17.8.2017   

ES

Diario Oficial de la Unión Europea

L 212/1


DECISIÓN DE EJECUCIÓN (UE) 2017/1442 DE LA COMISIÓN

de 31 de julio de 2017

por la que se establecen las conclusiones sobre las mejores técnicas disponibles (MTD) conforme a la Directiva 2010/75/UE del Parlamento Europeo y del Consejo para las grandes instalaciones de combustión

[notificada con el número C(2017) 5225]

(Texto pertinente a efectos del EEE)

LA COMISIÓN EUROPEA,

Visto el Tratado de Funcionamiento de la Unión Europea,

Vista la Directiva 2010/75/UE del Parlamento Europeo y del Consejo, de 24 de noviembre de 2010, sobre las emisiones industriales (prevención y control integrados de la contaminación) (1), y en particular su artículo 13, apartado 5,

Considerando lo siguiente:

(1)

Las conclusiones sobre las mejores técnicas disponibles (MTD) son la referencia para el establecimiento de las condiciones de los permisos de las instalaciones recogidas en el capítulo II de la Directiva 2010/75/UE, y las autoridades competentes deben fijar valores límite de emisión que garanticen que, en condiciones normales de funcionamiento, las emisiones no superen los niveles asociados a las mejores técnicas disponibles que se establecen en las conclusiones sobre las MTD.

(2)

El Foro conformado por representantes de los Estados miembros, las industrias afectadas y organizaciones no gubernamentales dedicadas a la protección del medio ambiente, establecido por la Decisión de la Comisión de 16 de mayo de 2011 (2), transmitió a la Comisión el 20 de octubre de 2016 su dictamen sobre el contenido propuesto en el documento de referencia MTD para las grandes instalaciones de combustión. Ese dictamen es público.

(3)

Las conclusiones sobre las MTD expuestas en el anexo de la presente Decisión son el elemento fundamental de dicho documento de referencia MTD.

(4)

Las medidas previstas en la presente Decisión se ajustan al dictamen del Comité creado en virtud del artículo 75, apartado 1, de la Directiva 2010/75/UE.

HA ADOPTADO LA PRESENTE DECISIÓN:

Artículo 1

Se adoptan las conclusiones sobre las mejores técnicas disponibles (MTD) para las grandes instalaciones de combustión que figuran en el anexo.

Artículo 2

Los destinatarios de la presente Decisión serán los Estados miembros.

Hecho en Bruselas, el 31 de julio de 2017.

Por la Comisión

Karmenu VELLA

Miembro de la Comisión


(1)  DO L 334 de 17.12.2010, p. 17.

(2)  DO C 146 de 17.5.2011, p. 3.


ANEXO

CONCLUSIONES SOBRE LAS MEJORES TÉCNICAS DISPONIBLES (MTD)

ÁMBITO DE APLICACIÓN

En este documento se describen las conclusiones sobre las MTD en las siguientes actividades especificadas en el anexo I de la Directiva 2010/75/UE:

1.1: Combustión de combustibles en instalaciones con una potencia térmica nominal total igual o superior a 50 MW, solo cuando esta actividad tenga lugar en instalaciones de combustión con una potencia térmica nominal total igual o superior a 50 MW.

1.4: Gasificación de carbón y otros combustibles utilizados en instalaciones con una potencia térmica nominal total de 20 MW o superior, solo cuando esta actividad esté directamente relacionada con una instalación de combustión.

5.2: Valorización o eliminación de residuos en instalaciones de coincineración de residuos no peligrosos con una capacidad superior a 3 toneladas por hora o de residuos peligrosos con una capacidad superior a 10 toneladas por día, solo en el caso de que esta actividad tenga lugar en las instalaciones de combustión a que se refiere el punto 1.1 anterior.

En particular, las presentes conclusiones sobre las MTD se refieren a las actividades anteriores y posteriores directamente relacionadas con las citadas actividades, incluidas las técnicas aplicadas de prevención y control de las emisiones.

Los combustibles considerados en las presentes conclusiones sobre las MTD son cualquier material combustible sólido, líquido y/o gaseoso, en particular:

combustibles sólidos (por ejemplo, hulla, lignito, turba),

biomasa (según la definición del artículo 3, punto 31, de la Directiva 2010/75/CE),

combustibles líquidos (por ejemplo, fuelóleo pesado y gasóleo),

combustibles gaseosos (como gas natural, gas de síntesis y gas que contiene hidrógeno),

combustibles específicos de diversos sectores (por ejemplo, subproductos de las industrias química y siderúrgica),

residuos, con excepción de los residuos municipales mezclados, tal como se definen en el artículo 3, punto 39, y salvo los residuos enumerados en el artículo 42, apartado 2, letra a), incisos ii) y iii), de la Directiva 2010/75/UE.

Las presentes conclusiones sobre las MTD no se refieren a lo siguiente:

la combustión de combustibles en unidades con una potencia térmica nominal inferior a 15 MW,

las instalaciones de combustión acogidas a la exención por vida útil limitada o a la aplicable a las instalaciones de calefacción urbana previstas en los artículos 33 y 35 de la Directiva 2010/75/UE, hasta el vencimiento de las exenciones establecidas en sus permisos, por lo que respecta a los NEA-MTD correspondientes a los contaminantes cubiertos por la exención, así como a los demás contaminantes cuyas emisiones se habrían reducido con las medidas técnicas evitadas por la excepción,

la gasificación de combustibles, cuando no esté directamente relacionada con la combustión del gas de síntesis resultante,

la gasificación de combustibles y la combustión posterior del gas de síntesis, cuando estén directamente relacionadas con el refino de petróleo y gas,

las actividades anteriores y posteriores a las actividades de combustión o gasificación que no estén directamente relacionadas con estas últimas,

la combustión en calentadores u hornos de proceso,

la combustión en instalaciones de postcombustión,

la combustión en antorcha,

la combustión en calderas de recuperación y en quemadores de azufre reducido total en instalaciones destinadas a la producción de pasta y papel, ya que ese tipo de combustión es objeto de las conclusiones sobre las MTD en la producción de pasta, papel y cartón,

la combustión de combustibles de refinería en la refinería, ya que este tipo de combustión es objeto de las conclusiones sobre las MTD en el refino de petróleo y de gas,

la eliminación o valorización de los residuos en:

instalaciones de incineración de residuos (según la definición del artículo 3, punto 40, de la Directiva 2010/75/CE),

las instalaciones de coincineración de residuos en las que más del 40 % del calor generado procede de residuos peligrosos,

las instalaciones de coincineración que queman solo residuos, excepto si esos residuos están compuestos, al menos en parte, de biomasa, tal como se define en el artículo 3, punto 31, letra b), de la Directiva 2010/75/UE,

ya que estas instalaciones son objeto de las conclusiones sobre las MTD en la incineración de residuos.

Otras conclusiones sobre las MTD y otros documentos de referencia que podrían ser pertinentes para las actividades contempladas en las presentes conclusiones son los siguientes:

Sistemas comunes de tratamiento y gestión de aguas y gases residuales en el sector químico (CWW).

Serie de BREF para el sector químico (LVOC, etc.).

Efectos económicos y cruzados (ECM).

Emisiones generadas por el almacenamiento (EFS).

Eficiencia energética (ENE).

Sistemas de refrigeración industrial (ICS).

Producción siderúrgica (IS).

Vigilancia de las emisiones a la atmósfera y al agua procedentes de instalaciones DEI (ROM).

Producción de pasta, papel y cartón (PP).

Refino de petróleo y de gas (REF).

Incineración de residuos (WI).

Tratamiento de residuos (WT).

DEFINICIONES

A los efectos de las presentes conclusiones sobre las MTD, se aplicarán las definiciones siguientes:

Término utilizado

Definición

Términos generales

Caldera

Cualquier instalación de combustión, con excepción de los motores, las turbinas de gas y los calentadores y hornos de proceso.

Turbina de gas de ciclo combinado (TGCC)

Una TGCC es una instalación de combustión en la que se utilizan dos ciclos termodinámicos (es decir, los ciclos Brayton y Rankine). En una TGCC, el calor del gas de combustión de una turbina de gas (que funciona según el ciclo Brayton para producir electricidad) se convierte en energía útil en un generador de vapor con recuperación de calor (GVRC), donde se utiliza para generar vapor que a continuación se expande en una turbina de vapor (que funciona según el ciclo Rankine para producir electricidad adicional).

A los efectos de las presentes conclusiones sobre las MTD, una TGCC incluye configuraciones con y sin alimentación suplementaria del GVRC.

Instalación de combustión

Cualquier dispositivo técnico en el que se oxidan productos combustibles a fin de utilizar el calor así producido. A los efectos de las presentes conclusiones sobre las MTD, una combinación de:

dos o más instalaciones de combustión independientes en las que los gases de combustión se expulsan por una chimenea común, o

instalaciones de combustión independientes que hayan obtenido permiso por primera vez el 1 de julio de 1987 o en una fecha posterior, o cuyos titulares hayan presentado una solicitud completa para la concesión del permiso en dicha fecha o en una posterior, y que estén instaladas de manera que sus gases de combustión, a juicio de las autoridades competentes, teniendo en cuenta factores técnicos y económicos, puedan ser expulsados por una misma chimenea,

se considera una única instalación de combustión.

Para calcular la potencia térmica nominal total de dicha combinación, deben sumarse las capacidades de cada una de esas instalaciones de combustión, que tienen una potencia térmica nominal de al menos 15 MW.

Unidad de combustión

Instalación de combustión individual.

Medición en continuo

Medición realizada con un sistema de medida automatizado instalado de forma permanente en el emplazamiento.

Vertido directo

Vertido (a una masa de agua receptora) en el punto en que las emisiones salen de la instalación sin otro tratamiento posterior.

Sistema de desulfuración de los gases de combustión (DGC)

Sistema compuesto por una o una combinación de las técnicas de reducción de las emisiones de SOX de una instalación de combustión.

Sistema de desulfuración de los gases de combustión (DGC) — existente

Un sistema de desulfuración de los gases de combustión (DGC) que no es nuevo.

Sistema de desulfuración de los gases de combustión (DGC) — nuevo

Bien un sistema de desulfuración de los gases de combustión (DGC) en una instalación nueva, bien un sistema DGC que incluya al menos una técnica de reducción introducida o completamente sustituida en una instalación existente tras la publicación de las presentes conclusiones sobre las MTD.

Gasóleo

Cualquier combustible líquido derivado del petróleo clasificado en los códigos NC 2710 19 25 , 2710 19 29 , 2710 19 47 , 2710 19 48 , 2710 20 17 o 2710 20 19 .

O cualquier combustible líquido derivado del petróleo del que menos del 65 % v/v (incluidas las pérdidas) se destile a 250 °C y por lo menos el 85 % v/v (incluidas las pérdidas) se destile a 350 °C por el método ASTM D86.

Fuelóleo pesado (HFO)

Cualquier combustible líquido derivado del petróleo clasificado en los códigos NC 2710 19 51 a 2710 19 68 , 2710 20 31 , 2710 20 35 , 2710 20 39 .

O cualquier combustible líquido derivado del petróleo, distinto del gasóleo, que, debido a sus límites de destilación, pertenezca a la clase de aceites pesados destinados a utilizarse como combustible y de los que menos del 65 % v/v (incluidas las pérdidas) se destile a 250 °C por el método ASTM D86. Si la destilación no se puede determinar mediante el método ASTM D86, el producto derivado del petróleo también se clasifica como fuelóleo pesado.

Eficiencia eléctrica neta (unidad de combustión y ciclo combinado con gasificación integrada — CCGI)

Relación entre la producción eléctrica neta (electricidad producida en la parte de alta tensión del transformador principal menos la energía importada, por ejemplo, para el consumo de los sistemas auxiliares) y la entrada de energía del combustible/materia prima (como el poder calorífico inferior del combustible/materia prima) en los límites de la unidad de combustión durante un período de tiempo determinado.

Eficiencia neta de la energía mecánica

Relación entre la potencia mecánica en el acoplamiento de carga y la potencia térmica suministrada por el combustible.

Utilización neta total de combustible (unidad de combustión y ciclo combinado con gasificación integrada — CCGI)

Relación entre la energía neta producida [electricidad, agua caliente, vapor, energía mecánica producidos menos la energía eléctrica y/o térmica importada (por ejemplo para el consumo de los sistemas auxiliares)] y la entrada de energía del combustible (como el poder calorífico inferior del combustible) dentro de los límites de la unidad de combustión durante un período de tiempo determinado.

Utilización neta total de combustible (unidad de gasificación)

Relación entre la energía neta producida [electricidad, agua caliente, vapor, energía mecánica producidos, y gas de síntesis (como el poder calorífico inferior del gas de síntesis) menos la energía eléctrica y/o térmica importada (por ejemplo, para el consumo de los sistemas auxiliares)] y la entrada de energía del combustible/materia prima (como el poder calorífico inferior del combustible/materia prima) dentro de los límites de la unidad de combustión durante un período de tiempo determinado.

Horas de funcionamiento

El tiempo, expresado en horas, durante el que una instalación de combustión, en su conjunto o en parte, funciona y expulsa emisiones a la atmósfera, excepto los períodos de arranque y de parada.

Medición periódica

Determinación de un mensurando (una cantidad particular sometida a medición) a intervalos de tiempo determinados.

Instalación-existente

Instalación de combustión que no es nueva.

Instalación-nueva

Instalación de combustión autorizada por primera vez en el complejo después de la publicación de las presentes conclusiones sobre las MTD, o bien la sustitución completa de una instalación de combustión sobre los cimientos de la anterior después de publicadas las presentes conclusiones sobre las MTD.

Instalación de postcombustión

Sistema destinado a depurar los gases de combustión por combustión que no funcione como instalación de combustión autónoma, tal como un oxidador térmico (es decir, un incinerador de gases de cola), utilizado para la eliminación del contenido de uno o varios contaminantes (por ejemplo, COV) de los gases de combustión con o sin recuperación del calor generado por la combustión. Se considera que las técnicas de combustión por etapas en las que cada una de las etapas queda confinada en su propia cámara con un proceso de combustión que puede tener unas características distintas (por ejemplo, relación aire/combustible, perfil de temperatura, etc.) están integradas en el proceso de combustión y no son instalaciones de postcombustión. Del mismo modo, cuando los gases generados en un horno/calentador de proceso o en otro proceso de combustión se oxidan posteriormente en otra instalación de combustión con objeto de recuperar su valor energético (utilizando o no un combustible auxiliar) para producir electricidad, vapor, aceite/agua caliente o energía mecánica, esta última instalación tampoco se considera una instalación de postcombustión.

Sistema predictivo de monitorización de emisiones (PEMS)

Sistema utilizado para determinar la concentración de emisiones de un contaminante procedentes de una fuente de emisión de manera continua, sobre la base de su relación con una serie de parámetros del proceso característicos que se monitorizan de forma continua (por ejemplo, consumo de gas combustible, relación aire/combustible, etc.) y datos de calidad del combustible o la carga (por ejemplo, contenido de azufre).

Combustibles de procesos de la industria química

Subproductos gaseosos y/o líquidos generados por la industria (petro)química y que se utilizan como combustibles no comerciales en instalaciones de combustión.

Calentadores u hornos de proceso

Los calentadores u hornos de proceso son:

instalaciones de combustión cuyos gases de combustión se utilizan para el tratamiento térmico de objetos o material de carga mediante un mecanismo de aplicación de calor por contacto directo [por ejemplo, horno de cemento y cal, horno de vidriería, horno de asfalto, proceso de secado, reactores utilizados en la industria (petro)química, hornos de transformación de metales férreos, etc.], o

instalaciones de combustión cuyo calor radiante y/o conductivo se transfiere a objetos o material de carga a través de una pared sólida sin utilizar un fluido transmisor térmico intermedio [por ejemplo, horno con baterías de coque, recuperador de altos hornos, horno o reactor que calienta el flujo del proceso utilizado en la industria (petro)química, tal como un horno vapocraqueador, calentador de proceso empleado para la regasificación de gas natural licuado (GNL) en las terminales de GNL].

Como consecuencia de la aplicación de buenas prácticas de recuperación de energía, los calentadores/hornos de proceso pueden llevar asociado un sistema de generación de vapor/electricidad. Se considera que se trata de una característica de diseño que forma parte integrante del horno/calentador de proceso y que no puede considerarse aisladamente.

Combustibles de refinería

Material combustible sólido, líquido o gaseoso procedente de las etapas de destilación y conversión del refino de petróleo crudo. Por ejemplo, el gas de refinería (GR), el gas de síntesis, los fuelóleos de refinería o el coque de petróleo.

Residuos

Sustancias u objetos generados por las actividades incluidas en el ámbito de aplicación del presente documento en forma de desechos o subproductos.

Período de arranque y parada

El período de funcionamiento de la instalación determinado con arreglo a lo dispuesto en la Decisión de Ejecución 2012/249/UE de la Comisión (*1).

Unidad-existente

Unidad de combustión que no es nueva.

Unidad-nueva

Unidad de combustión autorizada por primera vez en la instalación de combustión después de la publicación de las presentes conclusiones sobre las MTD, o bien la sustitución completa de una unidad de combustión edificada sobre los cimientos de la instalación de combustión después de publicadas las presentes conclusiones sobre las MTD.

Válidos (valores medios horarios)

Se considera que un valor medio horario es válido cuando no hay fallos de funcionamiento ni mantenimiento del sistema de medición automático.


Término utilizado

Definición

Contaminantes/parámetros

As

Suma de arsénico y sus compuestos, expresada como As.

C3

Hidrocarburos de tres carbonos.

C4+

Hidrocarburos de cuatro carbonos o más.

Cd

Suma de cadmio y sus compuestos, expresada como Cd.

Cd+Tl

Suma de cadmio, talio y sus compuestos, expresada como Cd+Tl.

CH4

Metano.

CO

Monóxido de carbono.

DQO

Demanda química de oxígeno. Cantidad de oxígeno necesaria para la oxidación total de la materia orgánica a dióxido de carbono.

COS

Oxisulfuro de carbono.

Cr

Suma de cromo y sus compuestos, expresada como Cr.

Cu

Suma de cobre y sus compuestos, expresada como Cu.

Partículas

Total de partículas (en el aire).

Fluoruro

Fluoruro disuelto, expresado como F-.

H2S

Sulfuro de hidrógeno.

HCl

Todos los compuestos clorados gaseosos inorgánicos, expresados como HCl.

HCN

Cianuro de hidrógeno.

HF

Todos los compuestos fluorados gaseosos inorgánicos, expresados como HF.

Hg

Suma de mercurio y sus compuestos, expresada como Hg.

N2O

Monóxido de dinitrógeno (óxido nitroso).

NH3

Amoníaco.

Ni

Suma de níquel y sus compuestos, expresada como Ni.

NOx

La suma de monóxido de nitrógeno (NO) y dióxido de nitrógeno (NO2), expresada como NO2.

Pb

La suma de plomo y sus compuestos, expresada como Pb.

PCDD/PCDF

Dibenzo-p-dioxinas/dibenzofuranos policlorados.

CSDG

Concentración sin diluir en el gas de combustión. Concentración de SO2 en los gases de combustión crudos como media anual (en las condiciones normalizadas indicadas en las «Consideraciones generales») a la entrada del sistema de reducción de las emisiones de SOx, expresada con un contenido de oxígeno de referencia de 6 % v/v de O2.

Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V

Suma de antimonio, arsénico, plomo, cromo, cobalto, cobre, manganeso, níquel, vanadio y sus compuestos, expresada en Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V.

SO2

Dióxido de azufre.

SO3

Trióxido de azufre.

SOx

Suma de dióxido de azufre (SO2) y trióxido de azufre (SO3), expresada como SO2.

Sulfato

Sulfato disuelto, expresado como SO4 2-.

Sulfuro, fácilmente liberado

Suma de sulfuro disuelto y de los sulfuros no disueltos que se liberan fácilmente tras la acidificación, expresada como S2-.

Sulfito

Sulfito disuelto, expresado como SO3 2-.

COT

Carbono orgánico total, expresado como C (en agua).

STS

Sólidos totales en suspensión. Concentración másica de todos los sólidos en suspensión (en agua) medida por filtración a través de filtros de fibra de vidrio y por gravimetría.

COVT

Carbono orgánico volátil total, expresado como C (en aire).

Zn

Suma de cinc y sus compuestos, expresada como Zn.

ACRÓNIMOS

A los efectos de las presentes conclusiones sobre las MTD, se aplicarán los acrónimos siguientes:

Acrónimo

Definición

USA

Unidad de suministro de aire.

TGCC

Turbina de gas de ciclo combinado, con o sin alimentación suplementaria.

LFC

Lecho fluidizado circulante.

PCCE

Producción combinada de calor y electricidad.

GC

Gas de coque.

COS

Oxisulfuro de carbono.

DLN

Quemadores secos de baja producción de NOX.

ISC

Inyección de sorbentes en los conductos.

PE

Precipitador electrostático.

CLF

Combustión en lecho fluidizado.

DGC

Desulfuración de gases de combustión.

HFO

Fuelóleo pesado.

GVRC

Generador de vapor con recuperación de calor.

CCGI

Ciclo combinado de gasificación integrada.

PCI

Poder calorífico inferior.

LNB

Quemadores de baja producción de NOX.

GNL

Gas natural licuado.

TGCA

Turbina de gas de ciclo abierto.

CDCNF

Condiciones distintas de las condiciones normales de funcionamiento.

CP

Combustión con pulverización.

PEMS

Sistema predictivo de monitorización de emisiones.

RCS

Reducción catalítica selectiva.

ASA

Absorbente en seco por atomización.

RNCS

Reducción no catalítica selectiva.

CONSIDERACIONES GENERALES

Mejores técnicas disponibles

Las técnicas enumeradas y descritas en las presentes conclusiones sobre las MTD no son prescriptivas ni exhaustivas. Pueden utilizarse otras técnicas si garantizan al menos un nivel equivalente de protección del medio ambiente.

Salvo que se indique otra cosa, estas conclusiones sobre las MTD son aplicables con carácter general.

Niveles de emisión asociados a las mejores técnicas disponibles (NEA-MTD)

Cuando se den niveles de emisión asociados a las mejores técnicas disponibles (NEA-MTD) para distintos períodos de cálculo de valores medios, deben cumplirse todos esos niveles.

Los NEA-MTD recogidos en las presentes conclusiones sobre las MTD pueden no ser aplicables a los motores y turbinas alimentados por combustibles líquidos y por gas destinados a usos de emergencia que funcionen menos de 500 h/año, cuando esos usos de emergencia no sean compatibles con el cumplimiento de los NEA-MTD.

NEA-MTD correspondientes a las emisiones a la atmósfera

Los niveles de emisión asociados a las mejores técnicas disponibles (NEA-MTD) en relación con las emisiones atmosféricas presentados en estas conclusiones sobre las MTD son concentraciones expresadas como la masa de sustancia emitida por volumen de gas de combustión en las siguientes condiciones normalizadas: gas seco, temperatura de 273,15 K, y presión de 101,3 kPa, expresados en las unidades mg/Nm3, μg/Nm3 o ng I-TEQ/Nm3.

La monitorización asociada a los NEA-MTD correspondientes a las emisiones a la atmósfera se indica en la MTD 4.

En el cuadro que figura a continuación se recogen las condiciones de referencia para el oxígeno utilizadas para expresar los NEA-MTD en el presente documento.

Actividad

Nivel de oxígeno de referencia(OR)

Combustión de combustibles sólidos

6 % v/v

Combustión de combustibles sólidos en combinación con combustibles líquidos o gaseosos

Coincineración de residuos

Combustión de combustibles líquidos y/o gaseosos, cuando no tenga lugar en una turbina de gas o un motor

3 % v/v

Combustión de combustibles líquidos y/o gaseosos cuando tenga lugar en una turbina de gas o un motor

15 % v/v

Combustión en instalaciones de CCGI

La ecuación para calcular la concentración de las emisiones al nivel de oxígeno de referencia es la siguiente:

Formula

donde:

ER

:

concentración de las emisiones al nivel de oxígeno de referencia OR;

OR

:

nivel de oxígeno de referencia en % v/v;

EM

:

concentración medida de emisiones;

OM

:

nivel de oxígeno medido en % v/v.

Para los períodos de cálculo de valores medios se aplicarán las definiciones siguientes:

Período de cálculo de valores medios

Definición

Media diaria

Media durante un período de 24 horas de las medias horarias válidas obtenidas mediante medición continua.

Media anual

Media durante un período de un año de las medias horarias válidas obtenidas mediante medición continua.

Media durante el período de muestreo

Valor medio de tres mediciones consecutivas de al menos 30 minutos cada una (1).

Media de las muestras obtenidas durante un año

Media de los valores obtenidos durante un año de las mediciones periódicas realizadas con la frecuencia de monitorización fijada para cada parámetro.

NEA-MTD correspondientes a las emisiones al agua

Los niveles de emisión asociados a las mejores técnicas disponibles (NEA-MTD) en relación con las emisiones al agua que se indican en las presentes conclusiones sobre las MTD son concentraciones expresadas como la masa de sustancia emitida por volumen de agua y medidas en μg/l, mg/l o g/l. Los NEA-MTD se refieren a medias diarias, es decir muestras compuestas proporcionales al caudal, tomadas en 24 horas. Pueden utilizarse muestras compuestas proporcionales al tiempo, siempre que pueda demostrarse que el caudal tiene una estabilidad suficiente.

La monitorización asociada a los NEA-MTD correspondientes a las emisiones al agua se describe en la MTD 5.

Niveles de eficiencia energética asociados a las mejores técnicas disponibles (NEEA-MTD)

Por nivel de eficiencia energética asociado a las mejores técnicas disponibles (NEEA-MTD) se entiende la relación existente entre la producción de energía neta de la unidad de combustión y la entrada de energía del combustible/materia prima de la unidad de combustión, con el diseño real de la unidad. La producción de energía neta se determina en los límites de la unidad de combustión, gasificación o CCGI, incluidos los sistemas auxiliares (por ejemplo, los sistemas de tratamiento de los gases de combustión) y en relación con la unidad funcionando a plena carga.

En el caso de las centrales de producción combinada de calor y electricidad (PCCE):

los NEEA-MTD del consumo de combustible neto total se refieren a la unidad de combustión funcionando a plena carga y ajustada para maximizar en primer lugar el suministro de calor y en segundo lugar el resto de la energía que puede generarse;

los NEEA-MTD de la eficiencia eléctrica neta se refieren a la unidad de combustión generando únicamente electricidad a plena carga.

Los NEEA-MTD se expresan como porcentaje. La producción de energía del combustible/materia prima se expresa como poder calorífico inferior (PCI).

La monitorización asociada a los NEEA-MTD se describe en la MTD 2.

Clasificación de las instalaciones/unidades de combustión en función de su potencia térmica nominal total

A los efectos de las presentes conclusiones sobre las MTD, cuando se dé un intervalo de valores de potencia térmica nominal total, debe interpretarse como «igual o superior al límite inferior del intervalo e inferior al límite superior del intervalo». Por ejemplo, la categoría de instalaciones 100-300 MWth debe interpretarse como: instalaciones de combustión con una potencia térmica nominal total igual o superior a 100 MW e inferior a 300 MW.

Cuando una parte de una instalación de combustión que expulse gases de combustión a través de uno o más conductos separados dentro de una chimenea común funcione menos de 1 500 h/año, esa parte de la instalación puede considerarse de forma independiente a efectos de las presentes conclusiones sobre las MTD. Respecto a todas las partes de la instalación, los NEA-MTD se aplican en relación con la potencia térmica nominal total de la instalación. En esos casos, las emisiones expulsadas a través de cada uno de esos conductos se monitorizan por separado.

1.   CONCLUSIONES GENERALES SOBRE LAS MTD

Las conclusiones sobre las MTD específicas de los distintos combustibles recogidas en las secciones 2 a 7 se aplican además de las MTD generales de la presente sección.

1.1.   Sistemas de gestión ambiental

MTD 1.

Para mejorar el comportamiento ambiental global, la MTD consiste en implantar y cumplir un sistema de gestión ambiental (SGA) que reúna todas las características siguientes:

i)

Obtener el compromiso de los órganos de dirección, incluidos los directivos superiores.

ii)

Definición, por parte de los órganos de dirección, de una política medioambiental que promueva la mejora continua del comportamiento ambiental de la instalación.

iii)

Planificar y establecer los procedimientos, objetivos y metas, junto con la planificación financiera y las inversiones necesarias.

iv)

Aplicar los procedimientos prestando especial atención a:

a)

la organización y la asignación de responsabilidades;

b)

la contratación, la formación, la concienciación y las competencias profesionales;

c)

la comunicación;

d)

la implicación de los trabajadores;

e)

la documentación;

f)

el control eficaz de los procesos;

g)

los programas de mantenimiento periódico previstos;

h)

la preparación y la capacidad de reacción ante las emergencias;

i)

la garantía del cumplimiento de la legislación ambiental.

v)

Comprobar el comportamiento y adoptar medidas correctoras, haciendo especial hincapié en lo siguiente:

a)

la monitorización y la medición (véase también el Informe de Referencia del JRC sobre la vigilancia de las emisiones a la atmósfera y al agua procedentes de instalaciones DEI-ROM);

b)

las medidas correctoras y preventivas;

c)

el mantenimiento de registros;

d)

la auditoría interna independiente (cuando sea posible) y externa, dirigida a determinar si el SGA se ajusta o no a las disposiciones previstas, y si se aplica y mantiene correctamente.

vi)

Los directivos superiores establecerán un sistema de revisión del SGA para comprobar si el sistema sigue siendo conveniente, adecuado y eficaz.

vii)

Seguir el desarrollo de tecnologías más limpias.

viii)

Considerar, tanto en la fase de diseño de una instalación nueva como durante toda su vida útil, el impacto ambiental del cierre final de la instalación, en particular:

a)

evitar las estructuras subterráneas;

b)

incorporar funciones que faciliten el desmantelamiento de la instalación;

c)

seleccionar acabados de superficie que se puedan descontaminar fácilmente;

d)

utilizar una configuración de los equipos que permita reducir al mínimo las sustancias químicas atrapadas y facilite el vaciado o lavado;

e)

diseñar equipos flexibles e independientes que permitan cerrar la instalación por fases;

f)

utilizar materiales biodegradables y reciclables cuando sea posible.

ix)

Realizar de forma periódica evaluaciones comparativas con el resto del sector.

Concretamente, para este sector, también es importante considerar los elementos siguientes del SGA, que se describen cuando procede en la MTD pertinente:

x)

Programas de aseguramiento/control de la calidad para garantizar que se determinan y controlan completamente las características de todos los combustibles (véase la MTD 9).

xi)

Un plan de gestión dirigido a reducir las emisiones al aire y/o al agua cuando se den condiciones distintas a las condiciones normales de funcionamiento, incluidos los períodos de arranque y parada (véanse las MTD 10 y MTD 11).

xii)

Un plan de gestión de residuos que garantice que los residuos se eviten, se preparen para la reutilización, el reciclado u otro tipo de valorización, incluido el uso de las técnicas que se indican en la MTD 16.

xiii)

Un método sistemático para identificar y controlar las posibles emisiones al medio ambiente imprevistas y/o incontroladas, en particular:

a)

las emisiones al suelo y las aguas subterráneas procedentes de la manipulación y el almacenamiento de combustibles, aditivos, subproductos y residuos;

b)

las emisiones asociadas al calentamiento o ignición espontáneos del combustible en las actividades de almacenamiento y manipulación.

xiv)

Un plan de gestión de partículas para evitar o, cuando ello no sea posible, reducir las emisiones difusas procedentes de las operaciones de carga, descarga, almacenamiento y/o manipulación de combustibles, residuos y aditivos.

xv)

Un plan de gestión del ruido cuando se prevean molestias debidas al ruido en receptores sensibles o se haya confirmado la existencia de tales molestias, en particular:

a)

un protocolo para la monitorización del ruido en los límites de la instalación;

b)

un programa de reducción del ruido;

c)

un protocolo de respuesta a incidentes en relación con el ruido que contenga actuaciones y plazos adecuados;

d)

una revisión de los incidentes pasados en relación con el ruido, las medidas correctoras adoptadas y la difusión de conocimientos sobre ese tipo de incidentes a las partes afectadas.

xvi)

Un plan de gestión de olores para la combustión, gasificación o coincineración de sustancias malolientes que incluya:

a)

un protocolo para la monitorización de los olores;

b)

cuando resulte necesario, un programa de eliminación de olores dirigido a detectar y eliminar o reducir las emisiones de olores;

c)

un protocolo para registrar los incidentes en relación con los olores que contenga actuaciones y plazos adecuados;

d)

una revisión de los incidentes pasados en relación con los olores, las medidas correctoras adoptadas y la difusión de conocimientos sobre ese tipo de incidentes a las partes afectadas.

Cuando una evaluación ponga de manifiesto que no resulta necesario alguno de los elementos enumerados en los epígrafes x a xvi, se dejará constancia de la decisión y su justificación.

Aplicabilidad

El alcance (por ejemplo, el grado de detalle) y las características del SGA (por ejemplo, si está normalizado o no) dependerán, por regla general, de las características, dimensiones y nivel de complejidad de la instalación, así como de los diversos efectos que pueda tener sobre el medio ambiente.

1.2.   Monitorización

MTD 2.

La MTD consiste en determinar la eficiencia eléctrica neta y/o el consumo de combustible neto total y/o la eficiencia neta de la energía mecánica de las unidades de combustión, gasificación o CCGI por medio de un ensayo de rendimiento a plena carga (2), con arreglo a normas EN, después de la entrada en funcionamiento de la unidad y después de cada modificación que pueda afectar significativamente a la eficiencia eléctrica neta y/o al consumo de combustible neto total y/o a la eficiencia neta de la energía mecánica de la unidad. Si no se dispone de normas EN, la MTD consiste en aplicar normas ISO u otras normas nacionales o internacionales que garanticen la obtención de datos de calidad científica equivalente.

MTD 3.

La MTD consiste en monitorizar los principales parámetros del proceso que sean pertinentes para las emisiones a la atmósfera y al agua, incluidos los que se indican a continuación.

Flujo

Parámetro

Monitorización

Gas de combustión

Caudal

Determinación periódica o en continuo

Contenido de oxígeno, temperatura y presión

Medición periódica o en continuo

Contenido de vapor de agua (3)

Aguas residuales del tratamiento de los gases de combustión

Caudal, pH y temperatura

Medición en continuo

MTD 4.

La MTD consiste en monitorizar las emisiones atmosféricas al menos con la frecuencia que se indica a continuación y con arreglo a normas EN. Si no se dispone de normas EN, la MTD consiste en aplicar normas ISO u otras normas internacionales o nacionales que garanticen la obtención de datos de calidad científica equivalente.

Sustancia/Parámetro

Combustible/Proceso/Tipo de instalación de combustión

Potencia térmica nominal total de la instalación de combustión

Norma(s) (4)

Frecuencia mínima de monitorización (5)

Monitorización asociada a la

NH3

Cuando se utiliza la RCS y/o la RNCS

Todos los tamaños

Normas EN genéricas

Continua (6)  (7)

MTD 7

NOx

Hulla y/o lignito, incluida la coincineración de residuos

Biomasa sólida y/o turba, incluida la coincineración de residuos

Motores y calderas alimentados por HFO y/o gasóleo

Turbinas de gas alimentadas por gasóleo

Calderas, motores y turbinas alimentados por gas natural

Gases de procesos siderúrgicos

Combustibles de procesos de la industria química

Instalaciones de CCGI

Todos los tamaños

Normas EN genéricas

Continua (6)  (8)

MTD 20

MTD 24

MTD 28

MTD 32

MTD 37

MTD 41

MTD 42

MTD 43

MTD 47

MTD 48

MTD 56

MTD 64

MTD 65

MTD 73

Instalaciones de combustión en plataformas marinas

Todos los tamaños

EN 14792

Una vez al año (9)

MTD 53

N2O

Hulla y/o lignito en calderas de lecho fluidizado circulante

Biomasa sólida y/o turba en calderas de lecho fluidizado circulante

Todos los tamaños

EN 21258

Una vez al año (10)

MTD 20

MTD 24

CO

Hulla y/o lignito, incluida la coincineración de residuos

Biomasa sólida y/o turba, incluida la coincineración de residuos

Motores y calderas alimentados por HFO y/o gasóleo

Turbinas de gas alimentadas por gasóleo

Calderas, motores y turbinas alimentados por gas natural

Gases de procesos siderúrgicos

Combustibles de procesos de la industria química

Instalaciones de CCGI

Todos los tamaños

Normas EN genéricas

Continua (6)  (8)

MTD 20

MTD 24

MTD 28

MTD 33

MTD 38

MTD 44

MTD 49

MTD 56

MTD 64

MTD 65

MTD 73

Instalaciones de combustión en plataformas marinas

Todos los tamaños

EN 15058

Una vez al año (9)

MTD 54

SO2

Hulla y/o lignito, incluida la coincineración de residuos

Biomasa sólida y/o turba, incluida la coincineración de residuos

Calderas alimentadas por HFO y/o gasóleo

Motores alimentados por HFO o gasóleo

Turbinas de gas alimentadas por gasóleo

Gases de procesos siderúrgicos

Combustibles de procesos de la industria química en calderas

Instalaciones de CCGI

Todos los tamaños

Normas EN genéricas y norma EN 14791

Continua (6)  (11)  (12)

MTD 21

MTD 25

MTD 29

MTD 34

MTD 39

MTD 50

MTD 57

MTD 66

MTD 67

MTD 74

SO3

Cuando se utiliza la RCS

Todos los tamaños

Ninguna norma EN disponible

Una vez al año

Cloruros gaseosos, expresados como HCl

Hulla y/o lignito

Combustibles de procesos de la industria química en calderas

Todos los tamaños

EN 1911

Una vez al trimestre (6)  (13)  (14)

MTD 21

MTD 57

Biomasa sólida y/o turba

Todos los tamaños

Normas EN genéricas

Continua (15)  (16)

MTD 25

Coincineración de residuos

Todos los tamaños

Normas EN genéricas

Continua (6)  (16)

MTD 66

MTD 67

HF

Hulla y/o lignito

Combustibles de procesos de la industria química en calderas

Todos los tamaños

Ninguna norma EN disponible

Una vez al trimestre (6)  (13)  (14)

MTD 21

MTD 57

Biomasa sólida y/o turba

Todos los tamaños

Ninguna norma EN disponible

Una vez al año

MTD 25

Coincineración de residuos

Todos los tamaños

Normas EN genéricas

Continua (6)  (16)

MTD 66

MTD 67

Partículas

Hulla y/o lignito

Biomasa sólida y/o turba

Calderas alimentadas por HFO y/o gasóleo

Gases de procesos siderúrgicos

Combustibles de procesos de la industria química en calderas

Instalaciones de CCGI

Motores alimentados por HFO y/o gasóleo

Turbinas de gas alimentadas por gasóleo

Todos los tamaños

Normas EN genéricas y normas EN 13284-1 y EN 13284-2

Continua (6)  (17)

MTD 22

MTD 26

MTD 30

MTD 35

MTD 39

MTD 51

MTD 58

MTD 75

Coincineración de residuos

Todos los tamaños

Normas EN genéricas y norma EN EN 13284-2

Continua

MTD 68

MTD 69

Metales y metaloides, excepto el mercurio (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, Tl, V, Zn)

Hulla y/o lignito

Biomasa sólida y/o turba

Motores y calderas alimentados por HFO y/o gasóleo

Todos los tamaños

EN 14385

Una vez al año (18)

MTD 22

MTD 26

MTD 30

Coincineración de residuos

< 300 MWth

EN 14385

Una vez al semestre (13)

MTD 68

MTD 69

≥ 300 MWth

EN 14385

Una vez al trimestre (19)  (13)

Instalaciones de CCGI

≥ 100 MWth

EN 14385

Una vez al año (18)

MTD 75

Hg

Hulla y/o lignito, incluida la coincineración de residuos

< 300 MWth

EN 13211

Una vez al trimestre (13)  (20)

MTD 23

≥ 300 MWth

Normas EN genéricas y norma EN 14884

Continua (16)  (21)

Biomasa sólida y/o turba

Todos los tamaños

EN 13211

Una vez al año (22)

MTD 27

Coincineración de residuos con biomasa sólida y/o turba

Todos los tamaños

EN 13211

Una vez al trimestre (13)

MTD 70

Instalaciones de CCGI

≥ 100 MWth

EN 13211

Una vez al año (23)

MTD 75

COVT

Motores alimentados por HFO y/o gasóleo

Combustibles de procesos de la industria química en calderas

Todos los tamaños

EN 12619

Una vez al semestre (13)

MTD 33

MTD 59

Coincineración de residuos con hulla, lignito, biomasa sólida y/o turba

Todos los tamaños

Normas EN genéricas

Continua

MTD 71

Formaldehído

Gas natural en motores de encendido por chispa de gas de mezcla pobre y de dos combustibles

Todos los tamaños

Ninguna norma EN disponible

Una vez al año

MTD 45

CH4

Motores alimentados por gas natural

Todos los tamaños

EN ISO 25139

Una vez al año (24)

MTD 45

PCDD/PCDF

Combustibles de procesos de la industria química en calderas

Coincineración de residuos

Todos los tamaños

EN 1948-1, EN 1948-2, EN 1948-3

Una vez al semestre (13)  (25)

MTD 59

MTD 71

MTD 5.

La MTD consiste en monitorizar las emisiones al agua procedentes del tratamiento de los gases de combustión al menos con la frecuencia que se indica a continuación y con arreglo a normas EN. Si no se dispone de normas EN, la MTD consiste en aplicar normas ISO u otras normas internacionales o nacionales que garanticen la obtención de datos de calidad científica equivalente.

Sustancia/parámetro

Norma(s)

Frecuencia mínima de monitorización

Monitorización asociada a la

Carbono orgánico total (COT) (26)

EN 1484

Una vez al mes

MTD 15

Demanda química de oxígeno (DQO) (26)

Ninguna norma EN disponible

Total de sólidos en suspensión (TSS)

EN 872

Fluoruro (F-)

EN ISO 10304-1

Sulfato (SO4 2-)

EN ISO 10304-1

Sulfuro, fácilmente liberado(S2-)

Ninguna norma EN disponible

Sulfito (SO3 2-)

EN ISO 10304-3

Metales y metaloides

As

Varias normas EN disponibles (por ejemplo, las normas EN ISO 11885 o EN ISO 17294-2)

Cd

Cr

Cu

Ni

Pb

Zn

Hg

Varias normas EN disponibles (por ejemplo, las normas EN ISO 12846 o EN ISO 17852)

Cloruro (Cl-)

Varias normas EN disponibles (por ejemplo, las normas EN ISO 10304-1 o EN ISO 15682)

Nitrógeno total

EN 12260

1.3.   Comportamiento general desde el punto de vista del medio ambiente y de la combustión

MTD 6.

Con el fin de mejorar el comportamiento ambiental general de las instalaciones de combustión y de reducir las emisiones atmosféricas de CO y de sustancias no quemadas, la MTD consiste en asegurar una combustión optimizada y utilizar una combinación adecuada de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Mezcla y homogeneización de combustibles

Garantizar unas condiciones de combustión estables y/o reducir la emisión de contaminantes mediante la mezcla de distintas calidades del mismo tipo de combustible.

Aplicable con carácter general.

b.

Mantenimiento del sistema de combustión

Mantenimiento programado a intervalos regulares con arreglo a las recomendaciones de los proveedores.

c.

Sistema de control avanzado

Véase la descripción en la sección 8.1.

La aplicabilidad a las instalaciones de combustión viejas puede verse limitada por la necesidad de modernizar el sistema de combustión y/o el sistema de control de los parámetros.

d.

Buen diseño del equipo de combustión

Buen diseño del horno, las cámaras de combustión, los quemadores y los dispositivos asociados.

Aplicable con carácter general a las instalaciones nuevas.

e.

Elección del combustible

Elegir combustibles o sustituir total o parcialmente los utilizados en la actualidad por otros que tengan un mejor perfil ambiental (por ejemplo, con bajo contenido de azufre y/o mercurio) entre los combustibles disponibles, incluso en las situaciones de arranque o cuando se utilizan combustibles de apoyo.

Aplicable con los condicionamientos asociados a la disponibilidad de tipos de combustibles adecuados que tengan un mejor perfil ambiental en su conjunto, lo cual puede verse afectado por la política energética del Estado miembro o por el equilibrio entre los combustibles del emplazamiento integrado en caso de combustión de combustibles de procesos industriales.

En el caso de las instalaciones de combustión existentes, la elección del tipo de combustible puede verse limitada por la configuración y el diseño de la instalación.

MTD 7.

Para reducir las emisiones de amoníaco a la atmósfera procedentes del uso de la reducción catalítica selectiva (RCS) y/o de la reducción no catalítica selectiva (RNCS) para disminuir las emisiones de NOX, la MTD consiste en optimizar el diseño y/o el funcionamiento de la RCS o la RNCS (por ejemplo, optimización de la relación entre el reactivo y los NOX, distribución homogénea del reactivo y tamaño óptimo de las gotas de reactivo).

Niveles de emisión asociados a las MTD

El nivel de emisión asociado a las MTD (NEA-MTD) correspondiente a las emisiones de NH3 a la atmósfera procedentes de la utilización de la RCS y/o de la RNCS es < 3-10 mg/Nm3 como media anual o valor medio durante el período de muestreo. El límite inferior del intervalo puede alcanzarse cuando se utilice la RCS y el superior, cuando se utilice la RNCS sin técnicas de disminución de emisiones por vía húmeda. En el caso de las instalaciones de combustión de biomasa que funcionen con cargas variables, así como en el de los motores de combustión de fuelóleo pesado y/o gasóleo, el límite superior del intervalo de NEA-MTD es 15 mg/Nm3.

MTD 8.

Para evitar o reducir las emisiones al aire en condiciones normales de funcionamiento, la MTD consiste en garantizar, con un diseño, un funcionamiento y un mantenimiento adecuados, que los sistemas de reducción de emisiones se utilicen con la capacidad y disponibilidad óptimas.

MTD 9.

Para mejorar el comportamiento ambiental general de las instalaciones de combustión y/o gasificación y reducir las emisiones a la atmósfera, la MTD consiste en incluir los siguientes elementos en los programas de aseguramiento/control de la calidad para todos los combustibles utilizados, como parte del sistema de gestión ambiental (véase la MTD 1):

i)

Caracterización inicial completa del combustible utilizado, incluyendo como mínimo los parámetros que se indican a continuación y con arreglo a normas EN. Pueden utilizarse normas ISO u otras normas nacionales o internacionales, siempre que con ellas se obtengan datos de calidad científica equivalente.

ii)

Inspecciones periódicas de la calidad del combustible para comprobar si es coherente con la caracterización inicial y acorde con las especificaciones de diseño de la instalación. La frecuencia de muestreo y los parámetros elegidos de los que figuran en el cuadro de abajo se basan en la variabilidad de los combustibles y en una evaluación de la relevancia de las liberaciones de contaminantes (por ejemplo, concentración en el combustible, tratamiento de los gases de combustión empleado, etc.).

iii)

Adaptación posterior de la configuración de la instalación de la manera y en el momento en que sea necesario y factible [por ejemplo, integración de la caracterización y el control del combustible en el sistema de control avanzado (véase la descripción en la sección 8.1)].

Descripción

La caracterización inicial y los ensayos periódicos del combustible pueden realizarlos el titular de la instalación y/o el proveedor del combustible. Si los lleva a cabo el proveedor, los resultados completos se presentan al titular en forma de una garantía o especificación del proveedor del producto (combustible).

Combustible(s)

Sustancias/Parámetros sujetos a caracterización

Biomasa/turba

PCI

Humedad

Cenizas

C, Cl, F, N, S, K, Na

Metales y metaloides (As, Cd, Cr, Cu, Hg, Pb, Zn)

Hulla/lignito

PCI

Humedad

Material volátil, cenizas, carbono fijado, C, H, N, O, S

Br, Cl, F

Metales y metaloides (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Tl, V, Zn)

HFO

Cenizas

C, S, N, Ni, V

Gasóleo

Cenizas

N, C, S

Gas natural

PCI

CH4, C2H6, C3, C4 +, CO2, N2, índice de Wobbe

Combustibles de procesos de la industria química (27)

Br, C, Cl, F, H, N, O, S

Metales y metaloides (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Tl, V, Zn)

Gases de procesos siderúrgicos

PCI, CH4 (para el gas de coque), CxHy (para el gas de coque), CO2, H2, N2, azufre total, partículas, índice de Wobbe

Residuos (28)

PCI

Humedad

Material volátil, cenizas, Br, C, Cl, F, H, N, O, S

Metales y metaloides (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Tl, V, Zn)

MTD 10.

Para reducir las emisiones al aire y/o al agua cuando se den condiciones distintas a las condiciones normales de funcionamiento (CDCNF), la MTD consiste en establecer y aplicar un plan de gestión como parte del sistema de gestión ambiental (véase la MTD 1), acorde con la relevancia de las posibles liberaciones de contaminantes, que incluya los siguientes elementos:

un diseño adecuado de los sistemas de los que se considera que intervienen en la aparición de CDCNF y que pueden tener impacto en las emisiones a la atmósfera, el agua y/o el suelo (por ejemplo, enfoques de diseño de carga baja dirigidos a reducir al mínimo las cargas de arranque y parada para una generación estable en turbinas de gas);

establecimiento y aplicación de un plan de mantenimiento preventivo específico para esos sistemas;

revisión y registro de las emisiones causadas por circunstancias en CDCNF y circunstancias asociadas y aplicación de medidas correctoras, si resulta necesario;

evaluación periódica de las emisiones globales durante las CDCNF (por ejemplo, frecuencia de los sucesos, duración, cuantificación/estimación de las emisiones) y aplicación de medidas correctoras, si resulta necesario.

MTD 11.

La MTD consiste en monitorizar adecuadamente las emisiones a la atmósfera y/o al agua durante las CDCNF.

Descripción

La monitorización puede efectuarse por medición directa de las emisiones o mediante la monitorización de parámetros indicadores, si con este método se obtienen datos con una calidad científica igual o mayor que con la medición directa de las emisiones. Las emisiones durante el arranque y la parada (A/P) pueden evaluarse basándose en una medición exhaustiva de las emisiones con un procedimiento típico de A/P al menos una vez al año, y los resultados de esa medición se utilizarán para calcular las emisiones de cada uno de los procesos de A/P a lo largo del año.

1.4.   Eficiencia energética

MTD 12.

Para aumentar la eficiencia energética de las unidades de combustión, gasificación y/o CCGI que funcionan ≥ 1 500 h/año, la MTD consiste en utilizar una combinación adecuada de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Optimización de la combustión

Véase la descripción en la sección 8.2.

La optimización de la combustión minimiza el contenido de sustancias no quemadas en los gases de combustión y en los residuos sólidos de la combustión.

Aplicable con carácter general.

b.

Optimización de las condiciones del medio de trabajo

Funcionar a las máximas presión y temperatura posibles del vapor o gas del medio de trabajo, con los condicionamientos asociados, por ejemplo, al control de las emisiones de NOx o a las características de la energía demandada.

c.

Optimización del ciclo de vapor

Funcionar con una presión de escape más baja de la turbina utilizando la temperatura más baja posible del agua de refrigeración del condensador, dentro de las condiciones de diseño.

d.

Minimización del consumo de energía

Minimizar el consumo energético interno (por ejemplo, un aumento de la eficiencia de la bomba de alimentación de agua).

e.

Precalentamiento del aire de combustión

Reutilizar parte del calor recuperado de los gases de combustión para precalentar el aire utilizado en la combustión.

Aplicable con carácter general, con los condicionamientos asociados a la necesidad de controlar las emisiones de NOx.

f.

Precalentamiento del combustible

Precalentar el combustible con calor recuperado.

Aplicable con carácter general, con los condicionamientos asociados al diseño de la caldera y a la necesidad de controlar las emisiones de NOx.

g.

Sistema de control avanzado

Véase la descripción en la sección 8.2.

El control informatizado de los principales parámetros de combustión permite aumentar la eficiencia de la combustión.

Aplicable con carácter general a las unidades nuevas. La aplicabilidad a las unidades viejas puede verse limitada por la necesidad de modernizar el sistema de combustión y/o el sistema de control de los parámetros.

h.

Precalentamiento del agua de alimentación utilizando calor recuperado

Precalentar el agua que sale del condensador de vapor con calor recuperado, antes de reutilizarla en la caldera.

Aplicable exclusivamente a los circuitos de vapor y no a las calderas de agua caliente.

La aplicabilidad a unidades existentes puede verse limitada por los condicionamientos asociados a la configuración de la instalación y a la cantidad de calor recuperable.

i.

Recuperación de calor por cogeneración (PCCE)

Recuperar el calor (principalmente del sistema de vapor) con objeto de producir agua caliente o vapor para utilizarlo en procesos o actividades industriales o en una red pública de calefacción urbana. Es posible recuperar calor adicional de:

el gas de combustión,

el enfriamiento de las rejillas,

el lecho fluidizado circulante.

Aplicable con los condicionamientos asociados a la demanda local de calor y electricidad.

La aplicabilidad puede verse limitada en el caso de los compresores de gas con un perfil imprevisible de calor operativo.

j.

Preparación para la PCCE

Véase la descripción en la sección 8.2.

Aplicable exclusivamente a unidades nuevas si hay posibilidades realistas para el uso futuro del calor en las proximidades de la unidad.

k.

Condensador de gases de combustión

Véase la descripción en la sección 8.2.

Aplicable con carácter general a las unidades de PCCE siempre que haya una demanda suficiente de calor de baja temperatura.

l.

Acumulación de calor

Acumulación (almacenamiento) de calor en instalaciones en el modo PCCE.

Aplicable únicamente a las centrales PCCE.

La aplicabilidad puede verse limitada en el caso de que la demanda de carga térmica sea baja.

m.

Chimenea húmeda

Véase la descripción en la sección 8.2.

Aplicable con carácter general a las unidades nuevas y a las unidades existentes equipadas con DGC húmeda.

n.

Vertido de la torre de refrigeración

Liberación de emisiones a la atmósfera a través de una torre de refrigeración y no a través de una chimenea especial.

Aplicable exclusivamente a las unidades equipadas con DGC húmeda cuando es necesario recalentar el gas de combustión antes de la liberación y cuando el sistema de refrigeración de la unidad es una torre de refrigeración.

o.

Presecado del combustible

Reducción del contenido de humedad del combustible antes de la combustión para mejorar las condiciones en las que esta se lleva a cabo.

Aplicable a la combustión de biomasa y/o turba con los condicionamientos asociados a los riesgos de combustión espontánea (por ejemplo, el contenido de humedad de la turba se mantiene por encima del 40 % a lo largo de la cadena de suministro).

La modernización de instalaciones existentes puede verse restringida por el poder calorífico adicional que puede obtenerse de la operación de secado y por las escasas posibilidades de modernización que permiten algunos diseños de calderas o algunas configuraciones de instalaciones.

p.

Minimización de las pérdidas de calor

Minimizar las pérdidas de calor residual, por ejemplo las que se producen a través de las escorias o las que pueden reducirse aislando las fuentes de radiación

Aplicable exclusivamente a las unidades de combustión alimentadas por combustibles sólidos y a las unidades de gasificación/CCGI.

q.

Materiales avanzados

Utilizar materiales avanzados que hayan demostrado ser capaces de resistir altas temperaturas y presiones de funcionamiento y, por ende, de lograr una mayor eficiencia en el proceso de combustión/vapor.

Aplicable únicamente a las instalaciones nuevas.

r.

Perfeccionamiento de la turbina de vapor

Esto puede hacerse utilizando técnicas tales como el aumento de la temperatura y la presión del vapor de presión media, la incorporación de una turbina de baja presión y modificaciones de la geometría de las palas del rotor de la turbina.

La aplicabilidad puede verse limitada por la demanda, las condiciones del vapor y/o una vida útil limitada de la instalación.

s.

Condiciones supercríticas y ultrasupercríticas del vapor

Utilizar un circuito de vapor que incluya sistemas de recalentamiento del vapor en el que el vapor pueda llegar a presiones superiores a 220,6 bar y a temperaturas por encima de 374 °C en el caso de condiciones supercríticas, y a presiones superiores a 250-300 bar y a temperaturas por encima de 580-600 °C en el caso de condiciones ultrasupercríticas.

Aplicable exclusivamente a unidades nuevas de ≥ 600 MWth que funcionen > 4 000 h/año.

No aplicable cuando el propósito de la unidad es producir vapor a bajas temperaturas y/o presiones en industrias de transformación.

No aplicable a las turbinas de gas ni a los motores que generan vapor en modo PCCE.

Para las unidades de combustión de biomasa, la aplicabilidad puede verse restringida por la corrosión a alta temperatura en el caso de ciertos tipos de biomasa.

1.5.   Consumo de agua y emisiones al agua

MTD 13.

Para reducir el consumo de agua y el volumen de aguas residuales contaminadas, la MTD consiste en utilizar una de las técnicas que se indican a continuación o ambas.

Técnica

Descripción

Aplicabilidad

a.

Reciclado del agua

Los flujos de aguas residuales de la instalación, incluida el agua de escorrentía, se reutilizan para otros fines. El grado de reciclado está condicionado por los requisitos de calidad del flujo de agua receptora y por el balance hídrico de la instalación.

No aplicable a las aguas residuales de los sistemas de refrigeración cuando están presentes productos químicos para el tratamiento del agua y/o altas concentraciones de sales de agua marina.

b.

Tratamiento de las cenizas de fondo secas

Las cenizas de fondo calientes y secas caen desde el horno a un sistema transportador mecánico y se dejan enfriar al aire ambiente. No se utiliza agua durante el proceso.

Aplicable únicamente en instalaciones de combustión de combustibles sólidos.

Puede haber restricciones técnicas que impidan adaptar esta técnica a instalaciones de combustión existentes.

MTD 14.

Para evitar la contaminación de las aguas residuales no contaminadas y reducir las emisiones al agua, la MTD consiste en separar los flujos de aguas residuales y tratarlos por separado en función del contenido de sustancias contaminantes.

Descripción

Entre los flujos de aguas residuales que normalmente se separan y tratan cabe citar las aguas de escorrentía superficial, las aguas de refrigeración y las aguas residuales del tratamiento de los gases de combustión.

Aplicabilidad

La aplicabilidad puede verse limitada en las instalaciones existentes debido a la configuración de los sistemas de drenaje.

MTD 15.

Para reducir las emisiones al agua del tratamiento de los gases de combustión, la MTD consiste en utilizar una combinación adecuada de las técnicas que se indican a continuación, así como en utilizar técnicas secundarias lo más cerca posible de la fuente a fin de evitar la dilución.

Técnica

Contaminantes que normalmente se evitan o reducen

Aplicabilidad

Técnicas primarias

a.

Combustión optimizada (véase la MTD 6) y sistemas de tratamiento de los gases de combustión (por ejemplo, RCS, RNCS, véase la MTD 7)

Compuestos orgánicos, amoníaco (NH3).

Aplicable con carácter general.

Técnicas secundarias (29)

b.

Adsorción en carbón activo

Compuestos orgánicos, mercurio (Hg).

Aplicable con carácter general.

c.

Tratamiento biológico aeróbico

Compuestos orgánicos biodegradables, amonio (NH4 +).

Aplicación con carácter general para el tratamiento de compuestos orgánicos. El tratamiento biológico aeróbico del amonio (NH4 +) puede no ser aplicable con altas concentraciones de cloruro (es decir, alrededor de 10 g/l).

d.

Tratamiento biológico anaeróbico/anóxico

Mercurio (Hg), nitrato (NO3 -), nitrito (NO2 -).

Aplicable con carácter general.

e.

Coagulación y floculación

Sólidos en suspensión.

Aplicable con carácter general.

f.

Cristalización

Metales y metaloides, sulfato (SO4 2-), fluoruro (F-).

Aplicable con carácter general.

g.

Filtración (por ejemplo filtración a través de arena, microfiltración, ultrafiltración)

Sólidos en suspensión, metales.

Aplicable con carácter general.

h.

Flotación

Sólidos en suspensión, aceite libre.

Aplicable con carácter general.

i.

Intercambio iónico

Metales.

Aplicable con carácter general.

j.

Neutralización

Ácidos, álcalis.

Aplicable con carácter general.

k.

Oxidación

Sulfuro (S2-), sulfito (SO3 2-).

Aplicable con carácter general.

l.

Precipitación

Metales y metaloides, sulfato (SO4 2-), fluoruro (F-).

Aplicable con carácter general.

m.

Sedimentación

Sólidos en suspensión.

Aplicable con carácter general.

n.

Desorción

Amoníaco (NH3).

Aplicable con carácter general.

Los NEA-MTD se refieren a los vertidos directos a una masa de agua receptora en el punto en que la emisión sale de la instalación.

Cuadro 1

NEA-MTD para los vertidos directos a una masa de agua receptora procedentes del tratamiento de los gases de combustión

Sustancia/parámetro

NEA-MTD

Media diaria

Carbono orgánico total (COT)

20–50 mg/l (30)  (31)  (32)

Demanda química de oxígeno (DQO)

60–150 mg/l (30)  (31)  (32)

Total de sólidos en suspensión (TSS)

10–30 mg/l

Fluoruro (F-)

10–25 mg/l (32)

Sulfato (SO4 2-)

1,3–2,0 g/l (32)  (33)  (34)  (35)

Sulfuro (S2-), fácilmente liberado

0,1-0,2 mg/l (32)

Sulfito (SO3 2-)

1-20 mg/l (32)

Metales y metaloides

As

10–50 μg/l

Cd

2–5 μg/l

Cr

10–50 μg/l

Cu

10–50 μg/l

Hg

0,2–3 μg/l

Ni

10–50 μg/l

Pb

10–20 μg/l

Zn

50-200 μg/l

1.6.   Gestión de residuos

MTD 16.

Para reducir las cantidades de residuos enviados para su eliminación procedentes de los procesos de combustión y/o gasificación y de técnicas de reducción de emisiones, la MTD consiste en organizar las operaciones de modo que se maximice lo siguiente, por orden de prioridad y teniendo en cuenta el criterio del ciclo de vida:

a)

la prevención de residuos, por ejemplo maximizar la proporción de residuos que sean subproductos,

b)

la preparación de los residuos para su reutilización, por ejemplo en función de los criterios específicos de calidad exigidos,

c)

el reciclado de residuos,

d)

otro tipo de valorización (por ejemplo, la valorización energética),

mediante la aplicación de una combinación adecuada de técnicas como las siguientes:

Técnica

Descripción

Aplicabilidad

a.

Generación de yeso como subproducto

Optimización de la calidad de los residuos cálcicos de reacción generados por la DGC húmeda de manera que puedan utilizarse como sustitutivos del yeso extraído de minas (por ejemplo, como materia prima en la industria de los paneles de yeso). La calidad de la piedra caliza utilizada en la DGC húmeda influye en la pureza del yeso producido.

Aplicable con carácter general con los condicionamientos asociados a la calidad requerida del yeso, a los requisitos sanitarios que lleva aparejados cada uso específico y a las condiciones del mercado.

b.

Reciclado o valorización de residuos en el sector de la construcción

El reciclado o la valorización de residuos (por ejemplo, de los procesos de desulfuración semisecos, las cenizas volantes o las cenizas de fondo) como material de construcción (por ejemplo, en la construcción de carreteras, para sustituir a la arena en la producción de hormigón o en la industria del cemento).

Aplicable con carácter general con los condicionamientos asociados a la calidad del material (por ejemplo, las propiedades físicas, el contenido de sustancias peligrosas) requerida para cada uso específico, así como a las condiciones del mercado.

c.

Valorización energética mediante la utilización de residuos en la combinación de combustibles

El contenido de energía residual de las cenizas y lodos ricos en carbono generados por la combustión de hulla, lignito, fuelóleo pesado, turba o biomasa puede valorizarse, por ejemplo mezclando esos productos con el combustible.

Aplicable con carácter general cuando las instalaciones pueden admitir residuos en la combinación de combustibles y son técnicamente capaces de alimentar los combustibles en la cámara de combustión.

d.

Preparación del catalizador agotado para su reutilización

La preparación del catalizador para su reutilización (por ejemplo, hasta cuatro veces en el caso de los catalizadores RCS) recupera la totalidad o parte del rendimiento original, prolongando la vida útil del catalizador a varias décadas. La preparación del catalizador agotado para su reutilización es una técnica integrada en un sistema de gestión del catalizador.

La aplicabilidad puede verse limitada por el estado mecánico del catalizador y el rendimiento exigido con respecto al control de las emisiones de NOx y NH3.

1.7.   Emisiones de ruido

MTD 17.

Para reducir las emisiones de ruido, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Medidas operativas

Ejemplos de tales medidas son:

mejora de la inspección y el mantenimiento de la maquinaria,

cierre de las puertas y ventanas de las zonas cerradas, en la medida de lo posible,

manejo de la maquinaria por personal experimentado,

evitar actividades ruidosas durante la noche, en la medida de lo posible,

medidas de control del ruido durante las actividades de mantenimiento.

Aplicable con carácter general.

b.

Maquinaria de bajo nivel de ruido

Esto puede incluir compresores, bombas y discos.

Aplicable con carácter general cuando la maquinaria sea nueva o se sustituya.

c.

Atenuación del ruido

La propagación del ruido puede reducirse intercalando obstáculos entre el emisor y el receptor. Obstáculos apropiados son los muros de protección, los taludes y los edificios.

En general, aplicable únicamente a las nuevas instalaciones. En el caso de las instalaciones existentes, la intercalación de obstáculos puede verse limitada por falta de espacio.

d.

Equipos de control del ruido

Ejemplos de tales equipos son:

reductores del ruido,

equipos de aislamiento,

confinamiento de la maquinaria ruidosa,

insonorización de los edificios.

La aplicabilidad puede verse limitada por la falta de espacio.

e.

Ubicación adecuada de edificios y maquinaria

Los niveles de ruido pueden atenuarse aumentando la distancia entre el emisor y el receptor y utilizando los edificios como pantallas antirruido.

En general, aplicable únicamente a las nuevas instalaciones. En el caso de las instalaciones existentes, la reubicación de la maquinaria y de las unidades de producción puede verse limitada por la falta de espacio o por costes excesivos.

2.   CONCLUSIONES SOBRE LAS MTD EN LA COMBUSTIÓN DE COMBUSTIBLES SÓLIDOS

2.1.   Conclusiones sobre las MTD en la combustión de hulla y/o lignito

Salvo que se indique lo contrario, las conclusiones sobre las MTD que se presentan en esta sección son de aplicación general a la combustión de hulla y/o lignito. Se aplican además de las conclusiones generales sobre las MTD formuladas en la sección 1.

2.1.1.   Comportamiento ambiental general

MTD 18.

Para mejorar el comportamiento ambiental general de la combustión de hulla y/o lignito, además de la MTD 6, otra MTD consiste en utilizar la técnica que se indica a continuación.

Técnica

Descripción

Aplicabilidad

a.

Proceso de combustión integrado que garantice un alto rendimiento de la caldera e incluya técnicas primarias para la reducción de los NOx [por ejemplo, introducción de aire por etapas, introducción de combustible por etapas, quemadores de baja producción de NOx (LNB) y/o recirculación de los gases de combustión]

Procesos de combustión tales como la combustión con pulverización, la combustión en lecho fluidizado o alimentación con parrillas móviles permiten esa integración.

Aplicable con carácter general.

2.1.2.   Eficiencia energética

MTD 19.

Para aumentar la eficiencia energética de la combustión de hulla y/o lignito, la MTD consiste en utilizar una combinación adecuada de las técnicas que se indican en la MTD 12 y a continuación.

Técnica

Descripción

Aplicabilidad

a.

Tratamiento de las cenizas de fondo secas

Las cenizas de fondo calientes y secas caen desde el horno a un sistema transportador mecánico y, después de redireccionarlas al horno para su recombustión, se dejan enfriar al aire ambiente. Se valoriza energía útil tanto de la recombustión como del enfriado de las cenizas.

Puede haber restricciones técnicas que impidan adaptar esta técnica a unidades de combustión existentes.


Cuadro 2

Niveles de eficiencia energética asociados a las MTD (NEEA-MTD) correspondientes a la combustión de hulla y/o lignito

Tipo de unidad de combustión

NEEA-MTD (36)  (37)

Eficiencia eléctrica neta (%) (38)

Consumo de combustible neto total (%) (38)  (39)  (40)

Unidad nueva (41)  (42)

Unidad existente (41)  (43)

Unidad nueva o existente

Unidad de hulla ≥ 1 000 MWth

45 — 46

33,5 — 44

75 — 97

Unidad de lignito ≥ 1 000 MWth

42 — 44 (44)

33,5 — 42,5

75 — 97

Unidad de hulla < 1 000 MWth

36,5 — 41,5 (45)

32,5 — 41,5

75 — 97

Unidad de lignito < 1 000 MWth

36,5 — 40 (46)

31,5 — 39,5

75 — 97

2.1.3.   Emisiones atmosféricas de NOx, N2O y CO

MTD 20.

Para evitar o reducir las emisiones atmosféricas de NOx y, al mismo tiempo, limitar las emisiones atmosféricas de CO y N2O procedentes de la combustión de hulla y/o lignito, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Optimización de la combustión

Véase la descripción en la sección 8.3.

Suele utilizarse en combinación con otras técnicas.

Aplicable con carácter general.

b.

Combinación de otras técnicas primarias de reducción de los NOx [por ejemplo, introducción de aire por etapas, introducción de combustible por etapas, recirculación de los gases de combustión o quemadores de baja producción de NOx (LNB)].

Véase la descripción en la sección 8.3 en relación con cada una de las técnicas.

La elección y los resultados de (una o una combinación de) las técnicas primarias pueden verse influidos por el diseño de la caldera.

c.

Reducción no catalítica selectiva (RNCS)

Véase la descripción en la sección.8.3.

Puede aplicarse con RCS en el escape.

La aplicabilidad puede verse limitada en el caso de las calderas con un área de sección transversal alta que impida la mezcla homogénea del NH3 y los NOx.

La aplicabilidad puede verse limitada en el caso de las instalaciones de combustión que funcionen < 1 500 h/año con cargas muy variables de la caldera.

d.

Reducción catalítica selectiva (RCS)

Véase la descripción en la sección 8.3.

No aplicable a las instalaciones de combustión de < 300 MWth que funcionen < 500 h/año.

No aplicable con carácter general a las instalaciones de combustión de < 100 MWth.

Puede haber restricciones técnicas y económicas para la modernización de las instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año y para las instalaciones de combustión existentes de ≥ 300 MWth que funcionen < 500 h/año.

e.

Técnicas combinadas para la reducción de los NOx y los SOx

Véase la descripción en la sección 8.3.

Aplicable según cada caso en función de las características del combustible y del proceso de combustión.


Cuadro 3

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de NOx procedentes de la combustión de hulla y/o lignito

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (47)

Instalación nueva

Instalación existente (48)  (49)

< 100

100–150

100-270

155-200

165-330

100-300

50-100

100-180

80-130

155-210

≥ 300, caldera CLF de hulla y/o lignito y caldera CP de lignito

50 — 85

< 85 — 150 (50)  (51)

80 — 125

140 — 165 (52)

≥ 300, caldera CP de hulla

65 — 85

65 — 150

80 — 125

< 85 — 165 (53)

A título indicativo, la media anual de los niveles de emisión de CO para las instalaciones de combustión existentes que funcionan ≥ 1 500 h/año o para las instalaciones de combustión nuevas será por lo general la siguiente:

Potencia térmica nominal total de la instalación de combustión (MWth)

Nivel indicativo de emisiones de CO (mg/Nm3)

< 300

< 30–140

≥ 300, caldera CLF de hulla y/o lignito y caldera CP de lignito

< 30–100 (54)

≥ 300, caldera CP de hulla

< 5–100 (54)

2.1.4.   Emisiones atmosféricas de SOX, HCl y HF

MTD 21.

Para evitar o reducir las emisiones atmosféricas de SOX, HCl y HF procedentes de la combustión de hulla y/o lignito, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Inyección de sorbentes en la caldera (en el hogar o en el lecho)

Véase la descripción en la sección 8.4.

Aplicable con carácter general.

b.

Inyección de sorbentes en los conductos (ISC)

Véase la descripción en la sección 8.4.

La técnica puede utilizarse para la eliminación de HCl/HF cuando no se aplica en el punto de descarga ninguna técnica específica de DGC.

c.

Absorbente en seco por atomización (ASA)

Véase la descripción en la sección 8.4.

d.

Depurador seco en lecho fluidizado circulante (LFC)

e.

Depuración húmeda

Véase la descripción en la sección 8.4.

Las técnicas pueden utilizarse para la eliminación de HCl/HF cuando no se aplica en el punto de descarga ninguna técnica específica de DGC.

f.

Desulfuración húmeda de los gases de combustión (DGC húmeda)

Véase la descripción en la sección 8.4.

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

Puede haber restricciones técnicas y económicas para la aplicación de la técnica en instalaciones de combustión de < 300 MWth y la modernización de instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año.

g.

DGC con agua marina

h.

Técnicas combinadas para la reducción de NOx y SOx.

Aplicable según cada caso en función de las características del combustible y del proceso de combustión.

i.

Sustitución o retirada del calentador gas-gas situado después del sistema de DGC húmeda

Sustitución del calentador gas-gas situado después del sistema de DGC húmeda por un extractor de calor con múltiples tuberías, o retirada y evacuación de los gases de combustión a través de una torre de refrigeración o una chimenea húmeda.

Aplicable únicamente cuando el intercambiador de calor tiene que cambiarse o sustituirse en instalaciones de combustión equipadas con un calentador gas-gas situado después de un sistema de DGC húmeda.

j.

Elección del combustible

Véase la descripción en la sección 8.4.

Utilización de combustibles con bajo contenido en azufre (por ejemplo 0,1 % p/p, base seca), en cloro o en flúor

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible, que puede depender de la política energética de cada Estado miembro. Su aplicabilidad puede verse limitada por condicionamientos de diseño en caso de instalaciones de combustión de combustibles autóctonos extremadamente específicos.


Cuadro 4

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de SO2 procedentes de la combustión de hulla y/o lignito

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD (mg/Nm3)

Media anual

Media diaria

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (55)

Instalación nueva

Instalación existente (56)

< 100

150-200

150-360

170-220

170-400

100-300

80-150

95-200

135-200

135–220 (57)

≥ 300, caldera CP

10-75

10-130 (58)

25-110

25-165 (59)

≥ 300, caldera de lecho fluidizado (60)

20-75

20-180

25-110

50-220

Para una instalación de combustión con una potencia térmica nominal total superior a 300 MW que está específicamente diseñada para quemar combustibles de lignito autóctonos y de la que se puede demostrar que es incapaz de alcanzar los NEA-MTD indicados en el cuadro 4 por motivos técnicos y económicos, no se aplican los valores medios diarios de los NEA-MTD que figuran en el cuadro 4, y el límite superior de los valores medios anuales de los NEA-MTD es el siguiente:

i)

si se trata de un sistema nuevo de DGC: CSDG x 0,01 con un máximo de 200 mg/Nm3;

ii)

si se trata de un sistema existente de DGC: CSDG x 0,03 con un máximo de 320 mg/Nm3,

donde CSDG representa la concentración de SO2 en los gases de combustión crudos como media anual (en las condiciones normalizadas indicadas en las «Consideraciones generales») a la entrada del sistema de reducción de las emisiones de SOX, expresada con un contenido de oxígeno de referencia de 6 % v/v de O2;

iii)

si la inyección de sorbentes en la caldera se aplica como parte del sistema de DGC, la CSDG puede adaptarse teniendo en cuenta la eficiencia de reducción de las emisiones de SO2 de esta técnica (ηΒSI), según se indica aquí: CSDG (adaptada) = CSDG (medida)/(1-ηΒSI).

Cuadro 5

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de HCl y HF procedentes de la combustión de hulla y/o lignito

Contaminante

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD (mg/Nm3)

Media anual o media de las muestras obtenidas durante un año

Instalación nueva

Instalación existente (61)

HCl

< 100

1-6

2-10 (62)

≥ 100

1-3

1–5 (62)  (63)

HF

< 100

< 1-3

< 1-6 (64)

≥ 100

< 1-2

< 1-3 (64)

2.1.5.   Emisiones atmosféricas de partículas y metales en partículas

MTD 22.

Para reducir las emisiones atmosféricas de partículas y metales en partículas procedentes de la combustión de hulla y/o lignito, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Precipitador electrostático (PE)

Véase la descripción en la sección 8.5.

Aplicable con carácter general.

b.

Filtro de mangas

c.

Inyección de sorbentes en la caldera

(en el hogar o en el lecho)

Véanse las descripciones en la sección 8.5.

Estas técnicas se utilizan principalmente para el control de SOx, HCl y/o HF.

d.

Sistema de DGC seca o semiseca

e.

Desulfuración húmeda de los gases de combustión (DGC húmeda)

Véase su aplicabilidad en la MTD 21.


Cuadro 6

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de partículas procedentes de la combustión de hulla y/o lignito

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (65)

Instalación nueva

Instalación existente (66)

< 100

2-5

2-18

4-16

4-22 (67)

100-300

2-5

2-14

3-15

4-22 (68)

300-1 000

2-5

2-10 (69)

3-10

3-11 (70)

≥ 1 000

2-5

2-8

3-10

3-11 (71)

2.1.6.   Emisiones atmosféricas de mercurio

MTD 23.

Para evitar o reducir las emisiones atmosféricas de mercurio procedentes de la combustión de hulla y/o lignito, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

Beneficio colateral de las técnicas utilizadas principalmente para reducir las emisiones de otros contaminantes

a.

Precipitador electrostático (PE)

Véase la descripción en la sección 8.5.

Se consigue una mayor eficiencia de eliminación del mercurio cuando la temperatura de los gases de combustión es inferior a 130 °C.

La técnica se utiliza principalmente para el control de las partículas.

Aplicable con carácter general.

b.

Filtro de mangas

Véase la descripción en la sección 8.5.

La técnica se utiliza principalmente para el control de las partículas.

c.

Sistema de DGC seca o semiseca

Véanse las descripciones en la sección 8.5.

Estas técnicas se utilizan principalmente para el control de SOx, HCl y/o HF.

d.

Desulfuración húmeda de los gases de combustión (DGC húmeda)

Véase su aplicabilidad en la MTD 21.

e.

Reducción catalítica selectiva (RCS)

Véase la descripción en la sección 8.3.

Utilizada únicamente en combinación con otras técnicas para aumentar o reducir la oxidación del mercurio antes de su captura en un sistema posterior de DGC o de extracción de polvo.

La técnica se utiliza principalmente para el control de los NOx.

Véase su aplicabilidad en la MTD 20.

Técnicas específicas para reducir las emisiones de mercurio

f.

Inyección de sorbente de carbono (por ejemplo, carbón activo o carbón activo halogenado) en el gas de combustión

Véase la descripción en la sección 8.5.

Suele utilizarse en combinación con un PE/filtro de mangas. La aplicación de esta técnica puede exigir etapas de tratamiento adicionales para segregar aún más la fracción que contiene mercurio de carbono antes de reutilizar las cenizas volantes.

Aplicable con carácter general.

g.

Uso de aditivos halogenados en el combustible o inyección de tales aditivos en el horno

Véase la descripción en la sección 8.5.

Aplicable con carácter general cuando el combustible tiene un bajo contenido de halógenos.

h.

Pretratamiento del combustible

Lavar y mezclar el combustible para limitar/reducir el contenido de mercurio o mejorar la captura de mercurio por equipos de control de la contaminación.

La aplicabilidad de esta técnica está sujeta a un estudio previo para caracterizar el combustible y estimar su eficacia potencial.

i.

Elección del combustible

Véase la descripción en la sección 8.5.

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible, que puede depender de la política energética de cada Estado miembro.


Cuadro 7

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de mercurio procedentes de la combustión de hulla y lignito

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD (μg/Nm3)

Media anual o media de las muestras obtenidas durante un año

Instalación nueva

Instalación existente (72)

Hulla

Lignito

Hulla

Lignito

< 300

< 1-3

< 1-5

< 1-9

< 1-10

≥ 300

< 1-2

< 1-4

< 1-4

< 1-7

2.2.   Conclusiones sobre las MTD en la combustión de biomasa sólida y/o turba

Salvo que se indique lo contrario, las conclusiones sobre las MTD que se presentan en esta sección son de aplicación general a la combustión de biomasa sólida y/o turba. Se aplican además de las conclusiones generales sobre las MTD formuladas en la sección 1.

2.2.1.   Eficiencia energética

Cuadro 8

Niveles de eficiencia energética asociados a las MTD (NEEA-MTD) en la combustión de biomasa sólida y/o turba

Tipo de unidad de combustión

NEEA-MTD (73)  (74)

Eficiencia eléctrica neta (%) (75)

Consumo de combustible neto total (%) (76)  (77)

Unidad nueva (78)

Unidad existente

Unidad nueva

Unidad existente

Caldera de biomasa sólida y/o turba

33,5–a > 38

28-38

73-99

73-99

2.2.2.   Emisiones atmosféricas de NOx, N2O y CO

MTD 24.

Para evitar o reducir las emisiones atmosféricas de NOx y, al mismo tiempo, limitar las emisiones atmosféricas de CO y N2O procedentes de la combustión de biomasa sólida y/o turba, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Optimización de la combustión

Véanse las descripciones en la sección 8.3.

Aplicable con carácter general.

b.

Quemadores de baja producción de NOx (LNB)

c.

Introducción de aire por etapas

d.

Introducción de combustible por etapas

e.

Recirculación de los gases de combustión

f.

Reducción no catalítica selectiva (RNCS)

Véase la descripción en la sección 8.3.

Puede aplicarse con RCS en el escape.

No aplicable a las instalaciones de combustión que funcionan < 500 h/año con cargas muy variables de la caldera.

La aplicabilidad puede verse limitada en el caso de las instalaciones de combustión que funcionen entre 500 h/año y 1 500 h/año con cargas muy variables de la caldera.

En el caso de las instalaciones de combustión existentes, esta técnica es aplicable con los condicionamientos asociados al rango de temperaturas requerido y al tiempo de permanencia necesario de los reactivos inyectados.

g.

Reducción catalítica selectiva (RCS)

Véase la descripción en la sección 8.3.

El uso de combustibles con un alto contenido de álcali (por ejemplo, paja) puede exigir que la RCS se instale después del sistema de reducción de las partículas.

No aplicable a las instalaciones de combustión que funcionan < 500 h/año.

Puede haber restricciones económicas para la modernización de las instalaciones de combustión existentes de < 300 MWth.

No aplicable con carácter general a las instalaciones de combustión existentes de < 100 MWth.


Cuadro 9

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de NOx procedentes de la combustión de biomasa sólida y/o turba

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (79)

Instalación nueva

Instalación existente (80)

50-100

70-150 (81)

70-225 (82)

120–200 (83)

120–275 (84)

100-300

50-140

50-180

100-200

100-220

≥ 300

40-140

40-150 (85)

65-150

95-165 (86)

A título indicativo, la media anual de los niveles de emisión de CO será, en general, la siguiente:

< 30-250 mg/Nm3 si se trata de instalaciones de combustión existentes de entre 50 y 100 MWth que funcionan ≥ 1 500 h/año, o de instalaciones de combustión nuevas de entre 50 y 100 MWth,

< 30-160 mg/Nm3 si se trata de instalaciones de combustión existentes de entre 100 y 300 MWth que funcionan ≥ 1 500 h/año, o de instalaciones de combustión nuevas de entre 100 y 300 MWth,

< 30-80 mg/Nm3 si se trata de instalaciones de combustión existentes de ≥ 300 MWth que funcionan ≥ 1 500 h/año, o de instalaciones de combustión nuevas de ≥ 300 MWth.

2.2.3.   Emisiones atmosféricas de SOx, HCl y HF

MTD 25.

Para evitar o reducir las emisiones atmosféricas de SOx, HCl y HF procedentes de la combustión de biomasa sólida y/o turba, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Inyección de sorbentes en la caldera (en el hogar o en el lecho)

Véanse las descripciones en la sección 10.8.4.

Aplicable con carácter general.

b.

Inyección de sorbentes en los conductos (ISC)

c.

Absorbente en seco por atomización (ASA)

d.

Depurador seco en lecho fluidizado circulante (LFC)

e.

Depuración húmeda

f.

Condensador de gases de combustión

g.

Desulfuración húmeda de los gases de combustión (DGC húmeda)

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

Puede haber restricciones técnicas y económicas para la modernización de instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año.

h.

Elección del combustible

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible, que puede depender de la política energética de cada Estado miembro.


Cuadro 10

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de SO2 procedentes de la combustión de biomasa sólida y/o turba

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD correspondientes al SO2 (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (87)

Instalación nueva

Instalación existente (88)

< 100

15-70

15-100

30-175

30-215

100-300

< 10-50

< 10-70 (89)

< 20-85

< 20-175 (90)

≥ 300

< 10-35

< 10-50 (89)

< 20-70

< 20-85 (91)


Cuadro 11

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de HCl y HF procedentes de la combustión de biomasa sólida y/o turba

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD correspondientes al HCl (mg/Nm3) (92)  (93)

NEA-MTD correspondientes al HF (mg/Nm3)

Media anual o media de las muestras obtenidas durante un año

Media diaria o media a lo largo del período de muestreo

Media a lo largo del período de muestreo

Instalación nueva

Instalación existente (94)  (95)

Instalación nueva

Instalación existente (96)

Instalación nueva

Instalación existente (96)

< 100

1-7

1-15

1-12

1-35

< 1

< 1,5

100-300

1-5

1-9

1-12

1-12

< 1

< 1

≥ 300

1-5

1-5

1-12

1-12

< 1

< 1

2.2.4.   Emisiones atmosféricas de partículas y metales en partículas

MTD 26.

Para reducir las emisiones atmosféricas de partículas y metales en partículas procedentes de la combustión de biomasa sólida y/o turba, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Precipitador electrostático (PE)

Véase la descripción en la sección 8.5.

Aplicable con carácter general.

b.

Filtro de mangas

c.

Sistema de DGC seca o semiseca

Véanse las descripciones en la sección 8.5.

Estas técnicas se utilizan principalmente para el control de SOx, HCl y/o HF.

d.

Desulfuración húmeda de los gases de combustión (DGC húmeda)

Véase su aplicabilidad en la MTD 25.

e.

Elección del combustible

Véase la descripción en la sección 8.5.

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible, que puede depender de la política energética de cada Estado miembro.


Cuadro 12

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de partículas procedentes de la combustión de biomasa sólida y/o turba

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD correspondientes a las partículas (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (97)

Instalación nueva

Instalación existente (98)

< 100

2-5

2-15

2-10

2-22

100-300

2-5

2-12

2-10

2-18

≥ 300

2-5

2-10

2-10

2-16

2.2.5.   Emisiones atmosféricas de mercurio

MTD 27.

Para evitar o reducir las emisiones atmosféricas de mercurio procedentes de la combustión de biomasa sólida y/o turba, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

Técnicas específicas de reducción de las emisiones de mercurio

a.

Inyección de sorbente de carbono (por ejemplo, carbón activo o carbón activo halogenado) en el gas de combustión

Véanse las descripciones en la sección 8.5.

Aplicable con carácter general.

b.

Uso de aditivos halogenados en el combustible o inyección de tales aditivos en el horno

Aplicable con carácter general cuando el combustible tiene un bajo contenido de halógenos.

c.

Elección del combustible

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible, que puede depender de la política energética de cada Estado miembro.

Beneficio colateral de las técnicas utilizadas principalmente para reducir las emisiones de otros contaminantes

d.

Precipitador electrostático (PE)

Véanse las descripciones en la sección 8.5.

Las técnicas se utilizan principalmente para el control de las partículas.

Aplicable con carácter general.

e.

Filtro de mangas

f.

Sistema de DGC seca o semiseca

Véanse las descripciones en la sección 8.5.

Las técnicas se utilizan principalmente para el control de SOx, HCl y/o HF.

g.

Desulfuración húmeda de los gases de combustión (DGC húmeda)

Véase su aplicabilidad en la MTD 25.

El nivel de emisión asociado a las MTD (NEA-MTD) correspondiente a las emisiones de mercurio a la atmósfera procedentes de la combustión de biomasa sólida y/o turba es < 1-5 μg/Nm3 como valor medio a lo largo del período de muestreo.

3.   CONCLUSIONES SOBRE LAS MTD EN LA COMBUSTIÓN DE COMBUSTIBLES LÍQUIDOS

Las conclusiones sobre las MTD que se presentan en esta sección no se aplican a las instalaciones de combustión en plataformas marinas; esas instalaciones se abordan en la sección 10.4.3.

3.1.   Calderas alimentadas por fuelóleo pesado (HFO) y/o gasóleo

Salvo que se indique lo contrario, las conclusiones sobre las MTD presentadas en esta sección son de aplicación general a la combustión de HFO y/o gasóleo en calderas. Se aplican además de las conclusiones generales sobre las MTD formuladas en la sección 10.1.

3.1.1.   Eficiencia energética

Cuadro 13

Niveles de eficiencia energética asociados a las MTD (NEEA-MTD) correspondientes a la combustión de HFO y/o gasóleo en calderas

Tipo de unidad de combustión

NEEA-MTD (99)  (100)

Eficiencia eléctrica neta (%)

Consumo de combustible neto total (%) (101)

Unidad nueva

Unidad existente

Unidad nueva

Unidad existente

Caldera alimentadas por HFO y/o gasóleo

≥ 36,4

35,6-37,4

80-96

80-96

3.1.2.   Emisiones atmosféricas de NOx y CO

MTD 28.

Para evitar o reducir las emisiones atmosféricas de NOx y, al mismo tiempo, limitar las emisiones atmosféricas de CO procedentes de la combustión de HFO y/o gasóleo en calderas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Introducción de aire por etapas

Véanse las descripciones en la sección 8.3.

Aplicable con carácter general.

b.

Introducción de combustible por etapas

c.

Recirculación de los gases de combustión

d.

Quemadores de baja producción de NOx (LNB)

e.

Adición de agua/vapor

Aplicable dentro de los límites de la disponibilidad de agua.

f.

Reducción no catalítica selectiva (RNCS)

No aplicable a las instalaciones de combustión que funcionan < 500 h/año con cargas muy variables de la caldera.

La aplicabilidad puede verse limitada en el caso de las instalaciones de combustión que funcionen entre 500 h/año y 1 500 h/año con cargas muy variables de la caldera.

g.

Reducción catalítica selectiva (RCS)

Véanse las descripciones en la sección 8.3.

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

Puede haber restricciones técnicas y económicas para la modernización de instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año.

No aplicable con carácter general a las instalaciones de combustión de < 100 MWth.

h.

Sistema de control avanzado

Aplicable con carácter general a las instalaciones nuevas. La aplicabilidad a las instalaciones de combustión viejas puede verse limitada por la necesidad de modernizar el sistema de combustión y/o el sistema de control de los parámetros.

i.

Elección del combustible

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible, que puede depender de la política energética de cada Estado miembro.


Cuadro 14

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de NOx procedentes de la combustión de HFO y/o gasóleo en calderas

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (102)

Instalación nueva

Instalación existente (103)

< 100

75-200

150-270

100-215

210-330 (104)

≥ 100

45-75

45-100 (105)

85-100

85-110 (106)  (107)

A título indicativo, la media anual de los niveles de emisión de CO será, en general, la siguiente:

10-30 mg/Nm3 si se trata de instalaciones de combustión existentes de < 100 MWth que funcionan ≥ 1 500 h/año, o de instalaciones de combustión nuevas de < 100 MWth,

10-20 mg/Nm3 si se trata de instalaciones de combustión existentes de ≥ 100 MWth que funcionan ≥ 1 500 h/año, o de instalaciones de combustión nuevas de ≥ 100 MWth.

3.1.3.   Emisiones atmosféricas de SOx, HCl y HF

MTD 29.

Para evitar o reducir las emisiones atmosféricas de SOx, HCl y HF procedentes de la combustión de HFO y/o gasóleo en calderas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Inyección de sorbentes en los conductos (ISC)

Véase la descripción en la sección 8.4.

Aplicable con carácter general.

b.

Absorbente en seco por atomización (ASA)

c.

Condensador de gases de combustión

d.

Desulfuración húmeda de los gases de combustión

(DGC húmeda)

Puede haber restricciones técnicas y económicas para la aplicación de la técnica a instalaciones de combustión de < 300 MWth.

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

Puede haber restricciones técnicas y económicas para la modernización de las instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año.

e.

DGC con agua marina

Puede haber restricciones técnicas y económicas para la aplicación de la técnica a instalaciones de combustión de < 300 MWth.

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

Puede haber restricciones técnicas y económicas para la modernización de las instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año.

f.

Elección del combustible

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible, que puede depender de la política energética de cada Estado miembro.


Cuadro 15

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de SO2 procedentes de la combustión de HFO y/o gasóleo en calderas

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD correspondientes al SO2 (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (108)

Instalación nueva

Instalación existente (109)

< 300

50-175

50-175

150-200

150-200 (110)

≥ 300

35-50

50-110

50-120

150-165 (111)  (112)

3.1.4.   Emisiones atmosféricas de partículas y metales en partículas

MTD 30.

Para reducir las emisiones atmosféricas de partículas y metales en partículas procedentes de la combustión de HFO y/o gasóleo en calderas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Precipitador electrostático (PE)

Véase la descripción en la sección 8.5.

Aplicable con carácter general.

b.

Filtro de mangas

c.

Multiciclones

Véase la descripción en la sección 8.5.

Los multiciclones pueden utilizarse en combinación con otras técnicas de extracción de polvo.

d.

Sistema de DGC seca o semiseca

Véanse las descripciones en la sección 8.5.

Esta técnica se utiliza principalmente para el control de SOx, HCl y/o HF.

e.

Desulfuración húmeda de los gases de combustión (DGC húmeda)

Véase la descripción en la sección 8.5.

Esta técnica se utiliza principalmente para el control de SOx, HCl y/o HF.

Véase su aplicabilidad en la MTD 29.

f.

Elección del combustible

Véase la descripción en la sección 8.5.

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible, que puede depender de la política energética de cada Estado miembro.


Cuadro 16

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de partículas procedentes de la combustión de HFO y/o gasóleo en calderas

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD correspondientes a las partículas (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (113)

Instalación nueva

Instalación existente (114)

< 300

2-10

2-20

7-18

7-22 (115)

≥ 300

2-5

2-10

7-10

7-11 (116)

3.2.   Motores alimentados por HFO y/o gasóleo

Salvo que se indique lo contrario, las conclusiones sobre las MTD presentadas en esta sección son de aplicación general a la combustión de HFO y/o gasóleo en motores alternativos. Se aplican además de las conclusiones generales sobre las MTD formuladas en la sección 1.

En el caso de los motores alimentados por HFO y/o gasóleo, las técnicas secundarias de reducción de las emisiones de NOx, SO2 y partículas pueden no ser aplicables a motores situados en islas que forman parte de una pequeña red aislada (117) o de una microrred aislada (118), debido a condicionamientos técnicos, económicos y logísticos/de infraestructura, hasta la interconexión a la red de electricidad del continente o el acceso al suministro de gas natural. Así pues, los NEA-MTD correspondientes a ese tipo de motores solo serán aplicables en pequeñas redes aisladas o en microrredes aisladas a partir del 1 de enero de 2025 en el caso de los motores nuevos y a partir del 1 de enero 2030 a los motores existentes.

3.2.1.   Eficiencia energética

MTD 31.

Para aumentar la eficiencia energética de la combustión de HFO y/o gasóleo en motores alternativos, la MTD consiste en utilizar una combinación adecuada de las técnicas que se indican en la MTD 12 y a continuación.

Técnica

Descripción

Aplicabilidad

a.

Ciclo combinado

Véase la descripción en la sección 8.2.

Aplicable con carácter general en unidades nuevas que funcionen ≥ 1 500 h/año.

Aplicable a las unidades existentes con los condicionamientos asociados al diseño del ciclo de vapor y la disponibilidad de espacio.

No es aplicable en unidades existentes que funcionen < 1 500 h/año.


Cuadro 17

Niveles de eficiencia energética asociados a las MTD (NEEA-MTD) correspondientes a la combustión de HFO y/o gasóleo en motores alternativos

Tipo de unidad de combustión

NEEA-MTD (119)

Eficiencia eléctrica neta (%) (120)

Unidad nueva

Unidad existente

Motor alternativo alimentado por HFO y/o gasóleo — ciclo único

41,5-44,5 (121)

38,3-44,5 (121)

Motor alternativo alimentado por HFO y/o gasóleo — ciclo combinado

> 48 (122)

Ningún NEEA-MTD

3.2.2.   Emisiones atmosféricas de NOx, CO y compuestos orgánicos volátiles

MTD 32.

Para evitar o reducir las emisiones atmosféricas de NOx procedentes de la combustión de HFO y/o gasóleo en motores alternativos, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Enfoque de combustión de baja producción de NOx en motores diésel

Véanse las descripciones en la sección 8.3.

Aplicable con carácter general.

b.

Recirculación de los gases de escape (RGE)

No aplicable a los motores de cuatro tiempos.

c.

Adición de agua/vapor

Aplicable dentro de los límites de la disponibilidad de agua.

Su aplicabilidad puede verse limitada en caso de que no se disponga de medidas de modernización.

d.

Reducción catalítica selectiva (RCS)

No aplicable a las instalaciones de combustión que funcionan < 500 h/año.

Puede haber restricciones técnicas y económicas para la modernización de instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año.

La modernización de las instalaciones de combustión existentes puede verse limitada por razones de espacio.

MTD 33.

Para evitar o reducir las emisiones atmosféricas de CO y compuestos orgánicos volátiles procedentes de la combustión de HFO y/o gasóleo en motores alternativos, la MTD consiste en utilizar una de las técnicas que se indican a continuación o ambas.

Técnica

Descripción

Aplicabilidad

a.

Optimización de la combustión

 

Aplicable con carácter general.

b.

Catalizadores de oxidación

Véanse las descripciones en la sección 8.3.

No aplicable a las instalaciones de combustión que funcionan < 500 h/año.

La aplicabilidad puede verse limitada por el contenido de azufre del combustible.


Cuadro 18

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de NOx procedentes de la combustión de HFO y/o gasóleo en motores alternativos

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (123)

Instalación nueva

Instalación existente (124)  (125)

≥ 50

115-190 (126)

125-625

145-300

150-750

A título indicativo, cuando se trate de instalaciones de combustión existentes que queman solo HFO y funcionan ≥ 1 500 h/año o de instalaciones de combustión nuevas que queman solo HFO,

la media anual de los niveles de emisión de CO se situará, en general, entre 50 y 175 mg/Nm3,

el nivel medio de las emisiones de compuestos orgánicos volátiles totales (COVT) a lo largo del período de muestreo se situará, en general, entre 10 y 40 mg/Nm3.

3.2.3.   Emisiones atmosféricas de SOx, HCl y HF

MTD 34.

Para evitar o reducir las emisiones atmosféricas de SOx, HCl y HF procedentes de la combustión de HFO y/o gasóleo en motores alternativos, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Elección del combustible

Véanse las descripciones en la sección 8.4.

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible, que puede depender de la política energética de cada Estado miembro.

b.

Inyección de sorbentes en los conductos (ISC)

Puede haber restricciones técnicas en el caso de las instalaciones de combustión existentes.

No aplicable a las instalaciones de combustión que funcionan < 500 h/año.

c.

Desulfuración húmeda de los gases de combustión (DGC húmeda)

Puede haber restricciones técnicas y económicas para la aplicación de la técnica a instalaciones de combustión de < 300 MWth.

No aplicable a las instalaciones de combustión que funcionan < 500 h/año.

Puede haber restricciones técnicas y económicas para la modernización de instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año.


Cuadro 19

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de SO2 procedentes de la combustión de HFO y/o gasóleo en motores alternativos

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD correspondientes al SO2 (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (127)

Instalación nueva

Instalación existente (128)

Todos los tamaños

45-100

100-200 (129)

60-110

105-235 (129)

3.2.4.   Emisiones atmosféricas de partículas y metales en partículas

MTD 35.

Para evitar o reducir las emisiones atmosféricas de partículas y metales en partículas procedentes de la combustión de HFO y/o gasóleo en motores alternativos, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Elección del combustible

Véanse las descripciones en la sección 8.5.

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible, que puede depender de la política energética de cada Estado miembro.

b.

Precipitador electrostático (PE)

No aplicable a las instalaciones de combustión que funcionan < 500 h/año.

c.

Filtro de mangas


Cuadro 20

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de partículas procedentes de la combustión de HFO y/o gasóleo en motores alternativos

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD correspondientes a las partículas (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (130)

Instalación nueva

Instalación existente (131)

≥ 50

5-10

5-35

10-20

10-45

3.3.   Turbinas de gas alimentadas por gasóleo

Salvo que se indique lo contrario, las conclusiones sobre las MTD presentadas en esta sección son de aplicación general a la combustión de gasóleo en turbinas de gas. Se aplican además de las conclusiones generales sobre las MTD formuladas en la sección 10.1.

3.3.1.   Eficiencia energética

MTD 36.

Para aumentar la eficiencia energética de la combustión de gasóleo en turbinas de gas, la MTD consiste en utilizar una combinación adecuada de las técnicas que se indican en la MTD 12 y a continuación.

Técnica

Descripción

Aplicabilidad

a.

Ciclo combinado

Véase la descripción en la sección 8.2.

Aplicable con carácter general en unidades nuevas que funcionen ≥ 1 500 h/año.

Aplicable a las unidades existentes con los condicionamientos asociados al diseño del ciclo de vapor y la disponibilidad de espacio.

No es aplicable en unidades existentes que funcionen < 1 500 h/año.


Cuadro 21

Niveles de eficiencia energética asociados a las MTD (NEEA-MTD) para las turbinas de gas alimentadas por gasóleo

Tipo de unidad de combustión

NEEA-MTD (132)

Eficiencia eléctrica neta (%) (133)

Unidad nueva

Unidad existente

Turbinas de gas de ciclo abierto alimentadas por gasóleo

> 33

25-35,7

Turbinas de gas de ciclo combinado alimentadas por gasóleo

> 40

33-44

3.3.2.   Emisiones atmosféricas de NOx y CO

MTD 37.

Para evitar o reducir las emisiones atmosféricas de NOx procedentes de la combustión de gasóleo en turbinas de gas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Adición de agua/vapor

Véase la descripción en la sección 8.3.

La aplicabilidad puede verse limitada por razones de disponibilidad de agua.

b.

Quemadores de baja producción de NOx (LNB).

Aplicable únicamente a modelos de turbinas para los que se comercialicen quemadores de baja producción de NOx.

c.

Reducción catalítica selectiva (RCS)

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

Puede haber restricciones técnicas y económicas para la modernización de instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año.

La modernización de las instalaciones de combustión existentes puede verse limitada por razones de espacio.

MTD 38.

Para evitar o reducir las emisiones atmosféricas de CO procedentes de la combustión de gasóleo en turbinas de gas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Optimización de la combustión

Véase la descripción en la sección 8.3.

Aplicable con carácter general.

b.

Catalizadores de oxidación

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

La modernización de las instalaciones de combustión existentes puede verse limitada por razones de espacio.

A título indicativo, el nivel de las emisiones atmosféricas de NOx procedentes de la combustión de gasóleo en turbinas de gas de dos combustibles destinadas a un uso de emergencia que funcionen < 500 h/año se situará en general entre 145 y 250 mg/Nm3, como valor medio diario o valor medio a lo largo del período de muestreo.

3.3.3.   Emisiones atmosféricas de SOx y partículas

MTD 39.

Para evitar o reducir las emisiones atmosféricas de SOx y partículas procedentes de la combustión de gasóleo en turbinas de gas, la MTD consiste en utilizar la técnica que se indica a continuación.

Técnica

Descripción

Aplicabilidad

a.

Elección del combustible

Véase la descripción en la sección 8.4.

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible, que puede depender de la política energética de cada Estado miembro.


Cuadro 22

Niveles de emisión asociados a las MTD correspondientes a las emisiones atmosféricas de SO2 y partículas procedentes de la combustión de gasóleo en turbinas de gas, incluidas las turbinas de gas de dos combustibles

Tipo de instalación de combustión

NEA-MTD (mg/Nm3)

SO2

Partículas

Media anual (134)

Media diaria o media a lo largo del período de muestreo (135)

Media anual (134)

Media diaria o media a lo largo del período de muestreo (135)

Instalaciones nuevas y existentes

35-60

50-66

2-5

2-10

4.   CONCLUSIONES SOBRE LAS MTD EN LA COMBUSTIÓN DE COMBUSTIBLES GASEOSOS

4.1.   Conclusiones sobre las MTD en la combustión de gas natural

Salvo que se indique lo contrario, las conclusiones sobre las MTD presentadas en esta sección son de aplicación general a la combustión de gas natural. Se aplican además de las conclusiones generales sobre las MTD formuladas en la sección 1. No son aplicables a las instalaciones de combustión en plataformas marinas; esas instalaciones se abordan en la sección 4.3.

4.1.1.   Eficiencia energética

MTD 40.

Para aumentar la eficiencia energética de la combustión de gas natural, la MTD consiste en utilizar una combinación adecuada de las técnicas que se indican en la MTD 12 y a continuación.

Técnica

Descripción

Aplicabilidad

a.

Ciclo combinado

Véase la descripción en la sección 8.2.

Aplicable con carácter general a las turbinas y motores de gas nuevos, excepto los que funcionen < 1 500 h/año.

Aplicable a las turbinas y motores de gas existentes con los condicionamientos asociados al diseño del ciclo de vapor y la disponibilidad de espacio.

No es aplicable a las turbinas y motores de gas existentes que funcionen < 1 500 h/año.

No aplicable a las turbinas de gas mecánicas que funcionan en modo discontinuo con amplias variaciones en la carga y arranques y paradas frecuentes.

No aplicable a las calderas.


Cuadro 23

Niveles de eficiencia energética asociados a las MTD (NEEA-MTD) en la combustión de gas natural

Tipo de unidad de combustión

NEEA-MTD (136)  (137)

Eficiencia eléctrica neta (%)

Consumo de combustible neto total (%) (138)  (139)

Eficiencia neta de la energía mecánica (%) (139)  (140)

Unidad nueva

Unidad existente

Unidad nueva

Unidad existente

Motor de gas

39,5-44 (141)

35-44 (141)

56-85 (141)

Ningún NEEA-MTD

Caldera de gas

39-42,5

38-40

78-95

Ningún NEEA-MTD

Turbina de gas de ciclo abierto, ≥ 50 MWth

36-41,5

33-41,5

Ningún NEEA-MTD

36,5-41

33,5-41

Turbina de gas de ciclo combinado (TGCC)

TGCC, 50–600 MWth

53-58,5

46-54

Ningún NEEA-MTD

Ningún NEEA-MTD

TGCC, ≥ 600 MWth

57-60,5

50-60

Ningún NEEA-MTD

Ningún NEEA-MTD

TGCC PCCE, 50–600 MWth

53-58,5

46-54

65-95

Ningún NEEA-MTD

TGCC PCCE, ≥ 600 MWth

57-60,5

50-60

65-95

Ningún NEEA-MTD

4.1.2.   Emisiones atmosféricas de NOx, CO, COVNM y CH4

MTD 41.

Para evitar o reducir las emisiones atmosféricas de NOx procedentes de la combustión de gas natural en calderas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Introducción de combustible y/o aire por etapas

Véanse las descripciones en la sección 8.3.

La introducción de aire por etapas suele asociarse a quemadores de baja producción de NOx.

Aplicable con carácter general.

b.

Recirculación de los gases de combustión

Véase la descripción en la sección 8.3.

c.

Quemadores de baja producción de NOx (LNB)

d.

Sistema de control avanzado

Véase la descripción en la sección 8.3.

Esta técnica se utiliza a menudo en combinación con otras técnicas, o bien puede utilizarse sola en instalaciones de combustión que funcionen < 500 h/año.

La aplicabilidad a las instalaciones de combustión viejas puede verse limitada por la necesidad de modernizar el sistema de combustión y/o el sistema de control de los parámetros.

e.

Reducción de la temperatura del aire de combustión

Véase la descripción en la sección 8.3.

Aplicable con carácter general con los condicionamientos asociados a las necesidades del proceso.

f.

Reducción no catalítica selectiva (RNCS)

No aplicable a las instalaciones de combustión que funcionan < 500 h/año con cargas muy variables de la caldera.

La aplicabilidad puede verse limitada en el caso de las instalaciones de combustión que funcionen entre 500 h/año y 1 500 h/año con cargas muy variables de la caldera.

g.

Reducción catalítica selectiva (RCS)

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

No aplicable con carácter general a las instalaciones de combustión de < 100 MWth.

Puede haber restricciones técnicas y económicas para la modernización de instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año.

MTD 42.

Para evitar o reducir las emisiones atmosféricas de NOx procedentes de la combustión de gas natural en turbinas de gas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Sistema de control avanzado

Véase la descripción en la sección 8.3.

Esta técnica se utiliza a menudo en combinación con otras técnicas, o bien puede utilizarse sola en instalaciones que funcionen < 500 h/año.

La aplicabilidad a las instalaciones de combustión viejas puede verse limitada por la necesidad de modernizar el sistema de combustión y/o el sistema de control de los parámetros.

b.

Adición de agua/vapor

Véase la descripción en la sección 8.3.

La aplicabilidad puede verse limitada por razones de disponibilidad de agua.

c.

Quemadores secos de baja producción de NOx (DLN).

La aplicabilidad puede verse limitada en el caso de las turbinas para las que no se disponga de medidas de modernización o en las que se hayan instalado sistemas de adición de agua/vapor.

d.

Enfoque de diseño de carga baja

Adaptación del proceso de control y los equipos conexos para mantener una eficiencia correcta de combustión cuando varía la demanda de energía, por ejemplo mejorando la capacidad de control del caudal de aire de entrada o dividiendo el proceso de combustión en fases separadas.

Su aplicabilidad puede verse limitada por el diseño de la turbina de gas.

e.

Quemadores de baja producción de NOx (LNB)

Véase la descripción en la sección 8.3.

Aplicable con carácter general a la alimentación suplementaria para los generadores de vapor de recuperación de calor (GVRC) de las instalaciones de combustión con turbinas de gas de ciclo combinado (TGCC).

f.

Reducción catalítica selectiva (RCS)

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

No aplicable con carácter general a las instalaciones de combustión existentes de < 100 MWth.

La modernización de las instalaciones de combustión existentes puede verse limitada por razones de espacio.

Puede haber restricciones técnicas y económicas para la modernización de instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año.

MTD 43.

Para evitar o reducir las emisiones atmosféricas de NOx procedentes de la combustión de gas natural en motores, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Sistema de control avanzado

Véase la descripción en la sección 8.3.

Esta técnica se utiliza a menudo en combinación con otras técnicas, o bien puede utilizarse sola en instalaciones de combustión que funcionen < 500 h/año.

La aplicabilidad a las instalaciones de combustión viejas puede verse limitada por la necesidad de modernizar el sistema de combustión y/o el sistema de control de los parámetros.

b.

Enfoque de mezcla pobre

Véase la descripción en la sección 8.3.

Suele utilizarse en combinación con la RCS.

Aplicable únicamente a los motores de gas nuevos.

c.

Enfoque avanzado de mezcla pobre

Véanse las descripciones en la sección 8.3.

Aplicable únicamente a los motores nuevos con bujías.

d.

Reducción catalítica selectiva (RCS)

La modernización de las instalaciones de combustión existentes puede verse restringida por razones de espacio.

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

Puede haber restricciones técnicas y económicas para la modernización de instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año.

MTD 44.

Para evitar o reducir las emisiones atmosféricas de CO procedentes de la combustión de gas natural, la MTD consiste en garantizar la combustión optimizada y/o utilizar catalizadores de oxidación.

Descripción

Véase la descripción en la sección 8.3.

Cuadro 24

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de NOx procedentes de la combustión de gas natural en turbinas de gas

Tipo de instalación de combustión

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD (mg/Nm3) (142)  (143)

Media anual (144)  (145)

Media diaria o media a lo largo del período de muestreo

Turbinas de gas de ciclo abierto (TGCA) (146)  (147)

TGCA nuevas

≥ 50

15-35

25-50

TGCA existentes (con excepción de las turbinas para aplicaciones de accionamiento mecánico) — Todas salvo las instalaciones que funcionan < 500 h/año

≥ 50

15-50

25-55 (148)

Turbinas de gas de ciclo combinado (TGCC) (146)  (149)

TGCC nuevas

≥ 50

10-30

15-40

TGCC existentes con un consumo de combustible neto total < 75 %

≥ 600

10-40

18-50

TGCC existentes con un consumo de combustible neto total ≥ 75 %

≥ 600

10-50

18-55 (150)

TGCC existentes con un consumo de combustible neto total < 75 %

50-600

10-45

35-55

TGCC existentes con un consumo de combustible neto total ≥ 75 %

50-600

25-50 (151)

35-55 (152)

Turbinas de gas de ciclo abierto y de ciclo combinado

Turbinas de gas puestas en servicio a más tardar el 27 de noviembre de 2003, o turbinas de gas existentes destinadas a un uso de emergencia y que funcionen < 500 h/año

≥ 50

Ningún NEA-MTD

60–140 (153)  (154)

Turbinas de gas existentes para aplicaciones de accionamiento mecánico — Todas salvo las instalaciones que funcionan < 500 h/año

≥ 50

15-50 (155)

25-55 (156)

A título indicativo, la media anual de los niveles de emisión de CO para cada tipo de instalación de combustión existente que funcione ≥ 1 500 h/año o para cada tipo de instalación de combustión nueva será por lo general la siguiente:

TGCA nuevas de ≥ 50 MWth: < 5–40 mg/Nm3. En el caso de las instalaciones con una eficiencia eléctrica neta (EE) superior al 39 %, se puede aplicar un factor de corrección al límite superior de este intervalo, correspondiente a [límite superior] x EE/39, donde EE es la eficiencia eléctrica neta o la eficiencia neta de energía mecánica de la instalación determinada en condiciones ISO de carga base.

TGCA existentes de ≥ 50 MWth (con exclusión de las turbinas para aplicaciones de accionamiento mecánico): < 5–40 mg/Nm3. El límite superior de este intervalo será en general 80 mg/Nm3 en el caso de las instalaciones existentes que no puedan equiparse con técnicas secas de reducción de los NOx, o 50 mg/Nm3 cuando se trate de instalaciones que funcionen con carga baja.

TGCC nuevas de ≥ 50 MWth: < 5-30 mg/Nm3. En el caso de las instalaciones con una eficiencia eléctrica neta (EE) superior al 55 %, se puede aplicar un factor de corrección al límite superior del intervalo, correspondiente a [límite superior] x EE/55, donde EE es la eficiencia eléctrica neta de la instalación determinada en condiciones ISO de carga base.

TGCC existentes de ≥ 50 MWth: < 5-30 mg/Nm3. El límite superior de este intervalo será en general 50 mg/Nm3 en el caso de las instalaciones que funcionen con carga baja.

Turbinas de gas existentes de ≥ 50 MWth para aplicaciones de accionamiento mecánico: < 5-40 mg/Nm3. El límite superior de este intervalo será en general 50 mg/Nm3 cuando las instalaciones funcionen con carga baja.

Si se trata de turbinas de gas equipadas con quemadores DLN, estos niveles indicativos son aplicables cuando esos quemadores funcionan de forma efectiva.

Cuadro 25

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de NOx procedentes de la combustión de gas natural en motores y calderas

Tipo de instalación de combustión

NEA-MTD (mg/Nm3)

Media anual (157)

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (158)

Instalación nueva

Instalación existente (159)

Caldera

10-60

50-100

30-85

85-110

Motor (160)

20-75

20-100

55-85

55-110 (161)

A título indicativo, la media anual de los niveles de emisión de CO será, en general, la siguiente:

< 5–40 mg/Nm3 para las calderas existentes que funcionen ≥ 1 500 h/año,

< 5-15 mg/Nm3 para las calderas nuevas,

30-100 mg/Nm3 para los motores existentes que funcionen ≥ 1 500 h/año y para los motores nuevos.

MTD 45.

Para reducir las emisiones atmosféricas de compuestos orgánicos volátiles no metánicos (COVNM) y de metano (CH4) procedentes de la combustión de gas natural en motores de encendido por chispa de gas de mezcla pobre, la MTD consiste en garantizar la combustión optimizada y/o utilizar catalizadores de oxidación.

Descripción

Véanse las descripciones en la sección 8.3. Los catalizadores de oxidación no son eficaces a la hora de reducir las emisiones de hidrocarburos saturados que contengan menos de cuatro átomos de carbono.

Cuadro 26

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de formaldehído y CH4 procedentes de la combustión de gas natural en motores de encendido por chispa de gas de mezcla pobre

Potencia térmica nominal total de la instalación de combustión (MWth)

NEA-MTD (mg/Nm3)

Formaldehído

CH4

Media a lo largo del período de muestreo

Instalaciones nuevas o existentes

Instalación nueva

Instalación existente

≥ 50

5-15 (162)

215-500 (163)

215-560 (162)  (163)

4.2.   Conclusiones sobre las MTD en la combustión de gases de procesos siderúrgicos

Salvo que se indique lo contrario, las conclusiones sobre las MTD presentadas en este apartado son de aplicación general a la combustión de los gases de procesos siderúrgicos (gas de alto horno, gas de coque, gas de convertidor al oxígeno básico), individualmente, en combinación, o de forma simultánea con otros combustibles gaseosos y/o líquidos. Se aplican además de las conclusiones generales sobre las MTD formuladas en la sección 1.

4.2.1.   Eficiencia energética

MTD 46.

Para aumentar la eficiencia energética de la combustión de gases de procesos siderúrgicos, la MTD consiste en utilizar una combinación adecuada de las técnicas que se indican en la MTD 12 y a continuación.

Técnica

Descripción

Aplicabilidad

a.

Sistema de gestión de los gases de procesos

Véase la descripción en la sección 8.2.

Aplicable únicamente a las acerías integradas.


Cuadro 27

Niveles de eficiencia energética asociados a las MTD (NEEA-MTD) para la combustión de gases de procesos siderúrgicos en calderas

Tipo de unidad de combustión

NEEA-MTD (164)  (165)

Eficiencia eléctrica neta (%)

Consumo de combustible neto total (%) (166)

Calderas mixtas de gas existentes

30-40

50-84

Calderas mixtas de gas nuevas (167)

36-42,5

50-84


Cuadro 28

Niveles de eficiencia energética asociados a las MTD (NEEA-MTD) para la combustión de gases de procesos siderúrgicos en TGCC

Tipo de unidad de combustión

NEEA-MTD (168)  (169)

Eficiencia eléctrica neta (%)

Consumo de combustible neto total (%) (170)

Unidad nueva

Unidad existente

TGCC PCCE

≥ 47

40-48

60-82

TGCC

≥ 47

40-48

Ningún NEEA-MTD

4.2.2.   Emisiones atmosféricas de NOx y CO

MTD 47.

Para evitar o reducir las emisiones atmosféricas de NOx procedentes de la combustión de gases de procesos siderúrgicos en calderas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Quemadores de baja producción de NOx (LNB).

Véase la descripción en la sección 10.8.3.

Quemadores de baja producción de NOx especialmente diseñados en varias filas por tipo de combustible o con características específicas para la combustión mixta (por ejemplo, distintas boquillas para quemar combustibles diferentes, específicos, o premezcla de los combustibles)

Aplicable con carácter general.

b.

Introducción de aire por etapas

Véanse las descripciones en la sección 8.3.

c.

Introducción de combustible por etapas

d.

Recirculación de los gases de combustión

e.

Sistema de gestión de los gases de procesos

Véase la descripción en la sección 8.2.

Aplicable con carácter general con los condicionamientos asociados a la disponibilidad de distintos tipos de combustibles.

f.

Sistema de control avanzado

Véase la descripción en la sección 8.3.

Esta técnica se utiliza en combinación con otras técnicas.

La aplicabilidad a las instalaciones de combustión viejas puede verse limitada por la necesidad de modernizar el sistema de combustión y/o el sistema de control de los parámetros.

g.

Reducción no catalítica selectiva (RNCS)

Véanse las descripciones en la sección 8.3.

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

h.

Reducción catalítica selectiva (RCS)

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

No aplicable con carácter general a las instalaciones de combustión de < 100 MWth.

La modernización de las instalaciones existentes puede verse limitada por razones de espacio y por la configuración de la instalación de combustión.

MTD 48.

Para evitar o reducir las emisiones atmosféricas de NOx procedentes de la combustión de gases de procesos siderúrgicos en TGCC, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Sistema de gestión de los gases de procesos

Véase la descripción en la sección 8.2.

Aplicable con carácter general con los condicionamientos asociados a la disponibilidad de distintos tipos de combustibles.

b.

Sistema de control avanzado

Véase la descripción en la sección 8.3.

Esta técnica se utiliza en combinación con otras técnicas.

La aplicabilidad a las instalaciones de combustión viejas puede verse limitada por la necesidad de modernizar el sistema de combustión y/o el sistema de control de los parámetros.

c.

Adición de agua/vapor

Véase la descripción en la sección 8.3.

En turbinas de gas de dos combustibles que utilicen DLN para la combustión de gases de procesos siderúrgicos, suele añadirse agua/vapor cuando se quema gas natural.

La aplicabilidad puede verse limitada por razones de disponibilidad de agua.

d.

Quemadores secos de baja producción de NOx (DLN)

Véase la descripción en la sección 8.3.

Los quemadores DLN que queman gases de procesos siderúrgicos son distintos de los que queman únicamente gas natural.

Aplicable con los condicionamientos asociados a la reactividad de los gases de procesos siderúrgicos, por ejemplo el gas de coque.

La aplicabilidad puede verse limitada en el caso de las turbinas para las que no se disponga de medidas de modernización o en las que se hayan instalado sistemas de adición de agua/vapor.

e.

Quemadores de baja producción de NOx (LNB)

Véase la descripción en la sección 8.3.

Aplicable únicamente a la alimentación suplementaria para los generadores de vapor de recuperación de calor (GVRC) de las instalaciones de combustión con turbinas de gas de ciclo combinado (TGCC).

f.

Reducción catalítica selectiva (RCS)

La modernización de las instalaciones de combustión existentes puede verse limitada por razones de espacio.

MTD 49.

Para evitar o reducir las emisiones atmosféricas de CO procedentes de la combustión de gases de procesos siderúrgicos, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Optimización de la combustión

Véanse las descripciones en la sección 10.8.3.

Aplicable con carácter general.

b.

Catalizadores de oxidación

Únicamente aplicable a las TGCC.

La aplicabilidad puede verse limitada por razones de espacio, los requisitos de carga y el contenido de azufre del combustible.


Cuadro 29

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de NOx procedentes de la combustión de gases de procesos siderúrgicos al 100 %

Tipo de instalación de combustión

Nivel de O2 de referencia (% v/v)

NEA-MTD (mg/Nm3) (171)

Media anual

Media diaria o media a lo largo del período de muestreo

Caldera nueva

3

15-65

22-100

Caldera existente

3

20–100 (172)  (173)

22–110 (172)  (174)  (175)

TGCC nueva

15

20-35

30-50

TGCC existentes

15

20-50 (172)  (173)

30–55 (175)  (176)

A título indicativo, la media anual de los niveles de emisión de CO será, en general, la siguiente:

< 5-100 mg/Nm3 para las calderas existentes que funcionen ≥ 1 500 h/año,

< 5-35 mg/Nm3 para las calderas nuevas,

< 5–20 mg/Nm3 para las TGCC que funcionen ≥ 1 500 h/año o para las TGCC nuevas.

4.2.3.   Emisiones atmosféricas de SOx

MTD 50.

Para evitar o reducir las emisiones atmosféricas de SOx procedentes de la combustión de gases de procesos siderúrgicos, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Sistema de gestión de los gases de procesos y elección del combustible auxiliar

Véase la descripción en la sección 10.8.2.

En la medida en que lo permitan las acerías, maximizar el uso de:

la mayor parte de los gases de altos hornos con un bajo contenido en azufre en la composición del combustible,

una combinación de combustibles con un bajo contenido promediado de azufre, por ejemplo combustibles de distintos procesos con un contenido de azufre muy bajo, tales como:

gas de altos hornos con un contenido de azufre < 10 mg/Nm3,

gas de coque con un contenido de azufre < 300 mg/Nm3,

y combustibles auxiliares, como, por ejemplo:

gas natural,

combustibles líquidos con un contenido de azufre ≤ 0,4 % (en calderas).

Uso de una cantidad limitada de combustibles con un contenido de azufre más elevado

Aplicable con carácter general con los condicionamientos asociados a la disponibilidad de distintos tipos de combustibles.

b.

Pretratamiento del gas de coque en las acerías

Aplicación de una de las técnicas siguientes:

desulfuración mediante sistemas de absorción,

desulfuración oxidativa de proceso húmedo

Aplicable únicamente a las instalaciones de combustión de gas de coque.


Cuadro 30

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de SO2 procedentes de la combustión de gases de procesos siderúrgicos al 100 %

Tipo de instalación de combustión

Nivel de O2 de referencia (% v/v)

NEA-MTD correspondientes al SO2 (mg/Nm3)

Media anual (177)

Media diaria o media a lo largo del período de muestreo (178)

Calderas nuevas o existentes

3

25-150

50-200 (179)

TGCC nuevas o existentes

15

10-45

20-70

4.2.4.   Emisiones atmosféricas de partículas

MTD 51.

Para reducir las emisiones atmosféricas de partículas procedentes de la combustión de gases de procesos siderúrgicos, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Elección/gestión del combustible

Utilización de una combinación de gases de procesos y combustibles auxiliares con un bajo contenido promediado de partículas o cenizas.

Aplicable con carácter general con los condicionamientos asociados a la disponibilidad de distintos tipos de combustibles.

b.

Pretratamiento del gas de altos hornos en las acerías

Utilización de un dispositivo de extracción de polvo en seco o una combinación de tales dispositivos (por ejemplo, deflectores, desempolvadores, ciclones, precipitadores electrostáticos) y/o técnicas posteriores de reducción de partículas (depuradores Venturi, torres de lavado con rejilla, torres de lavado con separación anular, precipitadores electrostáticos húmedos, desintegradores).

Aplicable únicamente si se quema gas de alto horno.

c.

Pretratamiento del gas de convertidor al oxígeno básico en las acerías

Utilización de dispositivos de extracción de polvo en seco (por ejemplo, precipitadores electrostáticos o filtros de mangas) o por vía húmeda (por ejemplo, precipitadores electrostáticos húmedos o lavadores). En el BREF relativo a la siderurgia se ofrecen otras descripciones,

Aplicable únicamente si se quema gas de convertidor al oxígeno básico.

d.

Precipitador electrostático (PE)

Véanse las descripciones en la sección 8.5.

Aplicable únicamente a las instalaciones de combustión que queman una proporción considerable de combustibles auxiliares con alto contenido de cenizas.

e.

Filtro de mangas


Cuadro 31

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de partículas procedentes de la combustión de gases de procesos siderúrgicos al 100 %

Tipo de instalación de combustión

NEA-MTD correspondientes a las partículas (mg/Nm3)

Media anual (180)

Media diaria o media a lo largo del período de muestreo (181)

Calderas nuevas o existentes

2-7

2-10

TGCC nuevas o existentes

2-5

2-5

4.3.   Conclusiones sobre las MTD en la combustión de combustibles gaseosos y/o líquidos en plataformas marinas

Salvo que se indique lo contrario, las conclusiones sobre las MTD presentadas en esta sección son de aplicación general a la combustión de combustibles líquidos y/o gaseosos en plataformas marinas. Se aplican además de las conclusiones generales sobre las MTD formuladas en la sección 1.

MTD 52.

Para mejorar el comportamiento ambiental general de la combustión de combustibles líquidos y/o gaseosos en plataformas marinas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnicas

Descripción

Aplicabilidad

a.

Optimización del proceso

Optimización del proceso a fin de minimizar las necesidades de potencia mecánica.

Aplicable con carácter general.

b.

Control de las pérdidas de presión

Optimizar y mantener los sistemas de admisión y escape de tal manera que las pérdidas de presión sean lo más bajas posible.

c.

Control de la carga

Hacer funcionar los grupos compresor y electrógeno múltiples en puntos de carga que minimicen las emisiones.

d.

Minimizar la «reserva rodante»

Cuando se funcione con la reserva rodante por razones de fiabilidad operacional, se minimiza el número de turbinas adicionales, salvo en circunstancias excepcionales.

e.

Elección del combustible

Abastecer gas combustible desde un punto en el proceso en superficie de petróleo y gas que ofrezca una gama mínima de parámetros de combustión del gas combustible, por ejemplo poder calorífico, y concentraciones mínimas de compuestos sulfurosos para minimizar la formación de SO2. Por lo que se refiere a los combustibles destilados líquidos, se da preferencia a los combustibles con bajo contenido de azufre.

f.

Regulación de la inyección

Optimización temporal de la inyección en motores.

g.

Recuperación de calor

Utilización del calor de escape de la turbina de gas o del motor para la calefacción de la plataforma.

Aplicable con carácter general a las instalaciones de combustión nuevas.

En las instalaciones de combustión existentes, su aplicabilidad puede verse limitada por el nivel de la demanda de calor y la configuración de la instalación de combustión (espacio).

h.

Integración de la energía de varios yacimientos de petróleo/gas

Utilización de una fuente de energía central para abastecer a una serie de plataformas participantes ubicadas en diferentes yacimientos de gas/petróleo.

La aplicabilidad puede verse limitada en función de la ubicación de los distintos yacimientos de gas/petróleo y de la organización de las diferentes plataformas participantes, incluida la alineación de la programación temporal en lo que respecta a la planificación, la puesta en marcha y el cese de la producción.

MTD 53.

Para evitar o reducir las emisiones atmosféricas de NOx procedentes de la combustión de combustibles líquidos y/o gaseosos en plataformas marinas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Sistema de control avanzado

Véanse las descripciones en la sección 8.3.

La aplicabilidad a las instalaciones de combustión viejas puede verse limitada por la necesidad de modernizar el sistema de combustión y/o el sistema de control de los parámetros.

b.

Quemadores secos de baja producción de NOX (DLN)

Aplicable a las turbinas de gas nuevas (equipamiento estándar) con los condicionamientos asociados a las variaciones de la calidad de los combustibles.

Su aplicabilidad puede verse limitada en el caso de las turbinas de gas existentes por las razones siguientes: disponibilidad de medidas de modernización (para el funcionamiento con carga baja), complejidad de la organización de la plataforma y disponibilidad de espacio.

c.

Enfoque de mezcla pobre

Aplicable únicamente a los motores de gas nuevos.

d.

Quemadores de baja producción de NOx (LNB)

Aplicable únicamente a las calderas.

MTD 54.

Para evitar o reducir las emisiones atmosféricas de CO procedentes de la combustión de combustibles líquidos y/o gaseosos en plataformas marinas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Optimización de la combustión

Véanse las descripciones en la sección 10.8.3.

Aplicable con carácter general.

b.

Catalizadores de oxidación

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

La modernización de las instalaciones existentes puede verse limitada por razones de espacio y peso.


Cuadro 32

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de NOx procedentes de la combustión de combustibles gaseosos en turbinas de gas de ciclo abierto en plataformas marinas

Tipo de instalación de combustión

NEA-MTD (mg/Nm3) (182)

Media a lo largo del período de muestreo

Turbina de gas nueva que quema combustibles gaseosos (183)

15-50 (184)

Turbina de gas existente que quema combustibles gaseosos (183)

< 50-350 (185)

A título indicativo, la media anual de los niveles de emisión de CO será, en general, la siguiente:

< 100 mg/Nm3 para las turbinas de gas existentes que queman combustibles gaseosos en plataformas marinas que funcionan ≥ 1 500 h/año,

< 75 mg/Nm3 para las turbinas de gas nuevas que queman combustibles gaseosos en plataformas marinas.

5.   CONCLUSIONES SOBRE LAS MTD EN INSTALACIONES DE COMBUSTIÓN ALIMENTADAS POR VARIOS COMBUSTIBLES

5.1.   Conclusiones sobre las MTD en la combustión de combustibles de procesos de la industria química

Salvo que se indique lo contrario, las conclusiones sobre las MTD presentadas en esta sección son de aplicación general a la combustión de combustibles de procesos de la industria química, individualmente, en combinación, o de forma simultánea con otros combustibles gaseosos o líquidos. Se aplican además de las conclusiones generales sobre las MTD formuladas en la sección 10.1.

5.1.1.   Comportamiento ambiental general

MTD 55.

Para mejorar el comportamiento ambiental general de la combustión de combustibles de procesos de la industria química en calderas, la MTD consiste en utilizar una combinación adecuada de las técnicas que se indican en la MTD 6 y a continuación.

Técnica

Descripción

Aplicabilidad

a.

Pretratamiento de los combustibles de procesos de la industria química

Pretratamiento del combustible dentro y/o fuera del emplazamiento de la instalación de combustión para mejorar el comportamiento ambiental de la combustión del combustible.

Aplicable con los condicionamientos asociados a las características del combustible de procesos y a la disponibilidad de espacio.

5.1.2.   Eficiencia energética

Cuadro 33

Niveles de eficiencia energética asociados a las MTD (NEEA-MTD) para la combustión de gases de procesos de la industria química en calderas

Tipo de unidad de combustión

NEEA-MTD (186)  (187)

Eficiencia eléctrica neta (%)

Consumo de combustible neto total (%) (188)  (189)

Unidad nueva

Unidad existente

Unidad nueva

Unidad existente

Caldera que utiliza combustibles líquidos de procesos de la industria química, incluso mezclados con HFO, gasóleo y/u otros combustibles líquidos

≥ 36,4

35,6-37,4

80-96

80-96

Caldera que utiliza combustibles gaseosos de procesos de la industria química, incluso mezclados con gas natural y/u otros combustibles gaseosos

39-42,5

38-40

78-95

78-95

5.1.3.   Emisiones atmosféricas de NOx y CO

MTD 56.

Para evitar o reducir las emisiones atmosféricas de NOx y, al mismo tiempo, limitar las emisiones atmosféricas de CO procedentes de la combustión de combustibles de procesos de la industria química, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Quemadores de baja producción de NOx (LNB)

Véanse las descripciones en la sección 8.3.

Aplicable con carácter general.

b.

Introducción de aire por etapas

c.

Introducción de combustible por etapas

Véase la descripción en la sección 8.3.

La introducción del combustible por etapas cuando se utilizan mezclas de combustibles líquidos puede exigir un quemador con un diseño especial.

d.

Recirculación de los gases de combustión

Véanse las descripciones en la sección 8.3.

Aplicable con carácter general a las instalaciones de combustión nuevas.

Aplicable a las instalaciones de combustión existentes con los condicionamientos asociados a la seguridad de la instalación química.

e.

Adición de agua/vapor

La aplicabilidad puede verse limitada por razones de disponibilidad de agua.

f.

Elección del combustible

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible y/o a un uso alternativo del combustible de procesos.

g.

Sistema de control avanzado

La aplicabilidad a las instalaciones de combustión viejas puede verse limitada por la necesidad de modernizar el sistema de combustión y/o el sistema de control de los parámetros.

h.

Reducción no catalítica selectiva (RNCS)

Aplicable a las instalaciones de combustión existentes con los condicionamientos asociados a la seguridad de la instalación química

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

La aplicabilidad puede verse limitada en el caso de las instalaciones de combustión que funcionan entre 500 h/año y 1 500 h/año con cambios frecuentes de combustible y variaciones frecuentes de la carga.

i.

Reducción catalítica selectiva (RCS)

Aplicable a las instalaciones de combustión existentes con los condicionamientos asociados a la configuración de los conductos, a la disponibilidad de espacio y a la seguridad de la instalación química.

No aplicable a las instalaciones de combustión que funcionen < 500 h/año.

Puede haber restricciones técnicas y económicas para la modernización de instalaciones de combustión existentes que funcionen entre 500 h/año y 1 500 h/año.

No aplicable con carácter general a las instalaciones de combustión de < 100 MWth.


Cuadro 34

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de NOx procedentes de la combustión de combustibles de procesos de la industria química al 100 % en calderas

Fase combustible utilizada en la instalación de combustión

NEA-MTD (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (190)

Instalación nueva

Instalación existente (191)

Mezcla de gases y líquidos

30-85

80-290 (192)

50-110

100-330 (192)

Únicamente gases

20-80

70-100 (193)

30-100

85-110 (194)

A título indicativo, la media anual de los niveles de emisión de CO para las instalaciones existentes que funcionan ≥ 1 500 h/año y para las instalaciones nuevas será por lo general < 5–30 mg/Nm3.

5.1.4.   Emisiones atmosféricas de SOX, HCl y HF

MTD 57.

Para reducir las emisiones atmosféricas de SOx, HCl y HF procedentes de la combustión de combustibles de procesos de la industria química en calderas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Elección del combustible

Véanse las descripciones en la sección 8.4.

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible y/o a un uso alternativo del combustible de procesos.

b.

Inyección de sorbentes en la caldera (en el hogar o en el lecho)

Aplicable a las instalaciones de combustión existentes con los condicionamientos asociados a la configuración de los conductos, a la disponibilidad de espacio y a la seguridad de la instalación química.

La DGC húmeda y la DGC con agua marina no son aplicables a las instalaciones de combustión que funcionan < 500 h/año.

Puede haber restricciones técnicas y económicas para la modernización de la DGC húmeda o la DGC con agua marina en instalaciones de combustión de < 300 MWth y la adaptación de instalaciones de combustión que funcionen entre 500 h/año y 1 500 h/año con DGC húmeda o DGC con agua marina.

c.

Inyección de sorbentes en los conductos (ISC)

d.

Absorbente en seco por atomización (ASA)

e.

Depuración húmeda

Véase la descripción en la sección 8.4.

La depuración húmeda se utiliza para eliminar el HCl y HF cuando no se utiliza la DGC húmeda para reducir las emisiones de SOx.

f.

Desulfuración húmeda de los gases de combustión (DGC húmeda)

Véanse las descripciones en la sección 8.4.

g.

DGC con agua marina


Cuadro 35

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de SO2 procedentes de la combustión de combustibles de procesos de la industria química al 100 % en calderas

Tipo de instalación de combustión

NEA-MTD (mg/Nm3)

Media anual (195)

Media diaria o media a lo largo del período de muestreo (196)

Calderas nuevas y existentes

10-110

90-200


Cuadro 36

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de HCl y HF procedentes de la combustión de combustibles de procesos de la industria química

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD (mg/Nm3)

HCl

HF

Media de las muestras obtenidas durante un año

Instalación nueva

Instalación existente (197)

Instalación nueva

Instalación existente (197)

< 100

1-7

2-15 (198)

< 1-3

< 1-6 (199)

≥ 100

1-5

1-9 (198)

< 1-2

< 1-3 (199)

5.1.5.   Emisiones atmosféricas de partículas y metales en partículas

MTD 58.

Para reducir las emisiones atmosféricas de partículas, metales en partículas y compuestos residuales procedentes de la combustión de combustibles de procesos de la industria química en calderas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Precipitador electrostático (PE)

Véanse las descripciones en la sección 8.5.

Aplicable con carácter general.

b.

Filtro de mangas

c.

Elección del combustible

Véase la descripción en la sección 8.5.

Utilización de una combinación de combustibles de procesos de la industria química y combustibles auxiliares con un bajo contenido promediado de partículas o cenizas.

Aplicable con los condicionamientos asociados a la disponibilidad de tipos distintos de combustible y/o a un uso alternativo del combustible de procesos.

d.

Sistema de DGC seca o semiseca

Véanse las descripciones en la sección 8.5.

Esta técnica se utiliza principalmente para el control de SOx, HCl y/o HF.

Véase su aplicabilidad en la MTD 57.

e.

Desulfuración húmeda de los gases de combustión (DGC húmeda)


Cuadro 37

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de partículas procedentes de la combustión de mezclas de gases y líquidos compuestos de combustibles de procesos de la industria química al 100 % en calderas

Potencia térmica nominal total de la instalación de combustión

(MWth)

NEA-MTD correspondientes a las partículas (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente (200)

Instalación nueva

Instalación existente (201)

< 300

2-5

2-15

2-10

2-22 (202)

≥ 300

2-5

2-10 (203)

2-10

2-11 (202)

5.1.6.   Emisiones atmosféricas de compuestos orgánicos volátiles y de dibenzodioxinas y dibenzofuranos policlorados

MTD 59.

Para reducir las emisiones atmosféricas de compuestos orgánicos volátiles y de dibenzodioxinas y dibenzofuranos policlorados procedentes de la combustión de combustibles de procesos de la industria química en calderas, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican en la MTD 6 y a continuación.

Técnica

Descripción

Aplicabilidad

a.

Inyección de carbón activo

Véase la descripción en la sección 8.5.

Aplicable únicamente a las instalaciones de combustión que utilizan combustibles derivados de procesos químicos con sustancias cloradas.

Para la aplicabilidad de la RCS y el templado rápido, véanse la MTD 56 y la MTD 57.

b.

Templado rápido mediante depuración húmeda/condensador de gases de combustión

Véase la descripción de depuración húmeda/condensador de gases de combustión en la sección 8.4.

c.

Reducción catalítica selectiva (RCS)

Véase la descripción en la sección 8.3.

El sistema de RCS está adaptado y es mayor que un sistema RCS que solo se utiliza para la reducción de NOx.


Cuadro 38

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de PCDD/PCDF y COVT procedentes de la combustión de combustibles de procesos de la industria química al 100 % en calderas

Contaminante

Unidad

NEA-MTD

Media a lo largo del período de muestreo

PCDD/PCDF (204)

ng I-TEQ/Nm3

< 0,012-0,036

COVT

mg/Nm3

0,6-12

6.   CONCLUSIONES SOBRE LAS MTD EN LA COINCINERACIÓN DE RESIDUOS

Salvo que se indique lo contrario, las conclusiones sobre las MTD presentadas en esta sección son de aplicación general a la coincineración de residuos en instalaciones de combustión. Se aplican además de las conclusiones generales sobre las MTD formuladas en la sección 1.

Cuando los residuos se coincineran, los NEA-MTD que se indican en esta sección se aplican a todo el volumen generado de gases de combustión.

Además, cuando los residuos se coincineran junto con los combustibles a que se refiere la sección 2, los NEA-MTD que se indican en la sección 2 también se aplican i) a la totalidad del volumen de gases de combustión generados y ii) al volumen de gases de combustión resultantes de la combustión de los combustibles cubiertos por esa sección utilizando la fórmula «regla de mezcla» del anexo VI (parte 4) de la Directiva 2010/75/UE, en la que los NEA-MTD correspondientes al volumen de gases resultantes de la combustión de residuos deben determinarse sobre la base de la MTD 61.

6.1.1.   Comportamiento ambiental general

MTD 60.

Para mejorar el comportamiento ambiental general de la coincineración de residuos en instalaciones de combustión, garantizar unas condiciones de combustión estables y reducir las emisiones a la atmósfera, la MTD consiste en utilizar la MTD 60 a) y una combinación de las técnicas que se indican en la MTD 6 y/o las demás técnicas que figuran a continuación.

Técnica

Descripción

Aplicabilidad

a.

Aceptación previa y aceptación de residuos

Aplicación de un procedimiento de recepción de residuos en la instalación de combustión de acuerdo con la MTD correspondiente de las indicadas en el BREF relativo al tratamiento de residuos. Se establecen criterios de aceptación para parámetros críticos tales como el poder calorífico, y el contenido de agua, cenizas, cloro, flúor, azufre, nitrógeno, PCB, metales [metales volátiles (por ejemplo, Hg, Tl, Pb, Co, Se) y no volátiles (por ejemplo, V, Cu, Cd, Cr, Ni)], fósforo y álcali (cuando se utilizan subproductos de origen animal).

Aplicación de sistemas de aseguramiento de la calidad para cada carga de residuos con objeto de garantizar las características de los residuos coincinerados y controlar los valores de los parámetros críticos definidos (por ejemplo, la norma EN 15358 para los combustibles sólidos valorizados no peligrosos).

Aplicable con carácter general.

b.

Selección/limitación de los residuos

Selección cuidadosa del caudal másico y del tipo de residuos y limitación de la proporción de los residuos más contaminados que puedan ser coincinerados. Limitación de la proporción de cenizas, azufre, flúor, mercurio y/o cloro en los residuos que entran en la instalación de combustión.

Limitación de la cantidad de residuos que van a ser coincinerados.

Aplicable con los condicionamientos asociados a la política de gestión de residuos del Estado miembro.

c.

Mezcla de los residuos con el combustible principal

Mezcla efectiva de residuos y el combustible principal, ya que un flujo de combustible heterogéneo y poco mezclado o una distribución desigual puede influir en la ignición y la combustión en la caldera y debe evitarse.

La mezcla solo es posible cuando el comportamiento del combustible principal y de los residuos cuando se trituran es similar o cuando la cantidad de residuos es muy pequeña en comparación con el combustible principal.

d.

Secado de los residuos

Secar los residuos antes de introducirlos en la cámara de combustión, con el fin de mantener el alto rendimiento de la caldera.

Su aplicabilidad puede verse limitada si no puede recuperarse calor suficiente del proceso, por las condiciones de combustión necesarias o por el contenido de humedad de los residuos.

e.

Pretratamiento de los residuos

Véanse las técnicas descritas en los BREF relativos al tratamiento de residuos y a la incineración de residuos, en particular la molienda, la pirólisis y la gasificación.

Para la aplicabilidad de esta técnica, véanse los BREF relativos al tratamiento de residuos y a la incineración de residuos.

MTD 61.

Para evitar el aumento de las emisiones procedentes de la coincineración de residuos en instalaciones de combustión, la MTD consiste en adoptar medidas adecuadas para garantizar que las emisiones de sustancias contaminantes presentes en la parte de los gases de combustión resultantes de la coincineración de residuos no sean superiores a las resultantes de la aplicación de las conclusiones sobre las MTD en la incineración de residuos.

MTD 62.

Para reducir al mínimo el impacto sobre el reciclado de desechos de la coincineración de residuos en instalaciones de combustión, la MTD consiste en mantener una buena calidad del yeso, las cenizas y las escorias, así como de otros desechos, de acuerdo con los requisitos establecidos para su reciclado cuando la instalación no está coincinerando residuos, mediante la aplicación de una (o una combinación) de las técnicas indicadas en la MTD 60 y/o limitando la coincineración a las fracciones de residuos con concentraciones de contaminantes similares a las de otros combustibles quemados.

6.1.2.   Eficiencia energética

MTD 63.

Para aumentar la eficiencia energética de la coincineración de residuos, la MTD consiste en utilizar una combinación adecuada de las técnicas que se indican en la MTD 12 y en la MTD 19, en función del tipo de combustible principal utilizado y de la configuración de la instalación.

Los niveles de eficiencia energética asociados a las MTD figuran en el cuadro 8 en cuanto a la coincineración de residuos con biomasa y/o turba, y en el cuadro 2 en cuanto a la coincineración de residuos con hulla y/o lignito.

6.1.3.   Emisiones atmosféricas de NOx y CO

MTD 64.

Para evitar o reducir las emisiones atmosféricas de NOx y, al mismo tiempo, limitar las emisiones de CO y N2O procedentes de la coincineración de residuos con hulla y/o lignito, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican en la MTD 20.

MTD 65.

Para evitar o reducir las emisiones atmosféricas de NOx y, al mismo tiempo, limitar las emisiones de CO y N2O procedentes de la coincineración de residuos con biomasa y/o turba, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican en la MTD 24.

6.1.4.   Emisiones atmosféricas de SOx, HCl y HF

MTD 66.

Para evitar o reducir las emisiones atmosféricas de SOx, HCl y HF procedentes de la coincineración de residuos con hulla y/o lignito, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican en la MTD 21.

MTD 67.

Para evitar o reducir las emisiones atmosféricas de SOx, HCl y HF procedentes de la coincineración de residuos con biomasa y/o turba, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican en la MTD 25.

6.1.5.   Emisiones atmosféricas de partículas y metales en partículas

MTD 68.

Para reducir las emisiones atmosféricas de partículas y metales en partículas procedentes de la coincineración de residuos con hulla y/o lignito, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican en la MTD 22.

Cuadro 39

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de metales procedentes de la coincineración de residuos con hulla y/o lignito

Potencia térmica nominal total de la instalación de combustión (MWth)

NEA-MTD

Período de cálculo de valores medios

Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V (mg/Nm3)

Cd+Tl (μg/Nm3)

< 300

0,005-0,5

5-12

Media a lo largo del período de muestreo

 300

0,005-0,2

5-6

Media de las muestras obtenidas durante un año

MTD 69.

Para reducir las emisiones atmosféricas de partículas y metales en partículas procedentes de la coincineración de residuos con biomasa y/o turba, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican en la MTD 26.

Cuadro 40

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de metales procedentes de la coincineración de residuos con biomasa y/o turba

NEA-MTD

(media de las muestras obtenidas durante un año)

Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V (mg/Nm3)

Cd+Tl (μg/Nm3)

0,075-0,3

< 5

6.1.6.   Emisiones atmosféricas de mercurio

MTD 70.

Para reducir las emisiones atmosféricas de mercurio procedentes de la coincineración de residuos con biomasa, turba, hulla y/o lignito, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican en la MTD 23 y en la MTD 27.

6.1.7.   Emisiones atmosféricas de compuestos orgánicos volátiles y de dibenzodioxinas y dibenzofuranos policlorados

MTD 71.

Para reducir las emisiones de compuestos orgánicos volátiles y de dibenzodioxinas y dibenzofuranos policlorados procedentes de la coincineración de residuos con biomasa, turba, hulla y/o lignito, la MTD consiste en utilizar una combinación de las técnicas que se indican en la MTD 6, la MTD 26 y a continuación.

Técnica

Descripción

Aplicabilidad

a.

Inyección de carbón activo

Véase la descripción en la sección 8.5.

Este proceso se basa en la adsorción de moléculas de contaminantes por el carbón activo.

Aplicable con carácter general.

b.

Templado rápido mediante depuración húmeda/condensador de gases de combustión

Véase la descripción de depuración húmeda/condensador de gases de combustión en la sección 8.4.

c.

Reducción catalítica selectiva (RCS)

Véase la descripción en la sección 8.3.

El sistema de RCS está adaptado y es mayor que un sistema RCS que solo se utiliza para la reducción de NOx.

Véase su aplicabilidad en la MTD 20 y en la MTD 24.


Cuadro 41

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones a la atmósfera de PCDD/PCDF y COVT procedentes de la coincineración de residuos con biomasa, turba, hulla y/o lignito

Tipo de instalación de combustión

NEA-MTD

PCDD/PCDF (ng I-TEQ/Nm3)

COVT (mg/Nm3)

Media a lo largo del período de muestreo

Media anual

Media diaria

Instalación de combustión de turba, biomasa, hulla y/o lignito

< 0,01-0,03

< 0,1-5

0,5-10

7.   CONCLUSIONES SOBRE LAS MTD EN LA GASIFICACIÓN

Salvo que se indique lo contrario, las conclusiones sobre las MTD presentadas en esta sección son de aplicación general a todas las instalaciones de gasificación directamente asociadas a instalaciones de combustión, así como a las instalaciones de CCGI. Se aplican además de las conclusiones generales sobre las MTD formuladas en la sección 10.1.

7.1.1.   Eficiencia energética

MTD 72.

Para aumentar la eficiencia energética de las unidades de gasificación y de CCGI, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican en la MTD 12 y a continuación.

Técnica

Descripción

Aplicabilidad

a.

Recuperación de calor del proceso de gasificación

Como el gas de síntesis debe ser enfriado antes de su depuración, puede recuperarse energía para producir vapor suplementario que se añadirá al ciclo de la turbina de vapor, lo que permite producir energía eléctrica adicional.

Aplicable únicamente a las unidades de CCGI y a las unidades de gasificación directamente asociadas a calderas con pretratamiento del gas de síntesis que exige la refrigeración del gas de síntesis.

b.

Integración de los procesos de combustión y gasificación

La unidad puede estar diseñada con plena integración de la unidad de suministro de aire (USA) y la turbina de gas, y todo el aire que se introduce en la USA se extrae del compresor de la turbina de gas.

La aplicabilidad se limita a las unidades de CCGI por las necesidades de flexibilidad de la instalación integrada para introducir rápidamente en la red electricidad cuando no se dispone de instalaciones de energía renovable.

c.

Sistema seco de alimentación de materias primas

Utilización de un sistema seco para introducir el combustible en el gasificador con objeto de mejorar la eficiencia energética del proceso de gasificación.

Aplicable únicamente a las unidades nuevas.

d.

Gasificación a alta temperatura y alta presión

Utilización de una técnica de gasificación con parámetros de funcionamiento a alta temperatura y alta presión para maximizar la eficiencia de la conversión de energía.

Aplicable únicamente a las unidades nuevas.

e.

Mejoras de diseño

Mejoras de diseño, tales como:

modificaciones del sistema refractario y/o de refrigeración del gasificador,

instalación de un expansor para recuperar energía de la caída de presión del gas de síntesis antes de la combustión.

Aplicable con carácter general a las unidades CCGI nuevas.


Cuadro 42

Niveles de eficiencia energética asociados a las MTD (NEEA-MTD) correspondientes a las unidades de gasificación y CCGI

Tipo de configuración de la unidad de combustión

NEEA-MTD

Eficiencia eléctrica neta (%) una unidad CCGI

Consumo de combustible neto total (%) de una unidad de gasificación nueva o existente

Unidad nueva

Unidad existente

Unidad de gasificación directamente asociada a una caldera sin tratamiento previo del gas de síntesis

Ningún NEEA-MTD

> 98

Unidad de gasificación directamente asociada a una caldera con tratamiento previo del gas de síntesis

Ningún NEEA-MTD

> 91

Unidad CCGI

Ningún NEEA-MTD

34-46

> 91

7.1.2.   Emisiones atmosféricas de NOx y CO

MTD 73.

Para evitar y/o reducir las emisiones atmosféricas de NOx y, al mismo tiempo, limitar las emisiones atmosféricas de CO procedentes de las instalaciones de CCGI, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Optimización de la combustión

Véase la descripción en la sección 8.3.

Aplicable con carácter general.

b.

Adición de agua/vapor

Véase la descripción en la sección 8.3.

Con este propósito se utiliza parte del vapor de presión intermedia de la turbina de vapor.

Aplicable únicamente a la parte de la turbina de gas de la instalación CCGI.

La aplicabilidad puede verse limitada por razones de disponibilidad de agua.

c.

Quemadores secos de baja producción de NOX (DLN)

Véase la descripción en la sección 8.3.

Aplicable únicamente a la parte de la turbina de gas de la instalación CCGI.

Aplicable con carácter general a las instalaciones de CCGI nuevas.

Aplicable caso por caso a las instalaciones de CCGI existentes en función de la disponibilidad de medidas de modernización. No aplicable al gas de síntesis con un contenido de hidrógeno > 15 %.

d.

Dilución del gas de síntesis con nitrógeno residual de la unidad de suministro de aire (USA)

La USA separa el oxígeno del nitrógeno del aire para suministrar al gasificador oxígeno de gran calidad. El nitrógeno residual de la USA se reutiliza para reducir la temperatura de combustión en la turbina de gas mezclándolo con el gas de síntesis antes de la combustión.

Aplicable únicamente cuando se utiliza una USA en el proceso de gasificación.

e.

Reducción catalítica selectiva (RCS)

Véase la descripción en la sección 8.3.

No aplicable a las instalaciones de CCGI que funcionan < 500 h/año.

La modernización de las instalaciones de CCGI existentes puede verse limitada por razones de espacio.

Puede haber restricciones técnicas y económicas para la modernización de instalaciones de CCGI existentes que funcionen entre 500 h/año y 1 500 h/año.


Cuadro 43

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones atmosféricas de NOx procedentes de instalaciones de CCGI

Potencia térmica nominal total de la instalación CCGI

(MWth)

NEA-MTD (mg/Nm3)

Media anual

Media diaria o media a lo largo del período de muestreo

Instalación nueva

Instalación existente

Instalación nueva

Instalación existente

≥ 100

10-25

12-45

1-35

1-60

A título indicativo, la media anual de los niveles de emisión de CO para las instalaciones existentes que funcionan ≥ 1 500 h/año y para las instalaciones nuevas será por lo general < 5–30 mg/Nm3.

7.1.3.   Emisiones atmosféricas de SOx

MTD 74.

Para reducir las emisiones de SOx a la atmósfera procedentes de las instalaciones GGCI, la MTD consiste en utilizar la técnica que se indica a continuación.

Técnica

Descripción

Aplicabilidad

a.

Eliminación de los gases ácidos

Los compuestos de azufre de la materia prima de un proceso de gasificación se retiran del gas de síntesis mediante la eliminación de los gases ácidos, por ejemplo incluyendo un reactor de hidrólisis del COS (y del HCN) y mediante la absorción del H2S utilizando un disolvente tal como la metil-dietanolamina. A continuación se recupera el azufre en forma de azufre elemental líquido o sólido (por ejemplo, a través de una unidad Claus), o como ácido sulfúrico, en función de la demanda del mercado

La aplicabilidad puede verse limitada en el caso de las instalaciones de CCGI de biomasa debido al contenido extremadamente bajo de azufre de la biomasa.

El nivel de emisiones asociado a la MTD (NEA-MTD) correspondiente a las emisiones atmosféricas de SO2 procedentes de instalaciones de CCGI de ≥ 100 MWth es 3-16 mg/Nm3, expresado como media anual.

7.1.4.   Emisiones atmosféricas de partículas, metales en partículas, amoníaco y halógenos

MTD 75.

Para evitar o reducir las emisiones atmosféricas de partículas, metales en partículas, amoníaco y halógenos procedentes de las instalaciones de CCGI, la MTD consiste en utilizar una (o una combinación) de las técnicas que se indican a continuación.

Técnica

Descripción

Aplicabilidad

a.

Filtración del gas de síntesis

Extracción del polvo por medio de ciclones de cenizas volantes, filtros de mangas, precipitadores electrostáticos y/o filtros de bujías para retirar las cenizas volantes y el carbono sin transformar. Los filtros de mangas y los precipitadores electrostáticos se utilizan con el gas de síntesis a temperaturas de hasta 400 °C.

Aplicable con carácter general.

b.

Recirculación de los alquitranes y cenizas del gas de síntesis hacia el gasificador

Los alquitranes y las cenizas con un alto contenido de carbono generados en el gas de síntesis crudo se separan en ciclones y se hacen recircular hacia el gasificador, cuando la temperatura del gas de síntesis en la boca de salida del gasificador es baja (< 1 100  °C)

c.

Lavado del gas de síntesis

Tras la aplicación de otras técnicas de extracción de polvo, el gas de síntesis pasa a través de un lavador húmedo en el que se separan los cloruros, el amoniaco, las partículas y los halogenuros.


Cuadro 44

Niveles de emisión asociados a las MTD (NEA-MTD) correspondientes a las emisiones atmosféricas de partículas y metales en partículas procedentes de instalaciones de CCGI

Potencia térmica nominal total de la instalación CCGI

(MWth)

NEA-MTD

Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V (mg/Nm3)

(Media a lo largo del período de muestreo)

Hg (μg/Nm3)

(Media a lo largo del período de muestreo)

Partículas (mg/Nm3)

(media anual)

≥ 100

< 0,025

< 1

< 2,5

8.   DESCRIPCIÓN DE LAS TÉCNICAS

8.1.   Técnicas generales

Técnica

Descripción

Sistema de control avanzado

Sistema automático por ordenador que permite controlar la eficiencia de la combustión y contribuir a la prevención y/o reducción de las emisiones. También permite realizar una monitorización de alto nivel.

Optimización de la combustión

Medidas para incrementar al máximo la eficiencia de la conversión de energía, por ejemplo en el horno/caldera, minimizando, al mismo tiempo, las emisiones (en particular de CO). Esto se consigue con una combinación de técnicas tales como un buen diseño del equipo de combustión y la optimización de la temperatura (por ejemplo, mezcla eficiente del combustible y del aire de combustión) y del tiempo de permanencia en la zona de combustión, así como la utilización de un sistema de control avanzado.

8.2.   Técnicas para aumentar la eficiencia energética

Técnica

Descripción

Sistema de control avanzado

Véase la sección 8.1.

Preparación para la PCCE

Medidas que permiten la exportación posterior de una cantidad útil de calor a una carga de calor fuera del emplazamiento de tal modo que se consigue un consumo de energía primaria un 10 % inferior como mínimo al que se obtiene cuando se generan calor y electricidad por separado. En particular, medidas tales como identificar y mantener accesibles puntos específicos del sistema de vapor desde los que pueda extraerse vapor, así como dejar un espacio suficiente para permitir la instalación posterior de elementos tales como tuberías, intercambiadores de calor, una capacidad suplementaria de desmineralización del agua, la planta de la caldera auxiliar y turbinas de contrapresión. Los sistemas de equilibrio de la instalación (Balance of Plant) BoP y los sistemas de instrumentación/control han de poder modernizarse. También es posible conectar posteriormente una o varias turbinas de contrapresión.

Ciclo combinado

Combinación de dos o más ciclos termodinámicos, como por ejemplo un ciclo Brayton (turbina de gas/motor de combustión) con un ciclo Rankine (turbina de vapor/caldera) para convertir la pérdida de calor de los gases de combustión del primer ciclo en energía útil en uno o varios ciclos posteriores.

Optimización de la combustión

Véase la sección 8.1.

Condensador de gases de combustión

Intercambiador de calor en el que los gases de combustión calientan el agua antes de que esta se caliente en el condensador de vapor. Así, el contenido de vapor de los gases de combustión se condensa a medida que se enfría con el agua caliente. El condensador de gases de combustión se utiliza tanto para aumentar la eficiencia energética de la unidad de combustión como para eliminar contaminantes tales como partículas, SOx, HCl y HF de los gases de combustión.

Sistema de gestión de los gases de procesos

Sistema que permite dirigir a las instalaciones de combustión los gases de procesos siderúrgicos que pueden utilizarse como combustibles (por ejemplo, gases de coque, de altos hornos, de convertidor al oxígeno básico) en función de la disponibilidad de tales combustibles y del tipo de instalaciones de combustión de una acería integrada.

Condiciones supercríticas de vapor

Utilización de un circuito de vapor con sistemas de recalentamiento del vapor en el que el vapor puede alcanzar presiones superiores a 220,6 bar y temperaturas > 540 °C.

Condiciones ultrasupercríticas de vapor

Utilización de un circuito de vapor con sistemas de recalentamiento del vapor en el que el vapor puede alcanzar presiones superiores a 250–300 bar y temperaturas superiores a 580-600 °C.

Chimenea húmeda

Chimenea diseñada para que el vapor de agua de los gases de combustión saturados se condense y así no sea necesario utilizar un recalentador de los gases de combustión después de la DGC húmeda.

8.3.   Técnicas para reducir las emisiones atmosféricas de NOx y/o CO

Técnica

Descripción

Sistema de control avanzado

Véase la sección 8.1.

Introducción de aire por etapas

Creación de varias zonas de combustión en la cámara de combustión con diferentes contenidos de oxígeno para reducir las emisiones de NOx y garantizar una combustión optimizada. La técnica consiste en una zona de combustión primaria con alimentación subestequiométrica (es decir, con deficiencia de aire) y una segunda zona de recombustión (que funciona con exceso de aire) para mejorar la combustión. En el caso de algunas pequeñas calderas viejas puede ser necesario reducir la capacidad con objeto de dejar espacio para la introducción de aire por etapas.

Técnicas combinadas para la reducción de NOx y SOx

Utilización de técnicas de reducción de emisiones complejas e integradas para la reducción combinada de NOx y SOx y, con frecuencia, otros contaminantes de los gases de combustión, por ejemplo procesos DeSONOx y carbón activo. Pueden aplicarse solas o en combinación con otras técnicas primarias en calderas de CP de hulla.

Optimización de la combustión

Véase la sección 8.1.

Quemadores secos de baja producción de NOX (DLN)

Quemadores de turbina de gas en los que el aire y el combustible se mezclan antes de entrar en la zona de combustión. Al mezclar el aire y el combustible antes de la combustión, se consigue una distribución homogénea de la temperatura y una temperatura más baja de la llama, lo que conduce a una reducción de las emisiones de NOx.

Recirculación de los gases de combustión o de los gases de escape (RGC/RGE)

Recirculación de parte de los gases de combustión hacia la cámara de combustión para sustituir parte del aire de combustión fresco, con lo que se consiguen dos cosas: bajar la temperatura y reducir el contenido de O2 para la oxidación del nitrógeno, limitando así la generación de NOx. Lleva aparejado el suministro del gas de combustión del horno a la llama para reducir el contenido de oxígeno y, por ende, la temperatura de la llama. La utilización de quemadores especiales u otros sistemas se basa en la recirculación interna de los gases de combustión, que enfría la base de las llamas y reduce el contenido de oxígeno en la parte más caliente de las llamas.

Elección del combustible

Utilización de combustibles con bajo contenido de nitrógeno.

Introducción de combustible por etapas

La técnica se basa en la reducción de la temperatura de la llama o de puntos calientes localizados, creando varias zonas de combustión en la cámara de combustión con diferentes niveles de inyección de combustible y aire. La modernización puede ser menos eficaz en las instalaciones más pequeñas que en las más grandes.

Enfoque de mezcla pobre y enfoque avanzado de mezcla pobre

El control de la temperatura máxima de la llama mediante unas condiciones de mezcla pobre es el principal enfoque de combustión para limitar la formación de NOx en los motores de gas. La combustión de mezcla pobre reduce la relación combustible/aire en zonas donde se generan NOx, de manera que la temperatura máxima de la llama es inferior a la temperatura de la llama en condiciones adiabáticas estequiométricas, lo que reduce la formación térmica de NOx. La optimización de este enfoque se conoce como «enfoque avanzado de mezcla pobre».

Quemadores de baja producción de NOx (LNB)

La técnica (que abarca a los quemadores de producción ultra-baja de NOx o avanzados) se basa en los principios de la reducción de las temperaturas máximas de la llama; los quemadores de caldera están diseñados para retrasar y, al mismo tiempo, mejorar la combustión, así como para aumentar la transferencia de calor (mayor emisividad de la llama). La mezcla aire/combustible reduce la disponibilidad de oxígeno y la temperatura máxima de la llama, retardando así la conversión del nitrógeno presente en el combustible en NOx y la formación térmica de NOx, manteniendo al mismo tiempo un alto nivel de eficiencia de la combustión. La técnica puede ir asociada a una modificación del diseño de la cámara de combustión del horno. El diseño de los quemadores de producción ultra-baja de NOx (ULNB) se caracteriza por la combustión por etapas (aire/combustible) y por la recirculación de los gases del hogar (recirculación interna de los gases de combustión). El rendimiento de la técnica puede verse influido por el diseño de la caldera cuando se modernizan las instalaciones viejas.

Enfoque de combustión de baja producción de NOx en motores diésel

La técnica consiste en una combinación de modificaciones internas del motor, por ejemplo para optimizar la combustión y la inyección del combustible (retrasar mucho la inyección del combustible y cerrar pronto la válvula del aire de entrada) o aplicar la turboalimentación o el ciclo Miller.

Catalizadores de oxidación

Utilización de catalizadores (que suelen contener metales preciosos como paladio o platino) para oxidar el monóxido de carbono y los hidrocarburos no quemados con oxígeno para formar CO2 y vapor de agua.

Reducción de la temperatura del aire de combustión

Utilización del aire de combustión a temperatura ambiente. El aire de combustión no se calienta previamente en un precalentador del aire de recuperación.

Reducción catalítica selectiva (RCS)

Reducción selectiva de los óxidos de nitrógeno con amoníaco o urea en presencia de un catalizador. La técnica se basa en la reducción de los NOx a nitrógeno en un lecho catalítico mediante reacción con amoníaco (en una solución acuosa general) a una temperatura de funcionamiento óptima de entre 300 y 450 °C, aproximadamente. Pueden aplicarse varias capas de catalizador. Se obtiene una mayor reducción de los NOx utilizando varias capas de catalizador. El diseño de la técnica puede ser modular, y pueden utilizarse precalentadores y/o catalizadores especiales cuando se funciona con carga baja o cuando el rango de temperaturas de los gases de combustión es amplio. La RCS en el escape o en el conducto es una técnica que combina la RNSC con una RCS posterior que disminuye el escape de amoníaco de la unidad de RNSC.

Reducción no catalítica selectiva (RNCS)

Reducción selectiva de los óxidos de nitrógeno con amoníaco o urea sin catalizador. La técnica se basa en la reducción de los NOx a nitrógeno mediante reacción con amoníaco o urea a alta temperatura. Para que la reacción sea óptima, se mantiene un rango de temperaturas de funcionamiento de 800 °C a 1 000  °C.

Adición de agua/vapor

Se utiliza agua o vapor como diluyente para reducir la temperatura de combustión en motores, calderas o turbinas de gas, y, por ende, la formación térmica de NOx. Se mezcla con el combustible antes de su combustión (emulsión, humidificación o saturación del combustible) o bien se inyecta directamente en la cámara de combustión (inyección de agua/vapor).

8.4.   Técnicas para reducir las emisiones atmosféricas de SOx, HCl y/o HF

Técnica

Descripción

Inyección de sorbentes en la caldera (en el hogar o en el lecho)

Inyección de sorbentes secos directamente en la cámara de combustión, o adición de adsorbentes de magnesio o calcio en el lecho de una caldera de lecho fluidizado. La superficie de las partículas del sorbente reacciona con el SO2 en los gases de combustión o en la caldera de lecho fluidizado. La técnica se utiliza principalmente en combinación con una técnica de reducción de las emisiones de partículas.

Depurador seco en lecho fluidizado circulante (LFC)

Los gases de combustión del precalentador de aire de la caldera entran en el absorbente del LFC en el fondo y fluyen verticalmente hacia arriba a través de una sección Venturi donde el sorbente sólido y el agua se inyectan por separado en el flujo de gases de combustión. La técnica se utiliza principalmente en combinación con una técnica de reducción de las emisiones de partículas.

Técnicas combinadas para la reducción de NOx y SOx

Véase la sección 8.3.

Inyección de sorbentes en los conductos (ISC)

Inyección y dispersión de un sorbente de polvo seco en el flujo de gases de combustión. El sorbente (por ejemplo, carbonato sódico, bicarbonato sódico, cal hidratada) reacciona con los gases ácidos (por ejemplo, especies gaseosas de azufre y HCl) para formar un sólido que se elimina con técnicas de reducción de partículas (filtro de mangas o precipitador electrostático). La ISC se utiliza principalmente en combinación con un filtro de mangas.

Condensador de gases de combustión

Véase la sección 8.2.

Elección del combustible

Utilización de un combustible con bajo contenido de azufre, cloro y/o flúor.

Sistema de gestión de los gases de procesos

Véase la sección 8.2.

DGC con agua marina

Tipo específico no regenerable de depuración húmeda que utiliza la alcalinidad natural del agua marina para absorber los compuestos ácidos de los gases de combustión. Por lo general es necesario que antes se hayan reducido las partículas.

Absorbente en seco por atomización (ASA)

En el flujo de gases de combustión se introduce y dispersa una suspensión/solución de un reactivo alcalino. El material reacciona con las especies gaseosas de azufre para formar un sólido que se elimina con técnicas de reducción de partículas (filtro de mangas o precipitador electrostático). El ASA se utiliza principalmente en combinación con un filtro de mangas.

Desulfuración húmeda de los gases de combustión (DGC húmeda)

Técnica o combinación de técnicas de depuración mediante las cuales se retiran los óxidos de azufre de los gases de combustión a través de varios procesos en los que se utiliza, por lo general, un sorbente alcalino para capturar el SO2 gaseoso y transformarlo en sólidos. En el proceso de depuración húmeda, los compuestos gaseosos se disuelven en un líquido adecuado (agua o solución alcalina). Pueden retirarse simultáneamente compuestos sólidos y gaseosos. En fases posteriores al depurador húmedo, los gases de combustión se saturan con agua y es necesario separar las gotitas antes de su descarga. El líquido resultante de la depuración húmeda se envía a una estación depuradora de aguas residuales, y la materia insoluble se recoge mediante sedimentación o filtración.

Depuración húmeda

Uso de un líquido, normalmente agua o una solución acuosa, para capturar por absorción los compuestos ácidos de los gases de combustión.

8.5.   Técnicas para reducir las emisiones atmosféricas de partículas, metales, en particular mercurio, y/o PCDD/PCDF

Técnica

Descripción

Filtro de mangas

Los filtros de mangas o de tela están fabricados con telas porosas tejidas o afieltradas a través de las cuales se hacen pasar los gases para eliminar las partículas. La utilización de filtros de mangas exige la selección de una tela adecuada para las características de los gases de combustión y la temperatura de funcionamiento máxima.

Inyección de sorbentes en la caldera (en el hogar o en el lecho)

Véase la descripción general en la sección 8.4. Esta técnica permite, además, reducir las emisiones de partículas y metales.

Inyección de un sorbente de carbono (por ejemplo, carbón activo o carbón activo halogenado) en el gas de combustión

Adsorción del mercurio y/o las PCDD/PCDF mediante sorbentes de carbono, como carbón activo (halogenado), con o sin tratamiento químico. El funcionamiento del sistema de inyección del sorbente puede mejorarse mediante la adición de un filtro de mangas suplementario.

Sistema de DGC seca o semiseca

Véase la descripción general de cada técnica [es decir, absorbente en seco por atomización (ASA), inyección de sorbentes en los conductos (ISC), depurador seco en lecho fluidizado circulante (LFC)] en la sección 8.4. Esta técnica permite, además, reducir las emisiones de partículas y metales.

Precipitador electrostático (PE)

Los precipitadores electrostáticos funcionan de tal modo que las partículas se cargan y separan bajo la influencia de un campo eléctrico. Los precipitadores electrostáticos pueden funcionar en condiciones muy diversas. La eficiencia de reducción de las emisiones depende normalmente del número de campos, del tiempo de permanencia (tamaño), de las propiedades del catalizador y de los dispositivos previos de eliminación de partículas. Los PE incluyen generalmente entre dos y cinco campos. Los más modernos (alto rendimiento) tienen hasta siete campos.

Elección del combustible

Utilización de un combustible con bajo contenido de cenizas o metales (por ejemplo, mercurio).

Multiciclones

Serie de sistemas de control de partículas basados en la fuerza centrífuga, en el que las partículas se separan del gas portador, montados en uno o varios recintos.

Uso de aditivos halogenados en el combustible o inyección de tales aditivos en el horno

Adición de compuestos halogenados (por ejemplo, aditivos bromados) en el horno para oxidar el mercurio elemental a especies solubles o en partículas, con lo que se mejora la eliminación del mercurio en los sistemas posteriores de reducción de emisiones.

Desulfuración húmeda de los gases de combustión (DGC húmeda)

Véase la descripción general en la sección 8.4. Esta técnica permite, además, reducir las emisiones de partículas y metales.

8.6.   Técnicas para reducir los vertidos al agua

Técnica

Descripción

Adsorción en carbón activo

Retención de contaminantes solubles en la superficie de partículas sólidas y muy porosas (el adsorbente). Para la adsorción de mercurio y compuestos orgánicos suele utilizarse carbón activo.

Tratamiento biológico aeróbico

Oxidación biológica de contaminantes orgánicos disueltos con oxígeno utilizando el metabolismo de los microorganismos. En presencia de oxígeno disuelto (inyectado en forma de aire u oxigeno puro), los compuestos orgánicos se mineralizan en dióxido de carbono y agua o se transforman en otros metabolitos y biomasa. En determinadas condiciones, también se produce una nitrificación aeróbica en la que los microorganismos oxidan amonio (NH4 +) a nitrito intermedio (NO2 -), que, a continuación, se oxida a nitrato (NO3 -).

Tratamiento biológico anóxico/anaeróbico

Reducción biológica de contaminantes utilizando el metabolismo de microorganismos [por ejemplo, el nitrato (NO3 -) se reduce a nitrógeno gaseoso elemental, y las especies oxidadas de mercurio se reducen a mercurio elemental].

El tratamiento anóxico/anaeróbico de aguas residuales procedentes de la utilización de sistemas de reducción húmeda de emisiones suele llevarse a cabo en biorreactores de película fija en los que se utiliza carbón activo como portador.

El tratamiento biológico anóxico/anaeróbico para eliminar el mercurio se aplica en combinación con otras técnicas.

Coagulación y floculación

La coagulación y la floculación se utilizan para separar los sólidos en suspensión de las aguas residuales y a menudo se realizan en etapas sucesivas. La coagulación se efectúa añadiendo coagulantes con cargas opuestas a las de los sólidos en suspensión. La floculación se efectúa añadiendo polímeros, de manera que las colisiones de las partículas de microflóculos provocan su aglomeración y así se producen flóculos de mayor tamaño.

Cristalización

Eliminación de contaminantes iónicos de las aguas residuales por cristalización en materiales de siembra, tales como arena o minerales, en un proceso de lecho fluidizado.

Filtración

Separación de sólidos de las aguas residuales haciéndolas pasar por un medio poroso. La filtración incluye distintos tipos de técnicas, por ejemplo filtración por arena, microfiltración y ultrafiltración.

Flotación

Separación de partículas sólidas o líquidas de las aguas residuales uniéndolas a pequeñas burbujas de gas, por lo general aire. Las partículas flotantes se acumulan en la superficie del agua y se recogen con desespumadores.

Intercambio iónico

Retención de contaminantes iónicos de las aguas residuales y su sustitución por iones más aceptables utilizando una resina de intercambio iónico. Los contaminantes se retienen temporalmente y después se liberan en un líquido de regeneración o retrolavado.

Neutralización

Ajuste del pH de las aguas residuales al nivel de pH neutro (aproximadamente 7) mediante adición de productos químicos. Para aumentar el pH suele utilizarse hidróxido de sodio (NaOH) o hidróxido de calcio [Ca(OH)2], mientras que para reducirlo se utiliza generalmente ácido sulfúrico (H2SO4), ácido clorhídrico (HCl) o dióxido de carbono (CO2). Durante la neutralización algunos contaminantes pueden precipitar.

Separación aceite-agua

Eliminación del aceite libre de las aguas residuales mediante separación por gravedad utilizando dispositivos tales como un separador API (American Petroleum Institute), un interceptor de chapa corrugada o un interceptor de placas paralelas. La separación del aceite y el agua suele ir seguida de una flotación, apoyada por un proceso de coagulación/floculación. En algunos casos, puede ser necesario romper la emulsión antes de separar el aceite del agua.

Oxidación

Conversión de contaminantes por agentes de oxidación química en compuestos similares menos peligrosos o más fáciles de eliminar. En el caso de las aguas residuales procedentes de la utilización de los sistemas de eliminación húmeda, puede utilizarse aire para oxidar el sulfito (SO3 2-) a sulfato (SO4 2-).

Precipitación

Conversión de contaminantes disueltos en compuestos insolubles mediante la adición de agentes químicos de precipitación. Los precipitados sólidos formados se separan posteriormente por sedimentación, flotación o filtración. Los productos químicos que suelen utilizarse para la precipitación de metales son la cal, la dolomita, el hidróxido de sodio, el carbonato de sodio, el sulfuro de sodio y sulfuros orgánicos. Se utilizan sales de calcio (distintas de la cal) para precipitar los sulfatos o los fluoruros.

Sedimentación

Separación de sólidos en suspensión por sedimentación gravitacional.

Desorción

Eliminación de contaminantes purgables (por ejemplo, amoníaco) de las aguas residuales por contacto con un alto caudal de un flujo de gas para transferirlos a la fase gaseosa. Los contaminantes se retiran del gas de desorción en un tratamiento posterior y pueden ser reutilizados.


(*1)  Decisión de Ejecución 2012/249/UE de la Comisión, de 7 de mayo de 2012, relativa a la determinación de los períodos de arranque y de parada a efectos de la Directiva 2010/75/UE del Parlamento Europeo y el Consejo, sobre las emisiones industriales (DO L 123 de 9.5.2012, p. 44).

(1)  En el caso de los parámetros respecto a los cuales, debido a limitaciones de muestreo o análisis, resulte inadecuada una medición de 30 minutos, se empleará un período de muestreo adecuado. En el caso de las PCDD/PCDF se aplicará un período de muestreo de 6 a 8 horas.

(2)  En el caso de las unidades de PCCE, si, por razones técnicas, el ensayo de rendimiento no puede llevarse a cabo con la unidad funcionando a plena carga para el suministro de calor, el ensayo puede completarse o sustituirse por un cálculo utilizando parámetros a plena carga.

(3)  La medición en continuo del contenido de vapor de agua de los gases de combustión no es necesaria si se ha secado el gas de combustión de la muestra antes del análisis.

(4)  Las normas EN genéricas sobre mediciones en continuo son las siguientes: EN 15267-1, EN 15267-2, EN 15267-3 y EN 14181. En el cuadro se indican las normas EN aplicables a las mediciones periódicas.

(5)  La frecuencia de monitorización no se aplica cuando el funcionamiento de la instalación tendría la finalidad exclusiva de realizar una medición de emisiones.

(6)  En el caso de las instalaciones con una potencia térmica nominal < 100 MW y que funcionen < 1 500 h/año, la frecuencia mínima de monitorización puede ser de como mínimo una vez al semestre. En el caso de las turbinas de gas, la monitorización periódica se lleva a cabo con una carga de la instalación de combustión > 70 %. En el caso de la coincineración de residuos con hulla, lignito, biomasa sólida y/o turba, la frecuencia de monitorización debe establecerse teniendo en cuenta también la parte 6 del anexo VI de la Directiva sobre las emisiones industriales.

(7)  Si se utiliza la RCS, la frecuencia mínima de monitorización puede ser como mínimo una vez al año si se demuestra que los niveles de emisión son suficientemente estables.

(8)  En el caso de las turbinas alimentadas por gas natural con una potencia térmica nominal < 100 MW y que funcionen < 1 500 h/año, o en el caso de las TGCA ya existentes, puede utilizarse en su lugar un PEMS.

(9)  Puede utilizarse un PEMS en su lugar.

(10)  Se llevan a cabo dos series de mediciones, una con la instalación funcionando con cargas > 70 % y la otra con cargas < 70 %.

(11)  Como alternativa a la medición en continuo en el caso de las instalaciones de combustión de gasóleo con un contenido de azufre conocido, cuando no exista un sistema de desulfuración de los gases de combustión, para determinar las emisiones de SO2 pueden realizarse mediciones periódicas como mínimo una vez al trimestre u otros procedimientos que garanticen la obtención de datos de calidad científica equivalente.

(12)  En el caso de los combustibles de procesos de la industria química, la frecuencia de monitorización puede adaptarse para las instalaciones de < 100 MWth tras una caracterización inicial del combustible (véase la MTD 5), sobre la base de una evaluación de la relevancia de las liberaciones de contaminantes (por ejemplo, concentración en el combustible, tratamiento de los gases de combustión aplicado) en las emisiones a la atmósfera, pero, en cualquier caso, al menos siempre que un cambio en las características del combustible pueda tener impacto sobre las emisiones.

(13)  Si se demuestra que los niveles de emisión son suficientemente estables, pueden efectuarse mediciones periódicas siempre que un cambio de las características del combustible y/o de los residuos pueda tener impacto sobre las emisiones, pero en cualquier caso al menos una vez al año. En el caso de la coincineración de residuos con hulla, lignito, biomasa sólida y/o turba, la frecuencia de monitorización debe establecerse teniendo en cuenta también la parte 6 del anexo VI de la Directiva sobre las emisiones industriales.

(14)  En el caso de los combustibles de procesos de la industria química, la frecuencia de monitorización puede adaptarse tras una caracterización inicial del combustible (véase la MTD 5), sobre la base de una evaluación de la relevancia de las liberaciones de contaminantes (por ejemplo, concentración en el combustible, tratamiento de los gases de combustión aplicado) en las emisiones a la atmósfera, pero, en cualquier caso, al menos siempre que un cambio en las características del combustible pueda tener impacto sobre las emisiones.

(15)  En el caso de las instalaciones con una potencia térmica nominal < 100 MW y que funcionen < 500 h/año, la frecuencia mínima de monitorización puede ser como mínimo una vez al año. En el caso de las instalaciones con una potencia térmica nominal < 100 MW y que funcionen entre 500 h/año y 1 500 h/año, la frecuencia de muestreo puede reducirse a, como mínimo, una vez al semestre.

(16)  Si se demuestra que los niveles de emisión son suficientemente estables, pueden efectuarse mediciones periódicas siempre que un cambio de las características del combustible y/o de los residuos pueda tener impacto sobre las emisiones, pero en cualquier caso al menos una vez al semestre.

(17)  En el caso de las instalaciones de combustión de gases de procesos siderúrgicos, la frecuencia mínima de monitorización puede ser como mínimo una vez al semestre si se demuestra que los niveles de emisión son suficientemente estables.

(18)  La lista de los contaminantes monitorizados y la frecuencia de monitorización pueden adaptarse tras una caracterización inicial del combustible (véase la MTD 5), sobre la base de una evaluación de la relevancia de las liberaciones de contaminantes (por ejemplo, concentración en el combustible, tratamiento de los gases de combustión aplicado) en las emisiones a la atmósfera, pero, en cualquier caso, al menos siempre que un cambio en las características del combustible pueda tener impacto sobre las emisiones.

(19)  En el caso de las instalaciones que funcionen < 1 500 h/año, la frecuencia mínima de monitorización puede ser de como mínimo una vez al semestre.

(20)  En el caso de las instalaciones que funcionen < 1 500 h/año, la frecuencia mínima de monitorización puede ser como mínimo una vez al año.

(21)  Como alternativa a las mediciones en continuo, puede realizarse un muestreo continuo combinado con análisis frecuentes de muestras integradas a lo largo del tiempo, por ejemplo por medio de un método normalizado de monitorización del colector del sorbente.

(22)  Si se demuestra que los niveles de emisión son suficientemente estables debido al bajo contenido de mercurio en el combustible, pueden realizarse mediciones periódicas solo cuando un cambio en las características del combustible pueda tener impacto sobre las emisiones.

(23)  La frecuencia mínima de monitorización no se aplica en el caso de las instalaciones que funcionen < 1 500 h/año.

(24)  Las mediciones se realizan con la instalación funcionando con carga > 70 %.

(25)  En el caso de los combustibles de procesos de la industria química, la monitorización solo es aplicable cuando los combustibles contengan sustancias cloradas.

(26)  Otras alternativas son la monitorización del COT y de la DQO. La monitorización del COT es la opción preferida, pues no requiere el empleo de compuestos muy tóxicos.

(27)  La lista de las sustancias/parámetros caracterizados puede reducirse a solo aquellos de los que cabe razonablemente esperar que estén presentes en el combustible o combustibles sobre la base de información sobre las materias primas y los procesos de producción.

(28)  Esta caracterización se realiza sin perjuicio de la aplicación del procedimiento de aceptación y aceptación previa de residuos establecido en la MTD 60(a), que puede conducir a la caracterización y/o la comprobación de otras sustancias/parámetros además de los que aquí se indican.

(29)  Estas técnicas se describen en la sección 8.6.

(30)  Son de aplicación bien el NEA-MTD correspondiente al COT o el aplicable a la DQO. El COT es la opción preferida, ya que su monitorización no depende del uso de compuestos muy tóxicos.

(31)  Este NEA-MTD se aplica tras deducción de la carga de entrada.

(32)  Este NEA-MTD se aplica únicamente a las aguas residuales procedentes del uso de la DGC húmeda.

(33)  Este NEA-MTD se aplica únicamente a las instalaciones de combustión que utilizan compuestos de calcio en el tratamiento de los gases de combustión.

(34)  El límite superior del intervalo de NEA-MTD puede no ser aplicable en caso de una salinidad elevada de las aguas residuales (por ejemplo, concentraciones de cloruro ≥ 5 g/l) debido a la mayor solubilidad del sulfato de calcio.

(35)  Este NEA-MTD no se aplica a los vertidos al mar ni a las masas de agua salobre.

(36)  Estos NEEA-MTD no se aplican en el caso de unidades que funcionen < 1 500 h/año.

(37)  En el caso de las unidades de PCCE, solo se aplica o bien «Eficiencia eléctrica neta» o bien «Consumo de combustible neto total», en función del diseño de la unidad de PCCE (es decir, más orientado a la generación de electricidad o a la generación de calor).

(38)  El límite inferior del intervalo puede corresponder a los casos en los que la eficiencia energética lograda se ve afectada negativamente (hasta en cuatro puntos porcentuales) por el tipo de sistema de refrigeración utilizado o por la ubicación geográfica de la unidad.

(39)  Estos niveles pueden no ser alcanzables cuando la demanda potencial de calor es demasiado baja.

(40)  Estos NEEA-MTD no se aplican a las instalaciones que únicamente generan electricidad.

(41)  Los límites inferiores de los intervalos de NEEA-MTD se alcanzan con unas condiciones climáticas desfavorables, en unidades de lignito de grado inferior y/o en unidades viejas (primera puesta en servicio antes de 1985).

(42)  El límite superior del intervalo de NEEA-MTD puede alcanzarse con altos parámetros de vapor (presión, temperatura).

(43)  La mejora que puede conseguirse en cuanto a eficiencia eléctrica depende de la unidad concreta, pero se considera que un aumento de más de tres puntos porcentuales refleja la aplicación de la MTD en las unidades existentes, en función del diseño original de la unidad y de las mejoras ya realizadas.

(44)  En el caso de las unidades de combustión de lignito con un poder calorífico inferior por debajo de 6 MJ/kg, el límite inferior del intervalo de NEEA-MTD es 41,5 %.

(45)  El límite superior del intervalo de NEEA-MTD puede llegar hasta el 46 % en el caso de las unidades de ≥ 600 MWth que utilicen unas condiciones supercríticas o ultrasupercríticas de vapor.

(46)  El límite superior del intervalo de NEEA-MTD puede llegar hasta el 44 % en el caso de las unidades de ≥ 600 MWth que utilicen unas condiciones supercríticas o ultrasupercríticas de vapor.

(47)  Estos NEA-MTD no se aplican a las instalaciones que funcionen < 1 500 h/año.

(48)  En el caso de las instalaciones con calderas CP de hulla puestas en servicio a más tardar el 1 de julio de 1987 que funcionen < 1 500 h/año y a las que no son aplicables la RCS ni la RNCS, el límite superior del intervalo es 340 mg/Nm3.

(49)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(50)  El límite inferior del intervalo se considera alcanzable cuando se utiliza la RCS.

(51)  El límite superior del intervalo es 175 mg/Nm3 cuando se trata de calderas CLF puestas en servicio a más tardar el 7 de enero de 2014 y de calderas CP de lignito.

(52)  El límite superior del intervalo es 220 mg/Nm3 cuando se trata de calderas CLF puestas en servicio a más tardar el 7 de enero de 2014 y de calderas CP de lignito.

(53)  En el caso de las instalaciones puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo es 200 mg/Nm3 si funcionan ≥ 1 500 h/año, y 220 mg/Nm3 si funcionan < 1 500 h/año.

(54)  El límite superior del intervalo puede llegar a 140 mg/Nm3 cuando existen limitaciones debidas al diseño de la caldera y/o en el caso de las calderas CLF que no cuentan con técnicas secundarias de reducción de las emisiones de NOx.

(55)  Estos NEA-MTD no se aplican a las instalaciones que funcionen < 1 500 h/año.

(56)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(57)  En el caso de las instalaciones puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 250 mg/Nm3.

(58)  El límite inferior del intervalo puede alcanzarse utilizando combustibles con bajo contenido de azufre en combinación con los diseños más avanzados de sistemas de reducción de emisiones por vía húmeda.

(59)  El límite superior del intervalo de NEA-MTD es 220 mg/Nm3 cuando se trata de instalaciones puestas en servicio a más tardar el 7 de enero de 2014 y que funcionan < 1 500 h/año. En el caso de otras instalaciones existentes puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 205 mg/Nm3.

(60)  Para las calderas de lecho fluidizado circulante, el límite inferior del intervalo puede alcanzarse utilizando una DGC húmeda de alta eficiencia. El límite superior del intervalo puede alcanzarse utilizando la inyección de sorbentes en el lecho de la caldera.

(61)  El límite inferior de estos intervalos de NEA-MTD puede resultar difícil de lograr en el caso de las instalaciones equipadas con un calentador gas-gas situado después de un sistema de DGC húmeda.

(62)  El límite superior del intervalo de NEA-MTD es 20 mg/Nm3 en los casos siguientes: instalaciones de combustión de combustibles con un contenido medio de cloro de 1 000 mg/kg (en seco) o superior; instalaciones que funcionan < 1 500 h/año; calderas CLF. Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(63)  En el caso de las instalaciones equipadas con un calentador gas-gas situado después de un sistema de DGC húmeda, el límite superior del intervalo de NEA-MTD es 7 mg/Nm3.

(64)  El límite superior del intervalo de NEA-MTD es 7 mg/Nm3 en los casos siguientes: instalaciones equipadas con un calentador gas-gas situado después de un sistema de DGC húmeda; instalaciones que funcionan < 1 500 h/año; calderas CLF. Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(65)  Estos NEA-MTD no se aplican a las instalaciones que funcionan < 1 500 h/año.

(66)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(67)  El límite superior del intervalo de NEA-MTD es 28 mg/Nm3 para las instalaciones puestas en servicio a más tardar el 7 de enero de 2014.

(68)  El límite superior del intervalo de NEA-MTD es 25 mg/Nm3 para las instalaciones puestas en servicio a más tardar el 7 de enero de 2014.

(69)  El límite superior del intervalo de NEA-MTD es 12 mg/Nm3 para las instalaciones puestas en servicio a más tardar el 7 de enero de 2014.

(70)  El límite superior del intervalo de NEA-MTD es 20 mg/Nm3 para las instalaciones puestas en servicio a más tardar el 7 de enero de 2014.

(71)  El límite superior del intervalo de NEA-MTD es 14 mg/Nm3 para las instalaciones puestas en servicio a más tardar el 7 de enero de 2014.

(72)  El límite inferior del intervalo de NEA-MTD puede alcanzarse con técnicas específicas de reducción de las emisiones de mercurio.

(73)  Estos NEEA-MTD no se aplican en el caso de unidades que funcionen < 1 500 h/año.

(74)  En el caso de las unidades de PCCE, solo se aplica o bien «Eficiencia eléctrica neta» o bien «Consumo de combustible neto total», en función del diseño de la unidad de PCCE (es decir, más orientado a la generación de electricidad o a la generación de calor).

(75)  El límite inferior del intervalo puede corresponder a los casos en los que la eficiencia energética lograda se ve afectada negativamente (hasta en cuatro puntos porcentuales) por el tipo de sistema de refrigeración utilizado o por la ubicación geográfica de la unidad.

(76)  Estos niveles pueden no ser alcanzables cuando la demanda potencial de calor es demasiado baja.

(77)  Estos NEEA-MTD no se aplican a las instalaciones que únicamente generan electricidad.

(78)  El límite inferior del intervalo puede llegar hasta el 32 % en el caso de las unidades de < 150 MWth que quemen combustibles de biomasa con alto contenido de humedad.

(79)  Estos NEA-MTD no se aplican a las instalaciones que funcionan < 1 500 h/año.

(80)  Estos niveles son indicativos cuando se trata de instalaciones de combustión que funcionan < 500 h/año.

(81)  En el caso de las instalaciones de combustión de combustibles con un contenido medio de potasio de 2 000 mg/kg (en seco) o más y/o con un contenido medio de sodio de 300 mg/kg o más, el límite superior del intervalo de NEA-MTD es 200 mg/Nm3.

(82)  En el caso de las instalaciones de combustión de combustibles con un contenido medio de potasio de 2 000 mg/kg (en seco) o más y/o con un contenido medio de sodio de 300 mg/kg o más, el límite superior del intervalo de NEA-MTD es 250 mg/Nm3.

(83)  En el caso de las instalaciones de combustión de combustibles con un contenido medio de potasio de 2 000 mg/kg (en seco) o más y/o con un contenido medio de sodio de 300 mg/kg o más, el límite superior del intervalo de NEA-MTD es 260 mg/Nm3.

(84)  En el caso de las instalaciones puestas en funcionamiento a más tardar el 7 de enero de 2014 y que quemen combustibles con un contenido medio de potasio de 2 000 mg/kg (en seco) o más y/o con un contenido medio de sodio de 300 mg/kg o más, el límite superior del intervalo de NEA-MTD es 310 mg/Nm3.

(85)  El límite superior del intervalo de NEA-MTD es 160 mg/Nm3 para las instalaciones puestas en servicio a más tardar el 7 de enero de 2014.

(86)  El límite superior del intervalo de NEA-MTD es 200 mg/Nm3 para las instalaciones puestas en servicio a más tardar el 7 de enero de 2014.

(87)  Estos NEA-MTD no se aplican a las instalaciones que funcionen < 1 500 h/año.

(88)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(89)  En el caso de las instalaciones existentes que queman combustibles con un contenido medio de azufre de 0,1 % p/p (en seco) o más, el límite superior del intervalo de NEA-MTD es 100 mg/Nm3.

(90)  En el caso de las instalaciones existentes que queman combustibles con un contenido medio de azufre de 0,1 % p/p (en seco) o más, el límite superior del intervalo de NEA-MTD es 215 mg/Nm3.

(91)  En el caso de las instalaciones existentes que queman combustibles con un contenido medio de azufre de 0,1 % p/p (en seco) o más, el límite superior del intervalo de NEA-MTD es 165 mg/Nm3, o 215 mg/Nm3 si la instalación se puso en servicio a más tardar el 7 de enero de 2014 y/o es una caldera CLF que quema turba.

(92)  Si se trata de instalaciones que queman combustibles con un contenido medio de cloro ≥ 0,1 % p/p (en seco) o de instalaciones existentes que queman conjuntamente biomasa y un combustible rico en azufre (por ejemplo, turba) o que utilizan aditivos de conversión de los cloruros alcalinos (por ejemplo, azufre elemental), el límite superior del intervalo de NEA-MTD para la media anual en el caso de las instalaciones nuevas es 15 mg/Nm3 y, en el caso de las instalaciones existentes, 25 mg/Nm3. El intervalo de valores medios diarios de los NEA-MTD no se aplica a esas instalaciones.

(93)  Este intervalo de valores medios diarios de los NEA-MTD no se aplica a las instalaciones que funcionan < 1 500 h/año. El límite superior del intervalo de NEA-MTD correspondiente a la media anual para las instalaciones nuevas que funcionan < 1 500 h/año es 15 mg/Nm3.

(94)  Estos NEA-MTD no se aplican a las instalaciones que funcionen < 1 500 h/año.

(95)  El límite inferior de estos intervalos de NEA-MTD puede resultar difícil de lograr en el caso de las instalaciones equipadas con un calentador gas-gas situado después de un sistema de DGC húmeda.

(96)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(97)  Estos NEA-MTD no se aplican a las instalaciones que funcionen < 1 500 h/año.

(98)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(99)  Estos NEEA-MTD no se aplican a las unidades que funcionen < 1 500 h/año.

(100)  En el caso de las unidades de PCCE, solo se aplica o bien «Eficiencia eléctrica neta» o bien «Consumo de combustible neto total», en función del diseño de la unidad de PCCE (es decir, más orientado a la generación de electricidad o a la generación de calor).

(101)  Estos niveles pueden no ser alcanzables cuando la demanda potencial de calor es demasiado baja.

(102)  Estos NEA-MTD no se aplican a las instalaciones que funcionen < 1 500 h/año.

(103)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(104)  En el caso de las calderas industriales y de las centrales de calefacción urbana puestas en servicio a más tardar el 27 de noviembre de 2003 que funcionen < 1 500 h/año y a las que no son aplicables la RCS ni la RNCS, el límite superior del intervalo de NEA-MTD es 450 mg/Nm3.

(105)  El límite superior del intervalo de NEA-MTD es 110 mg/Nm3 para las instalaciones de 100–300 MWth y para las instalaciones de ≥ 300 MWth puestas en servicio a más tardar el 7 de enero de 2014.

(106)  El límite superior del intervalo de NEA-MTD es 145 mg/Nm3 para las instalaciones de 100–300 MWth y para las instalaciones de ≥ 300 MWth puestas en servicio a más tardar el 7 de enero de 2014.

(107)  En el caso de las calderas industriales y de las centrales de calefacción urbana de > 100 MWth puestas en servicio a más tardar el 27 de noviembre de 2003 que funcionen < 1 500 h/año y a las que no son aplicables la RCS ni la RNCS, el límite superior del intervalo de NEA-MTD es 365 mg/Nm3.

(108)  Estos NEA-MTD no se aplican a las instalaciones que funcionen < 1 500 h/año.

(109)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(110)  En el caso de las calderas industriales y de las centrales de calefacción urbana puestas en servicio a más tardar el 27 de noviembre de 2003 que funcionan < 1 500 h/año, el límite superior del intervalo de NEA-MTD es 400 mg/Nm3.

(111)  El límite superior del intervalo de NEA-MTD es 175 mg/Nm3 para las instalaciones puestas en servicio a más tardar el 7 de enero de 2014.

(112)  En el caso de las calderas industriales y de las centrales de calefacción urbana puestas en servicio a más tardar el 27 de noviembre de 2003 que funcionen < 1 500 h/año y a las que no es aplicable la DGC húmeda, el límite superior del intervalo de NEA-MTD es 200 mg/Nm3.

(113)  Estos NEA-MTD no se aplican a las instalaciones que funcionen < 1 500 h/año.

(114)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(115)  El límite superior del intervalo de NEA-MTD es 25 mg/Nm3 para las instalaciones puestas en servicio a más tardar el 7 de enero de 2014.

(116)  El límite superior del intervalo de NEA-MTD es 15 mg/Nm3 para las instalaciones puestas en servicio a más tardar el 7 de enero de 2014.

(117)  Según la definición del artículo 2, punto 26, de la Directiva 2009/72/CE.

(118)  Según la definición del artículo 2, punto 27, de la Directiva 2009/72/CE.

(119)  Estos NEEA-MTD no se aplican a las unidades que funcionan < 1 500 h/año.

(120)  Los niveles de eficiencia eléctrica neta NEEA-MTD se aplican a las unidades de PCCE cuyo diseño está orientado a la generación de electricidad, así como a las unidades que solo generan electricidad.

(121)  Estos niveles pueden resultar difíciles de alcanzar en el caso de los motores equipados con técnicas secundarias de reducción de emisiones que consumen mucha energía.

(122)  Este nivel puede resultar difícil de alcanzar en el caso de los motores que utilizan un radiador como sistema de refrigeración en zonas geográficas secas y calurosas.

(123)  Estos NEA-MTD no son aplicables a las instalaciones que funcionan < 1 500 h/año ni a las instalaciones que no pueden equiparse con técnicas secundarias de reducción de emisiones.

(124)  El intervalo de NEA-MTD se encuentra entre 1 150 y 1 900 mg/Nm3 cuando se trata de instalaciones que funcionan < 1 500 h/año y de instalaciones que no pueden equiparse con técnicas secundarias de reducción de emisiones.

(125)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(126)  En el caso de las instalaciones que cuentan con unidades de < 20 MWth que queman HFO, el límite superior del intervalo de NEA-MTD que se aplica a tales unidades es 225 mg/Nm3.

(127)  Estos NEA-MTD no se aplican a las instalaciones que funcionan < 1 500 h/año.

(128)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(129)  El límite superior del intervalo de NEA-MTD es 280 mg/Nm3 si no puede aplicarse ninguna técnica secundaria de reducción de emisiones. Esto corresponde a un contenido de azufre del combustible de 0,5 % p/p (en seco).

(130)  Estos NEA-MTD no se aplican a las instalaciones que funcionan < 1 500 h/año.

(131)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(132)  Estos NEEA-MTD no se aplican a las unidades que funcionen < 1 500 h/año.

(133)  Los niveles de eficiencia eléctrica neta NEEA-MTD se aplican a las unidades de PCCE cuyo diseño está orientado a la generación de electricidad y a las unidades que solo generan electricidad.

(134)  Estos NEA-MTD no se aplican a las instalaciones existentes que funcionen < 1 500 h/año.

(135)  Estos niveles son indicativos cuando se trata de instalaciones de combustión existentes que funcionan < 500 h/año.

(136)  Estos NEEA-MTD no se aplican a las unidades que funcionen < 1 500 h/año.

(137)  En el caso de las unidades de PCCE, solo se aplica o bien «Eficiencia eléctrica neta» o bien «Consumo de combustible neto total», en función del diseño de la unidad de PCCE (es decir, más orientado a la generación de electricidad o a la generación de calor).

(138)  Los NEEA-MTD correspondientes al consumo de combustible neto total pueden no ser alcanzables cuando la demanda potencial de calor es demasiado baja.

(139)  Estos NEEA-MTD no se aplican a las instalaciones que únicamente generan electricidad.

(140)  Estos NEEA-MTD se aplican a las unidades utilizadas para aplicaciones de accionamiento mecánico.

(141)  Estos niveles pueden resultar difíciles de alcanzar en el caso de los motores regulados para lograr niveles de NOx inferiores a 190 mg/Nm3.

(142)  Estos NEA-MTD se aplican también a la combustión de gas natural en turbinas de gas de dos combustibles.

(143)  Si se trata de turbinas de gas equipadas con quemadores DLN, estos NEA-MTD son aplicables únicamente cuando esos quemadores funcionan de forma efectiva.

(144)  Estos NEA-MTD no se aplican a las instalaciones existentes que funcionen < 1 500 h/año.

(145)  La optimización del funcionamiento de una técnica existente para reducir aún más las emisiones de NOx puede dar lugar a niveles de emisiones de CO situados en el límite superior del intervalo indicativo de emisiones de CO que se ofrece después del presente cuadro.

(146)  Estos NEA-MTD no se aplican a las turbinas existentes para aplicaciones de accionamiento mecánico ni a las instalaciones que funcionen < 500 h/año.

(147)  En el caso de las instalaciones con una eficiencia eléctrica neta (EE) superior al 39 %, se puede aplicar un factor de corrección al límite superior del intervalo, correspondiente a [límite superior] × EE/39, donde EE es la eficiencia eléctrica neta o la eficiencia neta de energía mecánica de la instalación determinada en condiciones ISO de carga base.

(148)  El límite superior del intervalo es 80 mg/Nm3 cuando se trata de instalaciones puestas en servicio a más tardar el 27 de noviembre de 2003 y que funcionan entre 500 h/año y 1 500 h/año.

(149)  En el caso de las instalaciones con una eficiencia eléctrica neta (EE) superior al 55 %, se puede aplicar un factor de corrección al límite superior del intervalo de NEA-MTD, correspondiente a [límite superior] × EE/55, donde EE es la eficiencia eléctrica neta de la instalación determinada en condiciones ISO de carga base.

(150)  En el caso de las instalaciones existentes puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 65 mg/Nm3.

(151)  En el caso de las instalaciones existentes puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 55 mg/Nm3.

(152)  En el caso de las instalaciones existentes puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 80 mg/Nm3.

(153)  El límite inferior del intervalo de NEA-MTD para los NOx puede lograrse con quemadores DLN.

(154)  Estos niveles son indicativos.

(155)  En el caso de las instalaciones existentes puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 60 mg/Nm3.

(156)  En el caso de las instalaciones existentes puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 65 mg/Nm3.

(157)  La optimización del funcionamiento de una técnica existente para reducir aún más las emisiones de NOx puede dar lugar a niveles de emisiones de CO situados en el límite superior del intervalo indicativo de emisiones de CO que se ofrece después del presente cuadro.

(158)  Estos NEA-MTD no se aplican a las instalaciones que funcionen < 1 500 h/año.

(159)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(160)  Estos NEA-MTD se aplican únicamente a los motores de encendido por chispa y de dos combustibles. No se aplican a los motores tipo diésel de gas.

(161)  En el caso de los motores destinados a un uso de emergencia que funcionen < 500 h/año que no pueden aplicar el enfoque de mezcla pobre o utilizar la RCS, el límite superior del intervalo indicativo es 175 mg/Nm3.

(162)  Estos niveles son indicativos cuando se trata de instalaciones de combustión existentes que funcionan < 500 h/año.

(163)  Este NEA-MTD se expresa como C en funcionamiento a plena carga.

(164)  Estos NEEA-MTD no se aplican en el caso de unidades que funcionen < 1 500 h/año.

(165)  En el caso de las unidades de PCCE, solo se aplica o bien «Eficiencia eléctrica neta» o bien «Consumo de combustible neto total», en función del diseño de la unidad de PCCE (es decir, más orientado a la generación de electricidad o a la generación de calor).

(166)  Estos NEEA-MTD no se aplican a las instalaciones que generan únicamente electricidad.

(167)  El amplio intervalo de valores de eficiencia energética en unidades de PCCE depende en gran medida de la demanda local de calor y electricidad.

(168)  Estos NEEA-MTD no se aplican en el caso de unidades que funcionen < 1 500 h/año.

(169)  En el caso de las unidades de PCCE, solo se aplica o bien «Eficiencia eléctrica neta» o bien «Consumo de combustible neto total», en función del diseño de la unidad de PCCE (es decir, más orientado a la generación de electricidad o a la generación de calor).

(170)  Estos NEEA-MTD no se aplican a las instalaciones que generan únicamente electricidad.

(171)  Se espera que las emisiones de las instalaciones que queman una mezcla de gases con un poder calorífico inferior (PCI) equivalente de > 20 MJ/Nm3 se sitúen en el límite superior de los intervalos de NEA-MTD.

(172)  El límite inferior del intervalo de NEA-MTD puede alcanzarse cuando se utiliza la RCS.

(173)  Estos NEA-MTD no son aplicables a las instalaciones que funcionan < 1 500 h/año.

(174)  En el caso de las instalaciones puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 160 mg/Nm3. Por otro lado, el límite superior del intervalo de NEA-MTD puede superarse cuando no puede aplicarse la RCS, cuando se utiliza un alto porcentaje de gas de coque (por ejemplo, > 50 %) y/o cuando se quema gas de coque con un nivel relativamente elevado de H2. En ese caso, el límite superior del intervalo de NEA-MTD es 220 mg/Nm3.

(175)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(176)  En el caso de las instalaciones puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 70 mg/Nm3.

(177)  Estos NEA-MTD no son aplicables a las instalaciones existentes que funcionan < 1 500 h/año.

(178)  Estos niveles son indicativos cuando se trata de instalaciones de combustión existentes que funcionan < 500 h/año.

(179)  El límite superior del intervalo de NEA-MTD puede superarse cuando se utiliza un elevado porcentaje de gas de coque (por ejemplo, > 50 %). En ese caso, el límite superior del intervalo de NEA-MTD es 300 mg/Nm3.

(180)  Estos NEA-MTD no son aplicables a las instalaciones existentes que funcionan < 1 500 h/año.

(181)  Estos niveles son indicativos cuando se trata de instalaciones de combustión existentes que funcionan < 500 h/año.

(182)  Estos NEA-MTD se basan en > 70 % de la potencia de carga base disponible al día.

(183)  Esto incluye las turbinas de gas de un combustible y de dos combustibles.

(184)  El límite superior del intervalo de NEA-MTD es 250 mg/Nm3 si no son aplicables los quemadores DLN.

(185)  El límite inferior del intervalo de NEA-MTD puede lograrse con quemadores DLN.

(186)  Estos NEEA-MTD no se aplican a las unidades que funcionen < 1 500 h/año.

(187)  En el caso de las unidades de PCCE, solo se aplica o bien «Eficiencia eléctrica neta» o bien «Consumo de combustible neto total», en función del diseño de la unidad de PCCE (es decir, más orientado a la generación de electricidad o a la generación de calor).

(188)  Estos NEA-MTD pueden no ser alcanzables cuando la demanda potencial de calor es demasiado baja.

(189)  Estos NEEA-MTD no se aplican a las instalaciones que generan únicamente electricidad.

(190)  Estos NEA-MTD no son aplicables a las instalaciones que funcionan < 1 500 h/año.

(191)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(192)  Para las instalaciones existentes de ≤ 500 MWth puestas en servicio a más tardar el 27 de noviembre de 2003 que utilizan combustibles líquidos con un contenido de nitrógeno superior al 0,6 % p/p, el límite superior del intervalo de NEA-MTD es 380 mg/Nm3.

(193)  En el caso de las instalaciones existentes puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 180 mg/Nm3.

(194)  En el caso de las instalaciones existentes puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 210 mg/Nm3.

(195)  Estos NEA-MTD no son aplicables a las instalaciones existentes que funcionan < 1 500 h/año.

(196)  Estos niveles son indicativos cuando se trata de instalaciones de combustión existentes que funcionan < 500 h/año.

(197)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(198)  En el caso de las instalaciones que funcionan < 1 500 h/año, el límite superior del intervalo de NEA-MTD es 20 mg/Nm3.

(199)  En el caso de las instalaciones que funcionan < 1 500 h/año, el límite superior del intervalo de NEA-MTD es 7 mg/Nm3.

(200)  Estos NEA-MTD no son aplicables a las instalaciones que funcionan < 1 500 h/año.

(201)  Estos niveles son indicativos cuando se trata de instalaciones que funcionan < 500 h/año.

(202)  En el caso de las instalaciones puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 25 mg/Nm3.

(203)  En el caso de las instalaciones puestas en servicio a más tardar el 7 de enero de 2014, el límite superior del intervalo de NEA-MTD es 15 mg/Nm3.

(204)  Estos NEA-MTD son aplicables únicamente a las instalaciones que utilizan combustibles derivados de procesos químicos con sustancias cloradas.