietilpību, lai temperatūru pie velkmes ventilatora SB ieplūdes atveres uzturētu ± 11 K robežās no testā novērojamās vidējās darba temperatūras.

2.3.   Pilnas plūsmas atšķaidīšanas sistēma

Še aprakstīta atšķaidīšanas sistēma, kas redzama 20. attēlā un kas pamatojas uz kopējo izplūdes atšķaidīšanu, izmantojot CVS (nemainīga tilpuma paraugu ņemšanas) metodi. Izplūdes un atšķaidīšanas gaisa kopējais tilpums jāizmēra. Var izmantot PDP vai CFV sistēmu.

Lai turpmāk savāktu makrodaļiņas, atšķaidīto izplūdes gāzu paraugu laiž uz makrodaļiņu paraugu ņemšanas sistēmu (2.4. iedaļa, 21. un 22. attēls). Ja to dara tieši, tad to sauc par vienkāršo atšķaidīšanu. Ja paraugu vēlreiz atšķaida otrējās atšķaidīšanas kanālā, tad to sauc par divkāršo atšķaidīšanu. Tā noder, ja ar vienkāršo atšķaidīšanu nevar izpildīt prasību par filtra virsmas temperatūru. Lai gan daļēji tā ir atšķaidīšanas sistēma, divkāršās atšķaidīšanas sistēma ir aprakstīta 2.4. iedaļā, 22. attēlā kā makrodaļiņu paraugu ņemšanas sistēma, jo daudzas tās daļas ir kopīgas ar tipisku makrodaļiņu paraugu ņemšanas sistēmu.

Image

Visu neatšķaidīto izplūdes gāzu daudzumu atšķaidīšanas kanālā DT sajauc ar atšķaidīšanas gaisu. Atšķaidītās izplūdes gāzu caurplūdumu mēra ar pozitīvā darba tilpuma sūkni PDP vai ar kritiskās plūsmas Venturi cauruli CFV. Proporcionālu makrodaļiņu paraugu var ņemt plūsmu noteikt ar siltummaini HE vai elektronisko plūsmas kompensāciju EFC. Tā kā makrodaļiņu masas noteikšana pamatojas uz kopējo atšķaidītās izplūdes gāzu plūsmu, atšķaidījuma pakāpe nav jāaprēķina.

2.3.1.   Komponenti 20. attēlā

EP izplūdes caurule

Izplūdes caurules garums no motora izplūdes kolektora izejas, turbokompresora izplūdes atveres vai pēcapstrādes ierīces līdz atšķaidīšanas kanālam nedrīkst pārsniegt 10 m. Ja izplūdes caurules garums lejpus motora izplūdes kolektora, turbokompresora izplūdes atveres vai pēcapstrādes ierīces pārsniedz 4 m, tad visa caurule, kas pārsniedz 4 m, jāizolē, izņemot iekšvada dūmmēru, ja to lieto. Izolācijas radiālajam biezumam jābūt vismaz 25 mm. Izolācijas materiāla siltumvadītspējas vērtība nedrīkst pārsniegt 0,1 W/mK 673 K (400 °C) temperatūrā. Lai samazinātu izplūdes caurules siltuma inerci, ieteicamā biezuma attiecība pret diametru ir 0,015 vai mazāka. Lokanu daļu lietošanu ierobežo ar garuma attiecību pret diametru, kas ir 12 vai mazāka.

PDP pozitīvā darba tilpuma sūknis

PDP mēra kopējo atšķaidīto izplūdes plūsmu no sūkņa apgriezienu skaita un sūkņa darba tilpuma. Izplūdes sistēmas pretspiedienu nedrīkst mākslīgi pazemināt ar PDP vai atšķaidīšanas gaisa ieplūdes sistēmu. Statiskajam izplūdes pretspiedienam, ko mēra, PDP sistēmai darbojoties, jāpaliek ± 1,5 kPa robežās no statiskā spiediena, kuru mēra atbilstīgi identiem motora apgriezieniem un slodzei bez savienojuma ar PDP. Gāzu maisījuma temperatūrai tieši pirms PDP jābūt ± 6 K robežās no testā novērotās vidējās darba temperatūras, neizmantojot plūsmas kompensāciju. Plūsmas kompensāciju var izmantot tikai tad, ja temperatūra pie PDP ieplūdes atveres nepārsniedz 323 K (50 °C).

CFV kritiskās plūsmas Venturi

CFV mēra kopējo atšķaidīto izplūdes plūsmu, uzturot plūsmu robežstāvoklī (kritiskā plūsma). Statiskajam izplūdes pretspiedienam, ko mēra, CFV sistēmai darbojoties, jāpaliek ± 1,5 kPa robežās no statiskā spiediena, kuru mēra atbilstīgi identiem motora apgriezieniem un slodzei bez savienojuma ar PDP. Gāzu maisījuma temperatūrai tieši pirms CFV jābūt ± 11 K robežās no testā novērotās vidējās darba temperatūras, neizmantojot plūsmas kompensāciju.

HE siltummainis (pēc izvēles, ja izmanto EFC)

Siltummaiņa ietilpībai jābūt pietiekamai, lai uzturētu temperatūru še iepriekš noteiktajās robežās.

EFC elektroniskā plūsmas kompensācija (pēc izvēles, ja lieto HE)

Ja temperatūru pie PDP vai CFV ieplūdes atveres neuztur iepriekš noteiktajās robežās, tad ir vajadzīga plūsmas kompensācijas sistēma, lai nepārtraukti mērītu caurplūdumu un regulētu proporcionālo paraugu ņemšanu makrodaļiņu sistēmā. Šajā nolūkā nepārtraukti mērītā caurplūduma signālus izmanto, lai attiecīgi koriģētu parauga caurplūdumu makrodaļiņu paraugu ņemšanas sistēmas makrodaļiņu filtros (skatīt 2.4. iedaļu, 21., 22. attēlu).

DT atšķaidīšanas kanāls

Atšķaidīšanas kanālam jābūt:

ar pietiekami mazu diametru, lai radītu turbulentu plūsmu (Reinoldsa skaitlis lielāks par 4 000), un pietiekami garš, lai notiktu pilnīga izplūdes gāzu un gaisa sajaukšanās. Vajadzības gadījumā var izmantot sajaukšanas diafragmu;

vismaz ar 460 mm diametru un vienkāršās atšķaidīšanas;

vismaz ar 210 mm diametru un divkāršās atšķaidīšanas sistēmu;

izolējams.

Motora izplūdes gāzi virza lejup uz punktu, kur tās ievada atšķaidīšanas kanālā un labi sajauc.

Izmantojot vienkāršo atšķaidīšanu, paraugu no atšķaidīšanas kanāla pārvada uz makrodaļiņu paraugu ņemšanas sistēmu (2.4. iedaļa, 21. attēls). PDP vai CFV caurlaidībai jābūt pietiekamai, lai atšķaidītās izplūdes gāzes tieši pirms pirmējā makrodaļiņu filtra uzturētu 325 K (52 °C) vai zemākā temperatūrā.

Izmantojot divkāršo atšķaidīšanu, paraugu no atšķaidīšanas kanāla pārvada uz otrējās atšķaidīšanas kanālu, kur to vēlreiz atšķaida, un pēc tam laiž cauri paraugu ņemšanas filtriem (2.4. iedaļa, 22. attēls). PDP vai CFV caurlaidībai jābūt pietiekamai, lai atšķaidīšanas kanālā, paraugu ņemšanas zonā, uzturētu tādu atšķaidīto izplūdes gāzu plūsmas temperatūru, kas ir 464 K (191 °C) vai mazāka. Otrējās atšķaidīšanas sistēmai jānodrošina pietiekams otrējās atšķaidīšanas gaisa daudzums, lai uzturētu tādu divkārt atšķaidīto izplūdes plūsmas temperatūru, kas tieši pirms galvenā makrodaļiņu filtra ir 325 K (52 °C) vai mazāka.

DAF atšķaidīšanas gaisa filtrs

Lai atbrīvotos no fona ogļūdeņražiem, ir ieteicams atšķaidīšanas gaisu filtrēt un attīrīt ar kokogles skruberi. Pēc motora izgatavotāja lūguma atšķaidīšanas gaisa paraugus ņem saskaņā ar labu inženierijas praksi, lai noteiktu fona makrodaļiņu koncentrāciju, ko pēc tam var atskaitīt no atšķaidītajās izplūdes gāzēs izmērītajām vērtībām.

PSP makrodaļiņu paraugu ņemšanas zonde

Zonde ir PTT priekšējā daļa, un:

to uzstāda pret plūsmu vietā, kur atšķaidīšanas gaiss ir labi sajaukts ar izplūdes gāzēm, t. i., uz atšķaidīšanas kanāla (DT) centra līnijas aptuveni 10 kanāla diametru atstatumā plūsmas virzienā lejpus vietas, kur izplūdes gāzes ieplūst atšķaidīšanas kanālā;

tai jābūt vismaz ar 12 mm iekšējo diametru;

karsējams ne vairāk kā līdz 325 K (52 °C) sienas temperatūrai, karsējot tieši vai ar atšķaidīšanas gaisa iepriekšēju karsēšanu, ar nosacījumu, ka gaisa temperatūra nepārsniedz 325 K (52 °C) pirms izplūdes gāzu ievadīšanas atšķaidīšanas kanālā;

izolējams.

2.4.   Makrodaļiņu paraugu ņemšanas sistēma

Makrodaļiņu paraugu ņemšanas sistēma ir vajadzīga, lai makrodaļiņas savāktu uz makrodaļiņu filtra. Pilnai paraugu ņemšanai ar daļēju plūsmas atšķaidīšanu, visu atšķaidīto izplūdes gāzu paraugu laižot caur filtriem, atšķaidīšanas (2.2. iedaļa, 14., 18 attēls) un paraugu ņemšanas sistēma parasti ir apvienots mezgls. Dalītai paraugu ņemšanai ar daļējās plūsmas atšķaidīšanu vai pilnās plūsmas atšķaidīšanu, laižot caur filtriem tikai daļu atšķaidīto izplūdes gāzu, atšķaidīšanas sistēma (2.2. iedaļa, 11.,12., 13., 15., 16., 17., 19 attēls; 2.3. iedaļa, 20. attēls) un paraugu ņemšanas sistēma parasti ir atsevišķi mezgli.

Šajā direktīvā pilnas plūsmas atšķaidīšanas sistēmas divkāršo atšķaidīšanas sistēmu DDS (22. attēls) uzskata par 21. attēlā parādītās parastās makrodaļiņu paraugu ņemšanas sistēmas īpašu paveidu. Divkāršā atšķaidīšanas sistēma ietver visas makrodaļiņu paraugu ņemšanas sistēmas svarīgās sastāvdaļas, tādas kā filtru turētāji un paraugu ņemšanas sūknis.

Lai izvairītos no regulēšanas kontūru ietekmes, ir ieteicams paraugu ņemšanas sūkni darbināt visā testa laikā. Izmantojot viena filtra metodi, parauga laišanai caur parauga ņemšanas filtriem vēlamajos laikos izmanto apvada sistēmu. Līdz minimumam jāsamazina pārslēgšanas procedūras ietekme uz regulēšanas kontūriem.

Image

Atšķaidītu izplūdes gāzu paraugu ņem no parciālās plūsmas atšķaidīšanas kanāla DT vai no pilnās plūsmas atšķaidīšanas sistēmas caur makrodaļiņu parauga ņemšanas zondi PSP un makrodaļiņu pārvades cauruli PTT, izmantojot parauga ņemšanas sūkni P. Paraugu laiž caur filtru turētājiem FH, kuros ir makrodaļiņu paraugu ņemšanas filtri. Parauga caurplūdumu regulē ar plūsmas regulatoru FC3. Ja izmanto elektronisko plūsmas kompensāciju EFC (skatīt 20. attēlu), tad par FC3 komandsignālu izmanto atšķaidīto izplūdes gāzu plūsmu.

Image

Atšķaidīto izplūdes gāzu paraugu no pilnas plūsmas atšķaidīšanas sistēmas atšķaidīšanas kanāla DT pa makrodaļiņu paraugu ņemšanas zondi PSP un makrodaļiņu pārvades cauruli PTT novada uz otrējās atšķaidīšanas kanālu, kur to vēlreiz atšķaida. Paraugu pēc tam laiž caur filtra turētāju FH, kurā ir makrodaļiņu paraugu ņemšanas filtri. Atšķaidīšanas gaisa caurplūdums parasti ir nemainīgs, bet parauga caurplūdumu regulē ar plūsmas regulatoru FC3. Ja izmanto elektronisko plūsmas kompensāciju EFC (skatīt 20. attēlu), par FC3 komandsignālu izmanto kopējo atšķaidīto izplūdes gāzu plūsmu.

2.4.1.   Komponenti 21. un 22. attēlā.

PTT makrodaļiņu pārvades caurule (21., 22. attēls)

Makrodaļiņu pārvades caurule nedrīkst būt garāka par 1 020 mm, un tās garums jāsamazina līdz minimumam, ja tas ir iespējams. Attiecīgos gadījumos (tas ir, daļējas plūsmas atšķaidīšanas dalītas paraugu ņemšanas sistēmās un pilnas plūsmas atšķaidīšanas sistēmās) ieskaita paraugu ņemšanas zondi (attiecīgi skatīt SP, ISP, PSP 2.2. un 2.3. iedaļu) garumu.

Šie izmēri ir spēkā:

daļējas plūsmas atšķaidīšanas dalītas paraugu ņemšanas un pilnas plūsmas vienkāršas atšķaidīšanas sistēmās no zondes (attiecīgi SP, ISP, PSP) gala līdz filtra turētājam;

daļējas plūsmas atšķaidīšanas pilnas parauga ņemšanas sistēmās no atšķaidīšanas kanāla gala līdz filtra turētājam;

pilnas plūsmas divkāršas atšķaidīšanas sistēmās no zondes (PSP) gala līdz otrējās atšķaidīšanas kanālam.

Pārvades caurule:

var būt karsējama ne vairāk kā līdz 325 K (52 °C) sienas temperatūrai, karsējot tieši vai ar atšķaidīšanas gaisa iepriekšēju karsēšanu ar nosacījumu, ka gaisa temperatūra nepārsniedz 325 K (52 °C) pirms izplūdes gāzu ievadīšanas atšķaidīšanas kanālā;

izolējama.

SDT otrējās atšķaidīšanas kanāls (22. attēls)

Otrējās atšķaidīšanas kanālam jābūt vismaz ar 75 mm diametru un pietiekami garam, lai nodrošinātu to, ka divkārt atšķaidītais paraugs tajā atrodas vismaz 0,25 sekundes. Pirmējā filtra turētājs FH jānovieto 300 mm robežās no SDT izejas.

Otrējās atšķaidīšanas kanāls var būt:

karsējams ne vairāk kā līdz 325 K (52 °C) sienas temperatūrai, karsējot tieši vai ar atšķaidīšanas gaisa iepriekšēju karsēšanu, ar nosacījumu, ka gaisa temperatūra nepārsniedz 325 K (52 °C) pirms izplūdes gāzu ievadīšanas atšķaidīšanas kanālā;

izolējams.

FH filtra turētājs (21., 22. attēls)

Pirmējais filtrs un palīgfiltrs var būt vienā korpusā vai katrs savā korpusā. Jānodrošina atbilstība III pielikuma 4. papildinājuma 4.1.3. iedaļas prasībām.

Filtra turētājs var būt

karsējams ne vairāk kā līdz 325 K (52 °C) sienas temperatūrai, karsējot tieši vai ar atšķaidīšanas gaisa iepriekšēju karsēšanu, ar nosacījumu, ka gaisa temperatūra nepārsniedz 325 K (52 °C) pirms izplūdes gāzu ievadīšanas atšķaidīšanas kanālā;

izolējams.

P paraugu ņemšanas sūknis (21., 22. attēls)

Makrodaļiņu paraugu ņemšanas sūkni novieto pietiekami tālu no kanāla, lai ieplūstošās gāzes temperatūru uzturētu nemainīgu (± 3 K), ja neizmanto plūsmas korekciju ar FC3.

DP atšķaidīšanas gaisa sūknis (22. attēls)

Atšķaidīšanas gaisa sūkni novieto tā, lai padotā otrējās atšķaidīšanas gaisa temperatūra ir 298 K ± 5 K (25 °C ± 5 °C), ja atšķaidīšanas gaisu iepriekš nekarsē.

FC3 plūsmas regulators (21., 22. attēls)

Plūsmas regulatoru lieto, lai kompensētu makrodaļiņu parauga caurplūduma temperatūras un pretspiediena svārstības, kas rodas parauga ceļā, ja citi līdzekļi nav pieejami. Plūsmas regulators ir vajadzīgs, ja izmanto elektronisko plūsmas kompensāciju EFC (skatīt 20. attēlu).

FM3 plūsmas mērīšanas ierīce (21., 22. attēls)

Gāzes skaitītāju vai plūsmas mērierīci makrodaļiņu parauga plūsmai novieto pietiekami tālu no paraugu ņemšanas sūkņa P, lai ieplūdes gāzes temperatūra paliek nemainīga (± 3 K), ja plūsmu nekoriģē ar FC3.

FM4 plūsmas mērīšanas ierīce (22. attēls)

Gāzes skaitītāju vai plūsmas mērierīci atšķaidīšanas gaisa plūsmai novieto tā, lai ieplūdes gāzes temperatūra paliek 298 K ± 5 K (25 °C ± 5 °C) robežās.

BV lodvārsts (pēc izvēles)

Lodvārsta iekšējais diametrs nedrīkst būt mazāks par makrodaļiņu pārvades caurules PTT iekšējo diametru, un pārslēgšanas laikam jābūt īsākam par 0,5 sekundēm.

Piezīme: Ja apkārtējā temperatūra PSP, PTT, SDT un FH tuvumā ir zemāka par 293 K (20 °C), jāveic piesardzības pasākumi, lai novērstu makrodaļiņu zudumus uz šo daļu vēsās sienas. Tāpēc ir ieteicams karsēt un/vai izolēt šīs daļas attiecīgajos aprakstos norādītajās robežās. Ieteicams arī nepieļaut to, ka filtra virsmas temperatūra parauga ņemšanas laikā nav zemāka par 293 K (20 °C).

Lielas motora slodzes laikā iepriekšminētās daļas var dzesēt ar tādiem neagresīviem līdzekļiem kā cirkulācijas ventilatoru, dzesētājvides temperatūra nav zemāka par 293 K (20 °C).

3.   DŪMU NOTEIKŠANA

3.1.   Ievads

Sīki izstrādāti ieteicamo dūmmēru sistēmu apraksti ir 3.2. un 3.3. iedaļā un 23. un 24. attēlā. Tā kā dažādas konfigurācijas var dot līdzvērtīgus rezultātus, precīza atbilstība 23. un 24. attēlam nav vajadzīga. Lai nodrošinātu papildu informāciju un koordinētu komponentu sistēmu funkcijas, var lietot tādas papildu ierīces kā vārstus, solenoīdus, sūkņus un slēdžus. Var atteikties no dažiem komponentiem, kas nav vajadzīgi dažu sistēmu precizitātes uzturēšanai, ja atteikšanās pamatojas uz labu inženierijas apsvērumu.

Mērīšanas princips ir tas, ka gaismu laiž caur noteikta biezuma dūmu slāni, un krītošo gaismu, kas sasniedz uztvērēju, izmanto, lai novērtētu vides gaismas dzēšanas īpašības. Atkarībā no aparāta konstrukcijas dūmus var mērīt izplūdes caurulē (ar pilnas plūsmas iekšvada dūmmēru), izplūdes caurules galā (ar pilnas plūsmas vada gala dūmmēru) vai, ņemot paraugu no izplūdes caurules (lietojot daļējas plūsmas dūmmēru). Lai pēc dūmainības signāla noteiktu gaismas absorbcijas koeficientu, ierīces optiskā ceļa garumu norāda ierīces izgatavotājs.

3.2.   Pilnas plūsmas dūmmērs

Var lietot divu vispārīgu veidu pilnas plūsmas dūmmērus (23. attēls). Ar iekšvada dūmmēru pilna izplūdes gāzu staba dūmainību mēra izplūdes caurules iekšpusē. Šā veida dūmmēru lietderīgā optiskā ceļa garums ir dūmmēra konstrukcijas funkcija.

Ar vada gala dūmmēru pilna izplūdes gāzu staba dūmainību mēra pie izplūdes caurules izejas. Šā veida dūmmēra lietderīgā optiskā ceļa garums ir funkcija, kas izsaka izplūdes caurules konstrukciju un attālumu no izplūdes caurules gala līdz dūmmēram.

Image

3.2.1.   Komponenti 23. attēlā

EP izplūdes caurule

Ja lieto iekšvada dūmmēru, tad izplūdes caurules diametram jābūt vienādam 3 izplūdes caurules diametru garumā augšpus vai lejpus mērīšanas zonas. Ja mērīšanas zonas diametrs ir lielāks par izplūdes caurules diametru, tad ieteicama caurule ar pakāpenisku pāreju pirms mērīšanas zonas.

Ja lieto vada gala dūmmēru tad izplūdes caurules pēdējo 0,6 m šķērsgriezumam jābūt apaļam un brīvam no līkumiem un liekumiem. Izplūdes caurules galam jābūt taisnam. Dūmmēru uzstāda pret staba centru 25 ± 5 mm no izplūdes caurules gala.

OPL optiskā ceļa garums

Dūmu aptumšotā optiskā ceļa garumu no dūmmēra gaismas avota līdz uztvērējam pēc vajadzības koriģē atbilstīgi nevienmērīgumam, ko rada blīvuma novirzes un blakusefekts. Optiskā ceļa garumu norāda ierīces izgatavotājs, ņemot vērā visus pasākumus pret apkvēpšanu (piemēram, gaisa izpūšanu/tīrīšanu). Ja optiskā ceļa garums nav zināms, tad tas jānoteic saskaņā ar ISO IDS 11614 11.6.5. iedaļu. Lai optiskā ceļa garumu noteiktu pareizi, izplūdes gāzu ātrumam jābūt vismaz 20 m/s.

LS gaismas avots

Gaismas avots ir kvēlspuldze ar krāsu temperatūru no 2 800 līdz 3 250 K vai zaļas gaismas diode (LED) ar spektra maksimumu no 550 līdz 570 nm. Gaismas avots no apkvēpšanas jāaizsargā ar tādiem līdzekļiem, kas neietekmē optiskā ceļa garumu, pārsniedzot izgatavotāja specifikācijas.

LD gaismas detektors

Detektors ir fotoelements vai fotodiode (ar filtru, ja vajadzīgs). Ja gaismas avots ir kvēlspuldze, tad uztvērēja signāla spektra maksimumam jābūt līdzīgam cilvēka acs fotoperiodiskajai līknei (signāla maksimumam) diapazonā no 550 līdz 570 nm, līdz mazāk nekā 4 % no šā signāla maksimuma zem 430 nm un virs 680 nm. Gaismas detektors no apkvēpšanas jāaizsargā ar tādiem līdzekļiem, kas neietekmē optiskā ceļa garumu, pārsniedzot izgatavotāja specifikācijas.

CL kolimējoša lēca

Izejošā gaisma jākolimē staru kūlī, kura maksimālais diametrs ir 30 mm. Staru kūlī stariem jābūt paralēliem, pielaidei nepārsniedzot 3° no optiskās ass.

T1 temperatūras devējs (pēc izvēles)

Izplūdes gāzu temperatūru var kontrolēt visu testa laiku.

3.3.   Daļējas plūsmas dūmmērs

Ar daļējas plūsmas dūmmēru (24. attēls) no izplūdes caurules ņem reprezentatīvu izplūdes gāzu paraugu un pārvades cauruli laiž uz mērīšanas kameru. Šā veida dūmmēru lietderīgā optiskā ceļa garums ir dūmmēra konstrukcijas funkcija. Nākamajā iedaļā minētie reakcijas laiki attiecas uz dūmmēra minimālo caurplūdumu, ko norādījis ierīces izgatavotājs.

Image

3.3.1.   Komponenti 24. attēlā

EP izplūdes caurule

Izplūdes caurulei jābūt taisnai caurulei vismaz 6 caurules diametrus augšpus un 3 caurules diametrus lejpus zondes gala.

SP paraugu ņemšanas zonde

Paraugu ņemšanas zondei jābūt vaļējai caurulei, kas vērsta pret plūsmu pa vai ap izplūdes caurules centra līniju. Līdz izplūdes caurules sienai jābūt vismaz 5 mm atstarpei. Zondes diametram jānodrošina raksturīga parauga paņemšana un pietiekama plūsma caur dūmmēru.

TT pārvades caurule

Pārvades caurulei jābūt:

pēc iespējas īsai un jānodrošina 373 ± 30 K (100 °C ± 30 °C) izplūdes gāzu temperatūra pie ieejas mērīšanas kamerā;

ar tādu sienas temperatūru, kas ir pietiekami augstu virs izplūdes gāzu rasas punkta, lai novērstu kondensēšanos;

pēc diametra vienādai ar paraugu ņemšanas zondi visā garumā;

ar tādu reakcijas laiku, kas ir mazāks par 0,05 s III pielikuma 4. papildinājuma 5.2.4. iedaļā noteiktās minimālās plūsmas apstākļos;

tādai, kas nozīmīgi neietekmē dūmu maksimumu.

FM plūsmas mērīšanas ierīce

Plūsmas mērīšanas ierīce, ar ko noteic pareizo ieplūdi mērīšanas kamerā. Minimālo un maksimālo caurplūdumu norāda ierīces izgatavotājs, un tam jābūt tādam, kas atbilst TT reakcijas laika prasībai un optiskā ceļa garuma specifikācijām. Plūsmas mērīšanas ierīce var būt tuvu pie paraugu ņemšanas sūkņa P, ja tādu lieto.

MC mērīšanas kamera

Mērīšanas kameras iekšējai virsmai jābūt neatstarojošai vai līdzvērtīgai optiskajai videi. Tāda atstarotas gaismas iedarbība uz detektoru, kas rodas no difūzijas efektu iekšējiem atstarojumiem, jāsamazina līdz minimumam.

Gāzes spiediens mērīšanas kamerā nedrīkst atšķirties no atmosfēras spiediena vairāk par 0,75 kPa. Ja konstrukcija ir tāda, ka tas nav iespējams, tad dūmmēra nolasījums jāpārrēķina atmosfēras spiedienā.

Mērīšanas kameras sienas temperatūra jānoregulē ± 5 K robežās no 343 K (70 °C) līdz 373 K (100 °C), bet noteikti pietiekami augstu virs izplūdes gāzu rasas punkta, lai novērstu kondensēšanos. Mērīšanas kamera jāaprīko ar attiecīgām ierīcēm temperatūras mērīšanai.

OPL optiskā ceļa garums

Dūmu aptumšotā optiskā ceļa garumu no dūmmēra gaismas avota līdz uztvērējam pēc vajadzības koriģē atbilstīgi nevienmērīgumam, ko rada blīvuma novirzes un blakusefekts. Optiskā ceļa garumu norāda ierīces izgatavotājs, ņemot vērā visus pasākumus pret apkvēpšanu (piemēram, gaisa izpūšanu/tīrīšanu). Ja optiskā ceļa garums nav zināms, tad to noteic saskaņā ar ISO IDS 11614 11.6.5. iedaļu.

LS gaismas avots

Gaismas avots ir kvēlspuldze ar krāsu temperatūru no 2 800 līdz 3 250 K vai zaļas gaismas diode (LED) ar spektra maksimumu no 550 līdz 570 nm. Gaismas avots no apkvēpšanas jāaizsargā ar tādiem līdzekļiem, kas neietekmē optiskā ceļa garumu, pārsniedzot izgatavotāja specifikācijas.

LD gaismas detektors

Detektors ir fotoelements vai fotodiode (ar filtru, ja vajadzīgs). Ja gaismas avots ir kvēlspuldze, tad uztvērēja signāla spektra maksimumam jābūt līdzīgam cilvēka acs fotoperiodiskajai līknei (signāla maksimumam) diapazonā no 550 līdz 570 nm, līdz mazāk nekā 4 % no šā signāla maksimuma zem 430 nm un virs 680 nm. Gaismas detektors no apkvēpšanas jāaizsargā ar tādiem līdzekļiem, kas neietekmē optiskā ceļa garumu, pārsniedzot izgatavotāja specifikācijas.

CL kolimējoša lēca

Izejošā gaisma jākolimē staru kūlī, kura maksimālais diametrs ir 30 mm. Staru kūlī stariem jābūt paralēliem, pielaidei nepārsniedzot 3° no optiskās ass.

T1 temperatūras devējs

To lieto, lai kontrolētu izplūdes gāzu temperatūru pie ieejas mērīšanas kamerā.

P paraugu ņemšanas sūknis (pēc izvēles)

Paraugu ņemšanas sūkni lejpus mērīšanas kameras var lietot, lai parauga gāzi izvadītu cauri mērīšanas kamerai.


VI PIELIKUMS

Image


(1)  Nevajadzīgo svītrot.

Papildinājums

EK tipa apstiprinājuma sertifikātam Nr. … kas attiecas uz transportlīdzekļa/atsevišķas tehniskas vienības/detaļas tipa apstiprinājumu (1)

Image


(1)  Nevajadzīgo svītrot.


VII PIELIKUMS

APRĒĶINĀŠANAS PROCEDŪRAS PIEMĒRS

1.   ESC TESTS

1.1.   Gāzveida emisija

Mērījumu dati atsevišķo režīmu rezultātu aprēķināšanai ir parādīti še turpmāk. Šajā piemērā CO un NOx ir mērīti sausā stāvoklī, HC mitrā stāvoklī. HC koncentrācija ir norādīta propāna ekvivalentā (C3) un jāreizina ar 3, lai iegūtu C1 ekvivalentu. Aprēķināšanas procedūra ir identa pārējo režīmu aprēķināšanas procedūrai.

P

(kW)

Ta

(K)

Ha

(g/kg)

GEXH

(kg)

GAIRW

(kg)

GFUEL

(kg)

HC

(ppm)

CO

(ppm)

NOx

(ppm)

82,9

294,8

7,81

563,38

545,29

18,09

6,3

41,2

495

Korekcijas koeficienta KW,r aprēķins, kas vajadzīgs, lai pārrēķinātu no sausa stāvokļa mitrā (skatīt III pielikuma 1. papildinājuma 4.2. iedaļu):

Formula un Formula

Formula

Koncentrāciju aprēķins mitram stāvoklim:

Formula

Formula

NOx mitruma korekcijas koeficienta Kh.d aprēķins (III pielikuma 1. papildinājuma 4.3. iedaļa):

Formula

Formula

Formula

Emisijas masas caurplūdumu aprēķins (III pielikuma 1. papildinājuma 4.4. iedaļa):

Formula

Formula

Formula

Īpatnējās emisijas aprēķins (III pielikuma 1. papildinājuma 4.5. iedaļa):

Šis aprēķina piemērs attiecas uz CO; pārējo sastāvdaļu aprēķina procedūra ir identa.

Emisijas masas caurplūdumus atsevišķajos režīmos reizina ar attiecīgajiem svēruma koeficientiem, kas norādīti III pielikuma 1. papildinājuma 2.7.1. iedaļā, un summē, lai iegūtu vidējo emisijas masas caurplūdumu visā ciklā:

CO

=

Formula

 

=

30,91 g/h

Motora jaudu atsevišķajos režīmos reizina ar attiecīgajiem svēruma koeficientiem, kas norādīti III pielikuma 1. papildinājuma 2.7.1. iedaļā, un summē, lai iegūtu vidējo jaudu ciklā:

Formula

=

Formula

 

=

60,006 kW

Formula

Īpatnējās NOx emisijas aprēķins nejaušajā punktā (III pielikuma 1. papildinājuma 4.6.1. iedaļa):

Pieņem, ka nejaušajā punktā ir noteiktas šādas vērtības:

nZ

=

1 600 min-1

MZ

=

495 Nm

NOx mass.Z

=

487,9 g/h (aprēķināta saskaņā ar iepriekšējām formulām)

P(n)Z

=

83 kW

NOx,Z

=

487,9/83 = 5,878 g/kWh

Emisijas vērtības noteikšana pēc testa cikla (III pielikuma 1. papildinājuma 4.6.2. iedaļa):

Pieņem, ka četru ESC režīmu vērtības ir šādas:

nRT

nSU

ER

ES

ET

EU

MR

MS

MT

MU

1 368

1 785

5,943

5,565

5,889

4,973

515

460

681

610

Formula

Formula

Formula

Formula

Formula

NOx emisijas vērtību salīdzinājums (III pielikuma 1. papildinājuma 4.6.3. iedaļa):

Formula

1.2.   Makrodaļiņu emisija

Makrodaļiņu mērījums pamatā ir princips, ka makrodaļiņu paraugus ņem visā ciklā, bet parauga un plūsmas caurplūdumu (MSAM un GEDF) noteic atsevišķajos režīmos. GEDF aprēķins ir atkarīgs no tā, kādu sistēmu lieto. Šajos piemēros ir lietota sistēma ar CO2 mērīšanas un oglekļa bilances metodi un sistēma ar plūsmas mērīšanu. Ja lieto pilnas plūsmas atšķaidīšanas sistēmu, tad GEDF mēra tieši ar CVS aprīkojumu.

GEDF aprēķins (III pielikuma 1. papildinājuma 5.2.3. un 5.2.4. iedaļa):

Pieņem, ka 4. režīmā ir šādi mērījumu dati. Aprēķināšanas procedūra ir identa tai, kuru izmanto pārējos režīmos.

GEXH

(kg/h)

GFUEL

(kg/h)

GDILW

(kg/h)

GTOTW

(kg/h)

CO2D

(%)

CO2A

(%)

334,02

10,76

5,4435

6,0

0,657

0,040

a)

oglekļa bilances metode:

Formula

b)

plūsmas mērīšanas metode:

Formula Formula

Caurplūduma masas aprēķins (III pielikuma 1. papildinājuma 5.4. iedaļa):

GEDFW caurplūdumus atsevišķajos režīmos reizina ar attiec+gajiem svēruma koeficientiem, kas norādīti III pielikuma 1. papildinājuma 2.7.1. iedaļā, un summē, lai iegūtu vidējo GEDF visā ciklā. Kopējo paraugu ņemšanas normu MSAM iegūst, summējot paraugu ņemšanas normas atsevišķajos režīmos.

Formula

=

Formula

 

=

3 604,6 kg/h

Formula

=

0,226 + 0,122 + 0,151 + 0,152 + 0,076 + 0,076 + 0,076 + 0,136 + 0,151 + 0,121 + 0,076 + 0,076 + 0,075

 

=

1,515 kg

Pieņemot, ka makrodaļiņu masa filtros ir 2,5 mg,

Formula

Fona korekcija (pēc izvēles)

Pieņem, ka vienā fona mērījumā ir šādas vērtības. Atšķaidījuma pakāpes DF aprēķins ir idents aprēķinam šā pielikuma 3.1. iedaļā un te nav parādīts.

Formula

DF summa

=

Formula

 

=

0,923

Formula

Īpatnējās emisijas aprēķins (III pielikuma 1. papildinājuma 5.5. iedaļa):

Formula

=

Formula

 

=

60,006 kW

Formula

Formula

Īpatnējā svēruma koeficienta aprēķins (III pielikuma 1. papildinājuma 5.6. iedaļa):

Pieņemot, ka vērtības ir tādas kā še iepriekš 4. režīmam aprēķinātās,

Formula

Šī vērtība ir vajadzīgajās 0, 10 ± 0, 003 vērtības robežās.

2.   ELR TESTS

Tā kā Besela filtrēšana ir pilnīgi jauna vidējā noteikšanas procedūra Eiropas tiesību aktos, kas attiecas uz izplūdes gāzēm, še turpmāk ir Besela filtra skaidrojums, Besela algoritma sastādīšanas piemērs un galīgās dūmu vērtības aprēķina piemērs. Besela algoritma konstantes ir atkarīgas tikai no dūmmēra konstrukcijas un datu ieguves sistēmas paraugu ņemšanas frekvences. Dūmmēra izgatavotājam ieteicams norādīt galīgās Besela filtra konstantes dažādām paraugu ņemšanas frekvencēm un pasūtītājam ieteicams izmantot šīs konstantes Besela algoritma sastādīšanā un dūmu vērtību aprēķināšanā.

2.1.   Vispārīgas piezīmes par Besela filtru

Augstfrekvences traucējumu ietekmē neapstrādātais dūmainības signāls parasti uzrāda stipri izkliedētas zīmes. Lai novērstu šādus augstfrekvences traucējumus, ELR testā ir vajadzīgs Besela filtrs. Pats Besela filtrs ir rekursīvs otrās kārtas zemo frekvenču caurlaidības filtrs, kas nodrošina ātrāko signāla došanu bez pārsnieguma.

Pieņemot neapstrādāto reālā laika izplūdes stabu izplūdes caurulē, katrs dūmmērs rāda aizkavētas un dažādi mērītas dūmainības zīmes. Izmērītās dūmainības zīmju lielums un aizkavēšana ir galvenokārt atkarīga no dūmmēra mērīšanas kameras ģeometrijas, ieskaitot izplūdes gāzes parauga vadus, un no laika, kas vajadzīgs signāla elektroniskajai apstrādei dūmmērā. Vērtības, kas raksturo šos divus efektus, sauc par fizikālās un elektriskās reakcijas laiku, un attiecīgi katra veida dūmmēram vajadzīgs individuāls filtrs.

Besela filtra lietošanas mērķis ir nodrošināt visai dūmmēra sistēmai vienotu vispārīgo filtra raksturojumu, kurā ietilpst:

dūmmēra fizikālās reakcijas laiks (tp),

dūmmēra elektriskās reakcijas laiks (te),

dūmmēra elektriskās reakcijas laiks (tF).

Iegūto kopējo sistēmas reakcijas laiku tAver izsaka tā:

Formula

un tam jābūt vienādam visu veidu dūmmēriem, lai iegūtu vienādu dūmu vērtību. Tāpēc Besela filtrs jāveido tā, lai filtra reakcijas laiks (tF) kopā ar attiecīgā dūmmēra fizikālās (tp) un elektriskās reakcijas laiku (te) dod vajadzīgo kopējo reakcijas laiku (tAver). Tā kā katra dūmmēra tp un te ir zināmas vērtības un šajā direktīvā ir noteikts, ka tAver ir 1, 0 s, tF var aprēķināt šādi:

Formula

Pēc definīcijas filtra reakcijas laiks (tF) ir filtrēta izvades signāla došanas laiks starp 10 % un 90 % pakāpjveida ievades signāla. Tāpēc Besela filtra atslēgšanās frekvence jāatkārto tā, lai Besela filtra reakcijas laiks iekļaujas vajadzīgajā signāla došanas laikā.

Image

Pakāpjveida ievades signāla un Besela filtra izvades signāla zīmes, kā arī Besela filtra (tF) reakcijas laiks ir parādīts a) attēlā.

Galīgā Besela filtra algoritma sastādīšana ir daudzpakāpju process, kurā vajadzīgi vairāki atkārtošanas cikli. Atkārtošanas procedūras shēma ir parādīta še turpmāk.

Image

2.2.   Besela algoritma aprēķināšana

Šajā piemērā Besela algoritms ir sastādīts vairākās pakāpēs saskaņā ar iepriekš aprakstīto atkārtošanas procedūru, kas pamatojas uz III pielikuma 1. papildinājuma 6.1. iedaļu.

Pieņem, ka dūmmēram un datu ieguves sistēmai ir šādi parametri:

fizikālās reakcijas laiks tp 0,15 s

elektriskās reakcijas laiks te 0,05 s

kopējais reakcijas laiks tAver 1,00 s (kā noteikts šajā direktīvā)

paraugu ņemšanas frekvence 150 Hz

1. pakāpe   Nosaka vajadzīgo Besela filtra reakcijas laiku tF:

Formula

2. pakāpe   Aprēķina atslēgšanās frekvenci un Besela konstantes E, K pirmajam atkārtojumam:

fc

=

Formula

Δt

=

1/150 = 0,006667 s

Ω

=

Formula

E

=

Formula

K

=

Formula

Iegūst Besela algoritmu:

Formula

kur Si ir pakāpjveida ievades signāla vērtības (“0” vai “1”) un Yi ir filtrētā izvades signāla vērtības.

3. pakāpe   Besela filtru piemēro pakāpjveida ievadei:

Pēc definīcijas Besela filtra reakcijas laiks tF ir filtrēta izvades signāla došanas laiks starp 10 % un 90 % pakāpjveida ievades signāla. Lai noteiktu izvades signāla 10 % (t10) un 90 % (t90) laikus, Besela filtru piemēro pakāpjveida ievadei, izmantojot iepriekšminētās fc, E un K vērtības.

Indeksi, laiks un pakāpjveida ievades signāla vērtības, un iegūtās filtrētā izvades signāla vērtības pirmajam un otrajam atkārtojumam ir noteiktas B tabulā. Punkti, kas ir tieši blakus t10 un t90, ir atzīmēti ar resninātiem cipariem.

Pirmajā atkārtojumā B tabulā 10 % vērtība ir starp indeksu 30 un 31, un 90 % vērtība ir starp indeksu 191 un 192. Lai aprēķinātu tF,iter, atkārtoti noteic precīzās t10 un t90 vērtības, lineāri interpolējot starp blakus esošiem mērījumu punktiem:

Formula

Formula

kur outupper un outlower punkts attiecīgi ir Besela filtrētā izvades signāla blakus punkti un tlower ir laika blakus punkta laiks, kas norādīts B tabulā.

Formula

Formula

4. pakāpe   Noteic filtra reakcijas laiku pirmā atkārtojuma ciklā:

Formula

5. pakāpe   Noteic iegūtā filtra reakcijas laika novirzi no vajadzīgā pirmā atkārtojuma ciklā:

Formula

6. pakāpe   Pārbauda atkārtojuma kritēriju:

|Δ| ≤ 0, 01 ir vajadzīgais. Tā kā 0, 081641 >0, 01, atkārtojuma kritērijs nav izpildīts, un jāsāk nākamais atkārtojuma cikls. Šim atkārtojuma ciklam pēc fc un Δ šādi no jauna aprēķina atslēgšanās frekvenci:

Formula

No jauna aprēķināto atslēgšanās frekvenci otrajā atkārtojuma ciklā izmanto, atkal sākot ar otro pakāpi. Atkārtojumu turpina, līdz panāk atbilstību atkārtojuma kritērijam. Pirmajā un otrajā atkārtojuma ciklā iegūtās vērtības ir apkopotas A tabulā.

A tabula

Pirmā un otrā atkārtojuma vērtības

Parametrs

1. atkārtojums

2. atkārtojums

fc

(Hz)

0,318152

0,344126

E

(-)

7,07948 E-5

8,272777 E-5

K

(-)

0,970783

0,968410

t10

(s)

0,200945

0,185523

t90

(s)

1,276147

1,179562

tF,iter

(s)

1,075202

0,994039

Δ

(-)

0,081641

0,006657

fc,new

(Hz)

0,344126

0,346417

7. pakāpe   Iegūst galīgo Besela algoritmu:

Tiklīdz sasniedz atkārtojuma kritēriju, saskaņā ar 2. pakāpi aprēķina galīgās Besela filtra konstantes un galīgo Besela algoritmu. Šajā piemērā atkārtojuma kritērijs ir sasniegts pēc otrā atkārtojuma (Δ= 0, 006657 ≤ 0, 01). Pēc tam galīgo algoritmu izmanto, lai noteiktu vidējās dūmu vērtības (skatīt nākamo 2.3. iedaļu).

Formula

B tabula

Pakāpjveida ievades signāla un Besela filtrētā izvades signāla vērtības pirmajā un otrajā atkārtojuma ciklā

Indekss i

[-]

Laiks

[s]

Pakāpjveida ievades signāls Si

[-]

Filtrētais izvades signāls Yi

[-]

1. atkārtojums

2. atkārtojums

- 2

- 0,013333

0

0,000000

0,000000

- 1

- 0,006667

0

0,000000

0,000000

0

0,000000

1

0,000071

0,000083

1

0,006667

1

0,000352

0,000411

2

0,013333

1

0,000908

0,001060

3

0,020000

1

0,001731

0,002019

4

0,026667

1

0,002813

0,003278

5

0,033333

1

0,004145

0,004828

~

~

~

~

~

24

0,160000

1

0,067877

0,077876

25

0,166667

1

0,072816

0,083476

26

0,173333

1

0,077874

0,089205

27

0,180000

1

0,083047

0,095056

28

0,186667

1

0,088331

0,101024

29

0,193333

1

0,093719

0,107102

30

0,200000

1

0,099208

0,113286

31

0,206667

1

0,104794

0,119570

32

0,213333

1

0,110471

0,125949

33

0,220000

1

0,116236

0,132418

34

0,226667

1

0,122085

0,138972

35

0,233333

1

0,128013

0,145605

36

0,240000

1

0,134016

0,152314

37

0,246667

1

0,140091

0,159094

~

~

~

~

~

175

1,166667

1

0,862416

0,895701

176

1,173333

1

0,864968

0,897941

177

1,180000

1

0,867484

0,900145

178

1,186667

1

0,869964

0,902312

179

1,193333

1

0,872410

0,904445

180

1,200000

1

0,874821

0,906542

181

1,206667

1

0,877197

0,908605

182

1,213333

1

0,879540

0,910633

183

1,220000

1

0,881849

0,912628

184

1,226667

1

0,884125

0,914589

185

1,233333

1

0,886367

0,916517

186

1,240000

1

0,888577

0,918412

187

1,246667

1

0,890755

0,920276

188

1,253333

1

0,892900

0,922107

189

1,260000

1

0,895014

0,923907

190

1,266667

1

0,897096

0,925676

191

1,273333

1

0,899147

0,927414

192

1,280000

1

0,901168

0,929121

193

1,286667

1

0,903158

0,930799

194

1,293333

1

0,905117

0,932448

195

1,300000

1

0,907047

0,934067

~

~

~

~

~

2.3.   Dūmu vērtību aprēķināšana

Še turpmāk iekļautajā shēmā ir parādīta galīgās dūmu vērtības noteikšanas vispārīgā procedūra.

Image

Izmērītās neapstrādātās dūmainības signāla zīmes un nefiltrētās un filtrētās gaismas absorbcijas koeficienti (k vērtība) ELR testa pirmajā slodzes pakāpē ir iekļauti b) attēlā, norādot filtrētās k zīmes maksimālo vērtību Ymax1,A (maksimumu). Attiecīgi C tabulā ir indeksa i, laika (150 Hz parauga ņemšanas frekvence), neapstrādātās gāzes dūmainības, nefiltrētā k un filtrētā k skaitliskās vērtības. Filtrēšanā izmantotas šā pielikuma 2.2. iedaļā sastādītā Besela algoritma konstantes. Tā kā datu ir daudz, tabulā ir iekļautas tikai tās dūmu zīmju daļas, kas atrodas ap sākumu un maksimumu.

Image

Maksimuma vērtību (i = 272) aprēķina, pieņemot šādus C tabulas datus. Tāpat aprēķina visas pārējās atsevišķās dūmu vērtības. Lai sāktu algoritmu, S-1, S-2, Y-1un Y-2 jābūt uz nulles.

LA (m)

0,430

Indekss i

272

N ( %)

16,783

S271 (m-1)

0,427392

S270 (m-1)

0,427532

Y271 (m-1)

0,542383

Y270 (m-1)

0,542337

k vērtības aprēķins (III pielikuma 1. papildinājuma 6.3.1. iedaļa):

Formula

Šī vērtība atbilst S272 šādā vienādojumā.

Besela vidējās dūmu vērtības aprēķins (III pielikuma 1. papildinājuma 6.3.2. iedaļa):

Šajā vienādojumā izmanto iepriekšējās iedaļas 2.2. minētās Besela konstantes. Faktiskā nefiltrētā k vērtība, ko aprēķina, kā iepriekš aprakstīts, atbilst S272 (Si), S271 (Si-1) un S270 (Si-2) ir abas iepriekšējās nefiltrētās k vērtības, Y271 (Yi-1) un Y270 (Yi-2) ir abas iepriekšējās filtrētās k vērtības.

Formula

=

Formula

 

=

Formula

Šī vērtība atbilst Ymax1,A šādā vienādojumā.

Galīgās dūmu vērtības aprēķins (III pielikuma 1. papildinājuma 6.3.3. iedaļa):

Katras dūmu zīmes maksimālo filtrēto k vērtību izmanto turpmākajā aprēķinā.

Pieņem šādas vērtības:

Apgriezieni

Ymax (m-1)

1. cikls

2. cikls

3. cikls

A

0,5424

0,5435

0,5587

B

0,5596

0,5400

0,5389

C

0,4912

0,5207

0,5177

Formula

Formula

Formula

Formula

Cikla validācija (III pielikuma 1. papildinājuma 3.4. iedaļa)

Pirms SV aprēķināšanas cikls jāvalidē, aprēķinot dūmu relatīvās standartnovirzes visos trijos ciklos atbilstīgi visiem apgriezieniem.

Apgriezieni

Vidējais SV

(m-1)

Absolūtā standartnovirze

(m-1)

Relatīvā standartnovirze

(%)

A

0,5482

0,0091

1,7

B

0,5462

0,0116

2,1

C

0,5099

0,0162

3,2

Šajā piemērā 15 % validācijas kritērijs ir izpildīts atbilstīgi visiem apgriezieniem.

C tabula

Dūmainības N vērtības, nefiltrētā un filtrētā k vērtība slodzes pakāpes sākumā

Indekss i

[-]

Laiks

[s]

Dūmainība N

[%]

Nefiltrētā k vērtība

[m-1]

Filtrētā k vērtība

[m-1]

- 2

0,000000

0,000000

0,000000

0,000000

- 1

0,000000

0,000000

0,000000

0,000000

0

0,000000

0,000000

0,000000

0,000000

1

0,006667

0,020000

0,000465

0,000000

2

0,013333

0,020000

0,000465

0,000000

3

0,020000

0,020000

0,000465

0,000000

4

0,026667

0,020000

0,000465

0,000001

5

0,033333

0,020000

0,000465

0,000002

6

0,040000

0,020000

0,000465

0,000002

7

0,046667

0,020000

0,000465

0,000003

8

0,053333

0,020000

0,000465

0,000004

9

0,060000

0,020000

0,000465

0,000005

10

0,066667

0,020000

0,000465

0,000006

11

0,073333

0,020000

0,000465

0,000008

12

0,080000

0,020000

0,000465

0,000009

13

0,086667

0,020000

0,000465

0,000011

14

0,093333

0,020000

0,000465

0,000012

15

0,100000

0,192000

0,004469

0,000014

16

0,106667

0,212000

0,004935

0,000018

17

0,113333

0,212000

0,004935

0,000022

18

0,120000

0,212000

0,004935

0,000028

19

0,126667

0,343000

0,007990

0,000036

20

0,133333

0,566000

0,013200

0,000047

21

0,140000

0,889000

0,020767

0,000061

22

0,146667

0,929000

0,021706

0,000082

23

0,153333

0,929000

0,021706

0,000109

24

0,160000

1,263000

0,029559

0,000143

25

0,166667

1,455000

0,034086

0,000185

26

0,173333

1,697000

0,039804

0,000237

27

0,180000

2,030000

0,047695

0,000301

28

0,186667

2,081000

0,048906

0,000378

29

0,193333

2,081000

0,048906

0,000469

30

0,200000

2,424000

0,057067

0,000573

31

0,206667

2,475000

0,058282

0,000693

32

0,213333

2,475000

0,058282

0,000827

33

0,220000

2,808000

0,066237

0,000977

34

0,226667

3,010000

0,071075

0,001144

35

0,233333

3,253000

0,076909

0,001328

36

0,240000

3,606000

0,085410

0,001533

37

0,246667

3,960000

0,093966

0,001758

38

0,253333

4,455000

0,105983

0,002007

39

0,260000

4,818000

0,114836

0,002283

40

0,266667

5,020000

0,119776

0,002587


Dūmainības N vērtības, nefiltrētā un filtrētā k vērtība ap Ymax1,A (identiski maksimuma vērtībai, kas norādīta numuru treknā drukā)

Indekss i

[-]

Laiks

[s]

Dūmainība N

[%]

Nefiltrētā k vērtība

[m-1]

Filtrētā k vērtība

[m-1]

259

1,726667

17,182000

0,438429

0,538856

260

1,733333

16,949000

0,431896

0,539423

261

1,740000

16,788000

0,427392

0,539936

262

1,746667

16,798000

0,427671

0,540396

263

1,753333

16,788000

0,427392

0,540805

264

1,760000

16,798000

0,427671

0,541163

265

1,766667

16,798000

0,427671

0,541473

266

1,773333

16,788000

0,427392

0,541735

267

1,780000

16,788000

0,427392

0,541951

268

1,786667

16,798000

0,427671

0,542123

269

1,793333

16,798000

0,427671

0,542251

270

1,800000

16,793000

0,427532

0,542337

271

1,806667

16,788000

0,427392

0,542383

272

1,813333

16,783000

0,427252

0,542389

273

1,820000

16,780000

0,427168

0,542357

274

1,826667

16,798000

0,427671

0,542288

275

1,833333

16,778000

0,427112

0,542183

276

1,840000

16,808000

0,427951

0,542043

277

1,846667

16,768000

0,426833

0,541870

278

1,853333

16,010000

0,405750

0,541662

279

1,860000

16,010000

0,405750

0,541418

280

1,866667

16,000000

0,405473

0,541136

281

1,873333

16,010000

0,405750

0,540819

282

1,880000

16,000000

0,405473

0,540466

283

1,886667

16,010000

0,405750

0,540080

284

1,893333

16,394000

0,416406

0,539663

285

1,900000

16,394000

0,416406

0,539216

286

1,906667

16,404000

0,416685

0,538744

287

1,913333

16,394000

0,416406

0,538245

288

1,920000

16,394000

0,416406

0,537722

289

1,926667

16,384000

0,416128

0,537175

290

1,933333

16,010000

0,405750

0,536604

291

1,940000

16,010000

0,405750

0,536009

292

1,946667

16,000000

0,405473

0,535389

293

1,953333

16,010000

0,405750

0,534745

294

1,960000

16,212000

0,411349

0,534079

295

1,966667

16,394000

0,416406

0,533394

296

1,973333

16,394000

0,416406

0,532691

297

1,980000

16,192000

0,410794

0,531971

298

1,986667

16,000000

0,405473

0,531233

299

1,993333

16,000000

0,405473

0,530477

300

2,000000

16,000000

0,405473

0,529704

3.   ETC TESTS

3.1.   Gāzveida emisija (dīzeļmotoriem)

PDP-CVS sistēmai pieņem šādus testa rezultātus

V0 (m3/rev)

0,1776

Np (rev)

23 073

pB (kPa)

98,0

p1 (kPa)

2,3

T (K)

322,5

Ha (g/kg)

12,8

NOx conce (ppm)

53,7

NOx concd (ppm)

0,4

COconce (ppm)

38,9

COconcd (ppm)

1,0

HCconce (ppm)

9,00

HCconcd (ppm)

3,02

CO2,conce (%)

0,723

Wact (kWh)

62,72

Atšķaidīto izplūdes gāzu plūsmas aprēķins (III pielikuma 2. papildinājuma 4.1. iedaļa):

Formula

NOx korekcijas koeficienta aprēķins (III pielikuma 2. papildinājuma 4.2. iedaļa):

Formula

Fona koriģēto koncentrāciju aprēķins (III pielikuma 2. papildinājuma 4.3.1.1. iedaļa):

Pieņem C1H1,8 sastāva dīzeļdegvielu

Formula

Formula

Formula

Formula

Formula

Emisijas masas plūsmas aprēķins (III pielikuma 2. papildinājuma 4.3.1. iedaļa):

Formula

Formula

Formula

Īpatnējās emisijas aprēķins (III pielikuma 2. papildinājuma 4.4. iedaļa):

Formula

Formula

Formula

3.2.   Makrodaļiņu emisija (dīzeļmotoriem)

PDP-CVS sistēmai ar divkāršo atšķaidīšanu pieņem šādus testa rezultātus

MTOTW (kg)

4 237,2

Mf,p (mg)

3,030

Mf,b (mg)

0,044

MTOT (kg)

2,159

MSEC (kg)

0,909

Md (mg)

0,341

MDIL (kg)

1,245

DF

18,69

Wact (kWh)

62,72

Emisijas masas aprēķins (III pielikuma 2. papildinājuma 5.1. iedaļa):

Formula

Formula

Formula

Fona koriģētās emisijas masas aprēķins (III pielikuma 2. papildinājuma 5.1. iedaļa):

Formula

Īpatnējās emisijas aprēķins (III pielikuma 2. papildinājuma 5.2. iedaļa):

Formula

Formula

3.3.   Gāzveida emisija (CNG motoriem)

PDP-CVS sistēmai ar divkāršo atšķaidīšanu pieņem šādus testa rezultātus

MTOTW (kg)

4 237,2

Ha (g/kg)

12,8

NOx conce (ppm)

17,2

NOx concd (ppm)

0,4

COconce (ppm)

44,3

COconcd (ppm)

1,0

HCconce (ppm)

27,0

HCconcd (ppm)

3,02

CH4 conce (ppm)

18,0

CH4 concd (ppm)

1,7

CO2,conce ( %)

0,723

Wact (kWh)

62,72

NOx korekcijas koeficienta aprēķins (III pielikuma 2. papildinājuma 4.2. iedaļa):

Formula

NMHC koncentrācijas aprēķins (III pielikuma 2. papildinājuma 4.3.1. iedaļa):

a)

GC metode

Formula

b)

NMC metode

Pieņem 0,04 metāna efektivitāti un 0,98 etāna efektivitāti (skatīt III pielikuma 5. papildinājuma 1.8.4. iedaļu)

Formula

Fona koriģēto koncentrāciju aprēķins (III pielikuma 2. papildinājuma 4.3.1.1. iedaļa):

Pieņem G20 standarta C1H4 sastāva degvielu (100 % metāns):

Formula

Formula

NMHC fona koncentrācija ir starpība starp HCconcd un CH4concd.:

Formula

Formula

Formula

Formula

Emisijas masas plūsmas aprēķins (III pielikuma 2. papildinājuma 4.3.1. iedaļa):

Formula

Formula

Formula

Formula

Īpatnējās emisijas aprēķins (III pielikuma 2. papildinājuma 4.4. iedaļa):

Formula

Formula

Formula

Formula

4.   λ – NOBĪDES KOEFICIENTS (Sλ)

4.1.   λ – nobīdes koeficienta (Sλ) aprēķins (1)

Formula

kur:

Sλ

=

λ - nobīdes koeficients,

inertuma %

=

inerto gāzu tilpuma % degvielā (t. i., N2, CO2, He u. c.),

O2 *

=

sākotnējā skābekļa tilpuma % degvielā,

N un m

=

attiecinājums pret vidējo CnHm, kas norāda ogļūdeņražus degvielā, t. i.:

Formula

Formula

kur:

CH4

=

metāna tilpuma % degvielā;

C2

=

visu C2 ogļūdeņražu (piemēram, C2H6, C2H4 u.c.) tilpuma % degvielā;

C3

=

visu C3 ogļūdeņražu (piemēram, C3H8, C3H6 u.c.) tilpuma % degvielā;

C4

=

visu C4 ogļūdeņražu (piemēram, C4H10, C4H8 u.c.) tilpuma % degvielā;

C5

=

visu C5 ogļūdeņražu (piemēram, C5H12, C5H10 u.c.) tilpuma % degvielā;

atšķaidītājs

=

atšķaidīšanas gāzu (t.i., O2 *, N2, CO2, He u.c.) tilpuma % degvielā.

4.2.   λ – nobīdes koeficienta Sλ aprēķina piemēri:

1. piemērs:

G25: CH4 = 86 %, N2 = 14 % % (tilpuma).

Formula

Formula

Formula

2. piemērs:

GR: CH4 = 87 %, C2H6 = 13 % % (tilpuma).

Formula

Formula

Formula

3. piemērs

ASV: CH4 = 89 %, C2H6 = 4,5 %, C3H8 = 2,3 %, C6H14 = 0,2 %, O2 = 0,6 %, N2 = 4 %

Formula

Formula

Formula


(1)  Motoru degvielas stehiometriskās gaisa pret degvielu attiecības-SAE J1829, 1987. gada jūnijs. John B. Heywood, Internal combustion engine fundamentals, McGraw-Hill, 1988, 3.4. nodaļa “Combustion stoichiometry” ( 68. līdz 72. lpp.).


VIII PIELIKUMS

ĪPAŠAS TEHNISKĀS PRASĪBAS, KAS ATTIECAS UZ ETANOLA DĪZEĻMOTORIEM

Uz etanola dīzeļmotoru testa procedūrām, kas noteiktas šīs direktīvas III pielikumā, attiecas šādi īpaši attiecīgo punktu, vienādojumu un koeficientu grozījumi.

III PIELIKUMA 1. PAPILDINĀJUMS:

4.2.   Korekcija pārejai no sausa stāvokļa uz mitru

Formula

4.3.   NOx korekcija atbilstīgi mitrumam un temperatūrai

Formula

kur:

A

=

0,181 GFUEL/GAIRD - 0,0266;

B

=

– 0,123 GFUEL/GAIRD + 0,00954;

Ta

=

gaisa temperatūra, K;

Ha

=

Ieplūdes gaisa mitrums, g ūdens uz kg sausa gaisa.

4.4.   Daļiņu masas caurplūduma aprēķins

Daļiņu masas caurplūdums (g/h) katram režīmam jāaprēķina šādi, pieņemot, ka izplūdes gāzes blīvums ir 1,272 kg/m3 pie 273 K (0 °C) un 101, 3 kPa:

Formula

Formula

Formula

kur

NOx conc, COconc, HCconc  (1) ir vidējās koncentrācijas (ppm) neapstrādātajās izplūdes gāzēs saskaņā ar 4.1. iedaļu.

Ja gāzveida emisiju nosaka ar pilnas plūsmas atšķaidīšanas sistēmu, jāpiemēro šādas formulas:

Formula

Formula

Formula

kur:

NOx conc, COconc, HCconc  (1) ir vidējās koriģētās fona koncentrācijas (ppm) atšķaidītajās izplūdes gāzēs katrā režīmā saskaņā ar III pielikuma 2. papildinājuma 4.3.1.1. iedaļu.

III PIELIKUMA 2. PAPILDINĀJUMĀ:

Pielikuma 2. papildinājuma 3.1., 3.4., 3.8.3. un 5. iedaļa neattiecas tikai uz dīzeļmotoriem. Minētie punkti attiecas arī uz etanola dīzeļmotoriem.

4.2.

Testa apstākļiem jābūt tādiem, lai gaisa temperatūra un mitrums motora ieplūdē testā atbilst standarta apstākļiem. Standartam jābūt 6 ± 0, 5 g ūdens uz kg sausa gaisa 298 ± 3 K temperatūrā. Šajās robežās vairs nedrīkst koriģēt NOx. Tests nav spēkā, ja šie apstākļi nav ievēroti.

4.3.   Emisijas plūsmas masas aprēķins

4.3.1   Nemainīgas masas plūsmas sistēmas

Sistēmām ar siltumapmaiņu piesārņotājvielu masa (g/testā) jānoteic pēc šādiem vienādojumiem:

Formula

Formula

Formula

kur:

NOx conc, COconc, HCconc  (2), NMHCconc= integrētās vidējās koriģētās fona koncentrācijas ciklā (obligātas attiecībā uz NOx un HC) vai maisiņos izmērītās vidējās koriģētās fona koncentrācijas ciklā, ppm;

MTOTW= atšķaidīto izplūdes gāzu kopējā masa ciklā saskaņā ar 4.1. iedaļu, kg.

4.3.1.1.   Atbilstīgi fonam koriģēto koncentrāciju noteikšana

Gāzveida piesārņotāju emisijas vidējā fona koncentrācija atšķaidītā gaisā jāatņem no izmērītajām koncentrācijām, lai iegūtu izmešu tīrās koncentrācijas. Fona koncentrāciju vidējās vērtības var noteikt ar paraugu maisiņu paņēmienu vai ar nepārtrauktu mērīšanu un integrēšanu. Jāizmanto šāda formula:

Formula

kur:

conc

=

attiecīgā piesārņotāja koncentrācija atšķaidītajās izplūdes gāzēs, kas koriģēta atbilstīgi attiecīgā piesārņotāja daudzumam atšķaidītā gaisā, ppm;

conce

=

attiecīgā piesārņotāja koncentrācija, ko mēra atšķaidītajās izplūdes gāzēs, ppm;

concd

=

attiecīgā piesārņotāja koncentrācija, ko mēra atšķaidītā gaisā, ppm;

DF

=

atšķaidījuma pakāpe.

Atšķaidījuma pakāpe jāaprēķina šādi:

Formula

kur:

CO2conce

=

CO2-koncentrācija atšķaidītajās izplūdes gāzēs, tilpuma %

HCconce

=

HC koncentrācija atšķaidītajās izplūdes gāzēs, ppm C1

COconce

=

CO koncentrācija atšķaidītajās izplūdes gāzēs, ppm

FS

=

stehiometriskais koeficients

Sausā stāvoklī izmērītās koncentrācijas jāpārrēķina uz mitru stāvokli saskaņā ar III pielikuma 1. papildinājuma 4.2. iedaļu.

Stehiometriskais koeficients parastā sastāva degvielai (CHαOβNγ) jāaprēķina šādi:

Formula

Ja degvielas sastāvs nav zināms, alternatīvi var izmantot šādus stehiometriskos koeficientus:

FS (etanolam) = 12,3.

4.3.2.   Sistēmas ar plūsmas kompensāciju

Sistēmām bez siltumapmaiņas izmešu masa (g/testā) jānosaka, aprēķinot pēc momentānās emisijas masas un integrējot momentānās vērtības visā ciklā. Fona korekcija tieši jāpiemēro arī momentānās koncentrācijas vērtībai. Jāizmanto šādas formulas:

Formula

Formula

Formula

kur:

conce

=

attiecīgā piesārņotāja koncentrācija, ko mēra atšķaidītajās izplūdes gāzēs, ppm;

concd

=

attiecīgā piesārņotāja koncentrācija, ko mēra atšķaidītā gaisā, ppm;

MTOTW,i

=

atšķaidīto izplūdes gāzu momentānā masa (skatīt 4.1. iedaļu), kg;

MTOTW

=

atšķaidīto izplūdes gāzu kopējā masa ciklā (skatīt 4.1. iedaļu), kg;

DF

=

atšķaidījuma pakāpe, kā tas noteikts 4.3.1.1. iedaļā.

4.4.   Īpatnējās emisijas aprēķins

Visu atsevišķo sastāvdaļu emisiju (g/kWh) aprēķina šādi:

Formula

Formula

Formula

kur:

Wact

=

faktiskais darbs ciklā, kā tas norādīts 3.9.2. iedaļā, kWh.


(1)  Pamatojoties uz C1 ekvivalentu.

(2)  Pamatojoties uz C1 ekvivalentu.


IX PIELIKUMS

TERMIŅI ATCELTO DIREKTĪVU TRANSPONĒŠANAI VALSTS TIESīBU AKTOS,

kā minēts 10. pantā

A DAĻA

Atceltās direktīvas

Direktīvas

Oficiālais Vēstnesis

Direktīva 88/77/EEK

L 36, 9.2.1988., 33. lpp.

Direktīva 91/542/EEK

L 295, 25.10.1991., 1. lpp.

Direktīva 96/1/EK

L 40, 17.2.1996., 1. lpp.

Direktīva 1999/96/EK

L 44, 16.2.2000., 1. lpp.

Direktīva 2001/27/EK

L 107, 18.4.2001., 10. lpp.


B DAĻA

Termiņi transponēšanai valsts tiesību aktos

Direktīva

Transponēšanas termiņš

Piemērošanas datums

Direktīva 88/77/EEK

1988. gada 1. jūlijs

 

Direktīva 91/542/EEK

1992. gada 1. janvāris

 

Direktīva 96/1/EK

1996. gada 1. jūlijs

 

Direktīva 1999/96/EK

2000. gada 1. jūlijs

 

Direktīva 2001/27/EG

2001. gada 1. oktobris

2001. gada 1. oktobris


X PIELIKUMS

KORELĀCIJAS TABULA

(minēta 10. panta 2. daļā)

Direktīva 88/77/EEK

Direktīva 91/542/EEK

Direktīva 1999/96/EK

Direktīva 2001/27/EK

Šī direktīva

1. pants

 

1. pants

2. panta 1. punkts

2. panta 1. punkts

2. panta 1. punkts

2. panta 1. punkts

2. panta 4. punkts

2. panta 2. punkts

2. panta 2. punkts

2. panta 2. punkts

2. panta 2. punkts

2. panta 1. punkts

2. panta 3. punkts

2. panta 3. punkts

2. panta 4. punkts

2. panta 4. punkts

2. panta 3. punkts

2. panta 3. punkts

2. panta 2. punkts

2. panta 4. punkts

2. panta 3. punkts

2. panta 5. punkts

2. panta 4. punkts

2. panta 5. punkts

2. panta 5. punkts

2. panta 6. punkts

2. panta 6. punkts

2. panta 7. punkts

2. panta 7. punkts

2. panta 8. punkts

2. panta 8. punkts

2. panta 9. punkts

3. pants

5. un 6. pants

3. pants

4. pants

4. pants

3. panta 1. punkts

3. panta 1. punkts

6. panta 1. punkts

3. panta 1. punkta a) apakšpunkts

3. panta 1. punkta a) apakšpunkts

6. panta 2. punkts

3. panta 1. punkta b) apakšpunkts

3. panta 1. punkta b) apakšpunkts

6. panta 3. punkts

3. panta 2. punkts

3. panta 2. punkts

6. panta 4. punkts

3. panta 3. punkts

3. panta 3. punkts

6. panta 5. punkts

4. pants

7. pants

6. pants

5. un 6. pants

7. pants

8. pants

5. pants

4. pants

8. pants

3. pants

9. pants

10. pants

9. pants

4. pants

11. pants

7. pants

7. pants

10. pants

5. pants

12. pants

I līdz VII pielikums

I līdz VII pielikums

VIII pielikums

VIII pielikums

IX pielikums

X pielikums